# A STUDY ON ${ }^{\prime}, p_{n}, q_{n}{ }^{\prime}$ SUMMABILITY FACTORS OF INFINITE SERIES 

W. T. Sulaiman<br>Dept. of Math., College of Science, University of Qatar

## دراسة في معاملات تجميع لتسلسلات لا نهائية

$$
\begin{aligned}
& \text { قسـم الرياضيات - كـية العلوم } \\
& \text { جامــــة قطـــر }
\end{aligned}
$$

# يتضـمن البحث برهنة نظرية جديدة تتـعلق بمعاملات التجميع من نوع <br> أخرى مستنجة أيضاً . 

Key Words: Summability, Series, Sequences

## ABSTRACT

A new theorem concerning $\left|\mathrm{N}, \mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}}\right|_{\mathrm{k}}$ summability factors of infinite series $\sum_{1}^{\infty} a_{n}$ is proved. Some other results are deduced.

## 1. INTRODUCTION

Let $\sum_{1}^{\infty} a_{n}$ be an infinite series with partial sums $s_{n}$. Let $\sigma_{n}^{\delta}$ and $\eta_{n}^{\delta}$ denote the $n$th Cesaro mean of order $\delta(\delta>-1)$ of the sequences $\left\{s_{n}\right\}$ and $\left\{\mathrm{na}_{\mathrm{n}}\right\}$ respectively. The series $\sum a_{\mathrm{n}}$ is said to be summable $(C, \delta)$ with index $k$, or simply summable $1 C, \delta_{k}, k \geq 1$ if
or equivalently $\begin{aligned} & \sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}^{\delta}-\sigma_{n-1}^{\delta}\right|^{k}<\infty \\ & \sum_{n=1}^{\infty} n^{-1}\left|\eta_{n}^{\delta}\right|^{k}<\infty .\end{aligned}$
Let $\left\{p_{n}\right\}$ be a sequence of real or complex numbers with $P_{n}=\mathrm{p}_{0}+p_{1}+\ldots+p_{n}, \mathrm{P}_{\mathrm{n}} \rightarrow \infty$ as $n \rightarrow \infty, p_{-1}=\mathrm{P}_{-1}=0$ The series $\sum \mathrm{a}_{\mathrm{n}}$ is said to be summable $\left|N, p_{n}\right|$, if
(1)
where

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left|t_{n}-t_{n-1}\right|<\infty \\
t_{n}=P_{n}^{-1} \sum_{v=1}^{\infty} p_{n-v} s_{v} \quad\left(t_{-1}=0\right)
\end{gathered}
$$

We write $p=\left\{p_{n}\right\}$ and

$$
M=\left\{p: p_{n}>0 \& \frac{p_{n+1}}{p_{n}} \leq \frac{p_{n+2}}{p_{n+1}} \leq 1, n=0,1, \cdots\right\}
$$

It is known that for $p \in M$, (1) holds if and only if (Dis [4])

$$
\sum_{n=1}^{\infty} \frac{1}{n P_{n}}\left|\sum_{v=1}^{n} p_{n-v} v a_{v}\right|<\infty
$$

Definition $1:$ For $p \in M$, we say that $\sum_{1}^{\infty} a_{n}$ is summable
$\left|N, p_{n}\right|_{k}, k \geq 1$, if

$$
\sum_{n=1}^{\infty} \frac{1}{n P_{n}^{k}}\left|\sum_{v=1}^{n} p_{n-v} v a_{v}\right|^{k}<\infty
$$

In the special case in which $p_{n}=\mathrm{A}_{\mathrm{n}}{ }^{\mathrm{r}-1}, r>-1$, where $A_{n}{ }^{r}$ is the coefficient of $x^{n}$ in the power series expansion of $(1-x)^{-r-1}$ for $|x|<1,\left|N, p_{n}\right|_{k}$ summability reduces to $|C, r|_{k}$ summability see [4].

The series $\sum_{1}^{\infty} a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$ if.

