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ABSTRACT

The above equation plays an important role in the geometric theory of functions
of a complex variable.

To determine interval estimations for its solutions, an inequality is obtained using
the fixed point theorem. Then, it is computed for E=~1 only*. Some selected
formulae, of the solutions, are depicted: graphically.

INTRODUCTION

The nonlinear differential: equation
ff" -f12 3(1+€e?oc)f’ +2(1+2€e2x)f -2(1+E(1+E€e2x)?2 =0; €=0; *1 ...... 1)

was.-known at first for €= 0 as a requirement to obtain a fundamental principle in complex
analysis (6), (8). On extending this principle in:non-euclidean geometry, equation (1) appeared
for e=11 (1). To show, briefly, how. the considered equation is obtained and what is its role
consider the following:

1. Suppose that we are concerned with the hyperbolic metric in the z-plane and the €-metric
in the w-plane, where € = 0, +1, -1 implies, respectively, euclidean-, elliptic- and
- hyperbelic metric.

2. Letw(z) be a regular function in the unit disk Jz|<1 - and is non-ramified (w’ = 0). Hence we
have the following differential invariants under the motions of the considered geometries

N:

w'| (1- 7z)
« = log ___._._.___| | — and 61')*
1+ Eww

*Since, for €=—1, the same geometry is considered in both z- and w- planes.
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3. Upon calculating 8, 20, where @=8;a-f(>c) and f(<) EC, is unknown so-far, we have
820 =81—°C[81® +2(2 +€e2x+{')Re(c,B)]- (2+4€e2x+f) @ + Dy = 0,
where
Dy= A" +1f2 +3(1+€e2ax)f’ -2(14+Ee2x)f +2(1+ Ee?x)2.
One of Peschl’s requirements, to deduce his fundamental principle, is the vanishing of the term

D,. Hence of interest to us are those functions f(oc) satisfying the Eq. Dy=0, which is a short
form of (1).

These functions are given in (7) parametrically and corresponding to each positive one interval
estimations for the differential « and |w(z)| have been obtained. Furthermore a set of families -
of functions w(z) are introduced and classified (see e.g. (3,4,8).
Our aim in this article is to obtain an inequality, using the fixed point theorem (2). Making use
of that inequality, interval estimations for the solutions of (1) can be determined. We shall be
concerned then for example with the hyperbolic geometry i.e. €= -1. Interval estimation is
computed and some selected formulae of the solution are depicted graphically.

(1) An inequality to determine interval estimations for the solutions of equation (1)
Using the transformation
f=h-1+ €e2x ,e=0,%1
in equation (1), we have
(€e?x - h -D)h" + h'2 + (3 -€e2c)h’ -2h = 0,
which for-g— = u, €e2x -1 = P and e fud= = Q reduces to
(P-Q)u' +PuZ + (Z-PIu-2 =0 ittt e e e et e et e e eennnas 2)

Next, we consider the operator A(u), where

An) = fi)_‘T){z F (P-2)U-PUZ} AX  eioiiiieiiiieeciiie et e et e ebee et e et e e e et e e ennae s 3)

satisfies the conditions of the fixed point theorem (2). For a function v with the same initial
conditions as u Eq. (3) is satisfied and consequently we have:

p(A(u),A(v)) <06.p(u,v),

**) The first and the second Beltrami operators 8, and 8§, are defined as follows:
(i) 81(u,v) ‘= (1-zz)2u,v; ; hence 8;(u,v) = &;(v,u)

(ii) 8, u = (1-zz)%u,.




M.K. GABR ¢ al.

where p is the distance function and 6<1.

Recalling that P ~ [ude satisfies Eq. (1) we obtain

pAWAw)< 22

Q-P

which implies

- 2o - - 2
1<3€eoc 2u(1 Ee<>C)<1

1 -€e2c + ¢ [Ua

This inequality introduces a useful tool to determine interval estimaticns for the solutions of

Eq. (1). In the next section we are restricted only to one of the three values of €, namely €=
(2) An interval estimation for the solutions of equation (1) in hyperbolic geometry

In hyperbolic geometry inequality (*) takes the form

3+e?0c 2(1+e2<)h'/h

1+e2x + h

which implies
2-h< 2(1+e2x)h’'/h < 4 + 22 +h

We have therefore the following two differential inequalities

2-h<2(1+€2)' /M ceeeieniiiiiiiicieceeeeeee e 4)
and
2(14€200 )" h < 442620 Hh .o )

Upon using separation of variables inequality (4) takes the form

doc dh
2(t+e%x) = b(2-k).

