
QATAR UNIVERSITY

 COLLEGE OF ENGINEERING

LATENT SEMANTIC INDEXING BASED DISTRIBUTED SYSTEM AND SEARCH

ON ENCRYPTED DATA

BY

ABDELRAHMAN MOSSAD SHOUMAN

A Thesis Submitted to

the Faculty of the College of

 Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Masters of Science in Computing

 January 2018

© 2018 Abdelrahman Shouman. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the Thesis of Abdelrahman

Shouman defended on 13/12/2017.

Abbes Amira

 Thesis/Dissertation Supervisor

Abdullatif Shikfa

 Thesis/Dissertation Co-Supervisor

Professor Richard Khouri

Committee Member

Dr. Tamer ElSayed

Committee Member

Dr. Tamer M. Khattab

Approved:

Khalifa Al-Khalifa, Dean, College of Engineering

iii

ABSTRACT

SHOUMAN, ABDELRAHMAN, MOSSAD., Masters : January : [2018],

Masters of Science in Computing

Title: Latent Semantic Indexing (LSI) Based Distributed System and Search On

Encrypted Data

Supervisor of Thesis: Abbes Amira.

Latent semantic indexing (LSI) was initially introduced to overcome the issues of

synonymy and polysemy of the traditional vector space model (VSM). LSI, however, has

challenges of its own, mainly scalability. Despite being introduced in 1990, there are few

attempts that provide an efficient solution for LSI, most of the literature is focuses on LSI’s

applications rather than improving the original algorithm. In this work we analyze the first

framework to provide scalable implementation of LSI and report its performance on the

distributed environment of RAAD.

The possibility of adopting LSI in the field of searching over encrypted data is also

investigated. The importance of that field is stemmed from the need for cloud computing

as an effective computing paradigm that provides an affordable access to high

computational power. Encryption is usually applied to prevent unauthorized access to the

data (the host is assumed to be curious), however this limits accessibility to the data given

that search over encryption is yet to catch with the latest techniques adopted by the

Information Retrieval (IR) community. In this work we propose a system that uses LSI for

indexing and free-query text for retrieving.

iv

The results show that the available LSI framework does scale on large datasets,

however it had some limitations with respect to factors like dictionary size and memory

limit. When replicating the exact settings of the baseline on RAAD, it performed relatively

slower. This could be resulted by the fact that RAAD uses a distributed file system or

because of network latency. The results also show that the proposed system for applying

LSI on encrypted data retrieved documents in the same order as the baseline (unencrypted

data).

v

DEDICATION

For my family, my friend Mohanned for his advices on the issues I faced, for my friend

Nazar for providing his machine for part of the experiments and redbull.

vi

ACKNOWLEDGMENTS

I would like thank Dr. Abbes Amira, my supervisor, for his continuous support

throughout my thesis journey. I would like also to thank Dr. Abdullatif Shikfa, my co-

supervisor for his support, non-official yet excellent, and his help especially in the security

part.

vii

TABLE OF CONTENTS

DEDICATION .. v

ACKNOWLEDGMENTS ... vi

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

LIST OF EQUATIONS .. xv

LIST OF PUBLICATIONS .. 1

Chapter 1: Introduction ... 2

1.1. Introduction of Information Retrieval (IR) .. 2

1.2. IR’s Common challenges ... 3

1.3. Introduction to Latent Semantic Indexing (LSI) .. 4

1.4. LSI Hello World Example.. 7

1.5. Problem Statement ... 10

1.6. Research Objectives ... 11

1.7. Research Contributions .. 11

1.8. Research Motivation (Significance to Local Community) 12

1.8.1. Qatar National Research Strategy (QNRS) .. 12

1.9. Thesis Structure .. 13

viii

Chapter 2: Problem Definition .. 15

2.1. Background .. 15

2.2. Searchable Encryption (SE) ... 17

2.2.1. Indexing .. 17

2.2.2. Retrieval ... 18

2.3. LSI Model Generation .. 18

2.4. Problem Description ... 19

2.5. Solution Overview.. 20

Chapter 3: Literature Review .. 21

3.1. LSI Variations .. 21

3.1.1. Probabilistic Latent Semantic Indexing (PLSI) ... 21

3.1.2. Regularized Latent Semantic Indexing (RLSI) .. 22

3.1.3. Similarity-based Matrix Completion Algorithm for LSI 23

3.1.4. Subspace Tracking for LSI (Distributed LSI) .. 25

3.1.5. Comparison of LSI Variations ... 30

3.2. Applications ... 31

3.2.1. Collaborative Filtering ... 31

3.2.2. Clustering ... 32

3.2.3. Geographical Taxonomy .. 33

ix

3.2.4. Software Analysis (Code Analysis) ... 34

3.2.5. Document Analysis .. 35

3.2.6. Crime Analysis ... 36

3.2.7. Medical ... 39

3.2.8. Media .. 40

3.3. LSI Challenges ... 41

Chapter 4: Research Methodology.. 43

4.1. Part 1: LSI Scalability .. 43

4.1.1. Environment ... 43

4.1.2. Datasets .. 47

4.1.3. Experiments .. 48

4.1.4. Measurement Metrics ... 53

4.1.5. Datasets Pre-processing.. 55

4.2. Part 2: LSI on Encrypted Data ... 57

4.2.1. Environment ... 57

4.2.2. Datasets .. 58

4.2.3. Experiments .. 58

4.2.4. Measurement Metrics ... 77

4.2.5. Datasets Preprocessing ... 77

x

Chapter 5: Experimental results .. 78

5.1. Part 1: LSI Scalability .. 78

5.1.1. LSI Effectiveness ... 78

5.1.2. LSI Performance .. 79

5.1.3. Discussion .. 84

5.2. Part 2: LSI on Encrypted Data ... 85

5.2.1. Baseline .. 85

5.2.2. Experiment 1 .. 87

5.2.3. Experiment 2 .. 89

5.2.4. Experiment 3 .. 91

5.2.5. Experiment 4 .. 92

5.2.6. Experiment 5 .. 93

5.2.7. Discussion .. 94

Chapter 6: Conclusion and Future Work .. 97

6.1. Overview .. 97

6.2. Achievements ... 97

6.3. Limitations ... 98

6.4. Future Work ... 99

REFERENCES ... 100

xi

APPENDIX I: LIST OF ALL RAAD EXPERIEMENTS .. 108

xii

LIST OF TABLES

Table 1. List of Documents Used in the Experiment Conducted by [4] 8

Table 2: Comparison of LSI variations ... 30

Table 3: Difference in Performance between Repeated and Non-Repeated Datasets in

Serial Mode ... 83

Table 4: Difference in Performance between Repeated and Non-Repeated Datasets in

Distributed Mode .. 84

Table 5: Documents Ranking Applying Baseline Setup... 86

Table 6: Document Ranked According to their Normalized Similarities in Experiment 1

... 88

Table 7: Document Ranked According to their Normalized Similarities in Experiment 2

... 90

Table 8: Documents Ranking in Experiment 3 ... 91

Table 9: Documents Ranking in Experiment 4 ... 92

Table 10: Documents Ranking in Experiment 5 ... 93

Table 11: CPU recorded time for LSI on 100 k documents ... 108

Table 12: CPU recorded time for LSI on 500 k documents ... 109

Table 13: CPU recorded time for LSI on 1 M documents .. 110

Table 14: CPU recorded time for LSI on 1.5 M documents ... 111

Table 15: CPU recorded time for LSI on 2 M documents .. 112

xiii

LIST OF FIGURES

Figure 1. Two-dimensional representation of the LSI model generated from the

documents in Table 1 .. 9

Figure 2: Solution Overview .. 20

Figure 3. Bipartite graph representation for (a) the original matrix and (b) the

approximate matrix. The dashed lines in (b) represent new connections due to lower rank

approximation to the original matrix. ... 24

Figure 4: Topic Modeling Phases ... 26

Figure 5: A snapshot from relevancy table generate from Medline dataset 52

Figure 6: LSI over Encrypted data – Experiment 1, Dividing Matrix 𝐴 64

Figure 7: LSI over Encrypted data – Experiment 2, Dividing Matrix A after applying

SVD... 67

Figure 8: LSI over Encrypted data – Experiment 3, Dividing the matrix 𝐴𝑘 70

Figure 9: LSI over Encrypted data – Experiment 4, Dividing the query 𝑞𝑘 72

Figure 10: LSI over Encrypted data – Experiment 5, Dividing both 𝐴𝑘 and 𝑞𝑘 (Two

Servers) ... 74

Figure 11: LSI over Encrypted data – Experiment 5, Dividing both 𝐴𝑘 and 𝑞𝑘 (Four

Servers) ... 76

Figure 12: Average Precision of Serial vs Distributed gensim's LSI 78

Figure 13: Difference in Performance between Serial and Distributed LSI Across

Different Datasets Sizes .. 80

Figure 14: Number of Workers effect on CPU time ... 81

file:///D:/Users/as15673/Downloads/Shouman,%20Abdelrahman%2009-30-1992_After_Modifcation_Final_TAAD_v2.docx%23_Toc503944133
file:///D:/Users/as15673/Downloads/Shouman,%20Abdelrahman%2009-30-1992_After_Modifcation_Final_TAAD_v2.docx%23_Toc503944135
file:///D:/Users/as15673/Downloads/Shouman,%20Abdelrahman%2009-30-1992_After_Modifcation_Final_TAAD_v2.docx%23_Toc503944136
file:///D:/Users/as15673/Downloads/Shouman,%20Abdelrahman%2009-30-1992_After_Modifcation_Final_TAAD_v2.docx%23_Toc503944136
file:///D:/Users/as15673/Downloads/Shouman,%20Abdelrahman%2009-30-1992_After_Modifcation_Final_TAAD_v2.docx%23_Toc503944137
file:///D:/Users/as15673/Downloads/Shouman,%20Abdelrahman%2009-30-1992_After_Modifcation_Final_TAAD_v2.docx%23_Toc503944141

xiv

Figure 15: Chunk size effect on CPU time ... 82

Figure 16: Impact of Randomized Splitting on Average Precision in Medline dataset ... 94

file:///D:/Users/as15673/Downloads/Shouman,%20Abdelrahman%2009-30-1992_After_Modifcation_Final_TAAD_v2.docx%23_Toc503944145

xv

LIST OF EQUATIONS

Equation 1: SVD applied on the term-document matrix A ... 6

Equation 2: Left: Left Singular vectors, Middle: Singular Values, Right: Right Singular

Vector .. 6

Equation 3 ... 22

Equation 4: Factorize the matrix 𝐴 using sklearn's randomized_svd 61

Equation 5: Calculation of 𝐴𝑘 using the output of randomized_svd 61

Equation 6: Calculation of 𝑞𝑘 using the output of randomized_svd 61

Equation 7: Splitted 𝐴 ... 62

Equation 8: Applying SVD on both servers ... 63

Equation 9: Calculating 𝐴𝑘 on each server ... 63

Equation 10: Calculating 𝑞𝑘 on each server ... 63

Equation 11: Splitting Sigma .. 65

Equation 12: Calculating both versions of 𝐴𝑘 locally .. 66

Equation 13: Calculating 𝑞𝑘 on each server ... 66

Equation 14: Applying SVD to A with rank k=2 ... 68

Equation 15: Calculate 𝐴𝑘 ... 68

Equation 16: Split 𝐴𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) ... 68

Equation 17: Split 𝑞𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) .. 71

1

LIST OF PUBLICATIONS

As part of this work we plan to submit two publications. First publication will

discuss our experiment on LSI scalability. The publication will discuss the experiment of

applying gensim’s implementation for LSI on RAAD’s distributed environment. It will

also report the conducted results including insight, challenges and limitations. For this

publication the JPDC1 journal is targeted. Second publication will revolve around our

proposed method to apply LSI on encrypted data. For this publication, the IET Information

Security2 journal is targeted. The publication will discuss the results of the proposed

method and how does it fit in the literature and advance the existing methods. This includes

the switch to LSI model instead of simple occurrence matrix and adaption of free-text

queries instead of simple keyword query.

1 https://www.journals.elsevier.com/journal-of-parallel-and-distributed-computing
2 http://digital-library.theiet.org/content/journals/iet-ifs

https://www.journals.elsevier.com/journal-of-parallel-and-distributed-computing
http://digital-library.theiet.org/content/journals/iet-ifs

2

Chapter 1: Introduction

1.1. Introduction of Information Retrieval (IR)

The urge need for efficient retrieval techniques emerged with the introduction of

web search. Retrieving user needs requires searching across a large scale of data, which is

a challenging task that led to continuous development of retrieval models. Prior to that,

searching was performed in the style of Database (DB) search where providing precise

information is vital to acquire effective results. For example, searching in a cars’ DB

requires detailed information like plate number. Similarly, searching a patients’ DB

necessitates patient national ID number. In the former example, the search patterns

involved limit the usage of the system to people who are trained for that purpose, such as

administrators, customer service advisors, paralegals, and so forth.

Web search shifted the older paradigm where the majority of users are not trained

professionals with pre-knowledge of the data. It is rather a broad group of users with

different backgrounds and various information needs. Queries formed by those users are

unstructured and described as free text queries. The whole problem of Information

Retrieval in the academic field is described as following:

“Information retrieval (IR) is finding material (usually documents) of an unstructured

nature (usually text) that satisfies an information need from within large collections

(usually stored on computers)” [1].

This new paradigm deals with documents on a larger scale that requires keeping a

sense of term weighting. Terms are the result of preprocessing all words in the document

collection. The preprocessing might include stemming or stop words removal. During

3

query-time, term weighting is vital to calculate a score relevance with reference to the

query. The higher the score the more relevant the document is to the user’s need; hence,

retrieval models will list the most relevant documents at the top of the results. The way it

works is that term weighting is used to form a document vector representation that

“captures the relative importance of the terms in a document”[1]. Queries are represented

using the same vector notion as well, where vectors similarity measures (e.g. cosine

similarity) can be leveraged to apply a search query. The set of document vectors

represented in the same vector-space is called Vector Space Model (VSM) [1].

1.2. IR’s Common challenges

The aforementioned model is keyword dependent. Documents that share common

query terms are more likely to be retrieved as relevant in comparison to documents that do

not. The main deficiency of this approach is the lexical mismatch between the users

(searchers) and the authors of retrieved data, which results in two main issues: synonymy

and polysemy [2]. First, multiple words can have the same meaning (e.g. Chair and Seat

share the same meaning) and there is no guarantee that the user will search for one term

over the other. This problem of Synonymy can lead to less relevant documents being

retrieved, hence, decreasing the system’s recall. Second, a single word may have multiple

meanings (e.g. Jaguar can refer to the car brand or the animal) and there is not

straightforward way for the model to detect the main intention of the user. This problem of

Polysemy implies that some non-relevant documents will be retrieved, thus decreases the

precision of the system. Both Recall and Precision are significant metrics to measure the

4

relevancy of the system which is one of the core concepts for information retrieval.

Two solutions were suggested to overcome the issues of synonymy and polysemy

according to [3]. First approach is Stemming, which is a process to convert words to their

morphological root so ‘retrieval’ and ‘retrieving’ would be converted to ‘retrieve’.

However, this process does not work to match nouns like chair and seat. Second is

Controlled Vocabulary; this solution suggests that document authors and searchers use a

predefined set of terms. However this issue was described by [4] as both expensive and

inefficient.

Three factors were proposed by [4] to justify the failure to address the issues of

synonymy and polysemy. First, indexes lack enough terms; this can occur because of the

limited terms used in the documents collection itself or because of the preprocessing phase

that omits many terms. Second, there is no practical methodology for handling polysemy;

one solution was controlled vocabulary, however as previously mentioned, it is both

inefficient and expensive. Third, terms are not dependent on each other; meaning that two

terms frequently co-occurring have the same retrieval possibility as those rarely co-

occurring. Hence, queries including compound terms such as check-in are more difficult

to satisfy.

1.3. Introduction to Latent Semantic Indexing (LSI)

The discussion above describes an existing gap resulted because of the loss of the

meaning of query terms. While constructing a query, the user usually has a need they wish

to satisfy, and if the query terms are not adequately representative of those needs (i.e. they

5

miss the meaning or the user’s intention) the systems performance necessarily drops. Latent

Semantic Indexing (LSI) was initially proposed to cover that gap, it assumes the existence

of a latent semantic structure covered by a wide variety of word choice that sit its goal to

uncover that structure [2] [3]. Thus, for a certain query, a relevant document that does not

have any query term can still be retrieved.

