
QATAR UNIVERSITY 

   COLLEGE OF ENGINEERING 

LATENT SEMANTIC INDEXING BASED DISTRIBUTED SYSTEM AND SEARCH 

ON ENCRYPTED DATA 

BY 

ABDELRAHMAN MOSSAD SHOUMAN 

A Thesis Submitted to  

the Faculty of the College of

 Engineering 

in Partial Fulfillment 

of the Requirements 

for the Degree of 

Masters of Science in Computing 

 January   2018 

© 2018 Abdelrahman Shouman. All Rights Reserved. 



  

   

ii 

 

COMMITTEE PAGE 

 

The members of the Committee approve the Thesis of Abdelrahman 

Shouman defended on 13/12/2017. 

 

Abbes Amira 

 Thesis/Dissertation Supervisor 

 

Abdullatif Shikfa 

 Thesis/Dissertation Co-Supervisor 

 

Professor Richard Khouri  

Committee Member 

 

Dr. Tamer ElSayed 

Committee Member 

 

Dr. Tamer M. Khattab 

Approved: 

 

Khalifa Al-Khalifa, Dean, College of Engineering 

 

  



iii 

ABSTRACT 

SHOUMAN, ABDELRAHMAN, MOSSAD., Masters : January : [2018], 

Masters of Science in Computing 

Title: Latent Semantic Indexing (LSI) Based Distributed System and Search On 

Encrypted Data 

Supervisor of Thesis: Abbes Amira. 

Latent semantic indexing (LSI) was initially introduced to overcome the issues of 

synonymy and polysemy of the traditional vector space model (VSM). LSI, however, has 

challenges of its own, mainly scalability. Despite being introduced in 1990, there are few 

attempts that provide an efficient solution for LSI, most of the literature is focuses on LSI’s 

applications rather than improving the original algorithm. In this work we analyze the first 

framework to provide scalable implementation of LSI and report its performance on the 

distributed environment of RAAD. 

The possibility of adopting LSI in the field of searching over encrypted data is also 

investigated. The importance of that field is stemmed from the need for cloud computing 

as an effective computing paradigm that provides an affordable access to high 

computational power. Encryption is usually applied to prevent unauthorized access to the 

data (the host is assumed to be curious), however this limits accessibility to the data given 

that search over encryption is yet to catch with the latest techniques adopted by the 

Information Retrieval (IR) community. In this work we propose a system that uses LSI for 

indexing and free-query text for retrieving. 
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The results show that the available LSI framework does scale on large datasets, 

however it had some limitations with respect to factors like dictionary size and memory 

limit. When replicating the exact settings of the baseline on RAAD, it performed relatively 

slower. This could be resulted by the fact that RAAD uses a distributed file system or 

because of network latency. The results also show that the proposed system for applying 

LSI on encrypted data retrieved documents in the same order as the baseline (unencrypted 

data).  
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LIST OF PUBLICATIONS 

As part of this work we plan to submit two publications. First publication will 

discuss our experiment on LSI scalability. The publication will discuss the experiment of 

applying gensim’s implementation for LSI on RAAD’s distributed environment. It will 

also report the conducted results including insight, challenges and limitations. For this 

publication the JPDC1 journal is targeted. Second publication will revolve around our 

proposed method to apply LSI on encrypted data. For this publication, the IET Information 

Security2 journal is targeted. The publication will discuss the results of the proposed 

method and how does it fit in the literature and advance the existing methods. This includes 

the switch to LSI model instead of simple occurrence matrix and adaption of free-text 

queries instead of simple keyword query. 

  

                                                 
1 https://www.journals.elsevier.com/journal-of-parallel-and-distributed-computing  
2 http://digital-library.theiet.org/content/journals/iet-ifs  

https://www.journals.elsevier.com/journal-of-parallel-and-distributed-computing
http://digital-library.theiet.org/content/journals/iet-ifs
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Chapter 1: Introduction 

1.1. Introduction of Information Retrieval (IR) 

The urge need for efficient retrieval techniques emerged with the introduction of 

web search. Retrieving user needs requires searching across a large scale of data, which is 

a challenging task that led to continuous development of retrieval models. Prior to that, 

searching was performed in the style of Database (DB) search where providing precise 

information is vital to acquire effective results. For example, searching in a cars’ DB 

requires detailed information like plate number. Similarly, searching a patients’ DB 

necessitates patient national ID number. In the former example, the search patterns 

involved limit the usage of the system to people who are trained for that purpose, such as 

administrators, customer service advisors, paralegals, and so forth. 

Web search shifted the older paradigm where the majority of users are not trained 

professionals with pre-knowledge of the data. It is rather a broad group of users with 

different backgrounds and various information needs. Queries formed by those users are 

unstructured and described as free text queries. The whole problem of Information 

Retrieval in the academic field is described as following: 

“Information retrieval (IR) is finding material (usually documents) of an unstructured 

nature (usually text) that satisfies an information need from within large collections 

(usually stored on computers)” [1]. 

This new paradigm deals with documents on a larger scale that requires keeping a 

sense of term weighting. Terms are the result of preprocessing all words in the document 

collection. The preprocessing might include stemming or stop words removal. During 
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query-time, term weighting is vital to calculate a score relevance with reference to the 

query. The higher the score the more relevant the document is to the user’s need; hence, 

retrieval models will list the most relevant documents at the top of the results. The way it 

works is that term weighting is used to form a document vector representation that 

“captures the relative importance of the terms in a document”[1]. Queries are represented 

using the same vector notion as well, where vectors similarity measures (e.g. cosine 

similarity) can be leveraged to apply a search query. The set of document vectors 

represented in the same vector-space is called Vector Space Model (VSM) [1]. 

 

1.2. IR’s Common challenges  

The aforementioned model is keyword dependent. Documents that share common 

query terms are more likely to be retrieved as relevant in comparison to documents that do 

not. The main deficiency of this approach is the lexical mismatch between the users 

(searchers) and the authors of retrieved data, which results in two main issues: synonymy 

and polysemy [2]. First, multiple words can have the same meaning (e.g. Chair and Seat 

share the same meaning) and there is no guarantee that the user will search for one term 

over the other. This problem of Synonymy can lead to less relevant documents being 

retrieved, hence, decreasing the system’s recall. Second, a single word may have multiple 

meanings (e.g. Jaguar can refer to the car brand or the animal) and there is not 

straightforward way for the model to detect the main intention of the user. This problem of 

Polysemy implies that some non-relevant documents will be retrieved, thus decreases the 

precision of the system. Both Recall and Precision are significant metrics to measure the 
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relevancy of the system which is one of the core concepts for information retrieval. 

Two solutions were suggested to overcome the issues of synonymy and polysemy 

according to [3]. First approach is Stemming, which is a process to convert words to their 

morphological root so ‘retrieval’ and ‘retrieving’ would be converted to ‘retrieve’. 

However, this process does not work to match nouns like chair and seat. Second is 

Controlled Vocabulary; this solution suggests that document authors and searchers use a 

predefined set of terms. However this issue was described by [4] as both expensive and 

inefficient. 

Three factors were proposed by [4] to justify the failure to address the issues of 

synonymy and polysemy. First, indexes lack enough terms; this can occur because of the 

limited terms used in the documents collection itself or because of the preprocessing phase 

that omits many terms. Second, there is no practical methodology for handling polysemy; 

one solution was controlled vocabulary, however as previously mentioned, it is both 

inefficient and expensive. Third, terms are not dependent on each other; meaning that two 

terms frequently co-occurring have the same retrieval possibility as those rarely co-

occurring. Hence, queries including compound terms such as check-in are more difficult 

to satisfy.  

 

1.3. Introduction to Latent Semantic Indexing (LSI) 

The discussion above describes an existing gap resulted because of the loss of the 

meaning of query terms. While constructing a query, the user usually has a need they wish 

to satisfy, and if the query terms are not adequately representative of those needs (i.e. they 
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miss the meaning or the user’s intention) the systems performance necessarily drops. Latent 

Semantic Indexing (LSI) was initially proposed to cover that gap, it assumes the existence 

of a latent semantic structure covered by a wide variety of word choice that sit its goal to 

uncover that structure [2] [3]. Thus, for a certain query, a relevant document that does not 

have any query term can still be retrieved. 

LSI provides a step further compared to the old VSM. To understand how LSI is 

an improvement to the VSM model, it is important to be familiar with how VSM works. 

Following are the common steps of both LSI and VSM in addition to the LSI’s additional 

steps 

A. Pre-processing: The preprocessing phase includes steps like stop words removal and 

stemming. These steps are applied on the original corpus of documents (or other 

searchable material) to extract the important terms form it.  

B. Term document Matrix:  Terms generated from the previous phase are then used to 

generate the term document matrix 𝐴. Records in the matrix are the terms, and columns 

are the documents. The value stored in each individual cell represents the occurrence 

of a certain term in a specific document. 

C. Matrix decomposition: The output term-document matrix 𝐴 is highly sparse with 

unnecessary noise. In this third phase a new matrix of lower dimensions and rank (𝑘) 

is approximated3 from the original term document matrix (with rank 𝑟). The low-rank 

approximation technique aims to find a matrix with the lowest possible discrepancy 

from the original term-document matrix. Rank 𝑘 is manually selected and it has to be 

                                                 
3 This approximation can be referred to as the LSI model or Index. 
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significantly lower than 𝑟. The approximation is applied using a matrix factorization 

technique called singular value decomposition (SVD), which represents the matrix as 

a product of metrics derived from its eigenvectors. The equation below shows the SVD 

factorization applied on 𝐴. 

 

𝐴 = 𝑈 𝑆4 𝑉𝑇 

Equation 1: SVD applied on the term-document matrix A 

 

These three matrices are, 𝑈 and 𝑉𝑇, left and right singular vectors of 𝐴; a set of 

orthonormal eigenvectors and 𝑆, singular values of 𝐴. 

 

𝑈 𝑆 𝑉𝑇 = [𝑢1 𝑢2] [
𝜎1 0
0 𝜎2

] [
𝑣1

𝑇

𝑣2
𝑇] 

Equation 2: Left: Left Singular vectors, Middle: Singular Values, Right: Right Singular 

Vector 

 

If the aforementioned rank 𝑘 is selected to be 1, then 𝐴𝑘 will be as following. 

 

𝐴𝑘 = [𝑢1 0] [
𝜎1 0
0 0

] [𝑣1
𝑇

0
] 

Equation 3: 𝐴𝑘 Calculated 

                                                 
4 Σ is sometimes used instead of 𝑆 
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SVD is the value LSI adds to the conventional keyword dependent retrieval method 

using term-document matrix. 

The matrices are then lowered to a rank 𝑘 where the first 𝑘 vectors (in case of 𝑈 

and 𝑉𝑇) or values (in case of 𝑆) are selected. Those 𝑘-ranked matrices are then multiplied

to calculate an approximated matrix 𝐴𝑘 that is used instead of 𝐴 to search. This low-rank 

approximation matrix helps to cluster a given set of documents based on the co-occurring 

terms. This means that similar documents (i.e. documents with similar topic and in turn 

terms) are represented closer to each other in the LSI vector space. Therefore, a given query 

can retrieve documents that do not share terms with it and thus, generating a model that is 

keyword-independent. 

1.4. LSI Hello World Example 

The following example illustrates how LSI is able to recognize similar topics 

among documents that may not share common keywords.5 Table 1 lists nine different 

document discussing two topics. Documents c1-c5 are about human-computer interaction 

(HCI) and documents m1-m4 are about graph theory. 

5 The original experiment was conducted in [4] 
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Table 1. List of Documents Used in the Experiment Conducted by [4] 

DOCUMENT 

CODE 

DOCUMENT TITLE 

C1 

Human machine interface for lab abc computer 

applications 

C2 

A survey of user opinion of computer system response 

time 

C3 The EPS user interface management system 

C4 System and human system engineering testing of EPS 

C5 

Relation of user perceived response time to error 

measurement 

M1 The generation of random binary unordered trees 

M2 The intersection graph of paths in trees 

M3 Graph minors IV Widths of trees and well quasi ordering 

M4 Graph minors A survey 
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Gensim library was used to generate the LSI model, more discussion about Gensim 

will be provided in section 4.1.1.6.  