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty
$$

where

$$
T_{n}=P_{n}^{-1} \sum_{v=1}^{n} p_{\nu} s_{v}
$$

If we take $\mathrm{p}_{\mathrm{n}}=1$, then $\left|N, p_{n}\right|_{k}$ summability is reduces to $I C,\left.1\right|_{\mathrm{k}}$ summability. In general, these two summabilities are not comparable.

Let $\left\{p_{n}\right\},\left\{q_{n}\right\}$ be sequences of numbers and denote

$$
\begin{aligned}
& Q_{n}=q_{0}+q_{1}+\cdots+q_{n}, q_{-1}=Q_{-1}=0 \\
& R_{n}=p_{0} q_{n}+p_{1} q_{n-1}+\cdots+p_{n} q_{0}, R_{n} \rightarrow \infty \text { as } n \rightarrow \infty \\
& \Delta f_{n}=f_{n}-f_{n+1}, \text { for any sequence }\left\{f_{n}\right\}
\end{aligned}
$$

## Definition 2 :

Let $\left\{p_{n}\right\},\left\{q_{n}\right\}$ be sequences of positive real numbers, such that $q \in M$; We say that $\sum_{1}^{\infty} a_{n}$ is summable $\left|N, p_{n}, q_{n}\right|_{k}, k \geq 1$, if.

$$
\sum_{n=1}^{\infty} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|\sum_{v=1}^{n} P_{v-1} q_{n-v} a_{v}\right|^{k}<\infty
$$

Clearly, $\left|N, p_{n} 1\right|_{k}$ reduces to $\left|\bar{N}, p_{n}\right|_{k}$.
The series $\sum \mathrm{a}_{\mathrm{n}}$ is said to be bounded $[R, \log n, 1]_{k}$, $k \geq 1$ if

$$
\sum_{v=1}^{n} v^{-1}\left|s_{\nu}\right|^{k}=0 \text { (long) as } n \rightarrow \infty \text { (Mishra[5]) }
$$

The series $\sum \mathrm{a}_{\mathrm{n}}$ is said to be bounded $\left[\bar{N}, p_{n}\right]_{k}, k \geq 1$

$$
\sum_{v=1}^{\mathrm{n}} \mathrm{v}^{-1}\left|s_{v}\right|^{\mathrm{k}}=\mathrm{o}\left(\mathrm{P}_{\mathrm{n}}\right) \text { as } n \rightarrow \infty \text { (Bor [2]) }
$$

If we take $k=1$ (resp. $p_{n}=n^{-1}$ ), then $\left[\bar{N}, \mathrm{p}_{\mathrm{n}}\right]_{\mathrm{k}}$ boundedness is the same as $\left[\bar{N}, \mathrm{P}_{\mathrm{n}}\right]_{\mathrm{k}}\left(\right.$ resp. $\left.[R, \log n, 1]_{k}\right)$ boundedness.

Here we give these two new definitions :

## Definition 3 :

The series $\sum \mathrm{a}_{\mathrm{n}}$ is said to be bounded $\left[\bar{N}, \mathrm{p}_{\mathrm{n}}\right]_{\mathrm{k}}, k \geq 1$, if.

$$
\sum_{v=1}^{n} q_{n-v}\left|s_{v}\right|^{k}=0\left(Q_{n}\right) \text { as } n \rightarrow \infty
$$

## Definition 4 :

The series $\sum a_{n}$ is said to be bounded $\left[\mathrm{N}, \mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}}\right]_{\mathrm{k}} \mathrm{k} \geq 1$, if

$$
\sum_{v=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{v}} \mathrm{q}_{\mathrm{n}-\mathrm{v}}\left|\mathrm{~s}_{\mathrm{v}}\right|^{\mathrm{k}}=\mathrm{o}\left(\mathrm{R}_{\mathrm{n}}\right) \quad \text { as } n \rightarrow \infty
$$

$\left[N, p_{n}, 1\right]_{k} k \geq 1$ and $\left[N, 1, q_{n}\right]_{k}, k \geq 1$ are reduces to $\left[\bar{N}, \mathrm{P}_{n}\right]_{k}$ and $\left[N, q_{n}\right]_{k}$ respectively.