LSI provides a step further compared to the old VSM. To understand how LSI is

an improvement to the VSM model, it is important to be familiar with how VSM works.

Following are the common steps of both LSI and VSM in addition to the LSI’s additional

steps

A. Pre-processing: The preprocessing phase includes steps like stop words removal and

stemming. These steps are applied on the original corpus of documents (or other

searchable material) to extract the important terms form it.

B. Term document Matrix: Terms generated from the previous phase are then used to

generate the term document matrix 𝐴. Records in the matrix are the terms, and columns

are the documents. The value stored in each individual cell represents the occurrence

of a certain term in a specific document.

C. Matrix decomposition: The output term-document matrix 𝐴 is highly sparse with

unnecessary noise. In this third phase a new matrix of lower dimensions and rank (𝑘)

is approximated3 from the original term document matrix (with rank 𝑟). The low-rank

approximation technique aims to find a matrix with the lowest possible discrepancy

from the original term-document matrix. Rank 𝑘 is manually selected and it has to be

3 This approximation can be referred to as the LSI model or Index.

6

significantly lower than 𝑟. The approximation is applied using a matrix factorization

technique called singular value decomposition (SVD), which represents the matrix as

a product of metrics derived from its eigenvectors. The equation below shows the SVD

factorization applied on 𝐴.

𝐴 = 𝑈 𝑆4 𝑉𝑇

Equation 1: SVD applied on the term-document matrix A

These three matrices are, 𝑈 and 𝑉𝑇, left and right singular vectors of 𝐴; a set of

orthonormal eigenvectors and 𝑆, singular values of 𝐴.

𝑈 𝑆 𝑉𝑇 = [𝑢1 𝑢2] [
𝜎1 0
0 𝜎2

] [
𝑣1

𝑇

𝑣2
𝑇]

Equation 2: Left: Left Singular vectors, Middle: Singular Values, Right: Right Singular

Vector

If the aforementioned rank 𝑘 is selected to be 1, then 𝐴𝑘 will be as following.

𝐴𝑘 = [𝑢1 0] [
𝜎1 0
0 0

] [𝑣1
𝑇

0
]

Equation 3: 𝐴𝑘 Calculated

4 Σ is sometimes used instead of 𝑆

7

SVD is the value LSI adds to the conventional keyword dependent retrieval method

using term-document matrix.

The matrices are then lowered to a rank 𝑘 where the first 𝑘 vectors (in case of 𝑈

and 𝑉𝑇) or values (in case of 𝑆) are selected. Those 𝑘-ranked matrices are then multiplied

to calculate an approximated matrix 𝐴𝑘 that is used instead of 𝐴 to search. This low-rank

approximation matrix helps to cluster a given set of documents based on the co-occurring

terms. This means that similar documents (i.e. documents with similar topic and in turn

terms) are represented closer to each other in the LSI vector space. Therefore, a given query

can retrieve documents that do not share terms with it and thus, generating a model that is

keyword-independent.

1.4. LSI Hello World Example

The following example illustrates how LSI is able to recognize similar topics

among documents that may not share common keywords.5 Table 1 lists nine different

document discussing two topics. Documents c1-c5 are about human-computer interaction

(HCI) and documents m1-m4 are about graph theory.

5 The original experiment was conducted in [4]

8

Table 1. List of Documents Used in the Experiment Conducted by [4]

DOCUMENT

CODE

DOCUMENT TITLE

C1

Human machine interface for lab abc computer

applications

C2

A survey of user opinion of computer system response

time

C3 The EPS user interface management system

C4 System and human system engineering testing of EPS

C5

Relation of user perceived response time to error

measurement

M1 The generation of random binary unordered trees

M2 The intersection graph of paths in trees

M3 Graph minors IV Widths of trees and well quasi ordering

M4 Graph minors A survey

9

Gensim library was used to generate the LSI model, more discussion about Gensim

will be provided in section 4.1.1.6.

Figure 1 below is a geometric representation of the resultant LSI model in two

dimensions. According to [5] the list of documents in Table 1 were deliberately designed

to “produce a satisfactory solution using just two dimensions”.

Figure 1. Two-dimensional representation of the LSI model generated from the documents

in Table 1

The Space model depicted in the figure above shows how the documents are

clustered in two different groups; HCI and graph theory. As aforementioned, documents

10

labeled ‘m’ discuss graph theory and documents labeled ‘c’ discuss HCI, and each

document was clustered into its respective group based on its topic.

Figure 1 depicts the cosine similarity between each document and the query

“Human computer interaction”. HCI group expectedly achieved higher scores and the

query 2-dimensional representation is plotted closer to the HCI group as well. It is worth

mentioning that documents ‘c3’ and ‘c5’ share no term with the query, nevertheless the

LSI model managed to detect their similarity with the query.

1.5. Problem Statement

It is difficult to for data owners/authors to make their data accessible for their target

customers/users without enduring excessive costs. Once emerged, cloud computing

provided a good cost-efficient alternative that minimizes management efforts. It can host

large scale datasets while providing search functionality to customers. However, cloud

services require full access over data, which might not suit its owners. The goal is to design

an LSI system that can effectively search over encrypted data in a distributed setting that

support scaling.

Two main challenges present themselves as obstacles to achieve this goal. Firstly,

LSI suffers from a scalability issue. This is because it is not easy to parallelize SVD, the

main component of LSI. As a result, LSI performance suffers over large datasets. Second,

while encryption might secure data from unwanted access, it also prevents cloud services

from performing any form of computation.

11

1.6. Research Objectives

The main objective of this thesis is to investigate the possible settings of applying

LSI in a distributed environment and on Encrypted data. If successful, it can potentially

help applying highly efficient search on the cloud functionality while ensuring the

confidentiality of the data. Following is a list of this work’s objectives:

 To research LSI’s performance on distributed systems and Encrypted data

 To research variations of LSI and its applications

 To carry on an empirical study of LSI in a distributed system environment

 To investigate how LSI can be applied on encrypted data

1.7. Research Contributions

Following is a list of the main contributions of this work

 Conduct a literature review of the main variations of LSI. For each of those

variations, their signification over the original LSI is reported and their potential to

scale in a distributed environment is discussed. A summary of LSI applications is

presented alongside discussion of the LSI variation and dataset(s) used.

 An experiment of LSI is carried on and HPC environment in serial and distributed

mode to evaluate both performance and effectiveness of gensim’s LSI (check

section 4.1.3.1 and 4.1.3.2). The evaluation is carried on using two reported

measurements; CPU time and average precision (check sections 4.1.24.1.4.1 and

4.1.4.2).

12

 A study of how LSI can be applied on encrypted data is presented as well. A list

of different experimental attempts is reported along with environment’s setting

(check section 4.1.44.1.3). Each attempt is then reported and compared against a

devised baseline (check section 4.2.3.2).

1.8. Research Motivation (Significance to Local Community)

It is important for the work presented in this thesis to be aligned with strategies of

local education and research institutes in Qatar. The section shows how this work achieves

such alignment.

1.8.1. Qatar National Research Strategy (QNRS)

Qatar National Research Strategy (QNRS), is a publication of the Qatar National

Research Fund (QNRF). It reflects input from Qatar research leadership, researchers and

other stakeholders [6]. QNRS regularly highlights various key challenges that faces Qatar

to help advance certain research areas. Research and educational institutes’ effort and fund

is then directed toward these focus area; thus, becoming a country-level priority.

1.8.1.1. Powerful and Distributed Computing

QNRS has published a pillar regarding Computer Sciences and Information

Technology (ICT). One of the listed goals (Goal ICT.2) was to “Build a research program

on distributed, data intensive and service oriented computing” [7]. QNRS also highlighted

the importance of big data computing where they advised to “Explore and implement best

practices in Big Data Urban development project” [8]

In part of this work, an experiment of LSI in distributed systems is carried on as

13

mentioned in the research objectives section. The experiment runs in a distributed

environment on a large dataset (check section 4.1.3.1). This fits QNRS intention to focus

on big data and distributed computing. The distributed environment is provided by RAAD,

a High-Performance Computing (HPC) system provided by TAMUQ6 (check section

4.1.1.8 for more details). This also fits QNSRF to focus on data intensive computing.

1.8.1.2. Cyber Security

Cloud computing has witnessed rising importance over the years, it was strongly

highlighted as a priority research area by QNRS. This shift also introduced security

concerns on a nation scale according to a QNRS publication [9]. Cyber security was

therefore announced as a “a National Grand Challenge”; thus, leading to a higher focus and

larger fund in this area.

In part of this work, a proposal of how LSI can be applied on encrypted data is

presented. The proposed solution, although not finalized, has the potential of advancing

how cloud computing is used. In other words, encrypted data can be outsourced to cloud

services while still maintaining the ability to search it using LSI.

1.9. Thesis Structure

Chapter 2 further discusses the problem definition, extending the problem

statement. In chapter 3, a literature review of various LSI variation, their scalability

capabilities and their applications are presented. Chapter 4 describes both experimental

parts along with the detailed description of used datasets, applied preprocessing steps (if

6 Texas A&M University in Qatar

14

any) and baselines. Chapter 5 provides the experiment result of formerly described parts

while chapter 6 concludes the work and suggests future work.

15

Chapter 2: Problem Definition

This chapter provides an elaboration of the problem statement formerly reported. It

starts with an overview of the challenges introduced by adopting the cloud paradigm. It

then provides a description/definition of the problem based on those challenges. After that

attempts to address those challenges are described, categorized along with this work’s

contributions in each category, if any. These contributions are then reflected in the research

methodology detailed in Chapter 4: Research Methodology.

2.1. Background

Access to high computational power is not an issue for multi-billionaire

organizations. Companies like Facebook, Google and Amazon have their own data centers

where they store their data and perform the necessary business operations. On the other

hand, running such large-scale centers can be a financial burden for small companies,

startups and research groups.

In the latter case, cloud services can provide an affordable access to high

computational power resources while mitigating the burden of management and

maintenance. Success stories for both Amazon7 and Google8 cloud services include well

known profiles (e.g. London Heathrow, Spotify, Airbnb, Air Asia, etc..) which shows how

appealing cloud services are.

However, maintaining confidentiality while leveraging cloud services is

7 https://aws.amazon.com/solutions/case-studies/all/
8 https://cloud.google.com/customers/

https://aws.amazon.com/solutions/case-studies/all/
https://cloud.google.com/customers/

16

challenging for several reasons. First, cloud services need to have full data access to carry

on the required operations. For example, a business hosting its services on cloud servers

will be sharing its customers’ data (including sensitive financial information) with

untrusted third party (i.e. cloud service provider). Second, some providers maintain the

right to sell data or part of it for other business, which might expose user information, with

or against their will. Third, cloud services usually store huge amount of data, which make

them more attractive to hackers and thus relatively more prone to hacker’s activities,

deeming them less trustworthy [10].

The standard solution to address confidentiality concerns is to encrypt all data

locally before outsourcing it to the cloud. This will prevent unauthorized access to data

including both insiders (i.e. service providers) and outsiders (e.g. hacker, data purchasing)

[10]. However, this would also stop data owners and authorized users from performing

operations like searching using cloud resources9.

One possible method to guarantee access on encrypted data is to first download

data, decrypt it locally, and then perform the search. Yet, this method is inefficient and

deprives owners from the computational capabilities of the cloud. Not to mention the

additional cost of data transfer from the storage service. Another method is to perform

decryption on the cloud, run the query and return results. However, this allows the server

to learn the plain-text information stored; thus, making the encryption less effective [10].

9 The search functionality is the operation of interest in this work.

17

2.2. Searchable Encryption (SE)

Searchable Encryption (SE), refers to the server ability to search over encrypted

data without learning information about the plaintext data [10]. Several solutions have been

proposed in the literature to apply SE.

An IR system (even one that does SE) consists of two main components; indexing

and retrieval. First, a collection of documents is indexed to generate a matrix that represents

the collection (i.e. an index). In such a matrix, a column is a representation of a document

and referred to as a vector. Different matrices can be generated based on the application.

This includes, term-document matrix, an occurrence matrix, tf-idf matrix (see section 1.3)

and co-occurrence matrix (LSI). Second, a user formulates a query. The query, which is

treated as pseudo-document, is then transformed to a vector where the transformation is

dependent on the matrix used. Similarity calculations are then applied to determine the

most relevant documents.

This section briefly discusses implemented techniques in both components

according to the literature and how this work fits in.

2.2.1. Indexing

Most of discussions presented in the literature focus mainly on how to encrypt the

matrix not which matrix to use. The selection of index in the literature is usually occurrence

matrix.

The focus of this work is LSI; thus, the matrix of selection is the co-

occurrence/approximation matrix 𝐴, which is resulted from applying SVD on the term-

document matrix. This work aims at investigating how 𝐴 can be hidden from the cloud

18

server while maintaining both effectiveness and efficiency. It assumes the use of multiple

cloud servers

2.2.2. Retrieval

In IR systems users are expected to form free-text queries as described in section

1.1, however, SE systems are more restricted. Some systems accepts only a single keyword

query [11] while others extend it with the help of operators. The combination of a keyword

and an operator like 𝐴𝑁𝐷, 𝑂𝑅, 𝑁𝑂𝑇 is called Boolean search. Conjunctive search is one

type of Boolean search, it can be described as AND of ORs (e.g. [𝐴 ∨ 𝐵] ∧ [𝐶 ∨ 𝐷]).

Another type is disjunctive search which is an OR of ANDs (e.g. [𝐴 ∧ 𝐵] ∨ [𝐶 ∧ 𝐷]).

Negation is also a Boolean search represented as ⊣ 𝐴. Authors of [12] present their work

as the first to support all three conjunctive, disjunctive and negative search. According to

[12], previous proposed SE systems either focus only on conjunctive search [13][14] or

disjunctive search [15]. In this work, query is assumed to be free text like search engines.

2.3. LSI Model Generation

As mentioned earlier, we plan to use the LSI model instead of the typical occurrence

matrix. However, if we plan to use real data, it is important to ensure LSI can scale. LSI is

well-known for its scalability issues (see section 3.3) which explain the attempts to propose

variations of the original method (see section 3.1). Most of those proposals are bounded to

theory or small-scale proof-of-concept experiments. However, the work of [16] introduces

a “sandbox environment” or a framework that provides scalable implementation to various

topic-modeling algorithms as discussed in 3.1.4.

19

The proposed framework report results of LSI that are highly efficient on large-

scale data. In this work, we analyze the performance of that framework under different

circumstances in a distributed environment of our selection. Findings and limitations (if

any) are then reported.

2.4. Problem Description

Data owners (i.e. research groups, companies, etc.) need to securely store

documents10 on cloud which is more feasible than other options; thus, they need to encrypt

their documents. However, this might limit the capability to search over data. The goal is

to effectively let the server search over encrypted large-scale data on behalf of the client

(i.e. data owner or authorized user) without learning the plaintext data [10]. According to

[10] and [12], the service providers are assumed to be semi-honest; it would perform

operations but still want access.

A proper solution for this problem should implement a good SE schema; a schema

that only lets the server learn access and search pattern as described in [17]. Access pattern

refers to which files have been retrieved, and search pattern refers whether two searches

were performed by the same keyword. In addition, it should overcome the traditional

challenges of LSI (described in section 3.3) and scale to large datasets.

This is reflected in the research methodology as two parts; Part 1, investigates LSI

ability to scale noting the challenges mentioned in section 3.3 and Part 2, investigate the

possibility of leveraging LSI in a SE system.

10 Any indexable entity is valid (e.g. music, pictures can be represented in a document containing meta

information about them)

20

2.5. Solution Overview

Figure 2: Solution Overview

The figure above shows a vision of a proper solution for the problem discussed in

the previous section. The indexing part shows the dataset indexed using a distributed LSI

environment discussed in detail in section 4.1.3. The second part shows the approximated

matrix of LSI, 𝐴𝑘 , splitted into two cloud servers and retrieved using a free-text query as

discussed in section 4.2.3.

21

Chapter 3: Literature Review

In this chapter, the variations of LSI are discussed, those variations are attempts to

overcome LSI shortcomings which is explained in this chapter as well. Furthermore, these

variations support for parallelization is discussed if any. In addition, an overview of LSI

applications is provided. It is worth noting that most of the literature focused on LSI

applications rather than improving the algorithm itself.

