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ABSTRACT 

This paper is devoted to study the inverse scattering problem of a generalized Sturm-Liouville equation on the whole line. The 
solutions of the considered problem and their asymptotic behaviour are presented. The expansion by eigenfunctions of the consid­
ered problem and hence Parseval equations are given.The right and left scattering data are obtained. The inverse scattering problem 
is formulated and completely solved. 

INTRODUCTION 

Let us consider the modified Sturm -Liouville differential 
equation 

It is well known that [5] the harmonic solution of the equa­
tions of an infinite streched string with a different density are 
deterimned by equation (I). 

-y" +v(x)y = k 2 p(x)y ,-oo < x < oo , (I) 

where v(x) is a real valued potential which satisfies the con­
dition 

-J (1 + lxl)lv(x)ldx < oo (2) 

and the density function p(x) is discontinuous at x = 0 such 
that 

_ {1, X~ 0 
p(x) - -a2, x<o,U2:;t:-l. (3) 

219 

This paper is devoted to study the inverse scattering prob­
lem for (I). Here, the inverse scattering problem for equation 
(I) can be stated as follows: Is it possible to define uniquely the 
scattering data for any given function v(x) in which v(x) ---7 0 
as a certain sufficiently rapid rate as I x I ---7 oo. If this is so can 
v(x) and p(x) be reconstructed from the scattering data? . 

The inverse scattering problem of equation (I) was investi­
gated in [7 ,8,9] as p(x) = I. Also,the inverse scattering problem 
of an eigenvalue problems of Sturm - Liouville type with dis­
continuous coefficients was studied in [1,3,6,10]. 

In the following treatments, the solutions of equation (I) will 
be given. An expansion of a certain function by an eigenfunctions 
of (1) will be presented and hence Parseval equations will be 
deduced. Also, the right and left scattering data of ( 1) will be 
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obtained. Moreover, the inverse scattering problem of (1) will 
be formulated and completely solved. 

PRELIMINARIES 

In this section, we collect those preliminary notations and 
relations from [2,4,8] which we shall use in the subsequent 
sections. 

Denote by y1 (x,k) and y2 (x,k) the solution of equation 
(1) as x ~ 0 and x < 0 respectively. 

Lemma 1: For every value of from the closed upper half 
plane, equation (1) has the solutions y

1 
(x,k) and y

2 
(x,k) which 

are represented in the forms 

00 

y1(x,k) =exp(ikx) + JK+(x,z)exp{ikz)dz , x ~ o (4) 
X 

and 

y 2 (x,k) = exp(akx)+ j K(x,z)exp(akz)dz, X< 0 (5) 

Here, the kernels k± (x,z) are differentiable with respect to x 
and z and that satisfy the conditions 

()2~:~x,z) ()2~:~x.z) = V± (x)IC (x.z) 

and 

X 

K+(x,x) = fJV+(z)dz, K-(x.x) = f Jv-(z)dz. (6) 
X 

Lemma 2: The solutions y1 (x,k) and y
2 

(x,k) have the 
following asymptotic behaviour 

asx~ co 

and 

Y2 (x,k)= exp(akxXt+o(t)); Y2 (x.-k) = exp(-akxXt+o(t)) (8) 

as x~-oo. 

Moreover,the solutions y
1
(x, k) and y

2
(x, k) are defined on 

the forms 

( ) = {exp(ikx)+ j k+ (x,z)exp(ikz}lz, Y. x,k x 

-a(k )y 2 (x,k )+ b(k )y 
2 
(x,-k ), 

x;:::o 

X<O 

and 

- {a. (k)y 1 (x,k!~ b 1 (k)y 1 (x,-k), X;:::: 0 

Y2 (x,k)- J 
exp(a~tx)+ k(x,z)exp(akz)dz, X< o; 

where 

(9) 
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a. (k)= (2ikr [y 2 (o,k}y~(o,-k)- y~ (o,k)y
1 
(o,-k)] 

and 

(10) 

(11) 

From these equations we find that a
1 
(k) and b

1 
(k) are analytical 

in the upper half plane ofk that having the asymptotic behaviours 

a. (k)= (
1
-2ai )+ o(1~ 1 ) and b. (k)= ('~ai )+ o(1 ~ 1 ). 

