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ABSTRACT 

In this article various lumping processes are defined for periodic ARMA (PARMA) processes, namely, the 

forward, the backward and the cyclic lumping processes. The inter-relations between the parameters of 

these lumping processes are obtained. It is then proved that stationarity of any lumped process implies sta­

tionarity of all other lumped processes. 
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1. Introduction 

In the literature of time series analysis, there are several methods for modeling seasonal time series. The 

multiplicative seasonal ARIMA model and classical decomposition method could be the most common 

among them. 

Recently, an extension of ordinary ARMA model has been developed for modeling seasonal time series 

named as periodic ARMA (PARMA) model. The essence of this model is that if the time series is season­

al with period ro, then the model consists of ro equations, i.e. a separate equation for each season. For a 

detailed account on PARMA models see, for example, [1] and [2]. 

An m-variate zero-mean stochastic process {XJ is said to follow PARMAro(p(v),q(v)) model iff 

(1.1) 

where <I> (B)= 1 - <p (t)BP- ... - <p (t)BP, e (B)= 1 - 8
1
(t)B - ... - 8 (t)Bq, <p.(t) [8.(t)] are mxm periodic 

1 p q I J 

AR [MA] coefficient matrices; i = 1, ... , p, j = 1, ... , q where p =rna x (p(v)) and q =rna x (q(v)), v = 1, 
v v 

••• , (J), <pi(t) = omxm' '\1 i > p(v), and 8/t) = omxm' '\1 j > q(v), and {at} is an m-variate periodic white noise 

process with zero mean and periodic covariance matrices 1:a(t). 

It is usually more realistic to write the time index t in ( 1.1) in ro modulus, i.e. t = kro+v, so that, for 

monthly data, say, k refers to the year index and v represents the season index. Therefore, ( 1.1) can be 

rewritten as 

(1- <p (v)B- ... - <p (v)Bp(v))Xkro+ = (1- 8
1
(v)B- ... - 8 ( )(v)Bq(v))akro+ . 

1 p(v) v . q v v 
(1.2) 

PARMA processes are not stationary (in the ordinary weak sense) simply because their parameters vary 

with time. In fact, PARMA processes are rather examined for a weaker type of stationarity named as peri­

odic stationarity (see, for example [3]). 

Many mathematical results concerning PARMA processes have been developed utilizing the fact that 

any PARMA model can be written as a multivariate ARMA model and vice versa. This is simply done by 

lumping the ro components in the PARMA process, i.e. Xkro+v' v = 1, ... , ro in one vector, which in tum is 

an mro-variate process. Estimation of PARMA models [ 4, 5], periodic stationarity of PARMA processes 

[3] and estimation of multivariate ARMA models [ 6] are important by-products of such lumping relations. 

In the next section we will define three lumping processes, namely, the forward, backward and cyclic 

lumping processes. In this paper we will obtain the parametric relations between those lumping process­

es. Then we show that if any of the lumping processes is stationary then all other lumping processes are 

also stationary. 

2. Various Lumping Processes 

In what follows, we assume that {Xkro+) is a stochastic process which follows the m-variate zero-mean 
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PARMA00(p(v),q(v)) model, (1.2). We can rewrite the ro-equations in this model in matrix format by lump­

ing the components of this process in one vector. In this article, we will consider three of those whichare 

the forward lumping process (FLP), the backward lumping process (BLP) and the cyclic lumping process 

(CLP). 

The FLP is defined by 

(2.1) 

This process has been considered, for example, in [1, 7, 8]. In [7], the author proved that a univariate 

PARMA (or any periodically correlated) process is periodic stationary iff its FLP is stationary. The authors 

in [1] obtained the parameters and orders of the FLP for univariate PARMA processes. Their result has 

then been generalized to the multivariate case in [8]. 

In the following lemma the parametric equation of the model of the FLP is given. 

Lemma (2.1): The FLP, Fk, follows the following mro-variate ARMA(p*,q*) model 

p * q* 

AFk - :L BzFk-t ;::C£k- :L DE 
l=l l=l l k-l 

(2.2) 

with 

and [B1lj = <p1m+i-/i) fori, j = 1, ... , ro, and C and D1 are the same as A and B
1 
but with S's replacing <p's 

and Ek is the FLP of the periodic white noise process { ~m+) (as in (2.1) ), with 

p * = rn:x [CP (v)- v)/ro]+l, 
(2.3a) 

(2.3b) 

where [.] stands for the greatest integer. 

The Proof follows from [ 1 ,2]. 

Based on the lemma above, it is easily observed that the FLP is stationary iff all the roots of the determi­

nantal equation 

(2.4) 
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are less than one in modulus, which is nothing but the stationarity condition of a multivariate ARMA 

process (see, for example, [9]). This fact will be utilized later on. 