3.1. LSI Variations

LSI scalability issues are caused mainly by its orthonormal constrains according

to [18]. LSI’s main component, singular value decomposition (SVD) factorizes a term-

document matrix 𝐴 to three matrices (as shown in Equation 1).

A constraint in this context refers to a preceding priority on one of SVD

factorized matrices. In the case of LSI, it has an orthonormal constrain on both 𝑈 and

𝑉𝑇; meaning that both matrices must be orthonormal. These constraints make it

difficult to run SVD (and in turn LSI) in parallel while maintaining the orthonormal

property. This challenge initiated the research community to introduce various

alteration to the original method of LSI to overcome its scalability issues.

3.1.1. Probabilistic Latent Semantic Indexing (PLSI)

The model of PLS, as first introduced by [19], assumes that a document is a

mixture of latent classes (i.e. topics). Each word 𝑤 in a document 𝑑 is associated with

a latent class 𝑧. It represents the joint probability of 𝑤 and 𝑑 as following:

22

𝑃(𝑑, 𝑤) = 𝑃(𝑑|𝑧) 𝑃(𝑧) 𝑃(𝑤|𝑧)

Equation 4

Equation 4 can be represented as a matrix factorization as shown in Equation 1

where 𝑈 is 𝑃(𝑑|𝑧), 𝛴 is 𝑃(𝑧) and 𝑉𝑇is 𝑃(𝑤|𝑧).

In contrary to SVD, 𝑈 and 𝑉 in PLSI have no orthonormal constraint which

means implementing PLSI in a distributed framework is possible. Various

implementations of PLSI are available for research purposes on GitHub like [20] and

[21] however they not production-ready to be utilized on an HPC platform.

3.1.2. Regularized Latent Semantic Indexing (RLSI)

The main motivation behind RLSI is to address the scalability issues in LSI and

PLSI according to [18]. The orthogonal property and the probability distribution of LSI

and PLSI respectively resemble a constraint on both algorithms in the context of

implementation on parallel and/or distributed environment.

Regularization is a technique used to solve the overfitting problem that tries to

minimize a loss function. In [18] two regularization terms were introduced 𝑉 and 𝑈

that corresponds to the 𝑈 and 𝑉 of SVD. 𝑉 is a topic-document matrix where 𝑣𝐾𝑛

represent 𝑘𝑡ℎ topic weight in the 𝑛𝑡ℎ document. 𝑈 is a term-topic matrix where 𝑢𝑚𝐾

represent 𝑚𝑡ℎ term weight in the 𝑘𝑡ℎ topic. The loss function is an approximation of

document 𝑑𝑛. The optimization problem RLSI amounts to “formalizes topic modeling

as a minimization of a quadratic loss function with a regularization (either 𝑙1or 𝑙2

norm)” [18].

23

Experiments show that in terms of interpretable topics and relevance ranking,

RLSI is better than or comparable with LSI and PLSI. RLSI can also scale up to 1.6 M

document and 7 M terms. This technique was further enhanced by the same team in

[22] where a new regularized technique named L1/2 regularization was introduced. The

authors claim that said method was used to avoid both constraints of LSI and PLSI.

An existing solution of RLSI is developed by one of the authors along with a

development team [23], however similar to PLSI it is more suitable for research

purposes.

3.1.3. Similarity-based Matrix Completion Algorithm for LSI

This algorithm provides an alternative for SVD through mimicking its

capability of solving the synonymy and the polysemy problem. The algorithm proposed

in [24] leverages Bipartite graphs (i.e. bi-graphs) to understand how the relationship

(i.e. weight) between documents and terms evolve. Both documents and terms are

represented as vertices and term-document weight as the weight of an edge.

Figure 3 shows an example of Bipartite graph that depicts representation of a

term-document matrix and its LSI approximation. New connections (edges) are

constructed between terms and documents based on the terms co-occurrence.

24

Figure 3. Bipartite graph representation for (a) the original matrix and (b) the

approximate matrix. The dashed lines in (b) represent new connections due to lower

rank approximation to the original matrix.

The proposed solution compares both graphs to understand the changes and

then build a converging algorithm to mimic those changes. It is unclear if the work of

[24] can be implemented on a distributed environment as there is no mention of

parallelization’s support in the paper. In addition, no implementation of the algorithm

has been made publicly available.

25

3.1.4. Subspace Tracking for LSI (Distributed LSI)

3.1.4.1. Overview

In [16], the authors express the need for a topic modeling framework based on

the analysis of existing implementations as they are not scalable, nor are they easy to

use. The “lack of a sandbox environment” which can be used on real data and meet the

“the high computational demand” of these topical methods has partly contributed to

crippling the public from adapting topical methods. Factors like “the inherit

mathematical complexity” have also extended the gap between research and practice

[16].

This topic modeling system can be visualized in three phases shown in the graph

below. First, a term-document matrix is generated using the provided dataset. Second,

a topic modeling algorithm (e.g. LSI, Latent Dirichlet Allocation (LDA), etc.) is

applied where the output model, or documents representation, is then used to calculate

similarity against a user issued query. The framework proposed in [16] aims to scalably

calculate these document representations distinguishing itself from the work of [25]

which focuses on scalably computing pair-wise document similarities from existing

models.

26

The proposed solution also differs from the existing toolkits like NLTK, Weka,

Orange and others which are “mature”, yet suffer from one or more shortcomings [16].

First limitation is a lack of topic modeling as these packages usually provide supervised

learning functionality (e.g. classification) in contrast to the unsupervised topic

inference. Second, lack of scalability, where the package requires loading the whole

corpus in memory at one point. Third, different domain focus, where the package is

initially created for domains like physics, neuroscience, etc. Fourth, grand unified

frameworks; frameworks designed to cover a broad range of algorithms and use cases.

While those frameworks are more appealing to users, they can affect the quality of the

final product.

Figure 4: Topic Modeling Phases

27

3.1.4.2. Proposed Framework

The proposed framework has two main interfaces, corpus and transformation.

First, corpus is an interface designed to handle a sequence of documents represented in

occurrence vectors (i.e. occurrence matrix). The main goal of the interface is to ensure

that "at no point is there a need for the whole corpus to be stored in memory" [16]. It

also supports loading and storing matrices to a disk so there is no need for repetitive

generation of the corpus. Second, transformation refers the process of translating

documents from one vector space to another (e.g. occurrence matrix to LSI matrix).

The authors of [16] listed four system design choices for their proposed

framework. First is corpus Size independence; meaning that the framework should be

able to handle corpora that is larger than the machine’s RAM. Second is intuitive API;

which implies a use of NLP-related terms and minimal need of method names and

interfaces to use the framework. Third is easy deployment; which means that the

framework should not need root access and should be OS independent. Fourth is for

the framework to cover popular algorithms (e.g. TF-IDF, LSA, LDA, etc.) and provide

a novel and scalable implementation of those algorithms.

Python was chosen as the programing language for this framework. It helps

achieve the set choices as it is OS independent, easy to implement and has a “straight-

forward and compact” syntax [16]. Python also has a fast-numerical library, numpy

(see section 4.1.1.2) which is widely used in this framework.

28

3.1.4.3. SVD Challenges

As formerly mentioned, algorithms’ implementation need be scalable and

memory independent. In this work only LSI is of interest, whereas the rest of this

section focuses on providing a brief overview of LSI’s scalable implementation used

in [16].

LSI main performance challenge is because of SVD. Due to its computational

intensiveness, it is expensive to calculate SVD on large datasets [26]. Packages like

PROPACK and SVDPACK provided highly optimized implementation of SVD

according to [16], however, they require the whole corpus to be loaded in memory. The

authors of [16] were looking for alternative implementations of SVD. The idea is to

allow incremental SVD, meaning that SVD can be calculated from a document stream

rather than a batch of documents. Some works like [27] and [28] have proposed

algorithms to incremental SVD. The work of [27] was found to be too slow and hard

to tune while [28] is relatively faster and requires no tuning according to [16].

3.1.4.4. Targeted SVD

Since there is no publicly available implementation of the work of [28], the

authors of [16] provided a pure python implementation of their SVD algorithm which

is explained in [29]. Five characteristics were listed in [29] where its authors claim that

their work has exclusively met all of them. First, being Distributable, which is a

reference to the ability to run the algorithm in parallel on server autonomous nodes

with no necessity for further modifications. Second, Incremental Updates, as

previously mentioned it refers to the ability to update SVD once new data arrives (i.e.

29

support for document streams). Third, leveraging Matrix Structure; meaning that the

algorithm should make use of sparse matrices (or sparse nature in occurrence matrices).

Therefore, it is preferred that the algorithm are expressed in terms of Basic Linear

Algebra Subprograms (BLAS) since they will adapt more easily to different type of

inputs [29]. Fourth, Subspace Tracking; this means the in case of a document stream,

any new observation should be immediately processed and discarded. Fifth, Available

Implementations, as such, the work of [29] is open sourced and available as part of the

framework developed in [16].

3.1.4.5. Distributed LSI

The distribution characteristic is achieved through column partitioning. Matrix

𝐴 is divided into sub-matrices called jobs, 𝐴𝑚 𝑥 𝑛 = [𝐴𝑚 𝑥 𝑐1 , 𝐴𝑚 𝑥 𝑐2 , … , 𝐴𝑚 𝑥 𝑐𝑗.

Every sub-matrix (i.e. group of column/documents) amounts to a processing chunk 𝑐𝑗.

The bigger the chunk, the faster the processing is. However, bigger chunks require

larger memory, thus, chunk size is dependent on available resources.

Jobs are then distributed on the available cluster nodes (i.e. workers or nodes

running the worker script). The algorithm does not require a specific order to distribute

those jobs. It also does not require nodes to process the same number of jobs and it does

not process them at the same speed. Computations on the nodes are completely

asynchronous, where each node computes the decomposition for each job it receives.

Later, decompositions are accumulated and merged into a single decomposition. In

short, two decompositions are performed; first, base decomposition, which occurs in

memory and computed for each job, and second, merge decomposition which occurs

30

on one node to merge all other decompositions.

3.1.4.6. This work

This is the largest section in the literature review. The reason is that, in this

work, the algorithm described in [29] and introduced in the framework of [16] is the

one leveraged to show if LSI can be scaled up on real data. This the only work to

provide a “sandbox environment” as previously mentioned. Additionally, it is open

sourced, so it can be altered to the needs of this thesis. A discussion of LSI performance

on real large datasets will be later discussed and compared to the results the framework

developer reported in [30].

3.1.5. Comparison of LSI Variations

Table 2: Comparison of LSI variations

CONSTRAINTS

ON 𝑼

CONSTRAIN

ON 𝑽

SUPPORT

 FOR

PARALLELIZATION

AVAILABLE

IMPLEMENTATION

PRODUCTION-

READY (FOR

DISTRIBUTED

ENVIRONMENT)

OPEN-

SOURCE

LSI [4]

Orthonormal

Constraint

Orthogonal

Constraint
No Yes No Yes

PLSI [19]

Probability

Distribution

Probability

Distribution

Yes Yes No Yes

RLSI [18], [22] - - Yes Yes No Yes

MATRIX

COMPLETION

[24]

- - N.A. No No No

SUBSPACE

TRACKING

[29]

- - Yes Yes Yes Yes

31

3.2. Applications

3.2.1. Collaborative Filtering

Collaborative filtering is one of the fields where LSI was efficiently applied as

reported in [31]. The rise in the number of web services gave birth to many portals that aim

at assisting users to find web services of interest. The search functionality in these portals

is based on syntactical matching of both query terms and web services’ descriptions.

However, this text-based approach encountered semantic-based synonymy and polysemy.

It is possible to address the syntactical limitations using semantic annotation markup

languages. However, this approach is time consuming and is done by domain human

experts. The author of [31] proposes a recommender system that uses user’s id and WS

operations instead of queries and descriptors. The shift of focus from text to user’s behavior

resulted in exploiting meaningful implicit knowledge as reported in [31].

The proposed solution consists of three main steps. First, processing users’ data,

where users are treated as documents and operation are treated as terms in the term-

document matrix model. Second, an m * n TF-IDF matrix 𝐴 is constructed where 𝑛 refers

to the number of users and 𝑚 to the number of operations. In this matrix a cell 𝐴𝑖,𝑗 is the

weight of the operation 𝑂𝑖 for the user 𝑈𝑗. An instance of an operation could

be 𝑔𝑒𝑡𝑊𝑒𝑎𝑡ℎ𝑒𝑟, 𝑔𝑒𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑔𝑒𝑡𝑁𝑒𝑤𝑠, 𝑔𝑒𝑡𝑊𝑒𝑒𝑎𝑡ℎ𝑒𝑟𝐵𝑦𝑍𝑖𝑝𝐶𝑜𝑑𝑒, etc. LSI is then

applied on the TF-IDF matrix to generate an approximation of it in a k-dimensional space.

Third, given an operation 𝑂𝑖 for a user 𝑈𝑗 a recommendation is generated by first finding

32

similar users then finding similar operations within the collection of those users’ operation.

The third step was applied using both the TF-IDF matrix (VSM-based approach) and the

LSI matrix (LSI-based) approach. According to [31], LSI-based approach achieves better

predictions than the VSM-based with small 𝑘. Moreover, the best prediction using LSI-

based approach is always better than the best prediction using VSM-based approach.

Another example of applying LSI to implement collaborative filtering is the article

recommender for Digg articles proposed in [32]. Digg is a social platform for sharing

articles including blogs and news articles. Users can express interests in articles through

digging them while burying articles they did not like. A score for each article is calculated

based on diggings subtracted by buryings. Scores and numbers of diggings are then used

to determine which articles appear first to the user. Recommending articles based on user’s

interest is a challenging task since Digg does not keep track of articles’ topics. The

proposed system in [32], DIGTOBI, leverages PLSI generative model with respect to latent

topics in order to construct topics based on articles’ description. If a user dug an article,

then topics relevant to it would be preferred over others, even if the article does not have a

high score. Experiments have shown that DIGTOPI managed to outperform state of art

techniques in the literature in all used evaluation metrics.

3.2.2. Clustering

Another fields where LSI was applied is Clustering. In [33] LSI was leveraged in

the context of web clustering as using search engines can be time and effort consuming in

case of ambiguous information. For example, when searching using the query “jaguar” the

results would be mixed of “big cat” and “car brand”, however if the user’s main intention

33

was either “comic” or “music” the query would need to be rephrased. LSI was adapted to

overcome the synonymy and polysemy problems encountered by the SRC clustering

methods that uses bag-of-words method. In the proposed method, LSI is aggregated with

Agglomerative Hierarchical Clustering (AHC). It is a bottom-up approach where cluster

pairs are merged as one moves up the hierarchy. AHC was preferred over flat clustering

for three main reasons. It does not require the number of clusters as an input, it returns a

more informative hierarchy and the user does not need to read all the topics in order to find

the desired one.

LSI is one of three steps of the proposed method. First, a collection of search results

with snippets is retrieved and filtered using preprocessing techniques (e.g. Tokenization,

stemming, etc.). Then LSI is applied on the retrieved data with variation of weighting

schemes and 𝑘 parameter. A variation of SVD was used as well where the approximated

matrix is only the product of Σ ∗ 𝑉𝑇 instead of 𝑈 ∗ Σ ∗ 𝑉𝑇. To evaluate the proposed

method, it was applied on two datasets while four different performance metrics were used.

The results show how LSI managed to boost the performance compared to other clustering

techniques.

3.2.3. Geographical Taxonomy

LSI was used as well to enhance retrieval in spatial domains. In [34] LSI helped to

build a geographical taxonomy of adjacency for a given country. According to [34], the

need for such taxonomy raises from the ambiguous nature of query while knowing that one

query of five has a geographical context. This means that a geographical taxonomy can be

used to reformulate the query to be less ambiguous. The proposed method supports both

34

absolute and relative special entities (ASE and RSE respectively). ASE refers to a well-

known named entity (e.g. “Paris”) while RSE refers to a complex spatial entity (e.g. “à côté

de Paris” (In English: near Paris)). The taxonomy is constructed by first searching using

RSE query where its ASE is a city in the country of the taxonomy. Then, a term-document

matrix is constructed using the retrieved documents. After that, LSI is applied to generate

the new approximated matrix which is restricted to the terms that represent ASE. Finally,

the similarity is computed between the resulted ASE’s and the original, which results in a

one-level taxonomy. The procedure is then repeated to build further levels. Based on this

taxonomy a user’s query with geographical context can be reformulated. The results

showed that the proposed method significantly improved the search’s precision.