Combining (9) ,(10) ,(11) and (12) one obtains 

u- (x,k)= iaT(k)y 1 (x,k)= r- (k)y 
2 
(x,k)+ y 

2 
(x.-k) (13) 

and 

u+ (x,k)= T(k)y 2 (x,k)= r+ (k)y
1 
(x,k)+ Y. (x.-k) 

where 

r(k)= _a. (-k); ;(k)= a. (k) 
b. (k) ( b. (k) 

1 
and T(k)= --. 

b.(k) 

(14) 

(15) 

Accordingly,in view of (4),(5),(13) and (14) these slllutions 
have the following asymptotics form 

- ( )- {iaT(k)exp(ikx)+o(t), x --7 oo 
u x,k - r-(k)exp(a~tx)+exp(-akx)+o(t), 

and 

u(x,k)= 
+ . { r+ (k)exp(;kx)+ exp(-ikx)+ o(t), 

· T(k)exp(akx)+o(t), x --7 -oo. 

X --7 -oo 

X--?oo 

The functions u· (x,k) and u+(x,k)are called the eigenfunctions 
of the left and right scattering problem of (I) respectively and 
the coefficients r (k);r+(k) and T(k) are called the left and right 
reflection coefficients and the transmission coefficient respec­
tively. In [2] it was shown that the discrete eigenvalues of equa­
tion (1) are the simple zeros -x2.ofthe function b

1 
in the upper 

halfplane and 

Also, the corresponding eigenfunctions are related by 

U- (x.iK0 ) = c:u + (x,iiC0 ) = Y 
2 
(x,k) (16) 

and 
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EIGENFUNCTION EXPANSION AND 
PARSEVAL EQUATIONS OF (1). 

In this respect, we give an expansion of a certain function by 

eigenfunctions of equation (1) and hence we deduce Parseval 

equations. Also , we define the right and left scattering data of 

equation (1). 

Lemma 3: Suppose that the function f(x) has a continuous sec­

ond derivative in L 2 (-«> ,co;p( x)) and finite in the neighbourhood 

of x = ±oo. Then, the expansion of f(x) by eigenfunctions of 

( 1) can be written in the form 

(18) 

With the help of this lemma, the following Parseval equa­
tions are valid * 

l. 

+ L(m~YY 1 (x,iM.)y 1 (s.iMJ = B(x-~;)p-1 (x) 
n=J 

and 

-
1
-. I {r- (k)y 2 (x,k)y 2 (i;.k) + y 2 (x,k)y 2 (1;.-k)}k 

21tUI ~ 

l. 

+ L (mJ
2 
Y /x,iM.)y 2 (i;,iM.) = 8(x-<;)p-l (x) 

n=l 

+co 

(19) 

*since f(x) = If(<;) 8(x - <;Xf<;, then comparing both sides of 

(18) to have (19). 
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FORMULATION OF THE INVERSE SCATIERING 
PROBLEM OF (1). 

In the preceding section, we determined the right and left 
scattering data for equation ( 1) in the form 

~±(k),-N~,m:,n= l,A.} In this section, we formulate 

the inverse scattering problem as follows : knowing the right 
or the left scattering data of equation (1); can we find: 

(i) v(x) and p(x) in equation (1)? 

(ii) necessary and sufficient conditions for the set 

{r± (k),-N::m.~n = l,A.} tobethescatteringdataof (1)? 

Now, in order to solve this problem we find the funda­
mental equation of the kernel K+(x,z) which plays an impor­
tant role for solving the inverse scattering problem of equa­
tion (1). 

