Show simple item record

AuthorBakkar, Nour-Mounira Z.
AuthorDwaib, Haneen S.
AuthorFares, Souha
AuthorEid, Ali H.
AuthorAl-Dhaheri, Yusra
AuthorEl-Yazbi, Ahmed F.
Available date2023-09-25T10:26:16Z
Publication Date2020
Publication NameInternational Journal of Molecular Sciences
ResourceScopus
URIhttp://dx.doi.org/10.3390/ijms21239005
URIhttp://hdl.handle.net/10576/47948
AbstractCardiac autonomic neuropathy (CAN) is one of the earliest complications of type 2 diabetes (T2D), presenting a silent cause of cardiovascular morbidity and mortality. Recent research relates the pathogenesis of cardiovascular disease in T2D to an ensuing chronic, low-grade proinflammatory and pro-oxidative environment, being the hallmark of the metabolic syndrome. Metabolic inflammation emerges as adipose tissue inflammatory changes extending systemically, on the advent of hyperglycemia, to reach central regions of the brain. In light of changes in glucose and insulin homeostasis, dysbiosis or alteration of the gut microbiome (GM) emerges, further contributing to inflammatory processes through increased gut and blood–brain barrier permeability. Interestingly, studies reveal that the determinants of oxidative stress and inflammation progression exist at the crossroad of CAN manifestations, dictating their evolution along the natural course of T2D development. Indeed, sympathetic and parasympathetic deterioration was shown to correlate with markers of adipose, vascular, and systemic inflammation. Additionally, evidence points out that dysbiosis could promote a sympatho-excitatory state through differentially affecting the secretion of hormones and neuromodulators, such as norepinephrine, serotonin, and γ-aminobutyric acid, and acting along the renin–angiotensin–aldosterone axis. Emerging neuronal inflammation and concomitant autophagic defects in brainstem nuclei were described as possible underlying mechanisms of CAN in experimental models of metabolic syndrome and T2D. Drugs with anti-inflammatory characteristics provide potential avenues for targeting pathways involved in CAN initiation and progression. The aim of this review is to delineate the etiology of CAN in the context of a metabolic disorder characterized by elevated oxidative and inflammatory load.
SponsorFunding: This work was funded by the Faculty of Medicine at the American University of Beirut, Medical Practice Plan, grant #320148 to A.F.E. and UAEU Program for Advanced Research, grant number 31S398-UPAR to Y.A.-D.
Languageen
PublisherMDPI
SubjectCardiac autonomic neuropathy
Inflammation
Reactive oxygen species
Type 2 diabetes
TitleCardiac autonomic neuropathy: A progressive consequence of chronic low-grade inflammation in type 2 diabetes and related metabolic disorders
TypeArticle Review
Pagination1-20
Issue Number23
Volume Number21


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record