3.2.4. Software Analysis (Code Analysis)

In [35], LSI was leveraged to detect anomalous android applications. The prevalent

usage of android applications introduced many useful activities, however many anomalous

applications were reported. Solutions discussed by [35] in its literature use techniques like

machine learning and sand boxing but they suffer from accuracy issues (e.g. false

positives). The solution proposed aims to understand the context of the permission list. To

do so, a term-document is first generated. Documents represent a set of known good

applications and terms are permission keywords. Then, when SVD is applied and the

matrix is reduced, a common set of permissions is collected. After that, the permissions set

is used to test against set of permissions for the queried application. If it matches, then it is

labeled normal, otherwise it is anomalous. The paper, however, did not conduct an

experiment to verify their proposed solution.

35

LSI was also used to detect code re-implementation. Code re-implementation is

completely different from plagiarism; it is caused by the lack of awareness of existing

libraries, which leads to re-implementation instead of reusing existing libraries. The

resulted redundancy can range from exact copies (Type-1 clones) to replications of

functionality with no code replication (Type-4 clones also known as Simions).

Redundancies have a negative impact on the required effort for development and software

quality.

The dataset in which LSI was applied on, according to [36], was extracted from

Java code files for a specific system. The extraction included only identifiers in declaration

of methods, classes and contained parameters. It captures the concepts intended by the

programmers while mitigating the risk of false positives. Even though the use of LSI solely

was outperformed by Aggregated Clone Detection (ACD), which achieved a precision of

52%. Combining both approaches (ACD & LSI) resulted in a precision spark that reached

76% and even 83% when both approaches results were intersected. Validating the results

by the participants collected by the authors of [36] (including people working on the

original system) found that results are “actionable”.

3.2.5. Document Analysis

LSI was proven effective at detecting plagiarism. Plagiarism is a spreading practice

with the rapid growth of information on the web. It is described as the representations of

other’s work without proper referencing. Developing plagiarism-detecting techniques

requires the understanding of stylometry, which is the study of variation in literary style.

Stylometry’s approach falls into two main categories, Extrinsic and Intrinsic. Extrinsic

36

techniques perform well; however they are highly dependent on outside reference text

collection (e.g. Turnitin) for detecting student essays. Intrinsic approaches on the other

hand detect literary style difference based on n-grams. In [37], LSI accompanied by

Stylometry are used to detect Intrinsic plagiarism over user submitted text. It is shown in

the results that LSI enhanced the consistency and eliminated the noise of the text.

In [38] LSI was used to improve automatic scoring of Chinese essays. Adapting

automatic scoring has been more prevalent for three factors, less human labor, less

subjective factors and higher agreement rates. Nevertheless, automatic soring suffered

from performance issues of Chinese text compared to English. A novel technique was

proposed in [38] to overcome these issues under two main assumptions; first is that topics

hidden to an essay contribute to the quality and second, an essay may include multiple

topics. Therefore, topic-modeling techniques resembles a plausible remedy for the Chinese

essays dilemma. A modified version of LSI was adapted to overcome its scalability issues

(see section 3.3). Applying Regularized Latent Semantic Indexing (RLSI) has helped to

achieve a rating agreement of 89%, demonstrating an effective solution.

3.2.6. Crime Analysis

Various attempts have been made to apply LSI in security applications as well.

Fighting terror attacks is an example as proposed by [39]. At first there does not seem to

be a pattern among these attacks as they vary in location and attackers. Analyzing those

attacks appears to be challenging as terrorist groups appear to be dynamic. They constantly

change their locations, weapons, targets and names. LSI was an advantage to provide a

more profound understanding of terrorist attacks using data collected by START (Study of

37

Terrorism and Responses to Terrorism) from 2000-2011. The data was divided into three

main chronological segments. After removing stop words, a separate term-document

matrix was generated for each segment. SVD was then applied to reduce dimensions where

the two first two vectors with the highest energy were clustered using K-means. Therefore,

the data was clustered based on different unifying characteristics including, attack types

and weapons used (i.e. attacks involving bombs and attacks involving arson). The LSI-

proposed method can help achieve higher efficiency of counter-terrorism and lower

response time to label terrorist groups.

LSI was used as well to assist in the problem of cyberbullying detection. It is a

problem that became more prevalent and significant due to more youth having

unsupervised access to the internet. It has various forms including flaming, trolling,

cyberstalking, harassment, etc. according to the authors of [40]. In their paper, they used

data from Formspring.com as source for rich cyberbullying data according to a previous

work of theirs. In the first half of the paper, a bag-of-words language model was introduced

to detect multiple types of cyberbullying. Then LSI was used to help identify additional

terms that describe cyberbullying. The proposed system was described to have a high

impact on giving higher scores to cyberbullying content.

Part of the team later introduced yet another system to help detecting cyberbullying

[41]. However, instead of trying to detect term co-occurring with cyberbullying, a search

engine is proposed. The search engine uses LSI and it does not depend on a bullying terms’

dictionary. LSI has been conventionally known to be working on long well-formed text

while the dataset used (retrieved from Formspring.com) is quite the contrary. As a social

38

site, its data is usually in the form of short posts filled with misspellings, abbreviations,

and unusual punctuation. Nevertheless, applying LSI managed to yield satisfying results

with a precision of 55%.

Another problem LSI contributes to solve is the detection of named entities. Named

entities recognition (especially names of persons) plays an important role in many

intelligence and security informatics according to [42]. Most of the traditional techniques

are based on techniques like phonetic similarities and edit distances. However, they usually

encounter some difficulties in obtaining high precision in large datasets. The reason is that

with large datasets the amount of name variants increases (e.g. Zawahiri, al Zawahiri, etc.)

and hence it could include many of other individuals.

As proposed in [42], first a traditional technique with a wide acceptance threshold

is used to provide a list of name variants. LSI is then used to find similar terms noting that

terms are represented as vectors in LSI space. The list of name variants can be re-ranked

based on LSI vector similarity. The aforementioned approach encounters some difficulties

when there are multiple people with similar names doing similar activities. This occurs

when the list of names is limited as in Korea and China. Hence, a refined approach was

proposed to add an extra step to check for associated terms. This approach is derived from

the assumption that if Name A and Name B refer to the same person then the set of terms

associated with them should be similar. The refined method has proved to improve

precision significantly without affecting recall.

39

3.2.7. Medical

LSI was correspondingly leveraged in medical applications such as liver

segmentation. Computer-aided diagnosis (CAD) provide many applications for surgery

planning and liver volume measurement, etc. Liver segmentation is an essential step in

many CAD applications that is often done using computed tomography (CT). According

to [43], automating the process of liver segmentation is important to avoid the time-

consumption of the user’s feedback loop required by the non-automated processes and the

manual annotations of CT volumes. The liver segmentation process involves partitioning

CT volume to non-overlapped sub-volumes. Given a sub-volume, it is required to apply

3D liver localization. To detect arbitrary shapes as livers, Hough transform is an effective

and robust method. However, the large size of data entries resembles a great hinder for the

performance of Hough transform due to its time complexity. Each CT sub-volume is

represented as a set of cube features. Those feature vectors can be factorized using SVD

component of the LSI, where Hough transform is then applied. The new proposed method,

which uses LSI, was found to improve liver segmentation quality and helps to develop

high-performance CAD applications.

Another use of LSI was in the context of annotation DBs for Gene Ontology (GO).

These DBs are the repositories of human’s kind biological knowledge, which keeps

advancing with time. It carries information about genes and annotate each gene for a

particular molecular function. However not all those annotated genes are for the

corresponding biological process. This might not cause an issue if data is to be manually

read by a human (i.e. DB curator or life scientist) as they are able to extrapolate the required

40

information. However, it is more likely to conduct a simulation using a software analyzing

GO graph that is constructed using annotations retrieved from the DB. In [44], it was

suggested that expressing the DB as a typical term-document matrix while using LSI would

solve the aforementioned issue. The problem was modeled so that genes represent terms

and molecular functions represent documents. It is worth mentioning that different

weighting schemes were used, other than the typical 𝑡𝑓 − 𝑖𝑑𝑓 weighting scheme. Applying

the dimensionality reduction was described to “capture the latent semantics and filter out

the noise” [44].

3.2.8. Media

LSI has been leveraged as well in media retrieval researches. Video retrieval is one

example of the potential application of LSI. The authors of [45] show how LSI can enhance

video retrieval performance compared to the traditional matching algorithms used in that

field. The proposed model for video retrieval contains three steps, Video segmentation,

Feature extraction, and Video retrieval. First, the video is separated into multiple video

shots. A shot contains multiple frames, which are assigned to it using biorthogonal wavelet

transformation and L2-norm distance between every frame. Second three sets of features

are extracted, including motion, color and edge density. This results in three feature

vectors, which are then used to construct a feature matrix. Then LSI is applied on the

feature matrix, where the result is then used to search against. Third, a query video would

be processed following steps one and two where cosine similarity is used to retrieve similar

videos.

The experiment conducted in [45] used a database where the similar videos for each

41

query video was known in advance. The results reported do not show the precision of the

method, however, it shows that LSI always managed to retrieve most of the similar videos.

LSI was used as well to re-rank images’ tags. The need for re-ranking arises from

the fact that images are usually labeled randomly. That means tags do not accurately

describe the content of the image. In [46], LSI was leveraged to explore the tags’ similarity

as part of the re-ranking system. First, a tag-image matrix is constructed, and then the

matrix is factorized using SVD where the resultant approximated matrix is used to explore

the Tag-to-Tag similarity.

3.3. LSI Challenges

There are various challenges that researchers are likely to encounter while

leveraging LSI. That includes, estimating the value of 𝑘, poor performance on some

datasets and Scalability.

Estimating the value of 𝑘 is one of the common challenges while applying LSI. In

section 1.3, it is explained that SVD is the key player in LSI; it factorizes the original matrix

to three matrices then a lower rank 𝑘 is selected. However, selection of 𝑘 is not an easy

task as mentioned in [24]. If the rank is too large, the approximated matrix could end up

too similar to the original, which does not solve polysemy or synonymy. If too small, it can

be too dissimilar to the original and thus retain less information.

LSI also performs poorly on some selected Datasets. In [24], a sample dataset was

provided where SVD failed to recognize the related documents and thus failed to address

the polysemy and synonymy issue. The author also tested the performance of SVD on three

42

different standard datasets in LSI researches, SVD failed to provide improvements over the

vector space model. Another work, [26], has encountered the same problem. It found that

LSI was found to perform poorly on TREC 2, 7, 8, and 2004 collections.

Poor performance on large datasets is also one of the main challenges for LSI,

which is caused by the computation-intensive nature of SVD as reported by [2] and [24].

Both [2] and [24] are 25 years apart, which shows how no improvements were introduced

to enhance SVD’s performance. This is largely due to the orthonormal constraint

mentioned in [19] and [18].

43

Chapter 4: Research Methodology

This chapter reflects on the problems discussed in Chapter 2. It introduces the

experiments designed to tackle those issues. Discussion in this chapter can be divided into

two parts. Part 1 reports on the details of experiments designed to test LSI scalability while

part 2 focuses on experiment related to applying LSI on encrypted data.

4.1. Part 1: LSI Scalability11

One part of this work is to investigate if gensim’s implementation of LSI overcomes

the scalability issues discussed in section 3.3. To do so, a set of experiments were devised

to perform analysis on its performance on an HPC environment on a large-scale data. The

experiment measure gensim’s LSI effectiveness and performance according the

measurement metrics mentioned in section 4.1.4.

4.1.1. Environment

In this section, a discussion of the development environment is provided. Libraries

and tools used in this part are detailed discussing their significance to this work.

4.1.1.1. Anaconda [47]

Anaconda is an open source distribution of python and R programming languages.

It aims to simplify package management and deployment using package management

system named Conda. It also makes it easier to create multiple virtual environment with

different settings and versions on the same machine. In this work, an LSI python

11 LSI performance and LSI’s system’s performance are used interchangeably in this section and through

the whole document.

44

implementation is used (check section 4.1.1.6 for more details), thus making anaconda

useful.

4.1.1.2. NumPy

NumPy is a python library introduced for scientific computing. It supports handling

N-dimensional arrays and matrices along with mathematical functions to operate on them.

In this work, NumPy is utilized to apply efficient mathematical operations on array-

like objects; e.g. sorting, summation, 𝑠𝑞𝑟𝑡, generate random matrix (used in section

4.1.40), etc.

4.1.1.3. Pandas

Panda is a python library that provides data structure along with set of operation to

manipulate them. In this work, panda is used to handle data like term-document matrix and

relevance assessment tables which shows sorted similarities information (shown in section

5.2).

4.1.1.4. Matplotlib

Matplotlib is a 2-D plotting python library. It provides publication-quality figures

and can be used in interactive applications like Jupyter (reported in the next section). It was

used to plot recall-precision curves12 and a representation of documents in LSI space (

Figure 1).

12 Recall-precision curve is a measurement metric explained in section 4.1.4.2.1

45

4.1.1.5. Jupyter Notebook [48]

Jupyter Notebook is an open source web application that provides an interactive

platform for over 40 different languages including python. It allows users to create and

share documents over cloud services like Dropbox, GitHub, etc. or export documents as

Html pages. A Jupyter document can contain live code, equations, visualizations and

narrative text [48].

The descriptive nature of Jupyter documents helps to make the code clearer and

easier to understand. Along with the ability to share them, it eases supervisors’ engagement

in the implementation side of the work, thus, it was leveraged in this work.

4.1.1.6. Gensim

Gensim is an open source python library, that was proposed in [16] as a framework

(see section 3.1.4.2) that addresses scalability issues in some topic modeling algorithms

including LSI. Gensim, a memory-independent library, was intentionally designed to work

efficiently on large corpora. It is also an OS independent; it runs on Windows, Linux,

macOS and OS X.

Gensim provides an LSI implementation that can work in both serial and distributed

mode. It can handle corpora that is much larger than RAM and can be applied on a cluster

of nodes for distributed mode [49]. To elaborate on the discussion presented in section

3.1.4.2, the following concepts of Gensim are presented (more details can be found in [50]).

First concept is Corpus (plural corpora), a collection of digital documents. The

collection, which is also referred to as a training corpus, includes information about

documents and their topic and it can be used to assign topics to new documents with no

46

human intervention. Second concept is Vector, a feature representation of a document.

Each document consists of an array of features; in the term-document matrix, for example,

a feature is the number of terms that appear in a document. Third concept is Model, an

abstract word that describes a transformation from one representation of a document to

another. For example, the term-document matrix describes the occurrence of each term in

a certain document. Applying SVD or LSI model (as described in section 1.3) would

transform it to a co-occurrence matrix where documents with co-occurring term are

represented closer in the vector space.

4.1.1.7. Pyro

Pyro is a python library that enables users to build applications where objects

communicate over the network with minimal programming. It is used as part of gensim’

implementation for DLSI. Its nameserver is also utilized in this work as described in section

4.1.3.1.

4.1.1.8. RAAD [51]

RAAD is a High-Performance Computing (HPC) cluster that is hosted by Texas

A&M University at Qatar (TAMUQ). HPC refers to a large-scale aggregation of computer

hardware to solve difficult problems at various fields [51]. TAMUQ has been an HPC

leader in Qatar for over a decade; their goal is to help and facilitate the work of those in

the Qatari research community. This decade of experiences includes management, support

and maintenance of four different systems provided by the Research Computing (RC)

group [51]. Those four systems are SAQR (2005 – 2008), Suqoor (2008 – 2011), RAAD

47

(2011 – 2016) and RAAD II (2017 – Present) [51]. In this work, only RAAD II13 is

leveraged.

RAAD II, which translates to ‘thunder’ in Arabic, is a supercomputer that was made

by Cray, an American supercomputer manufacturer founded in 1972. It was co-funded by

both TAMUQ and Qatar Computing Research Institute (QCRI). The RAAD II composes

of 172 nodes, a total of 4,128 CPU cores, an aggregate of 22,016 GB in memory and a

shared disk space of 800 TB. The full technical specifications of RAADII are reported in

[52]. For scheduling and resource management, RAAD II relies on SLURM; an open-

source job-scheduler for Linux and Unix-like kernels.

RAAD II would provide a perfect fit for running LSI in a distributed system. The

support provided from TAMUQ to the Qatari research community will help granting access

for a powerful computing hardware along with extensive support. For this reason, RAAD

II was selected for this work.

