A NOTE ON SEMI GENERALIZED CLOSED SETS

Ву

U. D. TAPI*, S.S. THAKUR** and A. SONWALKAR*

*Department of Maths, Shri G. S. Institute of Tech. & Science, Indore (MP), India - 452003

**Department of Maths, Government Engineering College, Jabalpur (MP), India

المجموعات المغلقة شبة المعممة

ی.د. تابی و س. س. ثاکور و أ. سونولکر

تم الحصول في هذا البحث على بعض خصائص وصفات المجموعات المغلقة شبه المعممة .

Key Words: Semi closed sets, Topological space, Disconnected space.

ABSTRACT

In the present note authors obtain some characterizations and properties of semi generalized closed sets.

INTRODUCTION

Let S be a subset of a topological space X. The interior and the closure of S in X will be denoted by Int(s) and cl(s) respectively. A subset A of X is said to be semiopen [1] if there is an open set O such that $O \subset A \subset clO$. Every open set is semiopen but the converse may not be true. The complement of a semiopen set is called semiclosed [2]. A point x of space X is said to be semi limit point [2] of a subset A of X if every semiopen set containing x contains a point of a other than x. The set of all semi limits points of A is called semidrived set of A. It is denoted by 5d(A). The intersection of all semiclosed sets containing a set A is semiclosure [2] of A. It is denoted by scl(A). For any subset A of space X, $scl(A) = A \cup sd(A)$ [2]. A mapping $f:X \rightarrow Y$ is said to be irresolute [3] if the inverse image of every semiclosed [4] if the image of every semiclosed set of X is semiclosed in Y.

A subset F of X is said to be g-closed [5] if cl (F) \subset O whenever F \subset O and O is open. The complement of a g closed set is called g open [5]. Every closed (resp. open) set is g closed (resp. g open) but the converse may not be true.

SEMI GENERALIZED CLOSED SETS

Definition 1 [6]: A subset A of X is said to be semi generalized closed (written as s. g closed) if and only if $scl(A) \subset O$ whenever $A \subset O$ and O is semiopen.

Remark 1[6]: Every semiclosed (resp. g closed) set is s g closed but the converse may not be true.

Theorem 1: In a topological space X the following conditions are equivalent:

(a) A is s.g closed.

- (b) for each $x \in scl(A)$, $scl(\{x\}) \cap A \neq \emptyset$
- (c) scl (A)-A contains no nonempty semiclosed subsets.
- (d) A = F-N, where F is semiclosed and N contains no nonempty semiclosed subsets.

Proof

(a) \Rightarrow (b): Suppose $x \in scl(A)$ but $scl(\{x\}) \cap A = \emptyset$. Then $A \subset X - scl(\{x\})$ and so, $scl(A) \subset X - scl(\{x\})$, contradicting $x \in scl(A)$.

(b) \Rightarrow (c): Let $F \subset scl(A)$ -A with F is semiclosed. If there is an $x \in F$, then by (b), $\emptyset \neq scl(\{X\}) \cap A \subset scl(F) \cap A = F \cap A \subset (scl(A)-A) \cap A = \emptyset$, a contradiction. Hence $F = \emptyset$.

(c) \Rightarrow (d): Let F= scl(A) and N = scl (A)-A, then A = F-N and by (c), N contains no nonempty semiclosed subsets.

(d) \Rightarrow (a): Let A= F-N and A \subset O where F is semiclosed, O is semiopen and N contains no nonempty semiclosed subsets. Then F \cap (X-O) is a semiclosed subset of N and thus empty. Hence scl (A) \subset F \subset O and A is s. g closed.

Theorem 2: In a space X, either $\{x\}$ is semiclosed or X- $\{x\}$ is s. g closed for each $x \in X$.

Proof: If $\{x\}$ is not semiclosed then only semiopen superset of X- $\{x\}$ is X itself. Thus scl $(X-\{x\})$. Hence X- $\{x\}$ is s. g closed.

Definition 2 [7]: A space X is said to be semi T_1 if for each pair of distinct points x, y of X, there exist semiopen sets U and V such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$.

Theorem 3: In a semi T₁-space s. g closed sets are semiclosed.

Proof: Suppose A is s. g closed set in a semi T, space X. If x

 \in scl (A) then by theorem 1(b), $\emptyset \neq$ scl $\{x\} \cap A = \{x\} \cap A$. Consequently $x \in A$, Hence A is semiclosed.

Lemma 1 [8]: Let (X,J) be a extremelly disconnected space and A and B be semiopen sets in X then $A \cap B$ is semiopen.

Lemma 2: Let A be a subset of a extremely disconnected space X and suppose $sd(A) \subset O$ for O semiopen. Then $sd(sd(A)) \subset O$.

Proof: Suppose $x \in sd(sd(A))$ but $x \notin O$. Then $x \notin sd(A)$ and so, for some semiopen set $U, x \in U$ and $A \cap U \subset \{x\}$. But $x \in sd(sd(A))$ implies $y \in sd(A) \cap U \cap (X-\{x\})$ for some y. Now $y \in O \cap U$, $O \times U$ is semiopen (by lemma 1) and $y \in sd(A)$ and so, $\emptyset \neq A \cap O \cap U \cap (X-\{y\}) \subset A \cap U \subset \{x\}$. It follows that $x \in O$ a contradiction.

Theorem 4: In any extremely disconnected space, semi drived sets are s. g closed.

Proof: Let A be a subset of a extremely disconnected space x with $sd(A) \subset O$ where O is semiopen. Then Lemma 1 implies $scl(sd(A)) = sd(A) \cup sd(sd(A)) \subset O$. Hence A is s. g closed.

