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ABSTRACT 
In this article a family of nonramified functtions, defined in zz<l, is 
obtained. It is characterized by an achieved distortion theorem; its Bloch 
constant and the limit of convexity are determined. Peschl's principle is. 
mainly, used throughout this work. 

INTRODUCTION 

One of the interesting questions in complex analysis is the study of analytic functions based on 
the nature of their produced mappings. H. A. Schwartz and C. Cartheodory [ 6 J gave a 
powerful geometrical development in this line. E. Study [ 13] considered, firstly. convex 
domains; that is the tangent at their boundary points of each domain always, turns in the same 
direction as we move around the boundary, and obtained the lemma: if f(z) maps the units disk. 
lzl<l, in a convex domain, then f(z) maps every disk lzl<r<l onto a domain of this type. Then. 
he generalized the behaviour of the boundary curvature in theory of conformal mapping. 

E. Pewchl [ 7] investigated the problem of conformal mapping onto regions with boundary 
curvature which is bounded from below. He continued and succeeded in concluding and 
publishing in 1955 his principle [ 8 J . Then, one of the invaluable tools in different branches of 
mathematics (e.g. differential geometrical theory of function of a complex variable [ 9] has 
been introduced. It is worth mentioning that applying that principle has led to some interesting 
results (see e.g. [ 1,2,4,5,9,10,12,14,15] ). 

In this article, the first section is devoted to review briefly, Peschl's principle and its role in 
complex analysis. As a result of applying it, a new family of nonramified functions**) is 
obtained in the second section. It is characterized, mainly, by the value of its Bloch constant, 
the limit of convexity and the nature of the image of the unit disk under each function of the 
family. 

(1) Peschl's principle and its Role 

Of interest to us here are functions w(z) which are nonramified in the unit disk of the z-plane, 
D={ z: lzl< 1}. 

*Present Address: Qatar University, Doha, Qatar, Arabian Gulf. 

• • i.e. holomorphic functions with non vanishing derivative 
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Suppose the hyperbolic metric dsz = [dzf/(1- fz[ 2
) and the euclidean metric dsw = [dwf are 

considered in D and w-plane respectively. Recall in addition that: 

are the Beltrami differential operators, while the associated mixed Beltrami differetial operator 
is defined as: 

S J(u,v) = (1-fz[ 2f2UzVZ: 

Using the differential invariants, 

oc log fw' I (1-fz[ 2
) 

and 
B (1-fz[ 2

) ocz 

w" 
= - (1-fzi 2)-z, 

2w' 

we form the function v = f' P, - f( oc ), where f( x) is initially unknown function and 
differentiable twice at least. Caclulation of & 

2
v yields: 

1 
~zV= A6 1v+B{S 1 (v,x)+ S 2 (x,v)}+D1v+D0, (I) 

where 

A = p.,;?> and B = A(1 + f'); 

D 1 = -f' - 2 and D0 = - ff' + f' 2 + 3f' - 2f + 2. 

Now, let f( x) is suggested to the following conditions: 

D0 = 0, D 1 1- 0 and v<O in a neighbourhood U( dD), where aD is the boundary of D (2) 

Hence it follows that v ~ 0 at every point :t e { DU C) D}. 

This principle has been obtained by E. Pesch! and its proof is sketched as folows (see e.g. [ 7] , 
[10] ): 

Suppose that he function v takes its maximum at a point r*E D, where v(z*) = max
0

. (v) >0 
and & 2v ~ 0. Moreover, since at z*, 6 1 v = 0 and £. 1 ( x, v) = 6

1 
(v. x) = 0, it follows that 

equation (1) reduces to &2 v = D
1
v. 

But from the preceeding, D 1 is either >0 or <0. On one hand if D 1>0. this leads. immediately. 
to a contradiction ( 6 2v is not allowed to be positive at a maximum situation). On the other 
hand, if D 1<0, using a modified maximum principle[lO] , a similar contradiction follows. 
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Now, it is of importance to define f(oc:), such that D0=0, D1f0 and v<O in a neighbourhood 
U( aD). These functions are obtainable in Ref. (11]. 

Considering v = B~ - f(oc:) :s;; 0, P.J = (1- lzl')oc:,, it follows: 

J' 1 ldo<. ~ Trl dr (3) 

where r = lzl . Upon integration, one has eastimatin for oc: , integrating once more one has: 

H 1(r) :s;; lw(z) - w(O)I :s;; H2 (r) 

where H 1 (r) and H2(r) depend on f( oc ). Without loss of generality, w(z) is normalized such that 
w(O) = 0. Thus, it is clear that: corresponding to any function, f(oc), satisfying the above 
conditions, (2), and by applying this approach, one obtains estimations for the differential 
invariant oc and lw(z)l. So, Peschl's principle and the main method of its application is 
represented. Its role has been introduced in different works, and results are obtained. For 
example: 

(i) Since the above differential invariant oc, satisfies the equation,,2::x: = -1, E. Raupach[12] 
gave different estimations foro<.. 