The BLP contains the seasonal components in reverse order as compared to the FLP. It is defined by 

(2.5) 

This process has some advantages over the FLP. It is more natural in time series models to express the 

time series at timet in terms of those at times t-1, t-2, and so on in a backward manner. This is helpful, for 

example, for forecasting. In PARMA context, the backward representation usually provides some analyt­

ical simplicity [3]. 

The BLP Yk also follows mco-variate ARMA(p*,q*) model similar to (2.2), where p* and q· are the same 

as for the FLP given in (2.3). This model is given by 

(2.6) 

where 

and [M
1
].. = <p .. (ID+l-i) for i,j = 1, ... , ro, and Nand P

1 
are the same as Land M1 but with 8's replacing lj lro+j-1 

<p's and ek is the BLP of the periodic white noise process { ~ro+v}[3]. 

A comparison between the parameters in (2.2) and (2.6) reveals the fact that Lin (2.6) contains the same 

elements as A in (2.2). Considering A in a partitioned form of order ro x co, if the first row is interchanged 

with the last row, the second row with the second to the last row, and so on, and then the columns are inter­

changed in the same way, then the resulting matrix will be L. The same relation holds between the other 

corresponding parameters in (2.2) and (2.6). 

Another type of lumping processes is any cyclic permutation of either the FLP or the BLP. There are 2co 

different cyclic permutations resulting from both the FLP and BLP. As it is sufficient to consider one of 

those, we consider the first cyclic permutation of the FLP process defined as 

(2.7) 

which will be abbreviated to the CLP. 

By similar analogy to (2.6) for the BLP, the model ofFCI) k can easily be obtained. Its orders, on the other 

hand, are the same as that of the BLP and the FLP, (2.3). Also, the parametric equation of the model is very 

close to (2.2). For instance, in place of A in (2.2), we will have another matrix which is a slight modifica­

tion of A. That is, considering A in a partitioned form of order co x ro, the first row is removed, the other 
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rows are shifted up, then it is inserted in place of the last row (this is nothing but a cyclic permutation of 

order 1 of the rows of A). Then, the columns of the resulting matrix are manipulated in the same manner. 

The same relation carries over other corresponding parameters in (2.2). 

One practical situation in which we may need cyclic lumping processes, such as the CLP, is that we may 

have in practice a time series which starts in a season other than the first season. For example, a monthly 

time series may start in February rather than in January. In this case, using such representations will enable 

us to use all the time series for inference and modeling purposes rather than, possibly, ignoring some data 

in our time series. 

Another general reason to prefer one lumping process to another is the analytic simplicity in parame­

ters, such as, for instance, triangular matrices or so forth. 

3. Parametric Relations Between Various Lumping Processes 

In this section we will obtain parametric relations between various lumping processes discussed in the 

previous section. Then, we will see implications of those relations on stationarity of various lumping 

processes. 

We now give some results concerning permutation matrices that will be useful later. Such results can be 

found in most standard books in matrix theory [ 10]. 

Definition (3.1): A ro x ro permutation matrix is any matrix resulting from re-ordering rows of the ro x ro 

identity matrix. 

Lemma (3.1): Permutation matrices are orthogonal, i.e. if Pis a permutation matrix then P.
1 

=PT. 

We now consider two special cases of permutation matrices, defined as 

0 0 1 

prev = 
0 0 0 
0 1 0 
1 0 0 

and 

0 1 0 0 

pcyc = 
0 0 1 0 

0 0 0 1 
1 0 0 0 

Thus, as P is symmetric, then, if P is pre (post)-multiplied by any matrix then its rows (columns) 
rev rev 

are rearranged in reverse order. Also, if P is pre-multiplied by any matrix then the first row is inserted 
eye 
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in place of the last row and other rows are shifted up. The same function applies on the columns of any 

matrix if post-multiplied by the transpose of P . 
eye 

In the next theorem we assume that the permutation matrices P and P are mro x mro partitioned rev eye 

matrices with m x m sub-matrices. Also, the null and identity ro x ffi matrices replace 0 and 1 in these matri-

ces, respectively. Note that the functions of Prev and Pcyc explained above continue but rather on parti­

tioned matrices. 

Theorem (3.1): Let {Xkro+J be an m-variate PARMA00 (p(v),q(v)) process following (1.2). 

(i) The relation between the corresponding parameters of the FLP model, (2.2), and those of the BLP, 

(2.6), given in terms of A and L, is 

L=P AP 
rev rev (3.1) 

(ii) The parameter of the CLP, defined in (2. 7), corresponding to A in the FLP model, (2.2), is 

P A (P )T 
eye eye ' 

(3.2) 

which is the same relation between other corresponding parameters. 