4.1.2. Datasets

In our experiments, two different datasets will be leveraged; Wikipedia and

Medline dataset [53]. This section provides a brief description of each dataset and its role

in this work.

4.1.2.1. Medline

Medline is a dataset of medical articles. The School of Computing Science in the

University of Glasgow provides the version used in this work. It was specifically designed

to for IR-related tasks, which implies that an evaluation analysis can be carried on (see

13 For simplicity RAAD will be used to refer for RAAD II in the upcoming sections.

48

more in sections 4.1.4.2 and 4.1.3.2.2). The dataset contains three files; MED.ALL which

contains a list of 1033 articles, MED.QRY that contains a list of 30 possible queries and

MED.REL containing a list of all relevant documents for each query.

4.1.2.2. Wikipedia

Wikimedia frequently provides a dump of Wikipedia articles, which were used by

the genism team. The gensim team provided a getting-started guideline to apply LSI on

local machine using the Wikipedia dataset as an example [54] and they also leveraged it in

their paper [30]. In this work, a dump released on 13 April 2017 is being used; however,

the experiment can be conducted on any release. The size of the dump is 12.8 GB in size

and all the articles (4,227,933 articles) are available in one xml file.

While Wikipedia dataset is not a comparable scale to data in the context of web

search (4 million dataset), we consider a scale of data that is owned by a single entity and

stored on an HPC platform provided by a cloud computing service provider.

4.1.3. Experiments

4.1.3.1. LSI Performance

4.1.3.1.1. Introduction

The overall goal of the experiments designed in this section is to test if LSI can

scale over large datasets. The LSI implementation used in this set of experiments is the

gensim’s LSI discussed in Gensim in sections 3.1.4 and 4.1.1.6. These experiments are

conducted on RAAD using both modes of gensim’s LSI, serial and distributed.

The serial mode requires only one node and it runs in sequential steps. Dataset

reading is the first step; preprocessing (if any) usually follows the reading step or is

49

integrated with it (further details are provided in the Measurement Metrics section).

Secondly the corpus is generated, which is a term to describe a genism collection [50].

Once a corpus is created from an existing dataset, it is ready for further processing using

genism. It records information of dataset document and features (distinct words after

preprocessing), number of non-zero entries in the term-document matrix, and a map

between all words and their integer ids (i.e. dictionary) [55]. In practice, the dictionary is

stored separately even though it is part of the corpus. Both corpus and dictionary are then

used to generate the LSI model.

The distributed mode follows the same steps; however, it requires four different

objects running on different machines representing the cluster. First is the pyro nameserver,

a tool to help keep track of objects running on the network and it also assigns logical names

to those objects instead of exact IPs for convenience. Second is the worker, a class

implemented by gensim that handles the actual computation in distributed LSI (DLSI).

Third is the dispatcher, a “job scheduler in charge of worker synchronization” [49]. It

prepares documents’ chunks and assigns them to workers. The aforementioned objects are

the essential entities of the cluster. Fourth and last object is a mere python (and gensim)

implementation of DLSI.

4.1.3.1.2. LSI on RAAD

RAAD uses slurm as its workload manager as aforementioned. When a job is

submitted, it allocates the job to the next available node. A job in this context refers to the

code of a single object (e.g. worker, dispatcher, etc.) that is submitted to RAAD. To run

DLSI, the nameserver is first submitted to run on one node which is randomly selected by

50

slurm. Secondly, logical worker(s) are submitted where the physical node can be either

manually selected or left to the queue to decide. The dispatcher is then submitted followed

that the DLSI code.

In this work, the purpose is to check if LSI can be scaled up, thus, various setups

were devised to test that. The Wikipedia dump is large, it takes a relatively long time to

finish and that makes it difficult to debug any possible issues. Therefore, a decision was

made to start from a small sample and build up for the original size (4 million document).

 Wikipedia divides its full dump to smaller files of arbitrary sizes as can be found

in [56]. In this work, a file of size 300 MB (113,550 articles) was selected. Then the

gensim’s function RepeatCorpus was applied on that dataset to generate datasets of the

following sizes, 500k, 1m, 1.5m, 2m, and 4,227,933 articles14.

For each dataset size, LSI is run in both modes, serial and distributed mode. The

distributed mode is run using on 2, 4, 6 and 8 workers. Each two workers run on the same

physical machine to follow the same setup of [49].

It is important to note that while using RepeatCorpus, the dictionary’s (word-id

mapping) size does not change as the list of work is the same. Thus, LSI is applied on both

the original 4m dataset and on the repeated one to check the dictionary’s size effect. In

addition, the chunk size was reported to affect LSI’s performance [30], thus different chunk

sizes were used to test its effect.

In addition to testing the effect of both the dictionary and chunk size on LSI

performance, the setup discussed earlier helps to study further points. It helps to study how

14 Same size the Wikipedia dataset (section 4.1.2.2)

51

gensim’s LSI scale up across different sample sizes and how it scales up across different

number of worker (and in turn, different number of machines). This help to determine the

efficiency of the genism library. The library’s performance is also compared to the baseline

discussed in Baseline 1: Distributed LSI on Wikipedia.

4.1.3.1.3. Baseline 1: Distributed LSI on Wikipedia

In [30], a distributed solution for LSI was proposed to handle large datasets as

formally. The dataset utilized in the experiment was the Wikipedia dataset mentioned in

Wikipedia.

The dataset was represented in a 100,000 x 3,199,665 sparse matrix and it had 0.5

billion non-zero entries (0.15% density). The dataset was clipped to 100k features (most

frequent words) and the rank 𝑘 was set to 400.

The various experiments reported in [30] were designed to evaluate various

variations of DLSI before choosing the default variation implemented in gensim. In this

work we consider the default variation to be the baseline. The experiment was performed

on 2.0 GHz Intel Xeon workstation with 4GB of RAM and 4 nodes (8 worker) with CPU

time is 1h 41m. It was reported on gensim’s official site as well [49].

4.1.3.2. LSI Effectiveness

The overall goal of the experiments designed in this section is to test the impact of

distributed on gensim’s LSI effectiveness. In this case effectiveness is measured by the

average precision as discussed in section 4.1.4.2. The dataset utilized in this section is the

Medline dataset, which helps to calculate the average precision as formerly mentioned.

52

4.1.3.2.1. Experiment

The experiments in this section follows the same steps reported in the LSI

Performance adding an extra step of relative assessment to measure the effectiveness.

To do so, first, a new index reference is prepared through applying the Similarity

class [57]. The Similarity class job is to divide an index into sub-indexes (shards), this is

mostly helpful in case the entire index cannot be fit in memory. The output of the similarity

class (i.e. new index reference) can be used to calculate the similarity between a query and

a document in the index. Second, a relevance table is constructed using MED.REL. The

relevance table contains a list of all query ids in MED.QRY a long with their relevant

document ids as shown in the figure below.

Figure 5: A snapshot from relevancy table generate from Medline dataset

53

Third, a list of Medline queries is read from MED.QRY file, while the similarity

for each of them against all Medline documents is calculated using the index. The list of

similarities is then sorted in a descending order from the most relevant document to the

least relevant.

Both the table of relevance and list of similarities can be used to calculate the

precision and recall for each query.

4.1.3.2.2. Baseline 2: Medline

The experiment detailed above is applied in both serial and distributed mode. The

average precision is calculated in both cases to measure the effectiveness. The comparison

between both modes helps determine the impact distributed mode has on LSI and whether

it maintains the same level of effectiveness.

4.1.4. Measurement Metrics

Throughout the three scenarios, two main metrics will be analyzed, performance

and evaluation. Both metrics will be later utilized to compare an experiment’s outcome

against one of benchmark solutions discussed in 4.1.3.

4.1.4.1. Performance

The performance metric is a measurement of CPU time taken by a machine to build

an LSI model. Further details on how the CPU time was consumed shall be provided along

each experiment’s results’ analysis.

54

4.1.4.2. Effectiveness/Accuracy

In IR, evaluation metrics plays a key role to determine the effectiveness of an IR

system. Those metrics usually “revolve around the notion of relevant and nonrelevant

documents” [1] where the relevancy is a measurement of the satisfaction of user needs

which are expressed in their query.

Measuring the effectiveness of a system can then help to decide on the most

efficient pre-processing steps. This includes removing stop-words, stemming, etc. It also

helps to determine whether any of the proposed experiments are valid or not.

4.1.4.2.1. Recall-Precision curve

Traditional effectiveness measures like precision and recall are more suitable for

set-based measures [1]. In this case, these measures are applied on a set of un-ordered

document. However, in this work, the retrieved set of documents are in order, where the

top-k documents represent the most-k relevant documents, similar to a search-engine

retrieval list.

For an ordered-set, a precision-recall curve can be plotted using the calculated data

for precision and recall. The curve shows both precision and recall values calculated in

each document.

4.1.4.2.2. Interpolated Average Precision

The recall-precision curve provides an easy-to-interpret method to judge how the

effectiveness of the system varies while moving further in the retrieved list. However, it

cannot be used to compare performance across different queries. For that purpose,

interpolated average precision is used. The interpolation values are calculated at 11

55

standard recall levels (100%, 90%, 80%, ..., 10%, 0%). It can be plotted in an easy-to-

interpret graph and also it can be used to calculate a single value measure; 11‐ point

Interpolated Average Precision [58].

4.1.4.2.3. Average Precision (AP)

MAP works similarly to the Interpolated Average Precision; it helps to compare

effectiveness across different queries and generate a single-value measure, Mean Average

Precision (MAP).

4.1.4.2.4. Other Measurements

Other measurements include Discounted Cumulative Gain (DCG) and F1-measure.

DCG is more suitable in the case of a graded relevancy measurement (e.g. 5=very relevant,

4=relevant, etc.) which is out of the scope of this work. Besides, F1-measure is more

suitable for professions that highly value recall figures like paralegals and intelligence

analysts [1].

For this work both the Interpolated Average precision and MAP can be leveraged,

however, MAP is the “most standard among the TREC community15” according to [1].

4.1.5. Datasets Pre-processing

The preprocessing stage is vital to validate the articles in the dataset and prepare it

for processing. It can include a step to prepare the dataset to be readable by the gensim

library and it can include traditional IR preprocessing steps like tokenization and stop-

15 Text REtrieval Conference (TREC) is a conference that aims to support research within the information

retrieval community (see here: http://trec.nist.gov/overview.html)

http://trec.nist.gov/overview.html

56

words removal. The aim of traditional pre-processing steps is to optimize the effectiveness

of the system. However, this work is concerned about the relative performance across the

implemented experiments, thus, those pre-processing steps were neglected. This section

describes the details of the applied pre-processing steps on each dataset.

4.1.5.1. Medline

Gensim provides various classes to read a collection and build a corpus, the one

used in this work is text_corpus. The text_corpus class uses the method get_texts to read a

given dataset. In this work, the get_texts method was updated to fit the Medline articles’

format. Defaults pre-processing settings of text_corpus is used.

4.1.5.2. Wikipedia

Gensim provides a wiki_corpus class that provides the same functionality of

text_corpus for the Wikipedia collection. In this work, wiki_corpus was utilized along its

default pre-processing settings

The wiki_corpus class applies a set of different methods that pre-process the

collection and remove non-necessary parts. Following is a list of functionalities applied

to clean the Wikipedia collection.

4.1.5.2.1. Page Extraction

 One of the very first methods applied by the wiki_corpus is extract_pages. The

method takes the Wikipedia collection as an input and returns a triple of title, content and

pageid.

57

4.1.5.2.2. Filtering

The content of each page is then passed to the filter_wiki method. It generates a utf-

8 encoded string that is then passed to the remove_markup method. Wikipedia-related

markups are then removed or processed, this includes removing comments, removing

footnotes, re-structuring tables and simplifying links.

4.1.5.2.3. Tokenization

The previous steps’ output a stream of filtered pages (i.e articles). Each page is then

passed to tokenize method. It takes the filtered pages as an input and outputs index-ready

tokens, ignoring words shorter than 2 or longer than 15 characters.

After that, a Wikipedia corpus is ready to be used to generate the LSI model.

4.2. Part 2: LSI on Encrypted Data

The second part of this work focuses on proposing a framework/protocol that

allows to perform search functionality using LSI on a cloud server while obscuring the data

from it. To do so, multiple experiments with various settings were devised and tested. In

this section, we report on the adapted environment and tools. Then we list the leveraged

datasets followed by the details of the carried-on experiments. Details on measurement

metrics and dataset preprocessing are also provided.

4.2.1. Environment

The development environment in this part is largely similar to the environment

discussed in the former part. However, LSI was implemented from scratch here (see

section 4.2.3) and run on a local machine, thus both gensim and RAAD were not used.

A new tool that was used in the part is Sklearn. It is a machine learning library

58

for Python. It provides multiple algorithm for classification, regression, clustering and

others. However, for this work, Sklearn was utilized to generate the term document

matrix and apply SVD on it. For this purpose, both classes CountVectroizer and

randomized_svd were used. More details can be found in the experiments section.

4.2.2. Datasets

4.2.2.1. Proof of Concept

In this section a simple dataset constructed by [4] and shown in Table 1 is

used. The dataset was initially introduced to show how LSI works and thus it aligns

with the aim of this part of the work; showing how LSI works on encrypted data. It

mainly used as a proof of concept for our proposed protocol. This dataset is used as

a proof of concept to illustrate the effectiveness of our methods.

4.2.2.2. Medline

As a test collection, Medline can help evaluating our methodology on a real

test collection that is used in research area. While the following experiments

represent a development process to design a practical protocol, Medline is only used

in the last one (i.e. finalized version of the protocol). Using Medline, we compare

both the performance and effectiveness of our proposed protocol.

4.2.3. Experiments

4.2.3.1. Overview

In this set of experiments, the cloud service provider is assumed to be the attacker,

thus the aim is to hide the data from it. To achieve that, we try to build a secure system

using security via randomized splitting, a technique that secures data by splitting it into

59

smaller units with the help of a random variable and distributes them to separate locations.

Therefore, the system uses multiple cloud servers assuming they do not collude or have no

method of communication (e.g. different cloud service providers). For example, if we have

the following two variables

𝐴 = 7

𝑅 = 3

 Assuming 𝐴 is the variable, we want to hide and 𝑅16 is the random variable,

randomized splitting will generate two versions of A

𝐴1 = 𝐴 + 𝑅 = 7 + 3 = 10

𝐴2 = −𝑅 = −3

Each version of 𝐴 is then stored at a different cloud server, and if both adhere to

the protocol while having no method of communication, they cannot interfere with the

original value of 𝐴. Since computers, as deterministic systems, cannot really generate a

truly random number [59], therefore, security of the system is conditional based on the

random function. Those pseudo-random numbers are sufficient for most applications and

that is why a system that is secured by random splitting can be – to a high extend- assumed

to achieve unconditional security.

The goal in these experiments is to maintain the ability to search while using

random splitting. The baseline experiment described in section 4.2.3.2 retrieved the human-

computer interaction documents at the top, thus if that is achieved, the outcome is

16 In some cases, two different random matrices are used in the same experiment. In this case a different

symbol might be used like 𝑟

60

satisfactory.

No actual cloud servers were used in these experiments; however, they are

simulated in the variable names. So, for two variables 𝐴1 and 𝐴2, they are hosted by 𝑆1

and 𝑆2 respectively. For each experiment, similarity is calculated twice, both before and

after vector’s length normalization. Results are then discussed and compared in case any

difference in the results occurs.

The upcoming sections discuss the setup details and objective for each conducted

experiment along with an overview graph that depicts the flow of the experiment.

4.2.3.2. Baseline

The experiment designed in [4] and discussed in section 1.4 is selected as the

baseline solution for this part. It is considered as a standard dataset to describe LSI’s

functionality which aligns with the goal of this part. Leveraging this experiment also makes

it easy to compare results.

For this part genism’s LSI was not utilized; instead it was manually written from

scratch. While genism implantation is more efficient, memory friendly and can be scalable

as discussed in section 4.1.3.14.1.1.6; we require high control on the implementation for

later modifications. Gensim, as an open source project, may provide the possibility for

alternation, yet it is a huge project and modifications on it could require more effort than

what the scope of this thesis allows.

First step in this implementation is to generate the term-document matrix 𝐴, that is

achieved using class CountVectorizer of sklearn library. Sklearn also provides the

functionality to factorize 𝐴 to three matrices as explained in 1.3 using the class

61

randomized_svd. The output three matrices are already in a lower rank, so their

multiplication is 𝐴𝑘.

