## A SPECIAL SYSTEM OF BOUNDARY VALUE PROBLEMS

**B**7

### M. I. MOHAMED

Mathematics Department, Faculty of Science Qatar University, Doha

Key words: Boundary Value Problems.

#### ABSTRACT

In this paper we introduce a special system of boundary value problems and give a method for solving it. Then we give a detailed application of this method to a system of boundary value problems of Hilbert type.

Let  $G_1$  and  $G_2$  be simply connected bounded regions with simple closed contours  $c_1$  and  $c_2$  in the z – plane and let  $\overline{G}_1 \cap \overline{G}_2 = \overline{\Phi}$ .

The aim is to find two sectionally holomorphic functions  $\emptyset_1$  (z) and  $\emptyset_2$  (z) whose boundary values  $\emptyset_1^{\pm}$  (t) and  $\emptyset_2^{\pm}$  (t) satisfy the following conditions:

On c<sub>1</sub>

$$A_1[\varnothing_1^{\dagger}(t), \varnothing_1^{\dagger}(t)] = F_1[\varnothing_2(t), \overline{\varnothing_2(t)}] \cdots \cdots (1)$$

and on c2

$$A_2 \left[ \varnothing_2^{\dagger}(t), \varnothing_2^{\dagger}(t) \right] = F_2 \left[ \varnothing_1(t), \overline{\varnothing_1(t)} \right] \cdots \cdots (2)$$

where A<sub>1</sub> and A<sub>2</sub> are linear with respect to their arguments.

First we suppose that both of right hand sides of (1) and (2) are given, then from (1) and (2) we obtain  $\emptyset_1$  and  $\emptyset_2$  respectively.

Present address: Mathematics Department, Faculty of Engineering, Ain Shams University, Cairo.

Consider that

$$\emptyset_1(z) = \frac{1}{2\pi i} \int_{c_1} \frac{\Psi_1(\tau)}{\tau - z} dt \cdots (3)$$

where the density function  $\Psi_1(t) \in H$  (Hölder class).

The boundary values of the function  $\emptyset_1(z)$  take the form

Substituting from (4) into (1), we have

$$A_{1} \left[ \begin{array}{c} \underline{\varphi_{1}(t)} \\ 2 \end{array} + \begin{array}{c} \underline{1} \\ 2\pi i \end{array} \int_{c_{1}} \underline{\varphi_{1}(t)} dt, -\underline{\varphi_{1}(t)} \\ + \begin{array}{c} \underline{1} \\ 2\pi i \end{array} \int_{c_{1}} \underline{\varphi_{1}(t)} dt \right] = F[\emptyset_{2}(t), \overline{\emptyset_{2}(t)}] \cdot \cdot \cdot \cdot \cdot (5)$$

and therefore we have the singular integral equation (5) with respect to the unknown function  $\Upsilon_1(t)$  for which we can apply Noether's theorems. Under certain conditions we obtain  $\Upsilon_1(t)$  and consequently  $\varnothing_1(z)$ .

It is known that the function  $\emptyset_1$  (z) can be written in the form

$$\emptyset_{1}(z) = \frac{1}{2\pi i} \int_{c_{1}} \frac{\in_{1} \left[ \emptyset_{2}(t), \overline{\emptyset_{2}(t)} \right]}{t - z} dt, \dots (6)$$

Thus, on  $c_2$ 

$$\emptyset_1(t) = \frac{1}{2\pi i} \int_{c_1} \frac{\in_1 [\emptyset_2(\tau), \overline{\emptyset_2(\tau)}]}{\tau - t} d\tau \cdots (7)$$

Subtituting from (7) into (2), we have

$$A_{2} \left[ \emptyset_{2}^{\dagger}(t), \emptyset_{2}^{\dagger}(t) \right] = F_{2} \left[ \frac{1}{2\pi i} \int_{c_{1}} \frac{\in_{1} \left[ \emptyset_{2}(\tau), \overline{\emptyset_{2}(\tau)} \right]}{\tau - t} d\tau \right]$$

$$- \frac{1}{2\pi i} \int_{c_{1}} \frac{\overline{\in_{1} \left[ \emptyset_{2}(t), \overline{\emptyset_{2}(t)} \right]}}{\overline{\tau - t}} d\overline{\tau} \right] \dots (8)$$

Let  $A_2$  have properties such that  $\emptyset_2(z)$  can be obtained from (8) and assume that whenever z=t, on  $c_1$ , we define  $\emptyset_2(t)$ .

Thereby from (8), we immediately obtain an integral equation with respect to  $\mathcal{Q}_2(t)$ .

By obtaining the solution  $\emptyset_2(t)$  of such integral equation the function  $\emptyset_1(z)$  follows directly from (6). Similarly, we find  $\emptyset_2(z)$ .

The method is complete.

We now give an application of this method:

Consider the following system of boundary value problems of Hilbert type [1].

On c<sub>1</sub>

$$\emptyset_1^{\bullet}(t) - A_1(t) \emptyset_1^{\bullet}(t) = f_1(t) + \alpha_1(t) \emptyset_2(t) + \alpha_2(t) \overline{\emptyset_2(t)} \dots (9),$$

and on c2

$$\varnothing_2^{\dagger}(t) - A_2(t) \varnothing_2^{\dagger}(t) = f_2(t) + \beta_1(t) \varnothing_1(t) + \beta_2(t) \overline{\varnothing_1(t)} \cdots (10)$$

and let the index ae<sub>1</sub> of A<sub>1</sub>(t) be not negative.

From (9), we have

where X(z) is the canonical function of the associated homogeneous equation with respect to (9) and  $p_{ae_1}(z)$  is a polynomial of degree  $ae_1$  with arbitrary coefficients.

Whenever z = t, on  $c_2$ , then

Thus, the right hand side of (10) can be written in the form

From (13) the boundary condition (10)

$$\emptyset_2^+(t) - A_2(t) \emptyset_2^-(t) = F\emptyset_2 \cdot (14)$$

Let the index  $ae_2$  of  $A_2(t)$  be not negative. Then we have

$$\emptyset_{2}(t) = \frac{y(t)}{2\pi i} \int_{C_{2}} \frac{F\emptyset_{2}}{y^{+}(t)} \frac{dt}{t-z} + Q_{ae_{2}}(z) y (z) \cdot \cdot \cdot \cdot \cdot \cdot (15)$$

#### M.I. MOHAMED

where y (z) is the cononical function of the associated homogeneous equation with respect to (14) and  $Q_{ae_2}$  with arbitrary coefficients.

Whenever z = t, on  $c_p$  we have

$$\emptyset_{2}(t) = \frac{y(t)}{2\pi i} \int_{c_{2}} \frac{F\emptyset_{2}}{y^{+}(t)} \frac{dt}{t-t} + Q_{ae_{2}}(t) y (t) \cdot \cdot \cdot \cdot \cdot (16)$$

and therefore from (13) and (16), we immediately obtain an integral equation with respect to  $\varnothing_2(t)$ . By applying Fredholm's Integral Equation Theory we obtain  $\varnothing_2(t)$  and consequently from (11) we find  $\varnothing_1(z)$ . Similarly we find  $\varnothing_2(z)$ .

### REFERENCES

Gakhov, V.D. 1977. "Boundary value problems" Nayka.

# نظام خاص من مسائل القيم الحدية

# محمد إبراهيم محمد

في هذا البحث درس نظام خاص من مسائل القيم الحدية وأعطيت طريقة حل هذا النظام ، ثم طبقت الطريقة بالتفصيل لنظام من مسائل القيم الحدية من نوع هلبرت .