Proof: Equations (3 .1) and (3 .2) are valid in view of the relations between the parameters of the FLP, 

the BLP and the CLP explained in the previous section and the functions of permutation matrices Prev and 

P given above. 
eye 

Corollary (3.1): If any of the FLP, the BLP or the CLP is stationary then the other two are also sta­

tionary. 

Proof: It is sufficient to show that if the FLP is stationary then the BLP and the CLP are also station­

ary. The FLP is stationary iff the roots of the determinantal equation (2.4) are less than one in modulus. 

The BLP is stationary iff the same condition applies on the determinantal equation 

') * ') * -1 -1 -1 
II\.P Imro -1'1. P L M 1 - ... - L M *I= 0, 

p 

where Land Mi's are the parameters of the BLP in (2.6). Now, utilizing (3.1), this equation simplifies to 

* * 1 I AP I mro -A p - (Prev A prev)-
1 

(Prev B 1 P rev)- · · · - (Prev A prev)-
1 

prev B * prev) I = 0 
p 

then writing Imro as P,ev P,ev , this will simply lead to (2.4). By similar argument, making use of (3.2), sta­

tionarity condition of the CLP simplifies to the same condition for the FLP applied on 

1 * 1 *-1 T -1 T 
II\.P -1'1. p (P cy~ (P cyJ ) (P cycB 1(P cyJ ) - ·· · 

- (P eye A (Pcyc) T)-
1 

(P cycB p* (P eye) T ) I = 0, 
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then writing I asP (P )T, this again leads to (2.4). mro eye eye , 

In the next example, various lumping processes discussed above, are given for a simple PARMA model. 

The relations between their parameters provided in theorem (3.1) are also verified. 

Example (3.1): Consider the zero-mean, m-variate PARMA,Jp(v),q(v)) model, (1.2), with ro = 4 and 

p(v) = 1 and q(v) = 0, for u = 1, 2, 3, 4, i.e., them-variate PARi1) model, written explicitly as 

x4k+1 = <p 1 (1) x4(k-1)+4 + a4k+1 

x4k+2 = <p (2) x4k+1 + a4k+2 
1 

x4k+3 = <p (3) x4k+2 + a4k+3 
1 

x4k+4 = <p (4) x4k+3 + a4k+4" 
1 

The FLP, defined in (2.1), is Fk = (X4k+1T' x4k+2T' x4k+3T' x4k+4T) T which follows the 4m-variate AR(l) ' 

model, deduced from (2.2), given by 

AFk-Blk-1 = Ek, (3.3) 

where 

I 0 0 0 0 0 0 - <t>P) 

- <t>P) I 0 0 0 0 0 0 
A= ,BI 

0 - <p1(3) I 0 0 0 0 0 

0 0 - <p/4) 0 0 0 0 0 

with I and 0 m x m. 

The BLP model, (2.6), simplifies here to an equation very similar to (3.3). The corresponding para-

meters of A and B
1 

are 

I - <p1(4) 0 0 0 0 0 0 

0 I - <p1(3) 0 0 0 0 0 
L= ,MI 

0 0 I - <t>P) 0 0 0 0 

0 0 0 I - <pl(l) 0 0 0 

respectively. 

Finally, the CLP model will also be similar to (3.3) and corresponding to A and B 1 above we will have, 

respectively, 
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I 0 0 - CJ\(2) 0 0 0 0 

- <pl(3) I 0 0 0 0 0 0 

0 - <pJ4) I 0 
and 0 0 0 0 

0 0 0 I 0 0 - <pl(l) 0 

It can easily be shown that the parameters above satisfy (3.1) and (3.2). 

4. Summary and Conclusions 

Three lumping processes of PARMA processes have been considered. The parametric relations among 

them are obtained. It is shown that stationarity of any of them implies stationarity of the others. 

Beside the FLP, the BLP and the CLP, we can define other lumping processes. If we do not care about 

the order of the time index among the components of a lumping process, then the total number of differ­

ent lumping processes ism! For instance, we may define a lumping process by interchanging the first two 

components in the FLP. 

The parametric relations among such lumping processes can easily be obtained via suitable permutation 

matrices as (3.1) and (3.2). Hence, we conclude that stationarity of any lumping process implies station­

arity of all other lumping processes. 

Although such lumping processes may not have apparent applications, one application could be in the 

context of multivariate time series. As a vector of time series is much the same as a lumping process, then 

if we are interested in the time series model of some rearrangements of such vector then the results con­

cerning lumping processes observed in this article apply directly. Another close application to this could 

be in multi-channel filtering in signal processing, see for example [11]. 

Finally, the results obtained in this article regarding stationarity of a PARMA process and its lumping 

processes extend directly to invertibility of a PARMA process. All what we need to recall is that inv~rt­

ibility conditions are the same as stationarity conditions with S's replacing <p's. 
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