 

Figure 1 below is a geometric representation of the resultant LSI model in two 

dimensions. According to [5] the list of documents in Table 1 were deliberately designed 

to “produce a satisfactory solution using just two dimensions”. 

  

 

 

 

Figure 1. Two-dimensional representation of the LSI model generated from the documents 

in Table 1 

 

 

The Space model depicted in the figure above shows how the documents are 

clustered in two different groups; HCI and graph theory. As aforementioned, documents 
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labeled ‘m’ discuss graph theory and documents labeled ‘c’ discuss HCI, and each 

document was clustered into its respective group based on its topic. 

Figure 1 depicts the cosine similarity between each document and the query 

“Human computer interaction”. HCI group expectedly achieved higher scores and the 

query 2-dimensional representation is plotted closer to the HCI group as well. It is worth 

mentioning that documents ‘c3’ and ‘c5’ share no term with the query, nevertheless the 

LSI model managed to detect their similarity with the query. 

1.5. Problem Statement 

It is difficult to for data owners/authors to make their data accessible for their target 

customers/users without enduring excessive costs. Once emerged, cloud computing 

provided a good cost-efficient alternative that minimizes management efforts. It can host 

large scale datasets while providing search functionality to customers. However, cloud 

services require full access over data, which might not suit its owners.  The goal is to design 

an LSI system that can effectively search over encrypted data in a distributed setting that 

support scaling. 

Two main challenges present themselves as obstacles to achieve this goal. Firstly, 

LSI suffers from a scalability issue. This is because it is not easy to parallelize SVD, the 

main component of LSI. As a result, LSI performance suffers over large datasets. Second, 

while encryption might secure data from unwanted access, it also prevents cloud services 

from performing any form of computation. 
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1.6. Research Objectives 

The main objective of this thesis is to investigate the possible settings of applying 

LSI in a distributed environment and on Encrypted data. If successful, it can potentially 

help applying highly efficient search on the cloud functionality while ensuring the 

confidentiality of the data. Following is a list of this work’s objectives: 

 To research LSI’s performance on distributed systems and Encrypted data 

 To research variations of LSI and its applications 

 To carry on an empirical study of LSI in a distributed system environment 

 To investigate how LSI can be applied on encrypted data 

 

1.7. Research Contributions 

Following is a list of the main contributions of this work 

 Conduct a literature review of the main variations of LSI. For each of those 

variations, their signification over the original LSI is reported and their potential to 

scale in a distributed environment is discussed. A summary of LSI applications is 

presented alongside discussion of the LSI variation and dataset(s) used. 

 An experiment of LSI is carried on and HPC environment in serial and distributed 

mode to evaluate both performance and effectiveness of gensim’s LSI (check 

section 4.1.3.1 and 4.1.3.2). The evaluation is carried on using two reported 

measurements; CPU time and average precision (check sections 4.1.24.1.4.1 and 

4.1.4.2). 
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  A study of how LSI can be applied on encrypted data is presented as well. A list 

of different experimental attempts is reported along with environment’s setting 

(check section 4.1.44.1.3). Each attempt is then reported and compared against a 

devised baseline (check section 4.2.3.2). 

 

1.8. Research Motivation (Significance to Local Community) 

It is important for the work presented in this thesis to be aligned with strategies of 

local education and research institutes in Qatar. The section shows how this work achieves 

such alignment.   

1.8.1. Qatar National Research Strategy (QNRS) 

Qatar National Research Strategy (QNRS), is a publication of the Qatar National 

Research Fund (QNRF). It reflects input from Qatar research leadership, researchers and 

other stakeholders [6]. QNRS regularly highlights various key challenges that faces Qatar 

to help advance certain research areas. Research and educational institutes’ effort and fund 

is then directed toward these focus area; thus, becoming a country-level priority. 

1.8.1.1. Powerful and Distributed Computing 

QNRS has published a pillar regarding Computer Sciences and Information 

Technology (ICT). One of the listed goals (Goal ICT.2) was to “Build a research program 

on distributed, data intensive and service oriented computing” [7]. QNRS also highlighted 

the importance of big data computing where they advised to “Explore and implement best 

practices in Big Data Urban development project” [8] 

In part of this work, an experiment of LSI in distributed systems is carried on as 
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mentioned in the research objectives section. The experiment runs in a distributed 

environment on a large dataset (check section 4.1.3.1). This fits QNRS intention to focus 

on big data and distributed computing. The distributed environment is provided by RAAD, 

a High-Performance Computing (HPC) system provided by TAMUQ6 (check section 

4.1.1.8 for more details). This also fits QNSRF to focus on data intensive computing. 

1.8.1.2. Cyber Security 

Cloud computing has witnessed rising importance over the years, it was strongly 

highlighted as a priority research area by QNRS. This shift also introduced security 

concerns on a nation scale according to a QNRS publication [9]. Cyber security was 

therefore announced as a “a National Grand Challenge”; thus, leading to a higher focus and 

larger fund in this area. 

In part of this work, a proposal of how LSI can be applied on encrypted data is 

presented. The proposed solution, although not finalized, has the potential of advancing 

how cloud computing is used. In other words, encrypted data can be outsourced to cloud 

services while still maintaining the ability to search it using LSI. 

 

1.9. Thesis Structure 

Chapter 2 further discusses the problem definition, extending the problem 

statement. In chapter 3, a literature review of various LSI variation, their scalability 

capabilities and their applications are presented. Chapter 4 describes both experimental 

parts along with the detailed description of used datasets, applied preprocessing steps (if 

                                                 
6 Texas A&M University in Qatar 
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any) and baselines. Chapter 5 provides the experiment result of formerly described parts 

while chapter 6 concludes the work and suggests future work.   
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Chapter 2: Problem Definition 

This chapter provides an elaboration of the problem statement formerly reported. It 

starts with an overview of the challenges introduced by adopting the cloud paradigm. It 

then provides a description/definition of the problem based on those challenges. After that 

attempts to address those challenges are described, categorized along with this work’s 

contributions in each category, if any. These contributions are then reflected in the research 

methodology detailed in Chapter 4: Research Methodology. 

 

2.1. Background 

Access to high computational power is not an issue for multi-billionaire 

organizations. Companies like Facebook, Google and Amazon have their own data centers 

where they store their data and perform the necessary business operations. On the other 

hand, running such large-scale centers can be a financial burden for small companies, 

startups and research groups.  

In the latter case, cloud services can provide an affordable access to high 

computational power resources while mitigating the burden of management and 

maintenance. Success stories for both Amazon7 and Google8 cloud services include well 

known profiles (e.g. London Heathrow, Spotify, Airbnb, Air Asia, etc..) which shows how 

appealing cloud services are.  

However, maintaining confidentiality while leveraging cloud services is 

                                                 
7 https://aws.amazon.com/solutions/case-studies/all/  
8 https://cloud.google.com/customers/  

https://aws.amazon.com/solutions/case-studies/all/
https://cloud.google.com/customers/
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challenging for several reasons. First, cloud services need to have full data access to carry 

on the required operations. For example, a business hosting its services on cloud servers 

will be sharing its customers’ data (including sensitive financial information) with 

untrusted third party (i.e. cloud service provider). Second, some providers maintain the 

right to sell data or part of it for other business, which might expose user information, with 

or against their will. Third, cloud services usually store huge amount of data, which make 

them more attractive to hackers and thus relatively more prone to hacker’s activities, 

deeming them less trustworthy [10]. 

The standard solution to address confidentiality concerns is to encrypt all data 

locally before outsourcing it to the cloud. This will prevent unauthorized access to data 

including both insiders (i.e. service providers) and outsiders (e.g. hacker, data purchasing) 

[10]. However, this would also stop data owners and authorized users from performing 

operations like searching using cloud resources9.  

One possible method to guarantee access on encrypted data is to first download 

data, decrypt it locally, and then perform the search. Yet, this method is inefficient and 

deprives owners from the computational capabilities of the cloud. Not to mention the 

additional cost of data transfer from the storage service. Another method is to perform 

decryption on the cloud, run the query and return results. However, this allows the server 

to learn the plain-text information stored; thus, making the encryption less effective [10]. 

 

 

                                                 
9 The search functionality is the operation of interest in this work. 
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2.2. Searchable Encryption (SE) 

Searchable Encryption (SE), refers to the server ability to search over encrypted 

data without learning information about the plaintext data [10]. Several solutions have been 

proposed in the literature to apply SE.  

An IR system (even one that does SE) consists of two main components; indexing 

and retrieval. First, a collection of documents is indexed to generate a matrix that represents 

the collection (i.e. an index). In such a matrix, a column is a representation of a document 

and referred to as a vector. Different matrices can be generated based on the application. 

This includes, term-document matrix, an occurrence matrix, tf-idf matrix (see section 1.3) 

and co-occurrence matrix (LSI). Second, a user formulates a query. The query, which is 

treated as pseudo-document, is then transformed to a vector where the transformation is 

dependent on the matrix used. Similarity calculations are then applied to determine the 

most relevant documents. 

This section briefly discusses implemented techniques in both components 

according to the literature and how this work fits in. 

2.2.1. Indexing 

Most of discussions presented in the literature focus mainly on how to encrypt the 

matrix not which matrix to use. The selection of index in the literature is usually occurrence 

matrix. 

The focus of this work is LSI; thus, the matrix of selection is the co-

occurrence/approximation matrix 𝐴, which is resulted from applying SVD on the term-

document matrix. This work aims at investigating how 𝐴 can be hidden from the cloud 
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server while maintaining both effectiveness and efficiency. It assumes the use of multiple 

cloud servers 

2.2.2. Retrieval  

In IR systems users are expected to form free-text queries as described in section 

1.1, however, SE systems are more restricted. Some systems accepts only a single keyword 

query [11] while others extend it with the help of operators. The combination of a keyword 

and an operator like 𝐴𝑁𝐷, 𝑂𝑅, 𝑁𝑂𝑇 is called Boolean search. Conjunctive search is one 

type of Boolean search, it can be described as AND of ORs (e.g. [𝐴 ∨ 𝐵] ∧  [𝐶 ∨ 𝐷]). 

Another type is disjunctive search which is an OR of ANDs (e.g. [𝐴 ∧ 𝐵] ∨  [𝐶 ∧ 𝐷]). 

Negation is also a Boolean search represented as ⊣ 𝐴.  Authors of [12] present their work 

as the first to support all three conjunctive, disjunctive and negative search. According to 

[12], previous proposed SE systems either focus only on conjunctive search [13][14] or 

disjunctive search [15]. In this work, query is assumed to be free text like search engines. 

 

2.3. LSI Model Generation 

As mentioned earlier, we plan to use the LSI model instead of the typical occurrence 

matrix. However, if we plan to use real data, it is important to ensure LSI can scale. LSI is 

well-known for its scalability issues (see section 3.3) which explain the attempts to propose 

variations of the original method (see section 3.1). Most of those proposals are bounded to 

theory or small-scale proof-of-concept experiments. However, the work of [16] introduces 

a “sandbox environment” or a framework that provides scalable implementation to various 

topic-modeling algorithms as discussed in 3.1.4. 
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The proposed framework report results of LSI that are highly efficient on large-

scale data. In this work, we analyze the performance of that framework under different 

circumstances in a distributed environment of our selection. Findings and limitations (if 

any) are then reported. 

2.4. Problem Description 

Data owners (i.e. research groups, companies, etc.) need to securely store 

documents10 on cloud which is more feasible than other options; thus, they need to encrypt 

their documents. However, this might limit the capability to search over data. The goal is 

to effectively let the server search over encrypted large-scale data on behalf of the client 

(i.e. data owner or authorized user) without learning the plaintext data [10]. According to 

[10] and [12], the service providers are assumed to be semi-honest; it would perform 

operations but still want access. 

A proper solution for this problem should implement a good SE schema; a schema 

that only lets the server learn access and search pattern as described in [17]. Access pattern 

refers to which files have been retrieved, and search pattern refers whether two searches 

were performed by the same keyword. In addition, it should overcome the traditional 

challenges of LSI (described in section 3.3) and scale to large datasets. 