𝑈, 𝑆𝑖𝑔𝑚𝑎, 𝑉𝑇 = 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑_𝑠𝑣𝑑(𝐴, 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 2)17

Equation 5: Factorize the matrix 𝐴 using sklearn's randomized_svd

𝐴𝑘 = 𝑈. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎). 𝑑𝑜𝑡(𝑉𝑇)

Equation 6: Calculation of 𝐴𝑘 using the output of randomized_svd

After that, a query vector 𝑞 is generated and then transformed to the same space as

𝐴𝑘. It is important to note that the transformation uses two of the three factor matrices

composing 𝐴𝑘; 𝑈 and 𝑆𝑖𝑔𝑚𝑎.

𝑞𝑘 = 𝑞. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(). 𝑑𝑜𝑡(𝑈). 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒())

Equation 7: Calculation of 𝑞𝑘 using the output of randomized_svd

𝑞𝑘 is then used to calculate 𝑠𝑖𝑚(𝑞𝑘, 𝐴𝑘); the cosine similarity between the query

and the matrix 𝐴𝑘 as discussed in 1.3. This similarity is the baseline that the following

17 n_components: Number of singular values and vectors to extract. In this case number of component is

two.

62

experiments compare against.

Since we are using two datasets, the baseline is applied in both.

4.2.3.3. Experiment 1

Our first goal was to test the ability of hiding the matrix 𝐴 through random splitting

into two servers 𝑆1 and 𝑆2 without affecting LSI effectiveness. That means the experiment

will retrieve the c-coded documents at the top. If successful, it can be interpreted that only

generating the term-document matrix (occurrence matrix) has to be performed at the client

side. Thus, generating the LSI model (including the computationally intensive SVD) will

be performed at the cloud. The following two sections discuss the details of the experiment

while section 0 depicts a graph overview of the experiment.

4.2.3.3.1. Prepare Matrix A

First step in the experiment is to generate the term-document matrix 𝐴, then SVD

is applied on 𝐴 which yields three different matrices as explained in 1.3 and shown in

Equation 5. Those three matrices are then used to calculate 𝐴𝑘 as shown in Equation 6.

After that, 𝑅 is used to split 𝐴 into two values assumed to be stored on two different servers;

𝑆1 and 𝑆2.

𝐴1 = 𝐴 + 𝑅

𝐴2 = − 𝑅

Equation 8: Splitted 𝐴

63

After that, each server applies SVD on its version of 𝐴 to calculate 𝐴𝑘 as follows.

𝑈1, 𝑆𝑖𝑔𝑚𝑎1, 𝑉𝑇
1 = 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑_𝑠𝑣𝑑(𝐴1, 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 2)

𝑈2, 𝑆𝑖𝑔𝑚𝑎2, 𝑉𝑇
2 = 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑_𝑠𝑣𝑑(𝐴2, 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 2)

Equation 9: Applying SVD on both servers

Then 𝐴𝑘 for each server is calculated.

𝐴1𝑘 = 𝑈1. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎1). 𝑑𝑜𝑡(𝑉𝑇
1)

𝐴2𝑘 = 𝑈2. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎2). 𝑑𝑜𝑡(𝑉𝑇
2)

Equation 10: Calculating 𝐴𝑘 on each server

4.2.3.3.2. Preparing Query 𝑞𝑘

As previously mentioned in section 4.2.3.2, the query 𝑞 is transformed into the

same space as 𝐴𝑘 using 𝑈 and 𝑆𝑖𝑔𝑚𝑎 shown in Equation 7. In this experiment 𝑞𝑘 is

calculated for each value of 𝐴𝑘 as each is hosted in a different cloud server. The query is

first sent to the cloud servers and then calculated as following.

𝑞1𝑘 = 𝑞. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(). 𝑑𝑜𝑡(𝑈1). 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎1. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒())

𝑞2𝑘 = 𝑞. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(). 𝑑𝑜𝑡(𝑈2). 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎2. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒())

Equation 11: Calculating 𝑞𝑘 on each server

64

4.2.3.3.3. Similarity Calculation

The similarity between each query and its counterpart is then calculated;

𝑠𝑖𝑚(𝑞1𝑘, 𝐴1𝑘) and 𝑠𝑖𝑚(𝑞2𝑘, 𝐴2𝑘). Both similarities are then added up and compared to

𝑠𝑖𝑚(𝑞𝑘, 𝐴𝑘) as the baseline.

4.2.3.3.4. Experiment Overview

The graph above shows the flow of both 𝐴 and 𝑞 according to the steps described in

former section.

Figure 6: LSI over Encrypted data – Experiment 1, Dividing Matrix 𝐴

65

4.2.3.4. Experiment 2

This experiment was proposed as Experiment 1’s results were not conclusive as

will be shown later. The premise behind this experiment is to hide 𝐴 as well, however, it is

done differently as it is discussed in the following section. Similar to the previous

experiment, if successful, this provides a method to hide 𝐴 from the cloud server while

forwarding most of the heavy computation to the remote cloud server. Both sections

4.2.3.3.2 and 4.2.3.3.3 discuss how the system can be queried and how to calculate

similarity while section 4.2.3.4.4 depicts an overview graph of the experiment.

4.2.3.4.1. Preparing Matrix 𝐴

Contrary to what is done in experiment 1, 𝐴 is not divided using a random matrix,

however, SVD is first applied as shown in Equation 5. The random matrix 𝑟 is applied to

only the matrix 𝑆𝑖𝑔𝑚𝑎 as shown below.

𝑆𝑖𝑔𝑚𝑎1 = 𝑆𝑖𝑔𝑚𝑎 + 𝑅

𝑆𝑖𝑔𝑚𝑎2 = −𝑅

Equation 12: Splitting Sigma

Both values of 𝑆𝑖𝑔𝑚𝑎 are then used to calculate two different 𝐴𝑘 as the following

equation shows (all these steps are assumed to be performed locally).

66

𝐴1𝑘 = 𝑈. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎1). 𝑑𝑜𝑡(𝑉𝑇)

𝐴2𝑘 = 𝑈. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎2). 𝑑𝑜𝑡(𝑉𝑇)

Equation 13: Calculating both versions of 𝐴𝑘 locally

4.2.3.4.2. Preparing Query 𝑞𝑘

When a query 𝑞 is formed and sent to a server, it is transformed based on the 𝐴𝑘

variable it hosts. The following equation describes the transformation process.

𝑞1𝑘 = 𝑞. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(). 𝑑𝑜𝑡(𝑈). 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎1. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒())

𝑞2𝑘 = 𝑞. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(). 𝑑𝑜𝑡(𝑈). 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎2. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒())

Equation 14: Calculating 𝑞𝑘 on each server

4.2.3.4.3. Similarity Calculation

The similarity between each query and its counterpart is then calculated;

𝑠𝑖𝑚(𝑞1𝑘, 𝐴1𝑘) and 𝑠𝑖𝑚(𝑞2𝑘, 𝐴2𝑘). Both similarities are then added up and compared to

𝑠𝑖𝑚(𝑞𝑘, 𝐴𝑘) as the baseline.

67

4.2.3.4.4. Experiment Overview

Similar to the previous figure, the figure above shows the flow of both 𝐴 and 𝑞

according the discussion provided in the previous sections.

4.2.3.5. Experiment 3

The previous two experiments did not yield satisfying results; hence, a new

alternative is proposed. This experiment shifts its goal from hiding the term-document

matrix 𝐴 to hiding the approximated matrix 𝐴𝑘; thus, requiring that SVD is performed on

the data owner’s local machine.

In this the premise that the 𝐴𝑘 can be separated into two servers; 𝑆1 and 𝑆2, and

then yield the same results when queried is tested. If successful, this means that 𝐴𝑘 can be

hidden from cloud service without affecting LSI effectiveness. Following three sections

discuss the details of the experiment while section 4.2.3.5.4 depicts a graph overview of

the experiment.

Figure 7: LSI over Encrypted data – Experiment 2, Dividing Matrix A after applying

SVD

68

4.2.3.5.1. Preparing Matrix 𝐴𝑘

First step in the experiment is to generate the term-document matrix 𝐴, then SVD

is applied on 𝐴 which yields three different matrices as explained in 1.3 and shown in

Equation 15.

𝑈, 𝑆𝑖𝑔𝑚𝑎, 𝑉𝑇 = 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑_𝑠𝑣𝑑(𝐴, 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 2)

Equation 15: Applying SVD to A with rank k=2

Those three matrices are then used to calculate 𝐴𝑘.

𝐴𝑘 = 𝑈. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎). 𝑑𝑜𝑡(𝑉𝑇)

Equation 16: Calculate 𝐴𝑘

Each column (i.e. document) in 𝐴𝑘is then normalized where 𝑅 is used to separate

𝐴𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) into two values assumed to be stored on two different servers; 𝑆1 and 𝑆2.

𝐴1𝑘(𝑛𝑜𝑟𝑚) = 𝐴𝑘 + 𝑅

𝐴2𝑘(𝑛𝑜𝑟𝑚) = − 𝑅

Equation 17: Split 𝐴𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑)

69

4.2.3.5.2. Preparing Query 𝑞𝑘

As aforementioned the query vector 𝑞 should be transformed to the same space as

the matrix 𝐴𝑘. The transformation is shown in Equation 7.

4.2.3.5.3. Similarity Calculation

After that, the similarity between 𝑞𝑘 and 𝐴1𝑘(𝑛𝑜𝑟𝑚) and 𝐴2𝑘(𝑛𝑜𝑟𝑚) is consequently

calculated; 𝑠𝑖𝑚(𝑞𝑘, 𝐴1𝑘(𝑛𝑜𝑟𝑚)) and 𝑠𝑖𝑚(𝑞𝑘 , 𝐴2𝑘(𝑛𝑜𝑟𝑚)). Both 𝑠𝑖𝑚(𝑞𝑘 , 𝐴1𝑘(𝑛𝑜𝑟𝑚))and

𝑠𝑖𝑚(𝑞𝑘, 𝐴2𝑘(𝑛𝑜𝑟𝑚)) are then added up and compared against 𝑠𝑖𝑚(𝑞𝑘, 𝐴𝑘) as the baseline.

Results are discussed in the next chapter.

70

4.2.3.5.4. Experiment Overview

The figure below shows a flow chart of the experiment discussed above.

Figure 8: LSI over Encrypted data – Experiment 3, Dividing the matrix 𝐴𝑘

71

4.2.3.6. Experiment 4

The results of the previous experiment showed promising results (details of the

results discussed in the next chapter) in hiding 𝐴𝑘; thus, this experiment follow similar

steps to test if the query 𝑞𝑘 can be split and then each split is used to query a different

server. If successful, this means that 𝑞𝑘 can be hidden from cloud service without affecting

LSI effectiveness. Therefore, both experiments can be later combined to hide both 𝐴𝑘 and

𝑞. Following three sections discuss the details of the experiment while section 4.2.3.6.4

depicts a graph overview of the experiments.

4.2.3.6.1. Prepare Matrix 𝐴𝑘

In this experiment 𝐴𝑘 is neutralized as a factor so it is not divided.

4.2.3.6.2. Prepare Query 𝑞𝑘

The steps to calculate 𝑞𝑘 are the same as described in section 4.2.3.5.2. However,

an additional step is added to first normalize the query 𝑞𝑘 to 𝑞𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) and then divide

it to two different variables; 𝑞1𝑘(𝑛𝑜𝑟𝑚) and 𝑞2𝑘(𝑛𝑜𝑟𝑚). To do so, a random matrix 𝑟 of the

same size as 𝑞𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) is first generated. Then r is used to separate it as following.

𝑞1𝑘(𝑛𝑜𝑟𝑚) = 𝑞𝑘(𝑜𝑟𝑚) + 𝑟

𝑞2𝑘(𝑛𝑜𝑟𝑚) = −𝑟

Equation 18: Split 𝑞𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑)

72

4.2.3.6.3. Similarity Calculation

After that the similarities between each of 𝑞1𝑘(𝑛𝑜𝑟𝑚) and 𝑞2𝑘(𝑛𝑜𝑟𝑚) and 𝐴𝑘 are

calculated; 𝑠𝑖𝑚(𝑞1𝑘(𝑛𝑜𝑟𝑚), 𝐴𝑘) and 𝑠𝑖𝑚(𝑞2𝑘(𝑛𝑜𝑟𝑚), 𝐴𝑘). Both similarities are then added

up and and compared against 𝑠𝑖𝑚(𝑞𝑘, 𝐴𝑘) as the baseline. Results are discussed in the next

chapter.

4.2.3.6.4. Experiment Overview

Figure 9: LSI over Encrypted data – Experiment 4, Dividing the query 𝑞𝑘

73

4.2.3.7. Experiment 5

The previous two experiments managed to split both 𝐴𝑘 and 𝑞𝑘 separately, which

shows that hiding both values from the cloud is possible. This experiment aims to combine

the work of both experiments, and if successful this means both 𝐴𝑘 and 𝑞𝑘 can be hidden

at the same time without affecting LSI effectiveness. In this experiment four different cloud

servers are assumed to be used, the role of those servers is discussed in the rest of the

section.

4.2.3.7.1. Prepare Matrix 𝐴𝑘 and Query 𝑞𝑘

The steps performed here are copied from the former two experiments. While

preparing 𝐴𝑘 is taken from section 4.2.3.5.1 that shows how 𝐴𝑘 is hidden from the cloud,

steps for preparing 𝑞𝑘 were taken from 4.2.3.6.2 which shows how to hide 𝑞𝑘. At the end

of these steps four values are calculated 𝐴1𝑘(𝑛𝑜𝑟𝑚), 𝐴2𝑘(𝑛𝑜𝑟𝑚), 𝑞1𝑘(𝑛𝑜𝑟𝑚) and 𝑞2𝑘(𝑛𝑜𝑟𝑚)

4.2.3.7.2. Similarity Calculation

In this experiment four different similarities are calculated. This means that the

similarity between each divided query and each divided matrix is calculated; this

includes 𝑠𝑖𝑚(𝑞1𝑘(𝑛𝑜𝑟𝑚), 𝐴1𝑘(𝑛𝑜𝑟𝑚)), 𝑠𝑖𝑚(𝑞1𝑘(𝑛𝑜𝑟𝑚), 𝐴2𝑘(𝑛𝑜𝑟𝑚)),

𝑠𝑖𝑚(𝑞2𝑘(𝑛𝑜𝑟𝑚), 𝐴1𝑘(𝑛𝑜𝑟𝑚)) and 𝑠𝑖𝑚(𝑞2𝑘(𝑛𝑜𝑟𝑚), 𝐴2𝑘(𝑛𝑜𝑟𝑚)). After that, all four similarities

are added up and then compared to the baseline.

The experiment is then repeated on the Medline dataset on a set of 30 different

queries.

74

4.2.3.7.3. Experiment Overview

Figure 10: LSI over Encrypted data – Experiment 5, Dividing both 𝐴𝑘 and 𝑞𝑘 (Two

Servers)

The figure above shows the flow of data in this experiment; however, it still

contains a major flow. If we assume that both 𝐴𝑘1(𝑛𝑜𝑟𝑚) and 𝐴𝑘2(𝑛𝑜𝑟𝑚) are each stored on

75

a different server such that one server cannot learn both values of 𝐴𝑘(𝑛𝑜𝑟𝑚). We still face

an issue that each server will learn both variations of 𝑞𝑘(𝑛𝑜𝑟𝑚). Therefore, we decided that

each variation of 𝐴𝑘(𝑛𝑜𝑟𝑚), will be stored on two different servers as shown in the figure

below.

76

Figure 11: LSI over Encrypted data – Experiment 5, Dividing both 𝐴𝑘 and 𝑞𝑘 (Four

Servers)

77

4.2.4. Measurement Metrics

4.2.4.1. Proof of Concept

To determine if a proposed protocol is valid or not, the experiment should show

comparable results to the baseline. For each experiment, a ranked list of the results is shown

and compared to the output of the baseline (details can be found in 4.2.3.2, 4.2.3 and 5.2).

4.2.4.2. Medline

After the simple dataset is used as a proof of concept, experiment 5 is repeated on

the Medline dataset. MAP is used to evaluate the effectiveness of experiment 5 vs the

baseline, and CPU time is used to evaluate the performance.