Theorem 1: The kernel K+(x,z) of the formula ( 4) satisfies 
the fundamental equation 

F (x+z)+ k+ (x.z)+ IF (z+~;)k+ (x,i;}dS = 0,0 <X~ Z < 00, (20) 

where J®{ . 1-ai} ~ F (x)= _!_ r• (k)---. exp (ikx)ik +-'.., (m: )'exp(-K.x) . (21) 
21t _ I +C£1 •·• 

Proof: To derive the fundamental equation we use the iden­
tity (14) and (15). Thus, 

+ - 1 
] k • (x.d] {r • (k )-

1 
- a~} exp(ik(z+O)dkdz 

21t , -~ I+ C£1 

= F
1
.(x+z)+k'(x,z)+ Ik'(x./;)F

1
(z+l;)ds+8(x-z), 

where 

F,'(x+z)=_2._ J{r'(k)- 1 -a~}exp(it(<+z))dk • 
21t- l + C£1 

On the other hand 

Therefore, 

I=_!_ J {r'(t)y,(x.t)+y,(x.-t)}{y,(z.t)t jR(z.:;)y,kk)}d~dk 
21t- • 
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+ 2

1

11 
j R(z.~)j {r+(k)Y1 (x,k)Y1 (~.k}rY1 (x,-k) y, (~.k)}dkd~ 
z 

A 

= O(x-z)- ~)m!)2 
y, (x,iN.)Y, (z,iN.) 

n=l 

00 1 2 -

+JR(z.~)O(x-~)d/;;- L(m;) Y,(x,ill.) JR(z.dy,(~.ill)d~ 
z D•l z 

= a(x-z)+ R(z.x)- t<m:>'[ exp(-R.(x+z))+ J K'(x;;)exp(-K.(z+l;})d~] 
Since R(z,x) = o as X < Z, it yields that 

I= S(x-z)- ~(m.•)'[ exp(-K.(m))+ J K' (x;;)exp(-K.(z+~;))dC] . 

A 

Therefore' F;+ (x+z)+ K' (x,z)+ I (m: )2 
exp( -~.(x+z)) 

n=l 

+ J K'(x.~{ F, (z+d+ t(m!)
2 exp(-~t.(z+O)}~ = o. 

Hence, we conclude that 

F' (x+z)+ K' (x,z)+ J F' (z+~)K' (x.~)d~ = 0 , (22) 
X 

where F' (x) is defined by (21). 

Proceeding in a similar manner with identity (16),we obtain the 
equality 

p- (x+z)+ K- (x.z)+ J F- (z+~)k- (x.~)ds = o,s <X< o (23). 

in which the function 

F-( ) ~ ( )' ( 1 s· { _ }-Ui} 
X = L m; exp iall,x)+- r (k)+--. exp(akx)dk 

,., 21t __ 1 + Ul 

is completely specified by the left scattering data (23). 

Note: It can be shown that [8,9] the functions F,• (x) are abso­

lutely continuous with the properties: 

i) J F, (x)lx < co and J (t+l)~ F; (x) ldx < oo. . 1ax 

ii) fF,(,)Ix<oo and J<.-li-~-F,(xJidx<oo. __ 1ax 
Next, let us consider two arbitrary collections 

and m: > o such that the functions r• (t) satisfy the previous 

conditions (i) - (ii) . From these collections we construct the fun­
damental equations (20) and (22) for the unknown functions 

k ± (x,z) such that these equations are considered in L, (x.~) and 

L, (-.x), respectively. 

Theorem 2 :-For every fixed x e[ o,oo )the fundamental ~ua­

tion (20) has a unique solution K(x.z) in ~(x,oo). 

Proof : To prove the theorem, it is enough to show that the 

homogenous equation f(z)+ J f(~)F(~+Z)d~ = 0 (24) 

has only the zero solution in L 1(x,oo ). Assume the contrary, that 

is, the homogeneous equation (24) has a non zero solution f(z) 

in ~(x,oo). Multiply (24) by f(z) scalarly and integrating with 

respect to zon (x,oo) to have j f'(,)iz+ jj f(~)F'(z+~;)dCdz=o. 

