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ON DIRICHLET PROBLEM WITH SINGULAR INTEGRAL 
BOUNDARY CONDITION 

By 

M. I. MOHAMED 
Math. Dept., University of Qatar, Doha, Qatar 

ABSTRACT 
In this paper a Dirichlet problem, with singular integral condition, is studied. It is 
shown that such problem can be reduced to a regular equation which allows us to 
construct the solution. 

Let G be a simply connected bounded region with a simple smooth contour C. Consider the 
equation 

~u=O 
(1) 

where ~ is the Laplace's operator and u is a vector vector function which takes values in 
Banach algebra with involution R. In this paper we are concerned with the regular solution of 
equation (1) in G which satisfies, on C, the singular integral condition: 

b(t) u (T) 
a(t) u (t) + -.- f -- dT + f k(t, T) u (T)dT 

m c T-t c 
f(t) (2) 

where a (t), b(t), k(t, T) and f(t) assume values in R, and each of them satisfies a Holder 
condition. 

In the case a(t) = 1, b(t) = 0 and k(t, T) = 0, 
condition (2) takes the form: 

u(t) = f(t) 

while in the case a(t) = 0, b(t) 

condition (2) takes the form 

1 and k(t, T) = 0, 

1 

ni 

j u(T) 

c T-t 
_1_ f f(T) 

dT = f(t), which implies that u(t) = dT 
ni c T-t 

(2') 

(2") 

The problem of finding the regular solution of (1) in G prescribed by (2') or (2"), on C, is the 
usual Dirichlet problem for a vector function. The more general problem (1)- (2), mentioned 
earlier also called Dirichlet problem when (2) is solvable with respect to u. 
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On Diricblet Problem with Singular Integral Boundary Condition 

The operator form of condition (2) is 
au + bSu + Ku = f 
where S is a singular operator satisfying the conditions: 

1)S2 = I, 2) V v E R the operator Sv - vS is regular [ 1 J 
Lemma: If S is the singular operator mentioned above, then Vv,wER, we have 
(i) Svw = vSw + Nw 

(ii) SvSw = vw + Ow 
where N and Q are regular operators. 

Proof: (i) Since Svw = Svw + vSw - vSw 
= vSw + (Sv - vS)w 

then from 2), it follows 
Svw = vSw + Nw. 

(ii) Since SvSw = SvSw + vw - vw, 
then it follows from 1) 
SvSw = vw + SvSw - SZVW 

= vw + S(vS - Sv)w 

Since S in singular and vS - Sv is regular, 
then S(vS - Sv) is regular and thus we have 
SvSw = vw + Qw. 

Theorem: Problem (1)-(2) can be reduced to the regular equation 
q (,) + Lc.J = h 
which is completely defined in the space R2

• 

Proof: Every regular solution of (1) takes the form 

(3) 

u = ~ (z) + ~ (z) (4) 

where .;> (z) is an arbitrary vector function in G and 4> (z) is its involution. 

Thus, 

ulc = ot (t) + c!P (t) 

Substituting from (5) in (3) we find 

a( Cl) + ~) + bS( 4> + 4i) + K( ¢1 +(j) = f (6) 

The unique integral representation on LN. Vekua,[2],for the function cf>(z) takes the 
form 

J 
TT8 (T) 

!D (z) = 
c T- z 

(7) 
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where 8 (T) = 8 (T) and satisfies Holder condition, k1 = k1 (constant). 
From (7), we obtain [ 2] 

.I (t) =nit' t8 (t) + J T' To (T) 
dT+ ikt c T- t 

hence 

• (t) = - nit't&(t) + f 
T' To (T) 

df- ikt 
c T- t 

(8) 

(9) 

dT 
Since -T-t 

dT + din ( T - t ) , (2] , equation (9) takes the form 
T-t - T-t 

- T'To (T) 
& (t) = nit't 8(t) + f dT + f h1(t, T).(T)dT- ik1 c T- t c 

(10) 

where the regular kernel h1(t, T) is given by: 

h ( T) , - d ( T-t .) 
1 t, = T T dT In T-t . 