This is reflected in the research methodology as two parts; Part 1, investigates LSI 

ability to scale noting the challenges mentioned in section 3.3 and Part 2, investigate the 

possibility of leveraging LSI in a SE system. 

10 Any indexable entity is valid (e.g. music, pictures can be represented in a document containing meta 

information about them) 



20 

2.5. Solution Overview 

Figure 2: Solution Overview 

The figure above shows a vision of a proper solution for the problem discussed in 

the previous section. The indexing part shows the dataset indexed using a distributed LSI 

environment discussed in detail in section 4.1.3. The second part shows the approximated 

matrix of LSI, 𝐴𝑘 , splitted into two cloud servers and retrieved using a free-text query as 

discussed in section 4.2.3. 
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Chapter 3: Literature Review 

In this chapter, the variations of LSI are discussed, those variations are attempts to 

overcome LSI shortcomings which is explained in this chapter as well. Furthermore, these 

variations support for parallelization is discussed if any. In addition, an overview of LSI 

applications is provided. It is worth noting that most of the literature focused on LSI 

applications rather than improving the algorithm itself. 

 

3.1. LSI Variations 

LSI scalability issues are caused mainly by its orthonormal constrains according 

to [18]. LSI’s main component, singular value decomposition (SVD) factorizes a term-

document matrix 𝐴 to three matrices (as shown in Equation 1).  

A constraint in this context refers to a preceding priority on one of SVD 

factorized matrices. In the case of LSI, it has an orthonormal constrain on both 𝑈 and 

𝑉𝑇; meaning that both matrices must be orthonormal. These constraints make it 

difficult to run SVD (and in turn LSI) in parallel while maintaining the orthonormal 

property. This challenge initiated the research community to introduce various 

alteration to the original method of LSI to overcome its scalability issues. 

3.1.1. Probabilistic Latent Semantic Indexing (PLSI) 

The model of PLS, as first introduced by [19], assumes that a document is a 

mixture of latent classes (i.e. topics). Each word 𝑤 in a document 𝑑 is associated with 

a latent class 𝑧. It represents the joint probability of 𝑤 and 𝑑 as following: 
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𝑃(𝑑, 𝑤) = 𝑃(𝑑|𝑧) 𝑃(𝑧) 𝑃(𝑤|𝑧) 

Equation 4 

Equation 4 can be represented as a matrix factorization as shown in Equation 1 

where 𝑈 is 𝑃(𝑑|𝑧), 𝛴 is 𝑃(𝑧) and 𝑉𝑇is 𝑃(𝑤|𝑧).

In contrary to SVD, 𝑈 and 𝑉 in PLSI have no orthonormal constraint which 

means implementing PLSI in a distributed framework is possible. Various 

implementations of PLSI are available for research purposes on GitHub like [20] and 

[21] however they not production-ready to be utilized on an HPC platform. 

3.1.2. Regularized Latent Semantic Indexing (RLSI) 

The main motivation behind RLSI is to address the scalability issues in LSI and 

PLSI according to [18]. The orthogonal property and the probability distribution of LSI 

and PLSI respectively resemble a constraint on both algorithms in the context of 

implementation on parallel and/or distributed environment. 

Regularization is a technique used to solve the overfitting problem that tries to 

minimize a loss function. In [18] two regularization terms were introduced 𝑉 and 𝑈 

that corresponds to the 𝑈 and 𝑉 of SVD. 𝑉 is a topic-document matrix where 𝑣𝐾𝑛 

represent 𝑘𝑡ℎ topic weight in the 𝑛𝑡ℎ document. 𝑈 is a term-topic matrix where 𝑢𝑚𝐾

represent 𝑚𝑡ℎ term weight in the 𝑘𝑡ℎ topic. The loss function is an approximation of

document 𝑑𝑛. The optimization problem RLSI amounts to “formalizes topic modeling 

as a minimization of a quadratic loss function with a regularization (either 𝑙1or 𝑙2 

norm)” [18]. 
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Experiments show that in terms of interpretable topics and relevance ranking, 

RLSI is better than or comparable with LSI and PLSI. RLSI can also scale up to 1.6 M 

document and 7 M terms. This technique was further enhanced by the same team in 

[22] where a new regularized technique named L1/2 regularization was introduced. The 

authors claim that said method was used to avoid both constraints of LSI and PLSI.  

An existing solution of RLSI is developed by one of the authors along with a 

development team [23], however similar to PLSI it is more suitable for research 

purposes. 

3.1.3. Similarity-based Matrix Completion Algorithm for LSI 

This algorithm provides an alternative for SVD through mimicking its 

capability of solving the synonymy and the polysemy problem. The algorithm proposed 

in [24] leverages Bipartite graphs (i.e. bi-graphs) to understand how the relationship 

(i.e. weight) between documents and terms evolve. Both documents and terms are 

represented as vertices and term-document weight as the weight of an edge.  

Figure 3 shows an example of Bipartite graph that depicts representation of a 

term-document matrix and its LSI approximation. New connections (edges) are 

constructed between terms and documents based on the terms co-occurrence.  

 

 



  

   

24 

 

 

 

Figure 3. Bipartite graph representation for (a) the original matrix and (b) the 

approximate matrix. The dashed lines in (b) represent new connections due to lower 

rank approximation to the original matrix. 

 

 

The proposed solution compares both graphs to understand the changes and 

then build a converging algorithm to mimic those changes. It is unclear if the work of 

[24] can be implemented on a distributed environment as there is no mention of 

parallelization’s support in the paper. In addition, no implementation of the algorithm 

has been made publicly available.  
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3.1.4. Subspace Tracking for LSI (Distributed LSI)  

3.1.4.1. Overview 

In [16], the authors express the need for a topic modeling framework based on 

the analysis of existing implementations as they are not scalable, nor are they easy to 

use. The “lack of a sandbox environment” which can be used on real data and meet the 

“the high computational demand” of these topical methods has partly contributed to 

crippling the public from adapting topical methods. Factors like “the inherit 

mathematical complexity” have also extended the gap between research and practice 

[16]. 

This topic modeling system can be visualized in three phases shown in the graph 

below. First, a term-document matrix is generated using the provided dataset. Second, 

a topic modeling algorithm (e.g. LSI, Latent Dirichlet Allocation (LDA), etc.) is 

applied where the output model, or documents representation, is then used to calculate 

similarity against a user issued query. The framework proposed in [16] aims to scalably 

calculate these document representations distinguishing itself from the work of [25] 

which focuses on scalably computing pair-wise document similarities from existing 

models. 
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The proposed solution also differs from the existing toolkits like NLTK, Weka, 

Orange and others which are “mature”, yet suffer from one or more shortcomings [16]. 

First limitation is a lack of topic modeling as these packages usually provide supervised 

learning functionality (e.g. classification) in contrast to the unsupervised topic 

inference. Second, lack of scalability, where the package requires loading the whole 

corpus in memory at one point. Third, different domain focus, where the package is 

initially created for domains like physics, neuroscience, etc. Fourth, grand unified 

frameworks; frameworks designed to cover a broad range of algorithms and use cases. 

While those frameworks are more appealing to users, they can affect the quality of the 

final product.  

Figure 4: Topic Modeling Phases 
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3.1.4.2. Proposed Framework 

The proposed framework has two main interfaces, corpus and transformation. 

First, corpus is an interface designed to handle a sequence of documents represented in 

occurrence vectors (i.e. occurrence matrix). The main goal of the interface is to ensure 

that "at no point is there a need for the whole corpus to be stored in memory" [16]. It 

also supports loading and storing matrices to a disk so there is no need for repetitive 

generation of the corpus. Second, transformation refers the process of translating 

documents from one vector space to another (e.g. occurrence matrix to LSI matrix). 

The authors of [16] listed four system design choices for their proposed 

framework. First is corpus Size independence; meaning that the framework should be 

able to handle corpora that is larger than the machine’s RAM. Second is intuitive API; 

which implies a use of NLP-related terms and minimal need of method names and 

interfaces to use the framework. Third is easy deployment; which means that the 

framework should not need root access and should be OS independent. Fourth is for 

the framework to cover popular algorithms (e.g. TF-IDF, LSA, LDA, etc.) and provide 

a novel and scalable implementation of those algorithms. 

Python was chosen as the programing language for this framework. It helps 

achieve the set choices as it is OS independent, easy to implement and has a “straight-

forward and compact” syntax [16]. Python also has a fast-numerical library, numpy 

(see section 4.1.1.2) which is widely used in this framework. 
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3.1.4.3. SVD Challenges 

As formerly mentioned, algorithms’ implementation need be scalable and 

memory independent. In this work only LSI is of interest, whereas the rest of this 

section focuses on providing a brief overview of LSI’s scalable implementation used 

in [16]. 

LSI main performance challenge is because of SVD. Due to its computational 

intensiveness, it is expensive to calculate SVD on large datasets [26]. Packages like 

PROPACK and SVDPACK provided highly optimized implementation of SVD 

according to [16], however, they require the whole corpus to be loaded in memory. The 

authors of [16] were looking for alternative implementations of SVD. The idea is to 

allow incremental SVD, meaning that SVD can be calculated from a document stream 

rather than a batch of documents. Some works like [27] and [28] have proposed 

algorithms to incremental SVD. The work of [27] was found to be too slow and hard 

to tune while [28] is relatively faster and requires no tuning according to [16]. 

3.1.4.4. Targeted SVD 

Since there is no publicly available implementation of the work of [28], the 

authors of [16] provided a pure python implementation of their SVD algorithm which 

is explained in [29]. Five characteristics were listed in [29] where its authors claim that 

their work has exclusively met all of them. First, being Distributable, which is a 

reference to the ability to run the algorithm in parallel on server autonomous nodes 

with no necessity for further modifications. Second, Incremental Updates, as 

previously mentioned it refers to the ability to update SVD once new data arrives (i.e. 
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support for document streams). Third, leveraging Matrix Structure; meaning that the 

algorithm should make use of sparse matrices (or sparse nature in occurrence matrices). 

Therefore, it is preferred that the algorithm are expressed in terms of Basic Linear 

Algebra Subprograms (BLAS) since they will adapt more easily to different type of 

inputs [29]. Fourth, Subspace Tracking; this means the in case of a document stream, 

any new observation should be immediately processed and discarded. Fifth, Available 

Implementations, as such, the work of [29] is open sourced and available as part of the 

framework developed in [16].  

3.1.4.5. Distributed LSI 

The distribution characteristic is achieved through column partitioning. Matrix 

𝐴 is divided into sub-matrices called jobs, 𝐴𝑚 𝑥 𝑛 = [𝐴𝑚 𝑥 𝑐1 , 𝐴𝑚 𝑥 𝑐2 , … , 𝐴𝑚 𝑥 𝑐𝑗. 

Every sub-matrix (i.e. group of column/documents) amounts to a processing chunk 𝑐𝑗. 

The bigger the chunk, the faster the processing is. However, bigger chunks require 

larger memory, thus, chunk size is dependent on available resources.  

Jobs are then distributed on the available cluster nodes (i.e. workers or nodes 

running the worker script). The algorithm does not require a specific order to distribute 

those jobs. It also does not require nodes to process the same number of jobs and it does 

not process them at the same speed. Computations on the nodes are completely 

asynchronous, where each node computes the decomposition for each job it receives. 

Later, decompositions are accumulated and merged into a single decomposition. In 

short, two decompositions are performed; first, base decomposition, which occurs in 

memory and computed for each job, and second, merge decomposition which occurs 
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on one node to merge all other decompositions. 

3.1.4.6. This work 

This is the largest section in the literature review. The reason is that, in this 

work, the algorithm described in [29] and introduced in the framework of [16] is the 

one leveraged to show if LSI can be scaled up on real data. This the only work to 

provide a “sandbox environment” as previously mentioned. Additionally, it is open 

sourced, so it can be altered to the needs of this thesis. A discussion of LSI performance 

on real large datasets will be later discussed and compared to the results the framework 

developer reported in [30]. 