Substituting for F' ( z+~) from (21) to get 

j e(zJlz+ j j f(~J 2~ j[r'(k)- t-a~]exp(i(z+O) 
X XX '1 - t+<ll 

A 

+I (m! )
2 

exp(-N.(z+O)+ 0(~-z)- o(~-z)}f(zJl~dz = 0 . 
n=l 

Thus, we have 
~ ~ ~ 

J f 2 
(zJlz + J J f(~)F' (z+~)d~dz = 0 

X X X 

Therefore 

'\jl(k)= J f(z)exp(;kz}IZ 

From (18), we have IRe r• (k)l <: 1 as Im k = o, and therefore 

'IJf(t)= o. Hence f(z)=O. Accordingly, our assumption that the 

homogenous equation (24) has non zero solution is not true and 
the theorem is completely proved. 

Similarly, as x < o the unique solvability of equation (22) is 

proved in a similar manner. Hence, we conclude that it is suffi­

cient to know the function F' (x) to form the fundamental equa-

tion (20) and in its turn, to find F' (x) it is sufficientto know the 

right scattering data {r'(k),i~ •• m: = l,m} Equation (20) plays 

an important role in the solution of the inverse scattering prob­

lem on the interval [O,oo ). 
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Thus, if the equation (20) is constructed by using the scattering 

data and has a unique solution K·( •.• ) then equation (1) as 

o S x < oo, can be constructed. 

Finally, we have been interested in the relationships between the 
left and right scattering data. It turns out that the left scattering 
data are uniquely determined by the right ones, and vice versa. 
In fact, it follows from formulas (16), (17) and (18) that 

- + b, (-k) ( )-2 1 2 [ ( )l 
r (t)= -r (-k~b ( ) and m; = -(m~) b; x,iltn J . (25) 

I k «2 

Hence, we can find v (x) as x < o. 

Theorem 3 : In order for the collection 

{r• (k),i M. ,m: ,n = l,A,M. > o,m: > o} to be the right 

scattering data of an equation of the form ( 1 ), it is necessary and 
sufficient that the following conditions be satisfied : 

1) for real k :t; o, the reflection coefficient r± (k) are continu­

ous and having the properties: 

(i) r• (-k)= r• (k) ; ir• (k~ < 1; 

±() 1-ai (I) 
(ii) r k = ± 1+ai + 0 k as k -7 ±oo 

2) The function F;(.)=.....!..... j[r'(k)-
1 -a.~]exp(itx)lk 

21t _ I+ 0.1 

is absolutely continuous with continuous derivative such that 

~ ~a I (t+lx11ax F,. (x)1 dx < oo; 

3) The function 

-1 J~[ + b1 (-k) I-Ui] F,-(x)=- r (-k) ---. exp(«kx}lk 
21t_ b

1
(k) t+UI 

is absolutely continuous with continuous derivative such that 

Proof : The necessity of these conditions has been established 
previously. To prove their sufficiency, we construct from the 
given set a new set 

{r-(k),iM •• m:,n=l,/J\. >o,m: >o}. 

Setting 

- + bl (-k) [ J 
f (k)= -f (-k)-- and (m;f' = -1 

(m:)' b;(x,il!.} 
bl (k) 0.2 

and then show that {r•(k),iM.,m:}and {r-(k),iM.,m:} 

are the right and left scattering data of one and the same equation 
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(1) with real valued potential v(x) which subject to (2) and in­
cluding a discontinuous coefficient p(x) on the form (3). 
The function p(x) can be constructed from condition (1). More­
over, it follows from conditions 1,2 and 3 that for every fixed 

x :t; ±oo, equations (20) and (22) which constructed from these 

sets, have unique solutions k±(x,z) and the functions y
1
(x,y), 

y
2
(x,k) defined by formulas (4) and (5), are solutions of equa­

tions 

" -y
1 

(x,k)+ v• (x)y
1 
(x,k)= k 2 Y

1 
(x,k),X ~ 0 

and 

" -y 
2 

(x,k)+ V- (x)y 
2 
(x,k)= -k 2

U
2 Y 

2 
(x,k),X < 0 

where 

v· (x)= -2 dK• (x.x); v· (x)= -2 dK• (x,x) and j (l•l•l~v· (x~dx <co 
dx dx -· . 