The object of this paper is to prove the following

## 2. MAIN RESULT

## THEORM 1:

If $\sum_{1}^{\infty} a_{n}$ is bounded $\left[\mathrm{N}, \mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}}\right]_{\mathrm{k}}, k \geq 1$ and if $\left\{\mathrm{p}_{\mathrm{n}}\right\},\left\{\mathrm{q}_{n}\right\}$, and $\left\{\lambda_{n}\right\}$ are positive real sequences satisfy the conditions : $q \in M,\left\{p_{n} / P_{n} \mathrm{R}_{\mathrm{n}-1}^{\mathrm{k}}\right\}$ nonincreasing for $\mathrm{q}_{\mathrm{n}} \neq 0$, and

$$
\begin{align*}
& \sum_{n=v+1}^{m+1} \frac{p_{n} q_{n-v-1}}{P_{n} R_{n-1}}=0\left(P_{v}^{-1}\right), m \rightarrow \infty  \tag{2}\\
& \sum_{v=1}^{n} p_{n} q_{n-v-1}\left|\lambda_{v}\right|=0(1), n \rightarrow \infty  \tag{3}\\
& \sum_{v=1}^{n}\left|\Delta R_{v} \| \lambda_{v}\right| \frac{1}{q_{n-v-1}}=0(1), n \rightarrow \infty  \tag{4}\\
& R_{n}\left|\Delta \lambda_{n}\right|=0\left\{\left|\Delta R_{n} \| \lambda_{n}\right|\right\}, n \rightarrow \infty \tag{5}
\end{align*}
$$

then the series $\sum_{1}^{\infty} a_{n} R_{n} \lambda_{n}$ is summable $\left[N, p_{n}, q_{n}\right]_{k} \mathrm{k} \geq 1$.
We need the following lemmas for our object

## LEMMA 1 :

If the sequences $\left\{p_{n}\right\},\left\{q_{n}\right\}$, and $\left\{\lambda_{n}\right\}$ satisfy the conditions (3) - (5) of theorem 1 , then $R_{n}\left|\lambda_{n}\right|=0(1)$ as $n \rightarrow \infty$.

Proof : By Abel's transformation, we have

$$
\sum_{v=1}^{n} p_{v} q_{n-v}\left|\lambda_{v}\right|=\sum_{v=1}^{n}\left(\sum_{r=1}^{v} p_{r} q_{v-r}\right)\left|\Delta \lambda_{v}\right|+R_{n}\left|\lambda_{n}\right| .
$$

This implies

$$
\begin{aligned}
& R_{n}\left|\lambda_{n}\right| \leq \sum_{v=1}^{n} p_{v} q_{n-v}\left|\lambda_{v}\right|+\sum_{v=1}^{n}\left(\sum_{r=1}^{v} p_{r} q_{v-r}\right)\left|\Delta \lambda_{v}\right| \\
& =0(1) \sum_{v=1}^{n} R_{v}\left|\Delta \lambda_{v}\right|=0(1) \sum_{v=1}^{n}\left|\Delta R_{v} \| \lambda_{v}\right| \frac{1}{q_{n-v-1}}=0(1)
\end{aligned}
$$

## LEMMA 2 :

$\left\{q_{n}\right\}$ nonincreasing implies $\left|\Delta R_{n}\right|=0\left(p_{n}\right)$.
Proof : Since $R_{n} \leq \mathrm{P}_{\mathrm{n}} \mathrm{q}_{0}$, then for $D=\frac{d}{d n}$ and a constant $k$,

$$
k \geq \lim _{n \rightarrow \infty} \frac{R_{n}}{P_{n}}=\lim _{n \rightarrow \infty}\left|\frac{D R_{n}}{D P_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\Delta R_{n}}{\Delta P_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\left|\Delta R_{n}\right|}{p_{n}}
$$