 

3.1.5. Comparison of LSI Variations 

 

 

Table 2: Comparison of LSI variations 

 

CONSTRAINTS 

ON 𝑼 

CONSTRAIN 

ON 𝑽 

SUPPORT 

 FOR 

PARALLELIZATION 

AVAILABLE 

IMPLEMENTATION 

PRODUCTION-

READY (FOR 

DISTRIBUTED 

ENVIRONMENT) 

OPEN-

SOURCE 

LSI [4] 

Orthonormal 

Constraint 

Orthogonal 

Constraint 
No Yes No Yes 

PLSI [19] 

Probability 

Distribution 

Probability 

Distribution 

Yes Yes No Yes 

RLSI [18], [22] - - Yes Yes No Yes 

MATRIX 

COMPLETION 

[24] 

- - N.A. No No No 

SUBSPACE 

TRACKING 

[29] 

- - Yes Yes Yes Yes 
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3.2. Applications 

3.2.1. Collaborative Filtering 

Collaborative filtering is one of the fields where LSI was efficiently applied as 

reported in [31]. The rise in the number of web services gave birth to many portals that aim 

at assisting users to find web services of interest. The search functionality in these portals 

is based on syntactical matching of both query terms and web services’ descriptions. 

However, this text-based approach encountered semantic-based synonymy and polysemy. 

It is possible to address the syntactical limitations using semantic annotation markup 

languages. However, this approach is time consuming and is done by domain human 

experts. The author of [31] proposes a recommender system that uses user’s id and WS 

operations instead of queries and descriptors. The shift of focus from text to user’s behavior 

resulted in exploiting meaningful implicit knowledge as reported in [31].   

The proposed solution consists of three main steps. First, processing users’ data, 

where users are treated as documents and operation are treated as terms in the term-

document matrix model. Second, an m * n TF-IDF matrix 𝐴 is constructed where 𝑛 refers 

to the number of users and 𝑚 to the number of operations. In this matrix a cell 𝐴𝑖,𝑗 is the 

weight of the operation 𝑂𝑖 for the user 𝑈𝑗. An instance of an operation could 

be 𝑔𝑒𝑡𝑊𝑒𝑎𝑡ℎ𝑒𝑟, 𝑔𝑒𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑔𝑒𝑡𝑁𝑒𝑤𝑠, 𝑔𝑒𝑡𝑊𝑒𝑒𝑎𝑡ℎ𝑒𝑟𝐵𝑦𝑍𝑖𝑝𝐶𝑜𝑑𝑒, etc. LSI is then 

applied on the TF-IDF matrix to generate an approximation of it in a k-dimensional space. 

Third, given an operation 𝑂𝑖 for a user 𝑈𝑗 a recommendation is generated by first finding 
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similar users then finding similar operations within the collection of those users’ operation. 

The third step was applied using both the TF-IDF matrix (VSM-based approach) and the 

LSI matrix (LSI-based) approach. According to [31], LSI-based approach achieves better 

predictions than the VSM-based with small 𝑘. Moreover, the best prediction using LSI-

based approach is always better than the best prediction using VSM-based approach. 

Another example of applying LSI to implement collaborative filtering is the article 

recommender for Digg articles proposed in [32]. Digg is a social platform for sharing 

articles including blogs and news articles. Users can express interests in articles through 

digging them while burying articles they did not like. A score for each article is calculated 

based on diggings subtracted by buryings. Scores and numbers of diggings are then used 

to determine which articles appear first to the user. Recommending articles based on user’s 

interest is a challenging task since Digg does not keep track of articles’ topics. The 

proposed system in [32], DIGTOBI, leverages PLSI generative model with respect to latent 

topics in order to construct topics based on articles’ description. If a user dug an article, 

then topics relevant to it would be preferred over others, even if the article does not have a 

high score. Experiments have shown that DIGTOPI managed to outperform state of art 

techniques in the literature in all used evaluation metrics. 

3.2.2. Clustering 

Another fields where LSI was applied is Clustering. In [33] LSI was leveraged in 

the context of web clustering as using search engines can be time and effort consuming in 

case of ambiguous information. For example, when searching using the query “jaguar” the 

results would be mixed of “big cat” and “car brand”, however if the user’s main intention 
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was either “comic” or “music” the query would need to be rephrased. LSI was adapted to 

overcome the synonymy and polysemy problems encountered by the SRC clustering 

methods that uses bag-of-words method. In the proposed method, LSI is aggregated with 

Agglomerative Hierarchical Clustering (AHC). It is a bottom-up approach where cluster 

pairs are merged as one moves up the hierarchy. AHC was preferred over flat clustering 

for three main reasons. It does not require the number of clusters as an input, it returns a 

more informative hierarchy and the user does not need to read all the topics in order to find 

the desired one.  

LSI is one of three steps of the proposed method. First, a collection of search results 

with snippets is retrieved and filtered using preprocessing techniques (e.g. Tokenization, 

stemming, etc.). Then LSI is applied on the retrieved data with variation of weighting 

schemes and 𝑘 parameter. A variation of SVD was used as well where the approximated 

matrix is only the product of Σ ∗  𝑉𝑇 instead of 𝑈 ∗  Σ ∗  𝑉𝑇. To evaluate the proposed 

method, it was applied on two datasets while four different performance metrics were used. 

The results show how LSI managed to boost the performance compared to other clustering 

techniques.  

3.2.3. Geographical Taxonomy 

LSI was used as well to enhance retrieval in spatial domains. In [34] LSI helped to 

build a geographical taxonomy of adjacency for a given country. According to [34], the 

need for such taxonomy raises from the ambiguous nature of query while knowing that one 

query of five has a geographical context. This means that a geographical taxonomy can be 

used to reformulate the query to be less ambiguous. The proposed method supports both 
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absolute and relative special entities (ASE and RSE respectively). ASE refers to a well-

known named entity (e.g. “Paris”) while RSE refers to a complex spatial entity (e.g. “à côté 

de Paris” (In English: near Paris)). The taxonomy is constructed by first searching using 

RSE query where its ASE is a city in the country of the taxonomy. Then, a term-document 

matrix is constructed using the retrieved documents. After that, LSI is applied to generate 

the new approximated matrix which is restricted to the terms that represent ASE. Finally, 

the similarity is computed between the resulted ASE’s and the original, which results in a 

one-level taxonomy. The procedure is then repeated to build further levels. Based on this 

taxonomy a user’s query with geographical context can be reformulated. The results 

showed that the proposed method significantly improved the search’s precision.  

3.2.4. Software Analysis (Code Analysis) 

In [35], LSI was leveraged to detect anomalous android applications. The prevalent 

usage of android applications introduced many useful activities, however many anomalous 

applications were reported. Solutions discussed by [35] in its literature use techniques like 

machine learning and sand boxing but they suffer from accuracy issues (e.g. false 

positives). The solution proposed aims to understand the context of the permission list. To 

do so, a term-document is first generated. Documents represent a set of known good 

applications and terms are permission keywords. Then, when SVD is applied and the 

matrix is reduced, a common set of permissions is collected. After that, the permissions set 

is used to test against set of permissions for the queried application. If it matches, then it is 

labeled normal, otherwise it is anomalous. The paper, however, did not conduct an 

experiment to verify their proposed solution.  
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LSI was also used to detect code re-implementation. Code re-implementation is 

completely different from plagiarism; it is caused by the lack of awareness of existing 

libraries, which leads to re-implementation instead of reusing existing libraries. The 

resulted redundancy can range from exact copies (Type-1 clones) to replications of 

functionality with no code replication (Type-4 clones also known as Simions). 

Redundancies have a negative impact on the required effort for development and software 

quality.  

The dataset in which LSI was applied on, according to [36], was extracted from 

Java code files for a specific system. The extraction included only identifiers in declaration 

of methods, classes and contained parameters. It captures the concepts intended by the 

programmers while mitigating the risk of false positives. Even though the use of LSI solely 

was outperformed by Aggregated Clone Detection (ACD), which achieved a precision of 

52%. Combining both approaches (ACD & LSI) resulted in a precision spark that reached 

76% and even 83% when both approaches results were intersected. Validating the results 

by the participants collected by the authors of  [36] (including people working on the 

original system) found that results are “actionable”. 

3.2.5. Document Analysis 

LSI was proven effective at detecting plagiarism. Plagiarism is a spreading practice 

with the rapid growth of information on the web. It is described as the representations of 

other’s work without proper referencing. Developing plagiarism-detecting techniques 

requires the understanding of stylometry, which is the study of variation in literary style. 

Stylometry’s approach falls into two main categories, Extrinsic and Intrinsic. Extrinsic 



  

   

36 

 

techniques perform well; however they are highly dependent on outside reference text 

collection (e.g. Turnitin) for detecting student essays. Intrinsic approaches on the other 

hand detect literary style difference based on n-grams. In [37], LSI accompanied by 

Stylometry are used to detect Intrinsic plagiarism over user submitted text. It is shown in 

the results that LSI enhanced the consistency and eliminated the noise of the text. 

In [38] LSI was used to improve automatic scoring of Chinese essays. Adapting 

automatic scoring has been more prevalent for three factors, less human labor, less 

subjective factors and higher agreement rates. Nevertheless, automatic soring suffered 

from performance issues of Chinese text compared to English. A novel technique was 

proposed in [38] to overcome these issues under two main assumptions; first is that topics 

hidden to an essay contribute to the quality and second, an essay may include multiple 

topics. Therefore, topic-modeling techniques resembles a plausible remedy for the Chinese 

essays dilemma. A modified version of LSI was adapted to overcome its scalability issues 

(see section 3.3). Applying Regularized Latent Semantic Indexing (RLSI) has helped to 

achieve a rating agreement of 89%, demonstrating an effective solution. 

3.2.6. Crime Analysis 

Various attempts have been made to apply LSI in security applications as well. 

Fighting terror attacks is an example as proposed by [39]. At first there does not seem to 

be a pattern among these attacks as they vary in location and attackers. Analyzing those 

attacks appears to be challenging as terrorist groups appear to be dynamic. They constantly 

change their locations, weapons, targets and names. LSI was an advantage to provide a 

more profound understanding of terrorist attacks using data collected by START (Study of 
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Terrorism and Responses to Terrorism) from 2000-2011. The data was divided into three 

main chronological segments. After removing stop words, a separate term-document 

matrix was generated for each segment. SVD was then applied to reduce dimensions where 

the two first two vectors with the highest energy were clustered using K-means. Therefore, 

the data was clustered based on different unifying characteristics including, attack types 

and weapons used (i.e. attacks involving bombs and attacks involving arson). The LSI-

proposed method can help achieve higher efficiency of counter-terrorism and lower 

response time to label terrorist groups. 

LSI was used as well to assist in the problem of cyberbullying detection. It is a 

problem that became more prevalent and significant due to more youth having 

unsupervised access to the internet. It has various forms including flaming, trolling, 

cyberstalking, harassment, etc. according to the authors of [40]. In their paper, they used 

data from Formspring.com as source for rich cyberbullying data according to a previous 

work of theirs. In the first half of the paper, a bag-of-words language model was introduced 

to detect multiple types of cyberbullying. Then LSI was used to help identify additional 

terms that describe cyberbullying. The proposed system was described to have a high 

impact on giving higher scores to cyberbullying content. 

Part of the team later introduced yet another system to help detecting cyberbullying 

[41]. However, instead of trying to detect term co-occurring with cyberbullying, a search 

engine is proposed. The search engine uses LSI and it does not depend on a bullying terms’ 

dictionary. LSI has been conventionally known to be working on long well-formed text 

while the dataset used (retrieved from Formspring.com) is quite the contrary. As a social 
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site, its data is usually in the form of short posts filled with misspellings, abbreviations, 

and unusual punctuation. Nevertheless, applying LSI managed to yield satisfying results 

with a precision of 55%.  

Another problem LSI contributes to solve is the detection of named entities. Named 

entities recognition (especially names of persons) plays an important role in many 

intelligence and security informatics according to [42]. Most of the traditional techniques 

are based on techniques like phonetic similarities and edit distances. However, they usually 

encounter some difficulties in obtaining high precision in large datasets. The reason is that 

with large datasets the amount of name variants increases (e.g. Zawahiri, al Zawahiri, etc.) 

and hence it could include many of other individuals.  