for all a > -oo. 
To prove the theorem, it obviously suffices to show that for real 

values of k, the solutions y 1 (x.k) and y 2 (x.k) are connected 

by the relations 

ia[b,(k)J'y,(x,k)= r-(k}y,(x,k)+y,(x.-k) (26) 

and 

Moreover, 

Since,F,•(,) eL,(~.~), thus the functions 

and 

belong to L, (-.~)for every fixed x and 

(27) 

(28) 

lim j 'lf"(..,)exp(-ikz)dz = [r'(k)-
1 -a~][exp(;kx)+ fk'(x.l;)exp(;k,)dc;] 

•R-w -R J+U.J A 

= [r + (k)- l-a~]Y, (x.k) 
I +a1 . 

Also, 

lim j 'If- (,,,)exp(-a~<z)dz = [r· (k)+ 
1

- <l~][exp(nkx)+ j k · ( •. dexp(a~<,)dc;] 
•-" ·R I + <ll _ 

= r-(k)•-- y,(,,k) [ 1-<ii] 
I +ai · · 

On the other hand, using equations (20) and (22) to get 
> 

v·(x.z)= -k·(x.z)- :L<m:)' exp(-ill,x)y,(x,k) ... 
and 

' 
'lf'(x,z)= -k-(x,z)- _L(m;)' exp(iaK.x)y,(x,k), 

n•l 
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Thus 

Y~ j 'If+ (x,z)exp(-ilu)lZ = ti~ j 'If• (x,z)eXp(-ilu)lZ + 
~ ~ . 

and 

~~ j 'If- (x.z)exp(akz)lz = ~~ j 'If- (x,z)exp(akz)lz 

l (m; )' 
+ exp(alot )- Y 2 (x,-k )-L --exp(iaK,x )eXp(akz )y 

2 
( x,iK,) , 

n•l a(x.+ik) 

Comparing these identities with the Fouries transformations of 

the functions v· (x,z) we have the equalities 

r· (k)y, (x,k)+ y, (x,-k)= [b, (k)J' g- (x,k) 

and 

(29) 

r- (k)y 2 (x,k)+ y 2 (x,-k)= ia[b, (k)J' g• (x,k) •-oo < k < 00' (30) 

where 

•( ) exp(-akx)b ( { I' s• - ( \.l g x,k = . 1 k 1 + lffi 'If (x.z )exp ak(z-x )JUZ 
l<l ·~~. 

• (m;)' 1-ai -L. exp(iaK,x)y,(x,iK,)---. exp(akx)y,(x,k)} 
n•l l<l(K, +ik) I + (li 

and 

g- ( •. k) = exp(-ikx)bl (k{ 1 + \i_!!l I v· (x.z)exp( -ik(Z+X ))dz 

1 (m:)' 1-ai -L,--. exp(-K.x)y
1
(x,iK,)+--. exp(ikx}y

1
(x.k) 

n•l ~. +lk 1+<li 

Thus, as was shown in [8] we can find 

limexp(ikx)g- (x,k)= limeXP<-akx)g' (x,k)= 1, i.e.,g• (x,k)= y 
1 
(x,k) 

1·1~· 1•1~~ 

and g- (x.k)= y 2 (x.k) 

Upon substituting into (29) , (30) it leads to the equalities (26), 
(27). Moreover, from the formulas of g±(x,k) we have 

-) 
g' (x.k) == ----;- b 1 (iN,)( m; )' Y 

1 
(x.iK,) and g- (x.k) == ib; (iK, )(m: )' Y 

1 
(x.iK.), 

a· 

Therefore, 

and 

224 

Thus, we conclude that 

£iY 1 (x,iK,f p(x)lx = [* b;(iK,)m: J 
and [1Y 2 (x,iK,fp(x)lx=[~ b,(iK,)m:J. 

and hence in view of (25) formula (28) holds and this complete 
the proof of the theorem. 
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