A SHORT NOTE ON THE POINT-WISE SUMMABILITY OF THE CONJUGATE SERIES OF A FOURIER SERIES IN THE NORLUND SENSE

By
ZIAD RUSHDI ALI
United Arab Emirates

Key words: Conjugate Fourier series. Nerlund summability.

Abstract

In this note we consider an analogous theorem of [1] in the sense of point-wise summability of the conjugate series of a Fourier series in the Norlund sense

INTRODUCTION

1. Let $f(t)$ be a periodic function with period 2π, integrable in the sense of Lebesgue over $(-\pi, \pi)$. Let $\cong[f]$ denote the conjugate series of the Fourier series of f. Let $\phi(t)=f(x+t)+f(x-t)-2 f(x), \quad \psi(t)=f(x+t)-f(x-t)$,

In[1] we have :

$$
\Psi(\mathrm{t})=\int_{0}^{\mathrm{t}}|\psi(\mathrm{u})| \mathrm{du} \text {, and } \Phi(\mathrm{t})=\int_{\mathrm{o}}^{\mathrm{t}}|\phi(\mathrm{u})| \mathrm{du}
$$

Theorem 1.1: Let $\quad \mathrm{q}_{\mathrm{n}}=\frac{1}{(\mathrm{n}+1)^{\boldsymbol{\alpha}}}, \mathrm{O} \leqslant \propto<1$. Then $\mathrm{S} \quad[\mathrm{f}] \quad$ is summable $\mathrm{S}\left(\mathrm{N}, \mathrm{q}_{\mathrm{n}}\right)$ to $f(x)$ at each point x where $\Phi(t)=o(t)$.
(The case $\propto=0$ is Lebesgue's theorem [5])
In this note we prove the following analogous theorem of theorem 1.1 above.
Theorem 1: Let $\mathrm{q}_{\mathrm{n}}=\frac{1}{(\mathrm{n}+1)^{\propto}}, \mathrm{O} \leqslant \propto<1$. Then $\overline{\mathrm{S}}[\mathrm{f}]$ is summable $S\left(N, q_{n}\right)$ to $\frac{1}{\pi_{o}} \int_{0}^{\pi} \frac{\psi(t)}{2 \tan \frac{1}{2} t}$ at each point x
where $\Psi(t)=o(t)$.
Proof: Let $\bar{S}_{\mathrm{n}}(\mathrm{x})$ denote the sequence of partial sums of the conjugate series of a Fourier series, and let $\mathrm{t}_{\mathrm{n}}(\mathrm{x})$ be the corresponding Norlund mean. Then clearly ([3] , and [5])

Summability of the Conjugate Series

$$
t_{n}(x)=\sum_{k=0}^{n} q_{k} \frac{1}{2 \pi Q_{n}} \int_{0}^{\pi} \psi(t) \frac{\cos -\frac{t}{2} \cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}}
$$

Hence

$$
\begin{gathered}
t_{n}(x)-\frac{1}{\pi} \int_{o}^{\pi} \frac{\psi(t)}{2 \tan \frac{t}{2}} d t=-\int_{o}^{\pi}(t) K_{n}(t) d t, \text { where } \\
K_{n}(t)=\frac{1}{2 \pi Q_{n}} \sum_{k=0}^{n} \frac{\cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}} .
\end{gathered}
$$

In order to prove the theorem we show that :

$$
\int_{0}^{\pi} \psi(t) K_{n}(t) d t=o(1) \quad \text { as } \quad n \rightarrow \infty
$$

Now

$$
\begin{aligned}
\int_{0}^{w} \psi(t) K n(t) d t & =\left(\int_{0}^{\frac{1}{n}}+\frac{1}{n} \int_{1}^{1}+\int_{1}^{\widehat{\pi}} \psi(t) K_{n}(t) d t\right. \\
& =\tilde{I}_{1}+\overline{\mathrm{I}}_{2}+\overline{\mathrm{I}}_{3}, \text { say }
\end{aligned}
$$

First by[2] above we have:

$$
\begin{aligned}
\overline{\mathrm{I}}_{1} & =\int_{0}^{\frac{1}{\mathrm{n}}} \psi(\mathrm{t}) \mathrm{K}_{\mathrm{n}}(\mathrm{t}) \mathrm{dt} \\
& =\mathrm{o}\left(\mathrm{n} \int_{\mathrm{o}}^{\left.\frac{1}{\mathrm{n}}|\psi(\mathrm{t})| \mathrm{dt}\right)}\right. \\
& =\mathrm{o}(1) \text { as } \mathrm{n} \rightarrow \infty .
\end{aligned}
$$