(ii) Considering the hyperbolic and elliptic metric in thew-plane, K.-W. Bauer[ 1]proved the 
principle and gave estimations for the solutions of the equation, S 2 ::x: = -1 ± e'::x: where ::x: is 
the relevent differential invariant. Also distortion theorems are obtained. 

(iii) K. J. Wirths [ 14] considered the principle as a maximum princple and generalized it. 
Furthermore, using the original principle, he solved the following problem [l5.]which was 
stated in 1965 (see [ 16 problem N] ): 

For all z e.D, which value of B£R under which lf'(z)l<(1- lzi'J-' holds?, where f(z) is 
holmorphic and lf(z)l <(1- z ')-1

; also what is the coefficients ranges for the class of these 
functions? 

(iv) In [ 2] some families of analytic functions are defined and a set of disortion theorems are 
obtained considering hyperbolic and elliptic metric in addition to the euclidean metric. 

( v) In [ 3] families of ramified and nonramified functions and a relation governing them are 
obtained. Moreover, in [ 4] considering hyperbolic metric, and using Julia theorem a 
covering theorem is deduced. 

(vi) Lastly, in [ 5] , a relation governing solutions of 8 2u = - 1 and Joukowski's profile is 
induced. 

(2) A family of nonramified functions 

Let } denotes the family of all nonramified functions, w(z), which are defined in the unit disk 
D and are considered in the definition of the above differential invariant ::x:. In correspondance 
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with a selected solution of the nonlinear differential equation 0 0 =0. the family ]' is 
characterized by conditions hold for each w(z) f '1-
let us select the following solution of 0 0=0: 

oc = log (t+b) - t, f = { (t+b) - 1}2
, (b arbitrary and t>-b) 

which satisfies the conditions (2). 

To make use of Peschl's principle, inequality (3) is applicable for t [1-b,:x:]. Since 

doc jt dt 
oc(O) /-- =- t 1 t+b =log (t1+b)/(t+b), (4) 

-vf (oc) 

relevent claculations show that (t1 is determined through w'(o) (t1+b)e-'1
): 

OR - b :s;; t :s;; 0/R - b, 

where 0 = t1 + b and R = 
1-r 
l+r. 

The above two intervals of t are consistent iff: 

1. 1 - b :s;; OR - b ~ r :s;; 0-1 * --· = r 0+1. 

2. ~ -b :s;; oo (trivial). 

Since eoc is a monotonic decreasing funcion of t then, by applying (4), one has: 

exp { b - 0/R} (OR) :s;; e :s;; exp { b - Or} (0/R), 

in this and in the next inequalities the R.H.S. holds only under the restriction r :s;; r* . 

Since eoc = lw'l (1-lzl2
), the above inequality implies: 

which yields by integration: 

20r I I 20r lf2exp(-t1){1-exp(- -
1

...:.r)} :s;; w :s;; 1h exp(-t1) {exp(-) - 1} 
l+r 

*) Bloch constant of 7- is defined [ 6 J as the infimum of the radii of the largest one sheeted disks lying on the Riemann 

surface, onto which w(z)E]: map D dijectively. 
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The obtained inequalities hold for each w (z)e r;F . corresponding to the selected solution of 
0 11 =0. 

Hence Bloch contant*) B~of the family is claculated from the last inequality by taking the limit 
of the L.H.S. as r~1 which gives B~= V2exp(-t 1). 

Furthermore. as a conclusion from Peschl"s principle [ 10 J , the family'} is characterized by 
the fact that: 

the boundary curvature of the image of the unit disk D under w(}, 
1 w·· 

namely -
1 

- Re { 1 + a--}. ·w·J w· is bounded from below by k (say), 

(1- ~lJ) ex: =2e-h (>0). This means where k is given by lim 
1 

that the image of the unit disk D under each w(z)~Jis, always convex. Furthermore, w(z) maps 
every disk lzl <r<l onto a convex domain [ l3 J The suprimum of the radii r of these disks yields 
the limit of convexity for the family [ 6 ] ; it can be shown that it is equal to unity. 

Hence, the family -:J. , which is defined in correspondance with the above selecte solution of 
the diffrential equation 0 0 =0, is characterized by the following distortion theorem. 

Theorem 

For each w(z) €. Jr the following conditions are satisfied: 

L w(z) is nonramified in the unit disk D and w(o)=O. 

2. 
eoc(tJ) 2Qr r ~ r• 

esp ( 1_r ) ~lw'l ~ 
1-r2 

ex(t1) 20 
--- exp ( 1+rr2 ) 

1+r2 

r :s:; r" 
3. Vzexp ( -t1) {1 -exp(- -20-r )} :s:; lwl :s:; Yzexp( -tJ) {exp( -

20
-r ) -1} 

1-r 1+r 

where t~o Q and r"' are defined as above. 

4. bloch constant B,.is equal to 112exp( -t1) and the limit of convexity is unity. 

5. The boundary curvature of the image of the unit disk D at !eats equal to exp( -2b). 

CORROLLARY 

It can be proved that the function w(z) = Vz{ exp 2Qz - 1} belongs to the family Y. . This 
1+z 

function is the majorant function of the inequality 3 in the theorem. 

t The branch +v'f and the parameter t lies on [ -b,l-b]. 
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