Show simple item record

AuthorPothu, Ramyakrishna
AuthorChalla, Prathap
AuthorRajesh, Rajendiran
AuthorBoddula, Rajender
AuthorBalaga, Ravi
AuthorBalla, Putrakumar
AuthorPerugopu, Vijayanand
AuthorRadwan, Ahmed Bahgat
AuthorAbdullah, Aboubakr M.
AuthorAl-Qahtani, Noora
Available date2023-09-18T06:02:26Z
Publication Date2022-10-01
Publication NameNanomaterials
Identifierhttp://dx.doi.org/10.3390/nano12193414
CitationPothu, R.; Challa, P.; Rajesh, R.; Boddula, R.; Balaga, R.; Balla, P.; Perugopu, V.; Radwan, A.B.; Abdullah, A.M.; Al-Qahtani, N. Vapour-Phase Selective Hydrogenation of γ-Valerolactone to 2-Methyltetrahydrofuran Biofuel over Silica-Supported Copper Catalysts. Nanomaterials 2022, 12, 3414. https://doi.org/10.3390/nano12193414
URIhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85139219147&origin=inward
URIhttp://hdl.handle.net/10576/47598
Abstract2-Methyltetrahydrofuran (MTHF) is a desirable biomass-based platform chemical with excellent potential as an ideal biofuel, green solvent, and raw material for synthesizing downstream chemicals. In this work, a series of copper nanoparticles encapsulated on SiO2 were prepared by the wet impregnation method and evaluated as efficient non-noble metal catalysts for the vapour-phase hydrogenation of γ-valerolactone (GVL) to MTHF in a fixed-bed reactor under mild reaction conditions. The obtained catalyst properties were determined by XRD, FE-SEM, TEM, UV-DRS, TPR, NH3-TPD, N2O decomposition and pore size distribution measurements. Meanwhile, the parameters/variables tuning their catalytic performance (activity, conversion, selectivity and stability) were examined. Various Cu loadings featured on the SiO2 support are essential for tuning the catalytic activity. Among the catalysts tested, a 5 wt% Cu/SiO2 catalyst showed a 97.2% MTHF selectivity with 71.9% GVL conversion, and showed a stability for 33 h time-on-stream, achieved at 260 °C and atmospheric pressure conditions. It was found that a huge dispersion of Cu metal in support, hydrogen activation ability, abundant acidic sites and surface area are all beneficial for improved MTHF selectivity.
SponsorThis work was supported by Qatar University through a National Capacity Building Program Grant (NCBP), [QUCP-CAM-2022-463]. Statements made herein are solely the responsibility of the authors. Ramyakrishna Pothu acknowledges the China Scholarship Council (CSC) (Award number: 2017SLJ018367), China, for the financial support.
Languageen
PublisherMDPI
Subject2-methyltetrahydrofuran
biofuel
biomass
hydrogenation
selectivity
vapour-phase
TitleVapour-Phase Selective Hydrogenation of γ-Valerolactone to 2-Methyltetrahydrofuran Biofuel over Silica-Supported Copper Catalysts
TypeArticle
Issue Number19
Volume Number12
ESSN2079-4991


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record