Second, clearly the moethod $\mathrm{S}\left(\mathrm{N}, \frac{1}{(\mathrm{n}+1)^{\boldsymbol{\alpha}}}\right)$ is regular. Hence by the Riemann Lebesgue theorem, and the regularity of the method $\mathrm{S}\left(\mathrm{N}, \frac{1}{(\mathrm{~N}+1)^{\propto}}\right)$
we have :

$$
\overline{\mathrm{I}}_{3}=\int_{\pi}^{1} \psi(\mathrm{t}) \mathrm{K}_{\mathrm{n}}(\mathrm{t}) \mathrm{dt}=\mathrm{o}(1) \quad \text { as } \mathrm{n} \rightarrow \infty
$$

Third by [4] above we have:

$$
\overline{\mathrm{I}}_{2}=\frac{1}{\frac{1}{n}} \int_{\psi(\mathrm{t})}^{1} \quad \mathrm{~K}_{\mathrm{n}}(\mathrm{t}) \quad \mathrm{dt}=\mathrm{o}\left(\frac{1}{\mathrm{Q}_{\mathrm{n}}} \frac{1}{\frac{1}{n}} \int^{1}|\psi(\mathrm{t})| \frac{\mathrm{Q}_{\tau}}{\mathrm{t}} \mathrm{dt}\right)
$$

Now
$\frac{1}{Q_{n}} \frac{1}{n} \int^{1}|\psi(t)| \frac{Q_{\tau}}{t} d t=\left(\int_{\frac{1}{n}}^{\frac{1}{n-1}} \frac{1}{n-1} \int^{\frac{1}{n-2}}+\ldots+{ }_{\frac{1}{2}}^{1}\right)|\psi(t)| \frac{Q_{\tau}}{t} d t$
Hence by integration by parts and simplyfying we obtain:
$\left.\frac{1}{Q_{n}} \frac{1}{n} \int^{1} \psi(t) \frac{Q}{t} d t-o(1)=\frac{1}{Q_{n}}\left\{\Psi(t) \frac{Q^{\tau}}{\frac{1}{n}}\right]+\psi(t) \frac{Q}{t^{2}} d t\right\}$
Now
$\frac{1}{\mathrm{Q}_{\mathrm{n}}} \Psi(\mathrm{t}) \frac{\mathrm{Q}}{\mathrm{T}} \mathrm{Idt}^{\prime}=\mathrm{O}\left(\frac{1}{\mathrm{Q}_{\mathrm{n}}}\right)+\mathrm{o}\left(\frac{1 \cdot 1 \cdot \mathrm{Q}_{\mathrm{n}}}{\mathrm{Q}_{\mathrm{n}} \cdot \mathrm{n} \cdot 1}\right)=\mathrm{o}(1)$ as $\mathrm{n} \rightarrow \infty$
$\frac{1}{Q_{n}} \Psi(t) \frac{Q_{\tau}}{t^{2}} d t=\frac{1}{Q_{n \mid 1}} \int^{n} \Psi\left(\frac{1}{u}\right) Q(u) d u$

$$
\begin{aligned}
& =o\left(\frac{1}{Q_{n}} \int \frac{\mathrm{n}}{\mathrm{Q}(\mathrm{u})} \mathrm{u} d u\right) \\
& =o(1) \text { as } n \rightarrow \infty \text { by }
\end{aligned}
$$

This completes the proof of theorem 1.

REFERENCES

Ali, Ziad, R.A. A generalization of a theorem of Lebesgue (is being considered for publication).
Diksit, H.R. 1962. The Norlund summability of the conjugate series of a Fourier series. Rendconti Del Circolo mathematico Di Palermo 11: 227-234

Hardy G.H. 1949. Divergent series, Oxford at the Clarendon Press. pp. 60-70.

Summability of the Conjugate Series

McFadden L. 1942. Absolute Norlund summability, Duke Math. J., 9: 168-207.

Zygmund, 1969. Trignometric series, V. 1 Cambridge University Press pp. 90-92.