As proposed in [42], first a traditional technique with a wide acceptance threshold 

is used to provide a list of name variants. LSI is then used to find similar terms noting that 

terms are represented as vectors in LSI space. The list of name variants can be re-ranked 

based on LSI vector similarity. The aforementioned approach encounters some difficulties 

when there are multiple people with similar names doing similar activities. This occurs 

when the list of names is limited as in Korea and China. Hence, a refined approach was 

proposed to add an extra step to check for associated terms. This approach is derived from 

the assumption that if Name A and Name B refer to the same person then the set of terms 

associated with them should be similar. The refined method has proved to improve 

precision significantly without affecting recall. 
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3.2.7. Medical 

LSI was correspondingly leveraged in medical applications such as liver 

segmentation. Computer-aided diagnosis (CAD) provide many applications for surgery 

planning and liver volume measurement, etc. Liver segmentation is an essential step in 

many CAD applications that is often done using computed tomography (CT). According 

to [43], automating the process of liver segmentation is important to avoid the time-

consumption of the user’s feedback loop required by the non-automated processes and the 

manual annotations of CT volumes. The liver segmentation process involves partitioning 

CT volume to non-overlapped sub-volumes. Given a sub-volume, it is required to apply 

3D liver localization. To detect arbitrary shapes as livers, Hough transform is an effective 

and robust method. However, the large size of data entries resembles a great hinder for the 

performance of Hough transform due to its time complexity. Each CT sub-volume is 

represented as a set of cube features. Those feature vectors can be factorized using SVD 

component of the LSI, where Hough transform is then applied. The new proposed method, 

which uses LSI, was found to improve liver segmentation quality and helps to develop 

high-performance CAD applications.  

Another use of LSI was in the context of annotation DBs for Gene Ontology (GO). 

These DBs are the repositories of human’s kind biological knowledge, which keeps 

advancing with time. It carries information about genes and annotate each gene for a 

particular molecular function. However not all those annotated genes are for the 

corresponding biological process. This might not cause an issue if data is to be manually 

read by a human (i.e. DB curator or life scientist) as they are able to extrapolate the required 
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information. However, it is more likely to conduct a simulation using a software analyzing 

GO graph that is constructed using annotations retrieved from the DB. In [44], it was 

suggested that expressing the DB as a typical term-document matrix while using LSI would 

solve the aforementioned issue. The problem was modeled so that genes represent terms 

and molecular functions represent documents. It is worth mentioning that different 

weighting schemes were used, other than the typical 𝑡𝑓 − 𝑖𝑑𝑓 weighting scheme. Applying 

the dimensionality reduction was described to “capture the latent semantics and filter out 

the noise” [44]. 

3.2.8. Media 

LSI has been leveraged as well in media retrieval researches. Video retrieval is one 

example of the potential application of LSI. The authors of [45] show how LSI can enhance 

video retrieval performance compared to the traditional matching algorithms used in that 

field. The proposed model for video retrieval contains three steps, Video segmentation, 

Feature extraction, and Video retrieval. First, the video is separated into multiple video 

shots. A shot contains multiple frames, which are assigned to it using biorthogonal wavelet 

transformation and L2-norm distance between every frame. Second three sets of features 

are extracted, including motion, color and edge density. This results in three feature 

vectors, which are then used to construct a feature matrix. Then LSI is applied on the 

feature matrix, where the result is then used to search against. Third, a query video would 

be processed following steps one and two where cosine similarity is used to retrieve similar 

videos.  

The experiment conducted in [45] used a database where the similar videos for each 
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query video was known in advance. The results reported do not show the precision of the 

method, however, it shows that LSI always managed to retrieve most of the similar videos.   

LSI was used as well to re-rank images’ tags. The need for re-ranking arises from 

the fact that images are usually labeled randomly. That means tags do not accurately 

describe the content of the image. In [46], LSI was leveraged to explore the tags’ similarity 

as part of the re-ranking system. First, a tag-image matrix is constructed, and then the 

matrix is factorized using SVD where the resultant approximated matrix is used to explore 

the Tag-to-Tag similarity.  

 

3.3. LSI Challenges 

There are various challenges that researchers are likely to encounter while 

leveraging LSI. That includes, estimating the value of 𝑘, poor performance on some 

datasets and Scalability.  

Estimating the value of 𝑘 is one of the common challenges while applying LSI. In 

section 1.3, it is explained that SVD is the key player in LSI; it factorizes the original matrix 

to three matrices then a lower rank 𝑘 is selected. However, selection of 𝑘 is not an easy 

task as mentioned in [24]. If the rank is too large, the approximated matrix could end up 

too similar to the original, which does not solve polysemy or synonymy. If too small, it can 

be too dissimilar to the original and thus retain less information.  

LSI also performs poorly on some selected Datasets. In [24], a sample dataset was 

provided where SVD failed to recognize the related documents and thus failed to address 

the polysemy and synonymy issue. The author also tested the performance of SVD on three 
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different standard datasets in LSI researches, SVD failed to provide improvements over the 

vector space model. Another work, [26], has encountered the same problem. It found that 

LSI was found to perform poorly on TREC 2, 7, 8, and 2004 collections.  

Poor performance on large datasets is also one of the main challenges for LSI, 

which is caused by the computation-intensive nature of SVD as reported by [2] and [24]. 

Both [2] and [24] are 25 years apart, which shows how no improvements were introduced 

to enhance SVD’s performance. This is largely due to the orthonormal constraint 

mentioned in [19] and [18].  
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Chapter 4: Research Methodology 

This chapter reflects on the problems discussed in Chapter 2. It introduces the 

experiments designed to tackle those issues. Discussion in this chapter can be divided into 

two parts. Part 1 reports on the details of experiments designed to test LSI scalability while 

part 2 focuses on experiment related to applying LSI on encrypted data. 

4.1. Part 1: LSI Scalability11 

One part of this work is to investigate if gensim’s implementation of LSI overcomes 

the scalability issues discussed in section 3.3. To do so, a set of experiments were devised 

to perform analysis on its performance on an HPC environment on a large-scale data. The 

experiment measure gensim’s LSI effectiveness and performance according the 

measurement metrics mentioned in section 4.1.4. 

4.1.1. Environment 

In this section, a discussion of the development environment is provided. Libraries 

and tools used in this part are detailed discussing their significance to this work. 

4.1.1.1. Anaconda [47] 

Anaconda is an open source distribution of python and R programming languages. 

It aims to simplify package management and deployment using package management 

system named Conda. It also makes it easier to create multiple virtual environment with 

different settings and versions on the same machine. In this work, an LSI python 

11 LSI performance and LSI’s system’s performance are used interchangeably in this section and through 

the whole document.  
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implementation is used (check section 4.1.1.6 for more details), thus making anaconda 

useful.  

4.1.1.2. NumPy 

NumPy is a python library introduced for scientific computing. It supports handling 

N-dimensional arrays and matrices along with mathematical functions to operate on them.  

In this work, NumPy is utilized to apply efficient mathematical operations on array-

like objects; e.g. sorting, summation, 𝑠𝑞𝑟𝑡, generate random matrix (used in section 

4.1.40), etc.   

4.1.1.3. Pandas 

Panda is a python library that provides data structure along with set of operation to 

manipulate them. In this work, panda is used to handle data like term-document matrix and 

relevance assessment tables which shows sorted similarities information (shown in section 

5.2).    

4.1.1.4. Matplotlib 

Matplotlib is a 2-D plotting python library. It provides publication-quality figures 

and can be used in interactive applications like Jupyter (reported in the next section). It was 

used to plot recall-precision curves12 and a representation of documents in LSI space ( 

Figure 1).  

 

 

                                                 
12 Recall-precision curve is a measurement metric explained in section 4.1.4.2.1 
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4.1.1.5. Jupyter Notebook [48] 

Jupyter Notebook is an open source web application that provides an interactive 

platform for over 40 different languages including python. It allows users to create and 

share documents over cloud services like Dropbox, GitHub, etc. or export documents as 

Html pages. A Jupyter document can contain live code, equations, visualizations and 

narrative text [48]. 

The descriptive nature of Jupyter documents helps to make the code clearer and 

easier to understand. Along with the ability to share them, it eases supervisors’ engagement 

in the implementation side of the work, thus, it was leveraged in this work.  

4.1.1.6. Gensim 

Gensim is an open source python library, that was proposed in [16] as a framework 

(see section 3.1.4.2) that addresses scalability issues in some topic modeling algorithms 

including LSI. Gensim, a memory-independent library, was intentionally designed to work 

efficiently on large corpora. It is also an OS independent; it runs on Windows, Linux, 

macOS and OS X. 

Gensim provides an LSI implementation that can work in both serial and distributed 

mode. It can handle corpora that is much larger than RAM and can be applied on a cluster 

of nodes for distributed mode [49]. To elaborate on the discussion presented in section 

3.1.4.2, the following concepts of Gensim are presented (more details can be found in [50]). 

First concept is Corpus (plural corpora), a collection of digital documents. The 

collection, which is also referred to as a training corpus, includes information about 

documents and their topic and it can be used to assign topics to new documents with no 
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human intervention. Second concept is Vector, a feature representation of a document. 

Each document consists of an array of features; in the term-document matrix, for example, 

a feature is the number of terms that appear in a document. Third concept is Model, an 

abstract word that describes a transformation from one representation of a document to 

another. For example, the term-document matrix describes the occurrence of each term in 

a certain document. Applying SVD or LSI model (as described in section 1.3) would 

transform it to a co-occurrence matrix where documents with co-occurring term are 

represented closer in the vector space.  

4.1.1.7. Pyro 

Pyro is a python library that enables users to build applications where objects 

communicate over the network with minimal programming. It is used as part of gensim’ 

implementation for DLSI. Its nameserver is also utilized in this work as described in section 

4.1.3.1. 

4.1.1.8. RAAD [51] 

RAAD is a High-Performance Computing (HPC) cluster that is hosted by Texas 

A&M University at Qatar (TAMUQ). HPC refers to a large-scale aggregation of computer 

hardware to solve difficult problems at various fields [51]. TAMUQ has been an HPC 

leader in Qatar for over a decade; their goal is to help and facilitate the work of those in 

the Qatari research community. This decade of experiences includes management, support 

and maintenance of four different systems provided by the Research Computing (RC) 

group [51]. Those four systems are SAQR (2005 – 2008), Suqoor (2008 – 2011), RAAD 
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(2011 – 2016) and RAAD II (2017 – Present) [51]. In this work, only RAAD II13 is 

leveraged.   

RAAD II, which translates to ‘thunder’ in Arabic, is a supercomputer that was made 

by Cray, an American supercomputer manufacturer founded in 1972.  It was co-funded by 

both TAMUQ and Qatar Computing Research Institute (QCRI). The RAAD II composes 

of 172 nodes, a total of 4,128 CPU cores, an aggregate of 22,016 GB in memory and a 

shared disk space of 800 TB. The full technical specifications of RAADII are reported in 

[52]. For scheduling and resource management, RAAD II relies on SLURM; an open-

source job-scheduler for Linux and Unix-like kernels. 

RAAD II would provide a perfect fit for running LSI in a distributed system. The 

support provided from TAMUQ to the Qatari research community will help granting access 

for a powerful computing hardware along with extensive support. For this reason, RAAD 

II was selected for this work. 

4.1.2. Datasets 

In our experiments, two different datasets will be leveraged; Wikipedia and 

Medline dataset [53]. This section provides a brief description of each dataset and its role 

in this work. 

4.1.2.1. Medline 

Medline is a dataset of medical articles. The School of Computing Science in the 

University of Glasgow provides the version used in this work. It was specifically designed 

to for IR-related tasks, which implies that an evaluation analysis can be carried on (see 

                                                 
13 For simplicity RAAD will be used to refer for RAAD II in the upcoming sections. 
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more in sections 4.1.4.2 and 4.1.3.2.2). The dataset contains three files; MED.ALL which 

contains a list of 1033 articles, MED.QRY that contains a list of 30 possible queries and 

MED.REL containing a list of all relevant documents for each query. 

