Experimental Investigation of the Vibration Control of Nonrotating Periodic Drill Strings
Abstract
During the drilling process in oil and gas fields, slender drill strings often experience a multitude of complex and simultaneous vibrational phenomena. Drill string vibrations hinder the drilling process and can cause premature wear and damage to the drilling equipment. Here, the suppression of drill string vibrations during drilling operations is experimentally investigated using a novel drill string design, based on the use of innovative periodic inserts that control the vibration transmissibility in different directions. These inserts are equipped with viscoelastic rings that act as sources of local resonances, surrounding piezoelectric actuators that generate internal axial loading when electrically excited. An experimental prototype that combined all these details was constructed and tested to demonstrate the periodic drill string's feasibility and effectiveness in minimizing undesirable vibrations. The obtained results indicate that the periodic inserts' careful design can effectively enhance the drill strings' dynamic behavior and conveniently regulate its bandgap characteristics. Both radial and axial vibrations were controlled, and the vibrations' amplitude was reduced significantly over a wide range of frequencies. The proposed approach appears to present a viable means for designing intelligent drill strings with tunable bandgap characteristics.
Collections
- Mechanical & Industrial Engineering [1367 items ]