4.2.5. Datasets Preprocessing

For this challenge, no preprocessing steps were performed. The reason is that this

challenge aims to compare relative effectiveness in each experiment against the baseline

solution. Similar effectiveness results mean that the proposed framework is valid and can

be applied in practical environment.

78

Chapter 5: Experimental results

5.1. Part 1: LSI Scalability

This section reports the results of experiments discussed in section 4.1.3.

5.1.1. LSI Effectiveness

In this section, we report the MAP of gensim’s LSI in both serial and distributed

mode. As formerly mentioned, Medline dataset was leveraged as a test collection to allow

us to measure the effectiveness.

The figure below shows the APs at different 30 Medline queries in both serial and

distributed mode. Overall DLSI achieved a higher MAP (0.20) compared to (0.186) in the

case of serial mode. The full list of APs can be found in APPENDIX I: LIST OF ALL

RAAD EXPERIEMENTS.

Figure 12: Average Precision of Serial vs Distributed gensim's LSI

79

5.1.2. LSI Performance18

In this section, different graphs are presented to depict LSI’s performance with

respect to several factors. The experiments were conducted on RAAD using the large-scale

Wikipedia dataset to test gensim’s LSI ability to scale. The full list of tables reporting all

figures of conducted experiments can be found in APPENDIX I: LIST OF ALL RAAD E.

5.1.2.1. Serial vs. Distributed LSI

The figure below shows the difference in performance between both serial and

distributed LSI across different data sizes. The distributed mode shown used 8 workers on

4 physical nodes (2 workers per node).

18 All reported experiments use a cluster size of 20000 unless otherwise mentioned

80

Figure 13: Difference in Performance between Serial and Distributed LSI Across

Different Datasets Sizes

Conveniently, the CPU time increases as the dataset gets larger. However, it can be

noted that CPU time increases much faster in the case of serial LSI. The graph also shows

that distributed LSI performed better in call cases.

0

5000

10000

15000

20000

25000

30000

35000

40000

113550 500000 1 M 1500000 2 M

C
P

U
 T

im
e

(s
)

Number of Documents

Serial Vs. Distributed LSI

Serial

Distributed

81

5.1.2.2. Number of Workers Effect on Performance

The graph below shows the difference in performance of DLSI while using

different number of workers.

Figure 14: Number of Workers effect on CPU time

Figure 14 shows how adding more workers in distributed LSI always boost the

performance. It also shows that the eventually the performance converges which implies

that adding more workers is not always needed to enhance the performance.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 2 3 4 5 6 7 8 9

C
P

U
 T

im
e

(s
)

Number of Workers

Perfromance Vs. Number of Workers

100K

500K

1 M

1.5M

2 M

82

5.1.2.3. Chunk Size Effect on Performance

The figure below shows the difference in performance of DLSI while using

different chunk sizes. This is to test the claim that larger chunks lead to faster performance

(see section 3.1.4.5). The experiments are run using 8 workers on 500k documents.

Figure 15: Chunk size effect on CPU time

Figure 15 shows how the performance is proportionally related to the chunk size,

the faster LSI is.

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Perfromance Vs. Cluster Size

83

5.1.2.4. Dictionary Size Effect on Performance

As mentioned in the previous chapter, DLSI is applied on the original 4m dataset

and the repeated one to analyze the effect of the dictionary size. The figure below shows

CPU time in both cases.

Table 3: Difference in Performance between Repeated and Non-Repeated Datasets in

Serial Mode

SERIAL LSI

TIME

d h m s time (s)

REPEATED 0 20 8 8 72488

NON-REPEATED 2 20 55 50 248150

84

Table 4: Difference in Performance between Repeated and Non-Repeated Datasets in

Distributed Mode

DLSI

TIME

d h m s time (s)

REPEATED 0 4 52 8 17528

NON-REPEATED 0 7 50 0 28200

Both tables show a similar trend; dictionary size affect the performance of LSI. This

shows how LSI’s performance could vary depending on how diverse the dataset is.

5.1.3. Discussion

Gensim’s LSI’s effectiveness did not see a drop when distributed mode was

leveraged. On the contrary, the effectiveness was slightly higher. This shows that the

algorithm lives up to its promises by providing a production-ready implementation of

distributed LSI.

The difference in performance of LSI in both modes, serial and distributed, shows

that gensim’s DLSI is able scale over large datasets. This is also confirmed when further

distributing the cluster by adding more nodes. The figure clearly shows that increase the

number of nodes boost the performance at first until it converges at a certain point.

Most of the reported figures regarding the impact of different factors on the

performance were as expected. However, repeating the experiment setup of the baseline

85

led to very different results. DLSI on 4 nodes (8 logical workers) took more than 8 hours

which is not comparable to the 1h 41m reported in [49]. The distributed file system of

RAAD could be one reason for that, as the baseline experiment reported in [30] and [49]

was conducted on normal file systems. Another reason could be network latency between

the nodes of RAAD, they may be communicating with multiple nodes for different jobs at

the same time. In the baseline local machines were connected via Ethernet and exclusively

used for DLSI.

5.2. Part 2: LSI on Encrypted Data

5.2.1. Baseline

The table below shows the results of LSI in the baseline solution. The query used

is “Human Computer Interaction” as mentioned in section 1.4, where all document coded

with c letter are related to the topic of human computer interaction.

86

Table 5: Documents Ranking Applying Baseline Setup

DOCID CODES DOCUMENTS BASELINE

4 c5

Relation of user perceived response

time to error measurement

0.21277076

1 c2

A survey of user opinion of

computer system response time

0.212152261

2 c3

The EPS user interface

management system

0.187983282

0 c1

Human machine interface for lab

abc computer applications

0.187382123

3 c4

System and human system

engineering testing of EPS

0.176122014

8 m4 Graph minors A survey 0.098594039

7 m3

Graph minors IV Widths of trees

and well quasi ordering

0.069507883

6 m2

The intersection graph of paths in

trees

0.06796983

5 m1

The generation of random binary

unordered trees

0.064351132

87

5.2.2. Experiment 1

The table below shows how experiment 1 fails to hide the matrix 𝐴 as the c-coded

documents were not ranked at the top. The results in the table below are not similar to the

baseline.

88

Table 6: Document Ranked According to their Normalized Similarities in Experiment 1

DOCID CODES DOCUMENTS SIMILARITIES

4 c5

Relation of user perceived

response time to error

measurement

0.911735745

8 m4 Graph minors A survey 0.474022533

6 m2

The intersection graph of paths in

trees

-0.578188074

5 m1

The generation of random binary

unordered trees

-0.627143915

1 c2

A survey of user opinion of

computer system response time

-0.651321413

2 c3

The EPS user interface

management system

-0.671500085

7 m3

Graph minors IV Widths of trees

and well quasi ordering

-0.965122498

0 c1

Human machine interface for lab

abc computer applications

-1.351588316

3 c4

System and human system

engineering testing of EPS

-2.676347817

89

5.2.3. Experiment 2

The aim of experiments 2 was to hide the matrix 𝐴 as well. However, it applies a

random matrix on the results of the matrix factorization rather than the matrix itself (see

section 4.2.3.4). The table below shows how it fails to achieve acceptable effectiveness

score as three of the c-coded documents are retrieved last.

90

Table 7: Document Ranked According to their Normalized Similarities in Experiment 2

DOCID CODES DOCUMENTS SIMILARITIES

1 c2

A survey of user opinion of

computer system response time

0.525876314

6 m2

The intersection graph of paths in

trees

0.508173366

7 m3

Graph minors IV Widths of trees

and well quasi ordering

0.493835488

4 c5

Relation of user perceived response

time to error measurement

0.463864958

8 m4 Graph minors A survey 0.381556386

5 m1

The generation of random binary

unordered trees

0.10405354

0 c1

Human machine interface for lab

abc computer applications

0.042477934

2 c3

The EPS user interface

management system

0.031139106

3 c4

System and human system

engineering testing of EPS

-0.019685741

91

5.2.4. Experiment 3

Experiment 3 shifted its goal to hide 𝐴𝑘 as formerly mentioned. The results shown

in the table below indicates that it managed to achieve that goal it achieved the same results

as the baseline (justification and mathematical prove are provided in section 5.2.7).

Table 8: Documents Ranking in Experiment 3

DOCID CODES DOCUMENTS 𝑨𝒌 SPLITTED BASELINE

4 c5

Relation of user perceived response time to error

measurement

0.212771 0.212771

1 c2

A survey of user opinion of computer system

response time

0.212152 0.212152

2 c3 The EPS user interface management system 0.187983 0.187983

0 c1

Human machine interface for lab abc computer

applications

0.187382 0.187382

3 c4 System and human system engineering testing of EPS 0.176122 0.176122

8 m4 Graph minors A survey 0.098594 0.098594

7 m3

Graph minors IV Widths of trees and well quasi

ordering

0.069508 0.069508

6 m2 The intersection graph of paths in trees 0.06797 0.06797

5 m1 The generation of random binary unordered trees 0.064351 0.064351

92

5.2.5. Experiment 4

Experiment 4’s goal was to hide the query from the cloud server. Details later

discussed show how 𝑞𝑘 was hidden using a random matrix 𝑟. The results shown in the table

below indicates that similar to experiment 3 the experiment managed to achieve the same

results as the baseline.

Table 9: Documents Ranking in Experiment 4

DOCID CODES DOCUMENTS SPLITTED BASELINE

4 c5

Relation of user perceived response

time to error measurement

0.212771 0.212771

1 c2

A survey of user opinion of computer

system response time

0.212152 0.212152

2 c3

The EPS user interface management

system

0.187983 0.187983

0 c1

Human machine interface for lab abc

computer applications

0.187382 0.187382

3 c4

System and human system

engineering testing of EPS

0.176122 0.176122

8 m4 Graph minors A survey 0.098594 0.098594

7 m3

Graph minors IV Widths of trees and

well quasi ordering

0.069508 0.069508

6 m2

The intersection graph of paths in

trees

0.06797 0.06797

5 m1

The generation of random binary

unordered trees

0.064351 0.064351

93

5.2.6. Experiment 5

Experiment five combines techniques of the previous two experiments, and similar

to both of them it manages to achieve the same results as the baseline.

Table 10: Documents Ranking in Experiment 5

DOCID CODES DOCUMENTS SPLITTED BASELINE

4 c5
Relation of user perceived response time to

error measurement

0.21277076 0.21277076

1 c2

A survey of user opinion of computer

system response time

0.212152261 0.212152261

2 c3 The EPS user interface management system 0.187983282 0.187983282

0 c1

Human machine interface for lab abc

computer applications

0.187382123 0.187382123

3 c4

System and human system engineering

testing of EPS
0.176122014 0.176122014

8 m4 Graph minors A survey 0.098594039 0.098594039

7 m3

Graph minors IV Widths of trees and well

quasi ordering
0.069507883 0.069507883

6 m2 The intersection graph of paths in trees 0.06796983 0.06796983

5 m1
The generation of random binary unordered

trees

0.064351132 0.064351132

94

Experiment 5 on Medline

The figure below shows the effectiveness of LSI in experiment 5 compared

to the baseline. Similar to experiment 3,4 and 5, the AP figures were exact in all 30 queries

meaning the MAP is the same as shown by the horizontal line.

5.2.7. Discussion

In this set of experiments, it was shown that applying LSI on encrypted data is

possible. First, experiment 3 showed that it is possible to hide the index/approximated

matrix 𝐴𝑘 from the cloud server. Second, experiment 4 showed that it is possible to hide

the query from the cloud server. Finally, experiment 5 combined the work of both

Figure 16: Impact of Randomized Splitting on Average Precision in Medline dataset

95

experiments, showing that it is possible to hide the index and the query from cloud server

at the same time.

In all experiments, the similarities were exact to the baseline. The reason our

proposed protocol works can be backed by a simple mathematical proof as shown below.

If we assume that both 𝐴𝑘 and 𝑞𝑘 are normalized first before calculating the cosine

similarity. Then cos (𝐴𝑘, 𝑞𝑘) will equal 𝑞𝑘 ∗ 𝐴𝑘 (note: summation was ignored assuming

just one term for simplicity).

Now given that

𝐴1𝑘 = 𝐴𝑘 + 𝑅 , 𝐴2𝑘 = −𝑅

𝑞1𝑘 = 𝑞𝑘 + 𝑟 , 𝑞2𝑘 = −𝑟

Thus cos(𝑞1𝑘, 𝐴1𝑘) + cos(𝑞2𝑘, 𝐴1𝑘) + cos(𝑞1𝑘, 𝐴2𝑘) + cos (𝑞2𝑘, 𝐴2𝑘) will equal

= (𝐴𝑘 + 𝑅) ∗ (𝑞𝑘 + 𝑟) + (𝐴𝑘 + 𝑅) ∗ (−𝑟) + (−𝑅) ∗ (𝑞𝑘 + 𝑟) + (−𝑅) ∗ (−𝑟)

= (𝐴𝑘 + 𝑅) ∗ (𝑞𝑘 + 𝑟 − 𝑟) + (−𝑅) ∗ (𝑞𝑘 + 𝑟 − 𝑟)

= (𝐴𝑘 + 𝑅) ∗ 𝑞𝑘 + (−𝑅) ∗ 𝑞𝑘

= 𝑞𝑘 (𝐴𝑘 + 𝑅 − 𝑅) = 𝑞𝑘 ∗ 𝐴𝑘

Therefore, random splitting should not yield the exact same result as the baseline

and thus keep the effectiveness of the system intact.

In our experiments, we adopt random splitting technique since it is homomorphic

with respect to LSI. Our encryption scheme needs homomorphic encryption to maintain

the results of the cosine similarity and additions. This means that cosine similarity of the

original query 𝑞𝑘 and the matrix 𝐴𝑘 (i.e. cos (𝑞𝑘, 𝐴𝑘) or cosine of the additions) should be

equal to the addition of the cosine similarities of 𝑞1𝑘, 𝑞2𝑘, 𝐴1𝑘 and 𝐴2𝑘 (i.e.

96

cos(𝑞1𝑘, 𝐴1𝑘) + cos(𝑞2𝑘, 𝐴1𝑘) + cos(𝑞1𝑘, 𝐴2𝑘) + cos (𝑞2𝑘, 𝐴2𝑘)). Maintaining

homomorphic property in other techniques like the private/public key encryption has been

the focus of some research papers after 2010 like [60] and [61], however efficiently

applying homomorphic public to private key encryption is still a research area.

97

Chapter 6: Conclusion and Future Work

6.1.Overview

In this thesis two main goals were set and reflected into two main parts; part 1

investigates the scalability of the LSI implementation provided by gensim. Part 2 proposed

a system to securely search over encrypted data that is indexed using LSI using free-text

queries. The problem was formally defined describing the LSI’s challenges and the need

for scalable LSI solution in addition to the motivation behind applying LSI on encrypted

data. LSI variations were reviewed including the work behind the gensim framework,

Subspace tracking for LSI along with application of LSI in the literature. In addition,

RAAD was introduced as a distributed environment leverage to applying gensim’s

distributed LSI. The conducted experiments are then reported along with discussions of

insights and limitations. Several methods for applying LSI on encrypted data were

proposed as well. The validity and results of those variation were then reported.

6.2.Achievements

The experiments conducted in part 1 show that the gensim LSI’s is scalable, where

DLSI performance is proportional to the number of workers used in the cluster. In general,

DLSI outperformed serial LSI, considering some environment. The experiments also show

that the effectiveness of LSI is not affected when distributed mode is used. The experiments

have also raised a few limitations reported in the following section.

Part 2 shows that the proposed system managed to hide both the index/LSI model

𝐴𝑘 and query 𝑞 from the cloud server while maintaining the search effectiveness. Results

98

show that the effectiveness was not at all affected as the similarities were always exactly

as the baseline.

6.3.Limitations

On the LSI performance part, few challenges have risen while using gensim which

limit the performance based on the user’s resources. First challenge was the memory limit;

while gensim does not need to store the whole corpus in the memory as it is memory

independent, yet there seems to be a minimal requirement. For example, distributed LSI on

the 4M repeated corpus using 8 workers required a minimum 16 GB memory. Second, is

the number of topics; gensim uses Pyro to communicate serialized objects between the

cluster entities. However, since Pyro limits the size of serialized object to 2 GB this can

raise some issues. For example, Pyro raised an error when applying DLSI on the 100k

Wikipedia dataset and using 400 as the number of topic. Third, is the dictionary size, a

dataset with narrow collection of topics (and in turn vocabs) is likely to be processed faster

than one that is highly diverse. Last, the gensim library does not provide an interface to

assign the host and port of the nameserver. While it is assumed that other entities will

automatically locate the nameserver, we faced some issues initializing it and had to

manually alter the library.