Theorem 5: If A is a s. g closed set in X and $f:X \rightarrow Y$ is presemiclosed and irresolute then f(A) is s. g closed in Y.

Proof: Let $f(A) \subset O$, where O is semiopen in Y. Then $A \subset f^1(O)$ and $f^1(O)$ is semiopen in X because f is irresolute. Therefore $scl(A) \subset f^1(O)$. Thus $f(scl(A)) \subset O$ and f(scl(A)) is semiclosed because f is presemiclosed.

Theorem 6: If $f: X \to Y$ is continuous and pre-semiclosed and B is s. g closed subset of Y, then $f^{-1}(B)$ is s. g closed in X.

Proof: Let B is s. g closed subset of Y and $f^1(B) \subseteq O$, where O is semiopen in X. Then, we have to show that:

scl $(f^1(B) \subseteq O \text{ or scl } (f^1(B)) \cap (X-O) = \emptyset$. Now, $f[\text{scl } (f^1(B)) \cap (X-O)] \subseteq \text{scl}(B)$ -B, by theorem 1 (b), $f[\text{scl } (f^1(B)) \cap (X-O)] = \emptyset$. Thus, scl $(f^1(B)) \cap (X-O) = \emptyset$, Hence, $f^1(B)$ is s. g closed in X.

Theorem 7: If $(X.J) = X\{X\infty, T\infty\} : \infty \in \Delta\}$ and if $A\infty$ is s. g closed in $X\infty$ for each ∞ in Δ , then $X\{A\infty : \infty \in \Delta\}$ is s. g closed in X.

Proof: Let $Q = scl(X\{A \le : \le A\}) - X\{A \le : \le A\}$. Then by theorem 1 (b) it is sufficient to show that Q contains no nonempty semiclosed sets. Suppose on the contrary that $scl(x) \subseteq Q$ for some $x \in X$ where $x = X\{x \le : \le A\}$.

It follows that $scl \propto (X \propto) \subseteq scl \propto (A \propto)$ for each \propto in Δ and since $scl \propto (A \propto)$ - $A \propto$ contains no nonempty semiclosed set by

theorem 1(b). We have $\operatorname{scl}^{\infty}(X^{\infty}) \cap A^{\infty}) \neq \emptyset$ for each ∞ in Δ . Choose $x'^{\infty} \operatorname{scl}^{\infty}(X^{\infty}) \cap A^{\infty}$ for each ∞ and let $x'^{-1}X\{x'^{\infty}: \infty \in \Delta\}$. Then $x'^{-1} \in \operatorname{scl}^{\infty}(x') = X \{\operatorname{scl}^{\infty}(x'^{\infty}): \infty \in \Delta\} \subseteq X \{\operatorname{scl}^{\infty}(x^{\infty}): \infty \in \Delta\} = \operatorname{scl}^{\infty}(x) \subseteq Q \subseteq [\text{complement of } X \{A^{\infty}: \infty \in \Delta\}].$ Therefore $X \in X \{A^{\infty}: \infty \in \Delta\}$ is some solution of the fact that $X'^{\infty} \in A^{\infty}$ for each $X \in X \in X \{A^{\infty}: \infty \in A\}$ is solution $X \in X \in X \{A^{\infty}: \infty \in A\}$ is solution $X \in X \in X \{A^{\infty}: \infty \in A\}$.

Theorem 8: If A is s. g open in x and B is s. g open in Y then (A x B) is s. g. open in (X x Y).

Proof: Let F is semiclosed in X x Y and $F \subseteq A$ x B. The by theorem 6 of [6]. It is sufficient to show that $F \subseteq \sin (AXB)$ Let $(x, y) \in F$, then $\operatorname{scl}(x, y) = \operatorname{scl}(x) \times \operatorname{scl}(y) \subseteq F \subseteq (AXB)$ and it follows then that $\operatorname{scl}(x) \subseteq \operatorname{sint}(A)$ and $\operatorname{scl}(y) \subseteq \operatorname{sint}(B)$. Thus $(x,y) \in \operatorname{scl}(x) \times \operatorname{scl}(y) \subseteq \operatorname{sint}(A) \times \operatorname{sint}(B) = \operatorname{sint}(AXB)$. by lemma 2 of [9]. Therefore $F \subseteq \operatorname{sint}(AXB)$.

Hence (A X B) is s. g open in (X X Y).

REFERENCES

- [1] Levine N., 1963. Semiopen sets and semi continuity in topological spaces, Amer. Math. Monthly 70: 36-41.
- [2] Das P., 1973. Note on some applications on Semiopen sets, Prog. Math. (Allahabad) 7: 33-34.
- [3] Crossley S. G. and S. K. Hilderband, 1972. Semi topological properties, Fund. Math. LXXIV3: 233.254.
- [4] Arya, S. P. and T. M. Nour, 1990. Weakly Semi-Ro-Spaces, Indian J. Pure. Appl. Math. 21(12): 1083-1085.
- [5] Levine N., 1970. Generalised closed sets in topology, Rand. Cir. Mac. Palermo (2)19: 89-96.
- [6] Bhattacharya, P. and B. K. Lahiri, 1987. Semigeneralised closed sets in topology, Indian J. of Math. 29(3): 375-382.
- [7] Maheshwari S. N. and R. Prasad, 1975. Some new separation axioms, Ann. Sco. Sci. Bruxelles. T. 89(III) 395-402.
- [8] Jankovic, D. S., 1983. On locally irreducible spaces, Ann. de la, Sco. Sc. Bruxdles, T-97 II, 59.72.
- [9] Kar Ashish and P. Bhattacharya, 1986. Weakly Semi continuous functions, J. Indian Acad. Math. 8(2): 83-92.