## LEMMA 3 :

let $q \in M$, then for $0<r \leq 1$,

$$
\sum_{n=v}^{\infty} \frac{q_{n-v}}{n^{r} Q_{n}}=O\left(v^{-r}\right)
$$

Proof of Theorem 1 : Write

$$
\phi_{n}=\sum_{v=1}^{n} P_{v-1} R_{v} q_{n-v} a_{v} \lambda_{v}
$$

then by Abel's transformation, we have

$$
\begin{aligned}
& \phi_{n}= \sum_{v=1}^{n-1}\left(\sum_{r=1}^{v} a_{r}\right) \Delta_{v}\left(q_{n-v} P_{v-1} R_{v} \lambda_{v}\right)+ \\
&+\left(\sum_{r=1}^{n} a_{r}\right) q_{0} P_{n-1} R_{n} \lambda_{n} \\
&=\sum_{v=1}^{n-1}\left\{\Delta_{v} q_{n-v} P_{v-1} R_{v} \lambda_{v} s_{v}-p_{v} q_{n-v-1} R_{v} \lambda_{v} s_{v}+\right. \\
& \quad+q_{n-v-1} P_{v} R_{v} \Delta \lambda_{v} s_{v} \\
&\left.\quad-q_{n-v-1} P_{v} \Delta R_{v} \lambda_{v+1} s_{v}\right\}+q_{0} P_{n-1} R_{n} \lambda_{n} s_{n} \\
&=\phi_{n, 1}+\phi_{n, 2}+\phi_{n, 3}+\phi_{n, 4}+\phi_{n, 5} \quad \text { where } \\
& \phi_{n, 1}= \sum_{v=1}^{n-1} \Delta_{v} q_{n-v} P_{v-1} R_{v} \lambda_{v} s_{v} \\
& \phi_{n, 2}= \sum_{v=1}^{n-1}-p_{v} q_{n-v-1} R_{v} \lambda_{v} s_{v} \\
& \phi_{n, 3}= \sum_{v=1}^{n-1} q_{n-v-1} P_{v} R_{v} \Delta \lambda_{v} s_{v} \\
& \phi_{n, 4}= \sum_{v=1}^{n-1}-q_{n-v-1} P_{v} \Delta R_{v} \lambda_{v+1} s_{v} \\
& \phi_{n, 5}=-q_{0} P_{n-1} R_{n} \lambda_{n} S_{n}
\end{aligned}
$$

In order to prove the theorem, by Minkowski's inequality, it is therefore sufficient to show that.

$$
\sum_{n=1}^{\infty} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|\phi_{n, r}\right|^{k}<\infty, r=1,2,3,4,5
$$

Applying Holder's inequality

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|\phi_{n, 2}\right|^{k}=\left.\left.\sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\right|_{v=1} ^{n-1} \Delta_{v} q_{n-v} P_{v-1} R_{v} \lambda_{v} s_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}} \sum_{v=1}^{n-1}\left|\Delta_{v} q_{n-v}\right| P_{v-1}^{k} R_{v}^{k}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\left\{\sum_{v=1}^{n-1}\left|\Delta_{v} q_{n-v}\right|\right\}^{k-1} \\
& \quad=O(1) \sum_{v=1}^{m} P_{v-1}^{k} R_{v}^{k}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n}\left|\Delta_{v} q_{n-v}\right|}{P_{n} R_{n-1}^{k}} \\
& \quad=O(1) \sum_{v=1}^{m} p_{v}\left(\frac{P_{v-1}}{R_{v-1}}\right)\left(R_{v}\left|\lambda_{v}\right|\right)^{k-1}\left|\lambda_{v} \| s_{v}\right|^{k} \\
& \quad=O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v} \| s_{v}\right|^{k}, \quad \text { by lemma 1 }
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m} p_{v} q_{m-v}\left|\lambda_{v} \| s_{v}\right|^{k} \cdot \frac{\left|\lambda_{v}\right|}{q_{m-v}} \\
& =O(1) \sum_{v=1}^{m-1}\left(\sum_{r=1}^{v} p_{r} q_{m-r}\left|s_{r}\right|^{k}\right)\left|\Delta\left\{\frac{\left|\lambda_{v}\right|}{q_{m-v}}\right\}\right|+O(1) R_{m} \frac{\left|\lambda_{m}\right|}{q_{0}}
\end{aligned}
$$