As for the security part, generating the topic model (i.e. LSI model in this work) is

assumed to be on the client side. While this is no different from what is introduced in the

literature, it is still a computationally intensive task.

99

6.4.Future Work

The motivation behind gensim library is to provide a scalable solution for some of

the existing algorithms like LSI. Since it is an open source library, a potential future work

is to alternate the library to support search over encrypted data which mitigates the

challenges of scalability and memory management. This combines the output of both parts

of this work; LSI scalability and LSI over encrypted data.

Another potential future work to integrate with, is the work of [25]. As discussed

in section 3.1.4.2, [25] provides a methodology to scalably calculate document similarity

with existing documents representation (Phase 3 in Figure 4) while genism provides a

framework to scalably calculate those document representations (Phase 2 in Figure 4).

Integrating both systems is possible noting that genism is an open source library.

100

REFERENCES

[1] C.D. Manning, P. Ragahvan, H. Schutze, An Introduction to Information Retrieval,

Inf. Retr. Boston. (2009) 1–18. doi:10.1109/LPT.2009.2020494.

[2] S.T. Dumais, G.W. Furnas, T.K. Landauer, S. Deerwester, R. Harshman, Using

latent semantic analysis to improve access to textual information, Proc. SIGCHI

Conf. Hum. Factors Comput. Syst. - CHI ’88. (1988) 281–285.

doi:10.1145/57167.57214.

[3] S.T. Dumais, Latent semantic analysis, Annu. Rev. Inf. Sci. Technol. 3 (2008)

4356. doi:10.4249/scholarpedia.4356.

[4] S. Deerwester, S.T. Dumais, R. Harshman, Indexing by latent semantic analysis, J.

Am. Soc. Inf. Sci. 41 (1990) 391–407. doi:10.1002/(SICI)1097-

4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9.

[5] D.R. Tobergte, S. Curtis, Indexing by Latent Semantic Analysis, J. Chem. Inf.

Model. 53 (2013) 1689–1699. doi:10.1017/CBO9781107415324.004.

[6] Q.N.R. Fund, QATAR NATIONAL RESEARCH STRATEGY (QNRS), (n.d.).

https://www.qnrf.org/en-us/About-Us/QNRS.

[7] Qatar National Research Fund, Qatar National Research Strategy (QNRS) 2012

and a Strategic Plan for Implementation - Summary Version, (2012).

[8] Qatar Foundation, Thematic Pillars of Research Qatar ’ s Cross-cutting Research

Grand Challenges, (n.d.) 1–8.

[9] Qatar Foundation, Qatar National Research Strategy 2014, (2014) 1–26.

http://www.qnrf.org/Portals/0/Download/QNRS 2014.pdf.

101

[10] C. Bösch, P. Hartel, W. Jonker, A. Peter, A Survey of Provably Secure Searchable

Encryption, ACM Comput. Surv. 47 (2014) 1–51. doi:10.1145/2636328.

[11] F. Baldimtsi, O. Ohrimenko, Sorting and searching behind the curtain, Lect. Notes

Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics). 8975 (2015) 127–146. doi:10.1007/978-3-662-47854-7_8.

[12] T. Moataz, A. Shikfa, Boolean symmetric searchable encryption, Proc. 8th ACM

SIGSAC Symp. Information, Comput. Commun. Secur. - ASIA CCS ’13. (2013)

265. doi:10.1145/2484313.2484347.

[13] D. Boneh, B. Waters, Conjunctive, Subset, and Range Queries on Encrypted Data,

TCC 2007 Theory Cryptogr. 4392 (2007) 535–554. doi:10.1007/978-3-540-70936-

7.

[14] T.H.C.D.S. E. Shi J. Bethencourt, A. Perrig, Multi-dimensional range query over

encrypted data, IEEE Symp. Secur. Priv. (2007) 350–364.

[15] J. Katz, A. Sahai, B. Waters, Predicate Encryption Supporting Disjunctions,

Polynomial Equations, and Inner Products, Adv. Cryptol. - EUROCRYPT 2008,

27th Annu. Int. Conf. Theory Appl. Cryptogr. Tech. Istanbul, Turkey, April 13-17,

2008. Proc. 4965 (2008) 146–162. doi:10.1007/978-3-540-78967-3_9.

[16] P. Sojka, Software Framework for Topic Modelling with Large Corpora, (2010).

[17] C. Wang, N. Cao, J. Li, K. Ren, W. Lou, Secure ranked keyword search over

encrypted cloud data, Proc. - Int. Conf. Distrib. Comput. Syst. (2010) 253–262.

doi:10.1109/ICDCS.2010.34.

[18] Q. Wang, J. Xu, H. Li, N. Craswell, Regularized latent semantic indexing, Proc.

102

34th Int. ACM SIGIR Conf. Res. Dev. Inf. - SIGIR ’11. (2011) 685.

doi:10.1145/2009916.2010008.

[19] T. Hofmann, Probabilistic latent semantic indexing, Proc. 22nd Annu. Int. ACM

SIGIR Conf. Res. Dev. Inf. Retr. (1999) 50–57. doi:10.1021/ac801303x.

[20] J. FEI, PLSI: A C++ implementation of probabilistic latent semantic indexing,

(n.d.). https://github.com/fei3189/PLSI%0A (accessed December 31, 2017).

[21] S. Buss, cs_plsi: A CSparse PLSI implementation, (n.d.).

https://github.com/sbuss/cs_plsi%0A (accessed December 31, 2017).

[22] Y. Chen, H. Zhang, Y. Zuo, D. Wang, An improved regularized latent semantic

indexing with L1/2 regularization and non-negative constraints, Proc. - 16th IEEE

Int. Conf. Comput. Sci. Eng. CSE 2013. (2013) 1075–1082.

doi:10.1109/CSE.2013.156.

[23] Y.H. Zhicheng He, Yingjie Xu, Jun Xu, Maoqiang Xie, rlsi-java-source, (n.d.).

https://code.google.com/archive/p/rlsi-java-source/ (accessed December 31, 2017).

[24] A. Mirzal, Similarity-based matrix completion algorithm for latent semantic

indexing, Proc. - 2013 IEEE Int. Conf. Control Syst. Comput. Eng. ICCSCE 2013.

(2013) 79–84. doi:10.1109/ICCSCE.2013.6719936.

[25] T. Elsayed, J. Lin, D.W. Oard, Pairwise document similarity in large collections

with MapReduce, in: Proc. 46th Annu. Meet. Assoc. Comput. Linguist. Hum.

Lang. Technol. Short Pap. - HLT ’08, 2008: p. 265.

doi:10.3115/1557690.1557767.

[26] A. Atreya, C. Elkan, Latent semantic indexing (LSI) fails for TREC collections,

103

ACM SIGKDD Explor. Newsl. 12 (2011) 5. doi:10.1145/1964897.1964900.

[27] G. Gorrell, Generalized Hebbian Algorithm for Incremental Singular Value

Decomposition in Natural Language Processing, Supercomputer. (2006) 97–104.

[28] M. Brand, Fast low-rank modifications of the thin singular value decomposition,

Linear Algebra Appl. 415 (2006) 20–30. doi:10.1016/j.laa.2005.07.021.

[29] R. Řehůřek, Subspace Tracking for Latent Semantic Analysis, ECIR’11 Proc. 33rd

Eur. Conf. Adv. Inf. Retr. (2011) 289–300. doi:10.1007/978-3-642-20161-5_29.

[30] R. Reh Ru, Fast and Faster: A Comparison of Two Streamed Matrix

Decomposition Algorithms, NIPS 2010 Work. Lowrank Methods Largescale

Mach. Learn. 6 (2011) 1–7. http://arxiv.org/abs/1102.5597.

[31] N.N. Chan, W. Gaaloul, S. Tata, A Web Service Recommender System Using

Vector Space Model and Latent Semantic Indexing, (2011) 602–609.

doi:10.1109/AINA.2011.99.

[32] Y. Kim, Y. Park, K. Shim, DIGTOBI : A Recommendation System for Digg

Articles using Probabilistic Modeling, Www. (2013) 691–701.

[33] H. Park, K. Kwon, A.Z. Khiati, J. Lee, I.-J. Chung, Agglomerative Hierarchical

Clustering for Information Retrieval Using Latent Semantic Index, 2015 IEEE Int.

Conf. Smart City/SocialCom/SustainCom. (2015) 426–431.

doi:10.1109/SmartCity.2015.108.

[34] O. El Midaoui, M. V-agdal, A. El Qadi, M. V-agdal, M. V-agdal, A New

Approach to build a Geographical Taxonomy Semantic Indexing Method, (2015).

[35] H. Shahriar, V. Clincy, Anomalous Android Application Detection with Latent

104

Semantic Indexing, 2016 IEEE 40th Annu. Comput. Softw. Appl. Conf. (2016)

624–625. doi:10.1109/COMPSAC.2016.3.

[36] V. Bauer, T. Volke, S. Eder, Combining clone detection and latent semantic

indexing to detect re-implementations, 2016 IEEE 23rd Int. Conf. Softw. Anal.

Evol. Reengineering, SANER 2016. (2016) 23–29. doi:10.1109/SANER.2016.26.

[37] M. Alsallal, R. Iqbal, S. Amin, A. James, Intrinsic Plagiarism Detection Using

Latent Semantic Indexing and Stylometry, Dev. eSystems Eng. (DeSE), 2013

Sixth Int. Conf. (2013) 145–150. doi:10.1109/DeSE.2013.34.

[38] S. Hao, Y. Xu, H. Peng, K. Su, D. Ke, Automated chinese essay scoring from topic

perspective using regularized latent semantic indexing, Proc. - Int. Conf. Pattern

Recognit. (2014) 3092–3097. doi:10.1109/ICPR.2014.533.

[39] I. Toure, A. Gangopadhyay, Analyzing terror attacks using latent semantic

indexing, 2013 IEEE Int. Symp. Technol. Homel. Secur. (2013) 334–337.

doi:10.1109/THS.2013.6699024.

[40] A. Kontostathis, K. Reynolds, A. Garron, L. Edwards, Detecting cyberbullying:

Query terms and techniques, Proc. 3rd Annu. ACM Web Sci. Conf. WebSci 2013.

(2013) 195–204. doi:10.1145/2464464.2464499.

[41] J.L. Bigelow, A. Edwards, L. Edwards, Detecting Cyberbullying using Latent

Semantic Indexing, (2016) 11–14.

[42] R.B. Bradford, Use of latent semantic indexing to identify name variants in large

data collections, IEEE ISI 2013 - 2013 IEEE Int. Conf. Intell. Secur. Informatics

Big Data, Emergent Threat. Decis. Secur. Informatics. (2013) 27–32.

105

doi:10.1109/ISI.2013.6578781.

[43] C. Hsieh, S. Cheng, C. Chang, C. Lin, Automatic Liver Segmentation from CT

Images Using Latent Semantic Indexing, i (n.d.) 2–7.

[44] B. Done, P. Khatri, A. Done, S. Draghici, Predicting Novel Human Gene Ontology

Annotations Using Semantic Analysis, Ieee-Acm Trans. Comput. Biol.

Bioinforma. 7 (2010) 91–99. doi:10.1109/TCBB.2008.29.

[45] K.S. Thakare, R. Manthalkar, A.M. Rajurkar, D. Deshapande, Video retrieval

using singilar value decomposition and latent semantic indexing, (2012) 1–5.

doi:10.1109/ICCICT.2012.6398229.

[46] J. Xiao, W. Zhou, Q. Tian, Exploring tag relevance for image tag re-ranking, Proc.

35th Int. ACM SIGIR Conf. Res. Dev. Inf. Retr. - SIGIR ’12. (2012) 1069.

doi:10.1145/2348283.2348473.

[47] Anaconda, :: Anaconda Cloud, (n.d.). https://anaconda.org/.

[48] Project Jupyter, Project Jupyter | Home, (n.d.). http://jupyter.org/.

[49] Radim Řehůřek, gensim: Distributed Latent Semantic Analysis, (n.d.).

https://radimrehurek.com/gensim/dist_lsi.html.

[50] Radim Řehůřek, gensim: Introduction, (n.d.).

https://radimrehurek.com/gensim/intro.html (accessed January 1, 2017).

[51] Texas A&M University at Qatar (TAMUQ), Research Computing > History of our

High Performance Computing, (n.d.). https://rc.qatar.tamu.edu/Pages/HPC-

History.aspx (accessed January 1, 2017).

[52] Texas A&M University at Qatar (TAMUQ), Raad-II Technical Summary, (n.d.).

106

https://rc.qatar.tamu.edu/Pages/hpc/raad2/specs.aspx (accessed January 1, 2017).

[53] Glasgow IDOM - Medline collection, (n.d.).

http://ir.dcs.gla.ac.uk/resources/test_collections/medl/.

[54] Radim Řehůřek, gensim: Experiments on the English Wikipedia, (n.d.).

https://radimrehurek.com/gensim/wiki.html.

[55] Radim Řehůřek, gensim: corpora.dictionary – Construct word<->id mappings,

(n.d.). https://radimrehurek.com/gensim/corpora/dictionary.html (accessed January

1, 2017).

[56] WikiMedia, enwiki dump progress on 20171103, (n.d.).

https://dumps.wikimedia.org/enwiki/20171103/.

[57] Radim Řehůřek, gensim: similarities.docsim – Document similarity queries, (n.d.).

https://radimrehurek.com/gensim/similarities/docsim.html.

[58] T. Elsayed, IR is an Experimental Science ! Questions About the Black Box,

(2015) 1–21.

[59] J.M. Rubin, MIT School of Engineering | » Can a computer generate a truly

random number?, (n.d.). https://engineering.mit.edu/engage/ask-an-engineer/can-a-

computer-generate-a-truly-random-number/.

[60] C. Gentry, Fully homomorphic encryption using ideal lattices, in: Proc. 41st Annu.

ACM Symp. Symp. Theory Comput. - STOC ’09, 2009: p. 169.

doi:10.1145/1536414.1536440.

[61] N.P. Smart, F. Vercauteren, Fully homomorphic encryption with relatively small

key and ciphertext sizes, in: Lect. Notes Comput. Sci. (Including Subser. Lect.

107

Notes Artif. Intell. Lect. Notes Bioinformatics), 2010: pp. 420–443.

doi:10.1007/978-3-642-13013-7_25.

108

APPENDIX I: LIST OF ALL RAAD EXPERIEMENTS

Table 11: CPU recorded time for LSI on 100 k documents

NO.

DOCUMENT

113550

(≈100K)

NO.

MACHINES

No. Workers

Time

Time

(s)

h m s

1 (SERIAL

LSI)

N.A 31 39 1899

1 2 17 26 1046

2 4 15 29 929

3 6 14 14 854

4 8 13 55 835

109

Table 12: CPU recorded time for LSI on 500 k documents

NO.

DOCUMENT

500 K

NO.

MACHINES

No. Workers

Time

Time

(s)

h m s

1 (SERIAL

LSI)

N.A 2 17 50 8270

1 2 1 12 45 4365

2 4 42 49 2569

3 6 34 0 2040

4 8 32 6 1926

110

Table 13: CPU recorded time for LSI on 1 M documents

NO.

DOCUMENT

1 M

NO.

MACHINES

No.

Workers

Time Time

(s) h m s

1 (SERIAL

LSI)

N.A 4 59 57 17997

1 2 2 22 11 8531

2 4 1 17 14 4634

3 6 57 36 3456

4 8 50 13 3013

111

Table 14: CPU recorded time for LSI on 1.5 M documents

NO.

DOCUMENT

1.5 M

NO.

MACHINES

No.

Workers

Time Time

(s) h m s

1 (SERIAL

LSI)

N.A 7 7 29 25649

1 2 3 34 42 12882

2 4 1 51 3 6663

3 6 1 20 52 4852

4 8 1 7 13 4033

112

Table 15: CPU recorded time for LSI on 2 M documents

NO.

DOCUMENT

2 M

NO.

MACHINES

No. Workers

Time

Time

(s)

h m s

1 (SERIAL

LSI)

N.A 9 27 33 34053

1 2 4 37 7 16627

2 4 2 25 13 8713

3 6 1 42 42 6162

4 8 1 24 16 5056