Equations (8) and (10), can be written respectively in the form 

• (t) = nit't 8 (t) + ni~t f 8 (T) dT + f T'T-t't B (T)dT + ik (11) 
ru c T-t c T-t 1 

• (t) = nit'tB(t) + nit_i f 8 (T) dT + f T'T-t't B (T)dT 
ru c T-t c T-t 

+ [ h1( t. T) 8 (T)dT - ik1 

Substituting from (11) and (12) in (5) we have 

u \ = oc(t) 6(t) + $~t) JS(T) dT + f M(t,T) 8(T)dT 
c ru c T-t c 

where oc(t) = ni (~t - t'l)1 
13 (t) = ni (t't + t't), 

and 

T'T rt T'T-t't M(t T) = --- + + ht(t,T). 
' T-t T-t 
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On Dirichlet Problem with Singular Integral Boundary Condition 

The operator form of (13) is given by 
uc =ex: 8 +as 8 + M8 (15) 
Consequently from (15) and (16), we obtain: 
a( ex: 8 + ~S 8.+ M8) + bS(cx: 8 + P.>S8+ M8) + K(cx: 8 + ~S 8 + M8) = f (16) 

acx:8 +a,;ss +bScx:o +bS.~S6 +T0 8 =f (17) 

where T 0 is a regular operator 
To6= K(cx:& + BS8 + MS) + aMS + bSMS 
using the lemma, the following equation is obtained from (17) 
a~ +aBSS +bcx:S6 +bf>S +bP16 +bP16 +b016 +T0 6 =f (18) 

where P1 and 01 are regular and completely defined by the following: 

Scx:S = cx:S 8 + P18 , 

Sf3SS=B8 +01S 

Let, 
m = acx: + bB, 
n = a {3 + bcx:, 

and the regular operator Y 
Y = bP1 + bQ1 + T0 

we obtaine from (18) 
m 6 + nS 6 + Y6 = f 

(19) 

(20) 

(21) 

and therefore, problem (1)-(2) can be reduced to the singular operator equation (21) 
which is reshaped in a regular form as follows [3 J : 
From (21) 

Sm6 + SnSS+ SY 6 =Sf 
since S2 = I, we obtain from (22) 

(22) 

SmSS 5 + SnS 6 + SYSSS =Sf (23) 

let 6 = " 1 and SS = ((1 2, consequently from (21) and (23) the following system of 
equations is produced 

mt.p 1 +nlp2 +Y~ 1 =f ) 

SmS lf 2 + SnS l.f 1 + SYS 1.¥ 2 = Sf 

(24) 

Using the lemma, the above system takes the form 

nlfl + nLf2 + Ylf 1 = f ) 
n l.f 1 + m l.f 2 + N 1 (f 1 + N 2 ({I 2 + SYS Cf 2 = Sf (25) 
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where N1 and N2 are regular operators, which are completely defined by the following 

SnS lf 1 = n Cf1 + N1 q ~> 
SmSqz = mc.r2 + N2(/2 

Define, 

q = ( ~ ~ l 
L= (:, N,: SYS) 

h = (f,Sf) 
w = ( q>, Cf'l!,} ' 

The system (25), takes the form 

qW+LW=h 

(26) 

(27) 

(28) 

(29) 
(30) 

(31) 

which is regular and completely defined in the space R', the proof is complete. 

If q possess a bounded inverse q-1 equation (31) has 
W+~W=~ p~ 
which is a regular equation with regular operator L 0 = q-' L in the space R' and 
therefore, if 6 is the solution of equation (21), then ( !..f 1, 4 2T = ( 6, S8) is the soluton 
of equation (32) and conversely if W = ( lf ~> (f 2) is the solution (32) then, f> = 
'f I + S 'f2 is the solution (21) which allows us to construct the solution of the problem 

2 
(1)- t2). 
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