, by Abel's Transformation

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left(\sum_{r=1}^{\nu} p_{r} q_{\nu-r}\left|s_{r}\right|^{k}\right) \Delta_{v}\left(\frac{1}{q_{m-v}}\right)\left|\lambda_{v}\right|+ \\
& +\frac{1}{q_{m-v-1}}\left|\Delta \lambda_{\nu}\right|+O\left(R_{m} \mid \lambda_{m}\right) \\
& =O(1) \sum_{\nu=1}^{m} \Delta_{v}\left(\frac{1}{q_{m-\nu}}\right) R_{v}\left|\lambda_{\nu}\right|+O(1) \sum_{\nu=1}^{m} \frac{1}{q_{m-\nu-1}} R_{v}\left|\Delta \lambda_{\nu}\right| \\
& +O(1) \sum_{v=1}^{m} \frac{1}{q_{m-v-1}}\left|\Delta R_{v} \| \lambda_{v}\right|+O(1) \\
& \left.=O(1) \sum_{v=1}^{m-1}\left(\sum_{r=1}^{\nu} \Delta_{v} \frac{1}{q_{m-v}}\right)\left|R_{v} \Delta\right| \lambda_{\nu}\left|+\Delta R_{v}\right| \lambda_{\nu+1} \right\rvert\, \\
& +O(1) \sum_{v=1}^{m-1} \frac{1}{q_{m-v-1}}\left|\Delta R_{\nu}\right|\left|\lambda_{\nu}\right|+O(1) \\
& =O(1) \sum_{v=1}^{m} \frac{1}{q_{m-v-1}}\left|\Delta R_{v}\left\|\lambda_{v}\left|+O(1) \sum_{v=1}^{m} \frac{1}{q_{m-v-1}}\right| \Delta R_{v}\right\| \lambda_{v+1}\right|+ \\
& +O(1)=O(1) \\
& \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|\phi_{n, 2}\right|^{k}=\left.\sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}} \sum_{\nu v=1}^{n-1} p_{v} q_{n-v-1} R_{\nu} \lambda_{\nu} s_{\nu}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}} \sum_{v=1}^{n-1} p_{v} q_{n-v-1} R_{v}^{k}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} \frac{p_{v} q_{n-v-1}}{P_{n} R_{n-1}}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} p_{v} R_{v}^{k}\left|\lambda_{\nu}\right|^{k}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n} q_{n-v-1}}{P_{n} R_{n-1}} \\
& =O(1) \sum_{v=1}^{m} p_{v} \frac{R_{v}}{P_{v}}\left(R_{v}\left|\lambda_{v}\right|\right)^{k-1}\left|\lambda_{v} \| s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v} \| s_{v}\right|^{k} \text {, as } R_{v} \leq q_{0} P_{v} \\
& =O(1) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|\phi_{n, 3}\right|^{k}= \\
& \quad=\left.\sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}} \sum_{v=1}^{n-1} p_{v} q_{n-v-1}\left(\frac{P_{v}}{p_{v}}\right) R_{v} \Delta \lambda_{v} s_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}} \sum_{v=1}^{n-1} p_{v} q_{n-v-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} R_{v}^{k}\left|\Delta \lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \\
& \quad X\left\{\sum_{v=1}^{n-1} \frac{p_{v} q_{n-v-1}}{R_{n-1}}\right\}^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
&=O(1) \sum_{v=1}^{m} p_{v}\left(\frac{P_{v}}{p_{v}}\right)^{k} R_{v}^{k}\left|\Delta \lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n} q_{n-v-1}}{P_{n} R_{n-1}} \\
&=O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\Delta R_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \\
&=O(1) \sum_{v=1}^{m} p_{v}\left(\frac{P_{v}}{R_{v}}\right)^{k-1}\left(R_{v}\left|\lambda_{v}\right|\right)^{k-1}\left|\lambda_{v}\right|\left|s_{v}\right|^{k} \\
&=O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|\left|s_{v}\right|^{k}, \\
&=O(1) . \\
& \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|\phi_{n, 4}\right|^{k}=\sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k} \mid}\left|\sum_{v=1}^{n-1} q_{n-v-1} P_{v} \Delta R_{v} \lambda_{v+1} s_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}} \sum_{v=1}^{n-1} p_{v} q_{n-v-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta R_{v}\right|^{k}\left|\lambda_{v+1}\right|^{k}\left|s_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} \frac{p_{v} q_{n-v-1}}{R_{n-1}}\right\}^{k-1} \\
&= O(1) \sum_{v=1}^{m} p_{v}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta R_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n} q_{n-v-1}}{P_{n} R_{n-1}} \\
&= O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\Delta R_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \\
&= O(1) . \\
& \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|\phi_{n, s}\right|^{k}=\sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|q_{0} P_{n-1} R_{n} \lambda_{n} s_{n}\right|^{k} \\
&=\left.O(1) \sum_{v=1}^{m} p_{11}\left(\frac{P_{n-1}}{R_{n-1}}\right)^{k}\left(\frac{R_{n}}{P_{n}}\right)\left(R_{n}\left|\lambda_{n}\right|\right)^{k-1}\left|\lambda_{n}\right| s_{n}\right|^{k} \\
&= O(1) \sum_{v=1}^{m} p_{n}\left|\lambda_{n} \| s_{n}\right|^{k} \\
&=O(1)
\end{aligned}
$$