4.1.2.2. Wikipedia 

Wikimedia frequently provides a dump of Wikipedia articles, which were used by 

the genism team. The gensim team provided a getting-started guideline to apply LSI on  

local machine using the Wikipedia dataset as an example [54] and they also leveraged it in 

their paper [30]. In this work, a dump released on 13 April 2017 is being used; however, 

the experiment can be conducted on any release. The size of the dump is 12.8 GB in size 

and all the articles (4,227,933 articles) are available in one xml file. 

While Wikipedia dataset is not a comparable scale to data in the context of web 

search (4 million dataset), we consider a scale of data that is owned by a single entity and 

stored on an HPC platform provided by a cloud computing service provider. 

4.1.3. Experiments 

4.1.3.1. LSI Performance 

4.1.3.1.1. Introduction 

The overall goal of the experiments designed in this section is to test if LSI can 

scale over large datasets. The LSI implementation used in this set of experiments is the 

gensim’s LSI discussed in Gensim in sections 3.1.4 and 4.1.1.6. These experiments are 

conducted on RAAD using both modes of gensim’s LSI, serial and distributed. 

The serial mode requires only one node and it runs in sequential steps. Dataset 

reading is the first step; preprocessing (if any) usually follows the reading step or is 
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integrated with it (further details are provided in the Measurement Metrics section). 

Secondly the corpus is generated, which is a term to describe a genism collection [50]. 

Once a corpus is created from an existing dataset, it is ready for further processing using 

genism. It records information of dataset document and features (distinct words after 

preprocessing), number of non-zero entries in the term-document matrix, and a map 

between all words and their integer ids (i.e. dictionary) [55]. In practice, the dictionary is 

stored separately even though it is part of the corpus. Both corpus and dictionary are then 

used to generate the LSI model. 

The distributed mode follows the same steps; however, it requires four different 

objects running on different machines representing the cluster. First is the pyro nameserver, 

a tool to help keep track of objects running on the network and it also assigns logical names 

to those objects instead of exact IPs for convenience. Second is the worker, a class 

implemented by gensim that handles the actual computation in distributed LSI (DLSI). 

Third is the dispatcher, a “job scheduler in charge of worker synchronization” [49]. It 

prepares documents’ chunks and assigns them to workers. The aforementioned objects are 

the essential entities of the cluster. Fourth and last object is a mere python (and gensim) 

implementation of DLSI. 

4.1.3.1.2. LSI on RAAD 

RAAD uses slurm as its workload manager as aforementioned. When a job is 

submitted, it allocates the job to the next available node. A job in this context refers to the 

code of a single object (e.g. worker, dispatcher, etc.) that is submitted to RAAD. To run 

DLSI, the nameserver is first submitted to run on one node which is randomly selected by 
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slurm. Secondly, logical worker(s) are submitted where the physical node can be either 

manually selected or left to the queue to decide. The dispatcher is then submitted followed 

that the DLSI code.  

In this work, the purpose is to check if LSI can be scaled up, thus, various setups 

were devised to test that. The Wikipedia dump is large, it takes a relatively long time to 

finish and that makes it difficult to debug any possible issues. Therefore, a decision was 

made to start from a small sample and build up for the original size (4 million document). 

 Wikipedia divides its full dump to smaller files of arbitrary sizes as can be found 

in [56]. In this work, a file of size 300 MB (113,550 articles) was selected. Then the 

gensim’s function RepeatCorpus was applied on that dataset to generate datasets of the 

following sizes, 500k, 1m, 1.5m, 2m, and 4,227,933 articles14. 

For each dataset size, LSI is run in both modes, serial and distributed mode. The 

distributed mode is run using on 2, 4, 6 and 8 workers. Each two workers run on the same 

physical machine to follow the same setup of [49].  

It is important to note that while using RepeatCorpus, the dictionary’s (word-id 

mapping) size does not change as the list of work is the same. Thus, LSI is applied on both 

the original 4m dataset and on the repeated one to check the dictionary’s size effect. In 

addition, the chunk size was reported to affect LSI’s performance [30], thus different chunk 

sizes were used to test its effect. 

In addition to testing the effect of both the dictionary and chunk size on LSI 

performance, the setup discussed earlier helps to study further points. It helps to study how 

                                                 
14 Same size the Wikipedia dataset (section 4.1.2.2) 
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gensim’s LSI scale up across different sample sizes and how it scales up across different 

number of worker (and in turn, different number of machines). This help to determine the 

efficiency of the genism library. The library’s performance is also compared to the baseline 

discussed in Baseline 1: Distributed LSI on Wikipedia. 

4.1.3.1.3. Baseline 1: Distributed LSI on Wikipedia 

In [30], a distributed solution for LSI was proposed to handle large datasets as 

formally. The dataset utilized in the experiment was the Wikipedia dataset mentioned in 

Wikipedia.  

The dataset was represented in a 100,000 x 3,199,665 sparse matrix and it had 0.5 

billion non-zero entries (0.15% density). The dataset was clipped to 100k features (most 

frequent words) and the rank 𝑘 was set to 400. 

The various experiments reported in [30] were designed to evaluate various 

variations of DLSI before choosing the default variation implemented in gensim. In this 

work we consider the default variation to be the baseline. The experiment was performed 

on 2.0 GHz Intel Xeon workstation with 4GB of RAM and 4 nodes (8 worker) with CPU 

time is 1h 41m. It was reported on gensim’s official site as well [49]. 

4.1.3.2. LSI Effectiveness 

The overall goal of the experiments designed in this section is to test the impact of 

distributed on gensim’s LSI effectiveness. In this case effectiveness is measured by the 

average precision as discussed in section 4.1.4.2. The dataset utilized in this section is the 

Medline dataset, which helps to calculate the average precision as formerly mentioned. 



  

   

52 

 

4.1.3.2.1. Experiment 

The experiments in this section follows the same steps reported in the LSI 

Performance adding an extra step of relative assessment to measure the effectiveness.  

To do so, first, a new index reference is prepared through applying the Similarity 

class [57]. The Similarity class job is to divide an index into sub-indexes (shards), this is 

mostly helpful in case the entire index cannot be fit in memory. The output of the similarity 

class (i.e. new index reference) can be used to calculate the similarity between a query and 

a document in the index. Second, a relevance table is constructed using MED.REL. The 

relevance table contains a list of all query ids in MED.QRY a long with their relevant 

document ids as shown in the figure below. 

 

 

 

 

Figure 5: A snapshot from relevancy table generate from Medline dataset 
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Third, a list of Medline queries is read from MED.QRY file, while the similarity 

for each of them against all Medline documents is calculated using the index. The list of 

similarities is then sorted in a descending order from the most relevant document to the 

least relevant. 

Both the table of relevance and list of similarities can be used to calculate the 

precision and recall for each query. 

4.1.3.2.2. Baseline 2: Medline 

The experiment detailed above is applied in both serial and distributed mode. The 

average precision is calculated in both cases to measure the effectiveness. The comparison 

between both modes helps determine the impact distributed mode has on LSI and whether 

it maintains the same level of effectiveness.  

4.1.4. Measurement Metrics 

Throughout the three scenarios, two main metrics will be analyzed, performance 

and evaluation. Both metrics will be later utilized to compare an experiment’s outcome 

against one of benchmark solutions discussed in 4.1.3.  

4.1.4.1. Performance 

The performance metric is a measurement of CPU time taken by a machine to build 

an LSI model. Further details on how the CPU time was consumed shall be provided along 

each experiment’s results’ analysis. 
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4.1.4.2. Effectiveness/Accuracy 

In IR, evaluation metrics plays a key role to determine the effectiveness of an IR 

system. Those metrics usually “revolve around the notion of relevant and nonrelevant 

documents” [1] where the relevancy is a measurement of the satisfaction of user needs 

which are expressed in their query.  

Measuring the effectiveness of a system can then help to decide on the most 

efficient pre-processing steps. This includes removing stop-words, stemming, etc. It also 

helps to determine whether any of the proposed experiments are valid or not. 

4.1.4.2.1. Recall-Precision curve 

Traditional effectiveness measures like precision and recall are more suitable for 

set-based measures [1]. In this case, these measures are applied on a set of un-ordered 

document. However, in this work, the retrieved set of documents are in order, where the 

top-k documents represent the most-k relevant documents, similar to a search-engine 

retrieval list. 

For an ordered-set, a precision-recall curve can be plotted using the calculated data 

for precision and recall. The curve shows both precision and recall values calculated in 

each document. 

4.1.4.2.2. Interpolated Average Precision 

The recall-precision curve provides an easy-to-interpret method to judge how the 

effectiveness of the system varies while moving further in the retrieved list. However, it 

cannot be used to compare performance across different queries. For that purpose, 

interpolated average precision is used. The interpolation values are calculated at 11 
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standard recall levels (100%, 90%, 80%, ..., 10%, 0%). It can be plotted in an easy-to-

interpret graph and also it can be used to calculate a single value measure; 11‐ point 

Interpolated Average Precision [58]. 

 

4.1.4.2.3. Average Precision (AP) 

MAP works similarly to the Interpolated Average Precision; it helps to compare 

effectiveness across different queries and generate a single-value measure, Mean Average 

Precision (MAP).  

4.1.4.2.4. Other Measurements 

Other measurements include Discounted Cumulative Gain (DCG) and F1-measure. 

DCG is more suitable in the case of a graded relevancy measurement (e.g. 5=very relevant, 

4=relevant, etc.) which is out of the scope of this work. Besides, F1-measure is more 

suitable for professions that highly value recall figures like paralegals and intelligence 

analysts [1]. 

For this work both the Interpolated Average precision and MAP can be leveraged, 

however, MAP is the “most standard among the TREC community15” according to [1]. 

4.1.5. Datasets Pre-processing 

The preprocessing stage is vital to validate the articles in the dataset and prepare it 

for processing. It can include a step to prepare the dataset to be readable by the gensim 

library and it can include traditional IR preprocessing steps like tokenization and stop-

                                                 
15 Text REtrieval Conference (TREC) is a conference that aims to support research within the information 

retrieval community (see here: http://trec.nist.gov/overview.html) 

http://trec.nist.gov/overview.html
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words removal. The aim of traditional pre-processing steps is to optimize the effectiveness 

of the system. However, this work is concerned about the relative performance across the 

implemented experiments, thus, those pre-processing steps were neglected. This section 

describes the details of the applied pre-processing steps on each dataset. 

4.1.5.1. Medline 

Gensim provides various classes to read a collection and build a corpus, the one 

used in this work is text_corpus. The text_corpus class uses the method get_texts to read a 

given dataset. In this work, the get_texts method was updated to fit the Medline articles’ 

format. Defaults pre-processing settings of text_corpus is used. 

4.1.5.2. Wikipedia 

Gensim provides a wiki_corpus class that provides the same functionality of 

text_corpus for the Wikipedia collection. In this work, wiki_corpus was utilized along its 

default pre-processing settings 

The wiki_corpus class applies a set of different methods that pre-process the 

collection and remove non-necessary parts. Following is a list of functionalities applied 

to clean the Wikipedia collection. 

4.1.5.2.1. Page Extraction 

 One of the very first methods applied by the wiki_corpus is extract_pages. The 

method takes the Wikipedia collection as an input and returns a triple of title, content and 

pageid. 
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4.1.5.2.2. Filtering 

The content of each page is then passed to the filter_wiki method. It generates a utf-

8 encoded string that is then passed to the remove_markup method. Wikipedia-related 

markups are then removed or processed, this includes removing comments, removing 

footnotes, re-structuring tables and simplifying links. 

4.1.5.2.3. Tokenization 

The previous steps’ output a stream of filtered pages (i.e articles). Each page is then 

passed to tokenize method. It takes the filtered pages as an input and outputs index-ready 

tokens, ignoring words shorter than 2 or longer than 15 characters. 

After that, a Wikipedia corpus is ready to be used to generate the LSI model. 

 

4.2. Part 2: LSI on Encrypted Data 

The second part of this work focuses on proposing a framework/protocol that 

allows to perform search functionality using LSI on a cloud server while obscuring the data 

from it. To do so, multiple experiments with various settings were devised and tested. In 

this section, we report on the adapted environment and tools. Then we list the leveraged 

datasets followed by the details of the carried-on experiments. Details on measurement 

metrics and dataset preprocessing are also provided.  