Hence, by integration, considering some results obtained from the mean value theorem (5), we
have

(1+e2x)™2 < hny! |
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from which we induce
2 —la
2exc{ecc +(1+e2x)” ““F<h ., e e 6)

To deduce the upper ‘bound -for h we consider inequality (5) and rewrite it in the form

2+e2ec 1
Wee——o  h <« h
1462 2(1+e?x)
Substituting V¥ = 1/h, we have
-1 2+e2ec
——— e W e eetb e ta e naa s 7
2(1+e2x) < Yoae Y

This represents a first order linear differential inequality with integrating factor

(J2+e2ec dex ) e2oc
exXp =
1+e?ec vV (1+e?x)

Inequality (7), when solved, gives

1y el
<
2 V(1+e¥x) WV (1+ex)

It follows that

From (6) and :(8) we have

2elox
<t < el
e+ V{(l+e2x) ’
’Covnsequently,
1-e2% +2e* V(1 +e2>*)<f< 14362 .iiiiinennn. et e e eheaeeateaeaanne e nnnneennnneeeanee 9)

which is.one of the main ‘targets of .this work.
(3) ‘Some formulae for the solution of .equation (1) for €= -1 and their graph

The formulae of the solution of Eq.. (1) are-givenin{(7). The proceduresfor.obtaining them, €=
+1%, are outlined as :follows: . :

*) The easier case.€ = 0:has been studied .in.(8).
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Since we are interested in the positive solutions only, we let f(<) = g2(x) and.x = ¢ . Thus for
arbitrary L(x) = -1 - €e? , using the transformation g = xgg’ - L(x), the new form of Eq. (1)
is g

(q? - 1)%‘.: xg, (@ - 1)2i= qg + L(x), where q% # 1.
q q

We seek a transformation for q such that this system leads to an elementary solvable equation.
To do so let q = P(x,g,t) and consider then the linear transformation q = x@y(t) + gDy(t),
where @; and @, are to be selected to acquire an integrable system for particular L(x). It has
been shown in (7) that for @, =1, @, = sinht for €= +1 and +cosht, cost for €= —1 we have a
systemr of equations which implies (_=§,):

te.

For €= +1

1+ x2
2 o

= 0 with g = xcosht.
eosh?t

XX" - X

For €= —1

i) xx - x2 + T(x,t) = 0, where

T(x,t) =1 X 1% it g = *xsinht, xsint

9 —

sin?t sin?t

iipxgg' +1-x2-g =+ xg

The solutions of these equations yield the parametric representation x(t), g(t) for the solutions
of Eq. (1).

Now, we select the following formulae for the solution: of Eq. (1) for €= -1:

sinh(a{t+b)) .
log porr a>0, = | 1 b, t arbitrary
(I f = { coshfaft+b)) + ex .cosht}? a>0.
b- arbitrary
and log sinfa(t+b)) O<t<n,
*x m——— ' P2y
asint -

) = {cos(alt+b)) tec.cost}?
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One can see that (I), (II) satisfy the inequality (9). The above solutions are computed and
depicted graphically in fig. (1) and (2), where G=Vf and |X|=e* . Limiting cases, a—0, of (I),
(I1) are also represented in fig. (3) and (4). e

(4) Conclusion

We have obtained an inequality (9) for interval estimation of the solutions of the considered
equation in the hyperbolic geometry, €= —1, which is chosen upon symmetry grounds in the z-
and w- plane. For space limitations, only some selected formulae are presented graphically.

The other two cases €=0, +1 corresponding to euclidean and elliptic geometry respectively can
be dealt with in the same way. : ‘
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