## 3. APPLICATIONS

THEOREM 2: (Bor [3]):
If $\sum_{1}^{\infty} a_{n}$ is bounded $\left[N, \mathrm{p}_{\mathrm{n}}\right]_{k}$, and the sequences $\left\{\lambda_{n}\right\}$ and $\left\{\mathrm{P}_{\mathrm{n}}\right\}$ satisfy the conditions:
(i) $\quad \sum_{n=1}^{m} p_{n}\left|\lambda_{n}\right|=O(1)$
(ii) $\quad P_{m}\left|\Delta \lambda_{m}\right|=O\left(p_{m}\left|\Delta \lambda_{m}\right|\right)$,
then the series $\sum \mathrm{a}_{n} P_{n} \lambda_{n}$ is summable
Proof : Follows from Theorem 1 by putting $q_{n}=1$ for all $n$.

## THEOREM 3 :

If $\sum \mathrm{a}_{\mathrm{n}}$ is bounded $\left[N, p_{n}\right]_{k}$, and the sequences $\left\{\lambda_{n}\right\}$ and $\left\{q_{n}\right\}$ satisfy the conditions: $q \in M$, and
(i) $\quad \sum_{v=1}^{m} q_{n-v}\left|\lambda_{v}\right|=O(1)$
(ii) $\sum_{v=1}^{m} \frac{q_{v+1}}{q_{n-v-1}}\left|\lambda_{v}\right|=O(1)$
(iii) $\quad Q_{n}\left|\Delta \lambda_{n}\right|=O\left(q_{n}\left|\Delta \lambda_{n}\right|\right)$,
then the series $\sum \mathrm{a}_{\mathrm{n}} Q_{n} \lambda_{n}$ is summable $\left|N, q_{n}\right|_{k}, k \geq 1$.
Proof : Follows from Theorem 1 by putting $p_{n}=1$ for all $n$, and making use of lemma 3 , for $r=1$.

## REFERENCES

[1] H. Bor, On [ $\left.\bar{N}, p_{n}\right]_{k}$ summability factors, of infinite series, J Univ. Kuwait Sci. 10 (1983), 37-42 .
[2] H. Bor, On $\left[\bar{N}, p_{n}\right]_{k}$ summability factors of infinite series, Tamkang J. Math. 15 (1984), 13-20 .
[3] H. Bor, On $\left[\bar{N}, p_{n}\right]_{k}$ summability factors, Proc. Amer. Math. Soc., 94 (1985), 419-422 .
[4] G. Das, Tauberian theorems for absolute Norlund summability, Proc. London Math. Soc., 19 (1969), 357-384 .
[5] B. P. Mishra, On the absolute Cesaro summability factors of infinite series, Rend. Circ. Mat. Palermo (2) 14 (1965), 189-194.
[6] W. T. Sulaiman, Nots on two summability methods, Pure and Applied Mathematika Sciences, 31 (1990), 59-68.
[7] W. T. Sulaiman, Relations on some summability methods, Proc. Amer. Math. Soc., 118 (1993), 1139-1145.