4.2.1. Environment 

The development environment in this part is largely similar to the environment 

discussed in the former part. However, LSI was implemented from scratch here (see 

section 4.2.3) and run on a local machine, thus both gensim and RAAD were not used.  

A new tool that was used in the part is Sklearn. It is a machine learning library 
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for Python. It provides multiple algorithm for classification, regression, clustering and 

others. However, for this work, Sklearn was utilized to generate the term document 

matrix and apply SVD on it. For this purpose, both classes CountVectroizer and 

randomized_svd were used. More details can be found in the experiments section. 

4.2.2. Datasets 

4.2.2.1. Proof of Concept 

In this section a simple dataset constructed by [4] and shown in Table 1 is 

used. The dataset was initially introduced to show how LSI works and thus it aligns 

with the aim of this part of the work; showing how LSI works on encrypted data. It 

mainly used as a proof of concept for our proposed protocol. This dataset is used as 

a proof of concept to illustrate the effectiveness of our methods.  

4.2.2.2. Medline 

As a test collection, Medline can help evaluating our methodology on a real 

test collection that is used in research area. While the following experiments 

represent a development process to design a practical protocol, Medline is only used 

in the last one (i.e. finalized version of the protocol). Using Medline, we compare 

both the performance and effectiveness of our proposed protocol.    

4.2.3. Experiments  

4.2.3.1. Overview 

In this set of experiments, the cloud service provider is assumed to be the attacker, 

thus the aim is to hide the data from it. To achieve that, we try to build a secure system 

using security via randomized splitting, a technique that secures data by splitting it into 
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smaller units with the help of a random variable and distributes them to separate locations. 

Therefore, the system uses multiple cloud servers assuming they do not collude or have no 

method of communication (e.g. different cloud service providers). For example, if we have 

the following two variables 

𝐴 = 7 

𝑅 = 3 

 Assuming 𝐴 is the variable, we want to hide and 𝑅16 is the random variable, 

randomized splitting will generate two versions of A 

𝐴1 = 𝐴 + 𝑅 = 7 + 3 = 10 

𝐴2 = −𝑅 =  −3 

Each version of 𝐴 is then stored at a different cloud server, and if both adhere to 

the protocol while having no method of communication, they cannot interfere with the 

original value of 𝐴. Since computers, as deterministic systems, cannot really generate a 

truly random number [59], therefore, security of the system is conditional based on the 

random function. Those pseudo-random numbers are sufficient for most applications and 

that is why a system that is secured by random splitting can be – to a high extend- assumed 

to achieve unconditional security. 

The goal in these experiments is to maintain the ability to search while using 

random splitting. The baseline experiment described in section 4.2.3.2 retrieved the human-

computer interaction documents at the top, thus if that is achieved, the outcome is 

                                                 
16 In some cases, two different random matrices are used in the same experiment. In this case a different 

symbol might be used like 𝑟 
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satisfactory. 

No actual cloud servers were used in these experiments; however, they are 

simulated in the variable names. So, for two variables 𝐴1 and 𝐴2, they are hosted by 𝑆1 

and 𝑆2 respectively. For each experiment, similarity is calculated twice, both before and 

after vector’s length normalization. Results are then discussed and compared in case any 

difference in the results occurs. 

The upcoming sections discuss the setup details and objective for each conducted 

experiment along with an overview graph that depicts the flow of the experiment. 

4.2.3.2. Baseline 

The experiment designed in [4] and discussed in section 1.4 is selected as the 

baseline solution for this part. It is considered as a standard dataset to describe LSI’s 

functionality which aligns with the goal of this part. Leveraging this experiment also makes 

it easy to compare results. 

For this part genism’s LSI was not utilized; instead it was manually written from 

scratch. While genism implantation is more efficient, memory friendly and can be scalable 

as discussed in section 4.1.3.14.1.1.6; we require high control on the implementation for 

later modifications. Gensim, as an open source project, may provide the possibility for 

alternation, yet it is a huge project and modifications on it could require more effort than 

what the scope of this thesis allows. 

First step in this implementation is to generate the term-document matrix 𝐴, that is 

achieved using class CountVectorizer of sklearn library. Sklearn also provides the 

functionality to factorize 𝐴 to three matrices as explained in 1.3 using the class 
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randomized_svd. The output three matrices are already in a lower rank, so their 

multiplication is 𝐴𝑘. 

 

𝑈, 𝑆𝑖𝑔𝑚𝑎, 𝑉𝑇  =  𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑_𝑠𝑣𝑑(𝐴, 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 2)17 

Equation 5: Factorize the matrix 𝐴 using sklearn's randomized_svd 

 

 

𝐴𝑘  =  𝑈. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎). 𝑑𝑜𝑡(𝑉𝑇) 

Equation 6: Calculation of 𝐴𝑘 using the output of randomized_svd 

 

After that, a query vector 𝑞 is generated and then transformed to the same space as 

𝐴𝑘. It is important to note that the transformation uses two of the three factor matrices 

composing 𝐴𝑘; 𝑈 and 𝑆𝑖𝑔𝑚𝑎. 

 

𝑞𝑘 =  𝑞. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(). 𝑑𝑜𝑡(𝑈). 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒()) 

Equation 7: Calculation of 𝑞𝑘 using the output of randomized_svd 

 

𝑞𝑘 is then used to calculate 𝑠𝑖𝑚(𝑞𝑘, 𝐴𝑘); the cosine similarity between the query 

and the matrix 𝐴𝑘 as discussed in 1.3. This similarity is the baseline that the following 

                                                 
17 n_components: Number of singular values and vectors to extract. In this case number of component is 

two. 
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experiments compare against. 

Since we are using two datasets, the baseline is applied in both.  

4.2.3.3. Experiment 1 

Our first goal was to test the ability of hiding the matrix 𝐴 through random splitting 

into two servers 𝑆1 and 𝑆2 without affecting LSI effectiveness. That means the experiment 

will retrieve the c-coded documents at the top. If successful, it can be interpreted that only 

generating the term-document matrix (occurrence matrix) has to be performed at the client 

side. Thus, generating the LSI model (including the computationally intensive SVD) will 

be performed at the cloud. The following two sections discuss the details of the experiment 

while section 0 depicts a graph overview of the experiment.   

4.2.3.3.1. Prepare Matrix A  

First step in the experiment is to generate the term-document matrix 𝐴, then SVD 

is applied on 𝐴 which yields three different matrices as explained in 1.3 and shown in 

Equation 5. Those three matrices are then used to calculate 𝐴𝑘 as shown in Equation 6. 

After that, 𝑅 is used to split 𝐴 into two values assumed to be stored on two different servers; 

𝑆1 and 𝑆2. 

 

𝐴1 =  𝐴 + 𝑅 

𝐴2 =  − 𝑅 

Equation 8: Splitted 𝐴 
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After that, each server applies SVD on its version of 𝐴 to calculate 𝐴𝑘 as follows. 

 

𝑈1, 𝑆𝑖𝑔𝑚𝑎1, 𝑉𝑇
1  =  𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑_𝑠𝑣𝑑(𝐴1, 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 2) 

𝑈2, 𝑆𝑖𝑔𝑚𝑎2, 𝑉𝑇
2  =  𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑_𝑠𝑣𝑑(𝐴2, 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 2) 

Equation 9: Applying SVD on both servers 

 

Then 𝐴𝑘 for each server is calculated. 

 

𝐴1𝑘  =  𝑈1. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎1). 𝑑𝑜𝑡(𝑉𝑇
1) 

𝐴2𝑘 =  𝑈2. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎2). 𝑑𝑜𝑡(𝑉𝑇
2) 

Equation 10: Calculating 𝐴𝑘 on each server 

 

4.2.3.3.2. Preparing Query 𝑞𝑘 

As previously mentioned in section 4.2.3.2, the query 𝑞 is transformed into the 

same space as 𝐴𝑘 using 𝑈 and 𝑆𝑖𝑔𝑚𝑎 shown in Equation 7. In this experiment 𝑞𝑘 is 

calculated for each value of 𝐴𝑘 as each is hosted in a different cloud server. The query is 

first sent to the cloud servers and then calculated as following.  

 

𝑞1𝑘 =  𝑞. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(). 𝑑𝑜𝑡(𝑈1). 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎1. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒()) 

𝑞2𝑘 =  𝑞. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(). 𝑑𝑜𝑡(𝑈2). 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎2. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒()) 

Equation 11: Calculating 𝑞𝑘 on each server 
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4.2.3.3.3. Similarity Calculation 

The similarity between each query and its counterpart is then calculated; 

𝑠𝑖𝑚(𝑞1𝑘, 𝐴1𝑘) and 𝑠𝑖𝑚(𝑞2𝑘, 𝐴2𝑘). Both similarities are then added up and compared to 

𝑠𝑖𝑚(𝑞𝑘, 𝐴𝑘) as the baseline. 

4.2.3.3.4. Experiment Overview 

 

 

 

 

 

The graph above shows the flow of both 𝐴 and 𝑞 according to the steps described in 

former section. 

 

Figure 6:  LSI over Encrypted data – Experiment 1, Dividing Matrix 𝐴 
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4.2.3.4. Experiment 2 

This experiment was proposed as Experiment 1’s results were not conclusive as 

will be shown later. The premise behind this experiment is to hide 𝐴 as well, however, it is 

done differently as it is discussed in the following section. Similar to the previous 

experiment, if successful, this provides a method to hide 𝐴 from the cloud server while 

forwarding most of the heavy computation to the remote cloud server. Both sections 

4.2.3.3.2 and 4.2.3.3.3 discuss how the system can be queried and how to calculate 

similarity while section 4.2.3.4.4 depicts an overview graph of the experiment. 

4.2.3.4.1. Preparing Matrix 𝐴  

Contrary to what is done in experiment 1, 𝐴 is not divided using a random matrix, 

however, SVD is first applied as shown in Equation 5. The random matrix 𝑟 is applied to 

only the matrix 𝑆𝑖𝑔𝑚𝑎 as shown below. 

 

𝑆𝑖𝑔𝑚𝑎1 = 𝑆𝑖𝑔𝑚𝑎 + 𝑅 

𝑆𝑖𝑔𝑚𝑎2 =  −𝑅 

Equation 12: Splitting Sigma 

 

Both values of 𝑆𝑖𝑔𝑚𝑎 are then used to calculate two different 𝐴𝑘 as the following 

equation shows (all these steps are assumed to be performed locally). 
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𝐴1𝑘  =  𝑈. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎1). 𝑑𝑜𝑡(𝑉𝑇) 

𝐴2𝑘  =  𝑈. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎2). 𝑑𝑜𝑡(𝑉𝑇) 

Equation 13: Calculating both versions of 𝐴𝑘 locally 

 

4.2.3.4.2. Preparing Query 𝑞𝑘 

When a query 𝑞 is formed and sent to a server, it is transformed based on the 𝐴𝑘 

variable it hosts. The following equation describes the transformation process. 

 

𝑞1𝑘 =  𝑞. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(). 𝑑𝑜𝑡(𝑈). 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎1. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒()) 

𝑞2𝑘 =  𝑞. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(). 𝑑𝑜𝑡(𝑈). 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎2. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒()) 

Equation 14: Calculating 𝑞𝑘 on each server 

 

4.2.3.4.3. Similarity Calculation 

The similarity between each query and its counterpart is then calculated; 

𝑠𝑖𝑚(𝑞1𝑘, 𝐴1𝑘) and 𝑠𝑖𝑚(𝑞2𝑘, 𝐴2𝑘). Both similarities are then added up and compared to 

𝑠𝑖𝑚(𝑞𝑘, 𝐴𝑘) as the baseline. 

 

 

 

 

 



  

   

67 

 

4.2.3.4.4. Experiment Overview 

 

 

 

 

 

Similar to the previous figure, the figure above shows the flow of both 𝐴 and 𝑞 

according the discussion provided in the previous sections. 

4.2.3.5. Experiment 3 

The previous two experiments did not yield satisfying results; hence, a new 

alternative is proposed. This experiment shifts its goal from hiding the term-document 

matrix 𝐴 to hiding the approximated matrix 𝐴𝑘; thus, requiring that SVD is performed on 

the data owner’s local machine.  

In this the premise that the 𝐴𝑘 can be separated into two servers; 𝑆1 and 𝑆2, and 

then yield the same results when queried is tested. If successful, this means that 𝐴𝑘 can be 

hidden from cloud service without affecting LSI effectiveness. Following three sections 

discuss the details of the experiment while section 4.2.3.5.4 depicts a graph overview of 

the experiment.   

Figure 7: LSI over Encrypted data – Experiment 2, Dividing Matrix A after applying 

SVD  
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4.2.3.5.1. Preparing Matrix 𝐴𝑘 

First step in the experiment is to generate the term-document matrix 𝐴, then SVD 

is applied on 𝐴 which yields three different matrices as explained in 1.3 and shown in 

Equation 15. 

𝑈, 𝑆𝑖𝑔𝑚𝑎, 𝑉𝑇 =  𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑_𝑠𝑣𝑑(𝐴, 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 2) 

Equation 15: Applying SVD to A with rank k=2 

Those three matrices are then used to calculate 𝐴𝑘. 

𝐴𝑘 =  𝑈. 𝑑𝑜𝑡(𝑆𝑖𝑔𝑚𝑎). 𝑑𝑜𝑡(𝑉𝑇)

Equation 16: Calculate  𝐴𝑘 

Each column (i.e. document) in 𝐴𝑘is then normalized where 𝑅 is used to separate 

𝐴𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) into two values assumed to be stored on two different servers; 𝑆1 and 𝑆2. 

𝐴1𝑘(𝑛𝑜𝑟𝑚) =  𝐴𝑘 + 𝑅 

𝐴2𝑘(𝑛𝑜𝑟𝑚) =  − 𝑅 

Equation 17: Split 𝐴𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) 
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4.2.3.5.2. Preparing Query 𝑞𝑘 

As aforementioned the query vector 𝑞 should be transformed to the same space as 

the matrix 𝐴𝑘. The transformation is shown in Equation 7.  

4.2.3.5.3. Similarity Calculation 

After that, the similarity between 𝑞𝑘 and 𝐴1𝑘(𝑛𝑜𝑟𝑚) and 𝐴2𝑘(𝑛𝑜𝑟𝑚) is consequently 

calculated; 𝑠𝑖𝑚(𝑞𝑘, 𝐴1𝑘(𝑛𝑜𝑟𝑚)) and 𝑠𝑖𝑚(𝑞𝑘 , 𝐴2𝑘(𝑛𝑜𝑟𝑚)). Both 𝑠𝑖𝑚(𝑞𝑘 , 𝐴1𝑘(𝑛𝑜𝑟𝑚))and 

𝑠𝑖𝑚(𝑞𝑘, 𝐴2𝑘(𝑛𝑜𝑟𝑚)) are then added up and compared against 𝑠𝑖𝑚(𝑞𝑘, 𝐴𝑘) as the baseline. 

Results are discussed in the next chapter. 
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4.2.3.5.4. Experiment Overview 

The figure below shows a flow chart of the experiment discussed above. 

 

 

                            

 

 

 

 

 

 

Figure 8: LSI over Encrypted data – Experiment 3, Dividing the matrix 𝐴𝑘 
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4.2.3.6. Experiment 4 

The results of the previous experiment showed promising results (details of the 

results discussed in the next chapter) in hiding 𝐴𝑘;  thus, this experiment follow similar 

steps to test if the query 𝑞𝑘 can be split and then each split is used to query a different 

server. If successful, this means that 𝑞𝑘 can be hidden from cloud service without affecting 

LSI effectiveness. Therefore, both experiments can be later combined to hide both 𝐴𝑘 and 

𝑞. Following three sections discuss the details of the experiment while section 4.2.3.6.4 

depicts a graph overview of the experiments. 

4.2.3.6.1. Prepare Matrix 𝐴𝑘 

In this experiment 𝐴𝑘 is neutralized as a factor so it is not divided. 

4.2.3.6.2. Prepare Query 𝑞𝑘 

The steps to calculate 𝑞𝑘 are the same as described in section 4.2.3.5.2. However, 

an additional step is added to first normalize the query 𝑞𝑘 to 𝑞𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) and then divide 

it to two different variables; 𝑞1𝑘(𝑛𝑜𝑟𝑚) and 𝑞2𝑘(𝑛𝑜𝑟𝑚). To do so, a random matrix 𝑟 of the 

same size as 𝑞𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) is first generated. Then r is used to separate it as following. 

 

𝑞1𝑘(𝑛𝑜𝑟𝑚) =  𝑞𝑘(𝑜𝑟𝑚) + 𝑟 

𝑞2𝑘(𝑛𝑜𝑟𝑚) =  −𝑟 

Equation 18: Split 𝑞𝑘(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) 
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4.2.3.6.3. Similarity Calculation 

After that the similarities between each of 𝑞1𝑘(𝑛𝑜𝑟𝑚) and 𝑞2𝑘(𝑛𝑜𝑟𝑚) and 𝐴𝑘 are 

calculated; 𝑠𝑖𝑚(𝑞1𝑘(𝑛𝑜𝑟𝑚), 𝐴𝑘) and 𝑠𝑖𝑚(𝑞2𝑘(𝑛𝑜𝑟𝑚), 𝐴𝑘). Both similarities are then added 

up and and compared against 𝑠𝑖𝑚(𝑞𝑘, 𝐴𝑘) as the baseline. Results are discussed in the next 

chapter. 

4.2.3.6.4. Experiment Overview 

 

 

                                             

 

Figure 9: LSI over Encrypted data – Experiment 4, Dividing the query 𝑞𝑘 
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4.2.3.7. Experiment 5 

The previous two experiments managed to split both 𝐴𝑘 and 𝑞𝑘 separately, which 

shows that hiding both values from the cloud is possible. This experiment aims to combine 

the work of both experiments, and if successful this means both 𝐴𝑘 and 𝑞𝑘 can be hidden 

at the same time without affecting LSI effectiveness. In this experiment four different cloud 

servers are assumed to be used, the role of those servers is discussed in the rest of the 

section. 

4.2.3.7.1. Prepare Matrix 𝐴𝑘 and Query 𝑞𝑘 

The steps performed here are copied from the former two experiments. While 

preparing 𝐴𝑘 is taken from section 4.2.3.5.1 that shows how 𝐴𝑘 is hidden from the cloud, 

steps for preparing 𝑞𝑘 were taken from 4.2.3.6.2 which shows how to hide 𝑞𝑘. At the end 

of these steps four values are calculated 𝐴1𝑘(𝑛𝑜𝑟𝑚), 𝐴2𝑘(𝑛𝑜𝑟𝑚), 𝑞1𝑘(𝑛𝑜𝑟𝑚) and 𝑞2𝑘(𝑛𝑜𝑟𝑚) 

4.2.3.7.2. Similarity Calculation 

In this experiment four different similarities are calculated. This means that the 

similarity between each divided query and each divided matrix is calculated; this 

includes 𝑠𝑖𝑚(𝑞1𝑘(𝑛𝑜𝑟𝑚), 𝐴1𝑘(𝑛𝑜𝑟𝑚)), 𝑠𝑖𝑚(𝑞1𝑘(𝑛𝑜𝑟𝑚), 𝐴2𝑘(𝑛𝑜𝑟𝑚)), 

𝑠𝑖𝑚(𝑞2𝑘(𝑛𝑜𝑟𝑚), 𝐴1𝑘(𝑛𝑜𝑟𝑚)) and 𝑠𝑖𝑚(𝑞2𝑘(𝑛𝑜𝑟𝑚), 𝐴2𝑘(𝑛𝑜𝑟𝑚)). After that, all four similarities 

are added up and then compared to the baseline. 

The experiment is then repeated on the Medline dataset on a set of 30 different 

queries. 
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4.2.3.7.3. Experiment Overview 

 

 

 

 

Figure 10:  LSI over Encrypted data – Experiment 5, Dividing both 𝐴𝑘 and 𝑞𝑘 (Two 

Servers) 

 

 

The figure above shows the flow of data in this experiment; however, it still 

contains a major flow. If we assume that both 𝐴𝑘1(𝑛𝑜𝑟𝑚) and 𝐴𝑘2(𝑛𝑜𝑟𝑚) are each stored on 
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a different server such that one server cannot learn both values of 𝐴𝑘(𝑛𝑜𝑟𝑚). We still face 

an issue that each server will learn both variations of 𝑞𝑘(𝑛𝑜𝑟𝑚). Therefore, we decided that 

each variation of 𝐴𝑘(𝑛𝑜𝑟𝑚), will be stored on two different servers as shown in the figure 

below. 
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Figure 11: LSI over Encrypted data – Experiment 5, Dividing both 𝐴𝑘 and 𝑞𝑘 (Four 

Servers) 
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4.2.4. Measurement Metrics 

4.2.4.1. Proof of Concept 

To determine if a proposed protocol is valid or not, the experiment should show 

comparable results to the baseline. For each experiment, a ranked list of the results is shown 

and compared to the output of the baseline (details can be found in 4.2.3.2, 4.2.3 and 5.2). 

4.2.4.2. Medline 

After the simple dataset is used as a proof of concept, experiment 5 is repeated on 

the Medline dataset. MAP is used to evaluate the effectiveness of experiment 5 vs the 

baseline, and CPU time is used to evaluate the performance.   

4.2.5. Datasets Preprocessing 

For this challenge, no preprocessing steps were performed. The reason is that this 

challenge aims to compare relative effectiveness in each experiment against the baseline 

solution. Similar effectiveness results mean that the proposed framework is valid and can 

be applied in practical environment. 
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Chapter 5: Experimental results 

5.1. Part 1: LSI Scalability 

This section reports the results of experiments discussed in section 4.1.3.    

5.1.1. LSI Effectiveness 

In this section, we report the MAP of gensim’s LSI in both serial and distributed 

mode. As formerly mentioned, Medline dataset was leveraged as a test collection to allow 

us to measure the effectiveness.  

The figure below shows the APs at different 30 Medline queries in both serial and 

distributed mode. Overall DLSI achieved a higher MAP (0.20) compared to (0.186) in the 

case of serial mode. The full list of APs can be found in APPENDIX I: LIST OF ALL 

RAAD EXPERIEMENTS. 

 

 

 

Figure 12: Average Precision of Serial vs Distributed gensim's LSI 
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5.1.2. LSI Performance18 

In this section, different graphs are presented to depict LSI’s performance with 

respect to several factors. The experiments were conducted on RAAD using the large-scale 

Wikipedia dataset to test gensim’s LSI ability to scale. The full list of tables reporting all 

figures of conducted experiments can be found in APPENDIX I: LIST OF ALL RAAD E.  

5.1.2.1. Serial vs. Distributed LSI 

The figure below shows the difference in performance between both serial and 

distributed LSI across different data sizes. The distributed mode shown used 8 workers on 

4 physical nodes (2 workers per node). 

 

 

                                                 
18 All reported experiments use a cluster size of 20000 unless otherwise mentioned  
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Figure 13: Difference in Performance between Serial and Distributed LSI Across 

Different Datasets Sizes 

 

 

Conveniently, the CPU time increases as the dataset gets larger. However, it can be 

noted that CPU time increases much faster in the case of serial LSI. The graph also shows 

that distributed LSI performed better in call cases. 
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5.1.2.2. Number of Workers Effect on Performance 

The graph below shows the difference in performance of DLSI while using 

different number of workers. 

 

 

 

 

Figure 14: Number of Workers effect on CPU time 

 

 

Figure 14 shows how adding more workers in distributed LSI always boost the 

performance. It also shows that the eventually the performance converges which implies 

that adding more workers is not always needed to enhance the performance. 
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5.1.2.3. Chunk Size Effect on Performance 

The figure below shows the difference in performance of DLSI while using 

different chunk sizes. This is to test the claim that larger chunks lead to faster performance 

(see section 3.1.4.5). The experiments are run using 8 workers on 500k documents. 

 

 

 

 

Figure 15: Chunk size effect on CPU time 

 

 

Figure 15 shows how the performance is proportionally related to the chunk size, 

the faster LSI is. 
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5.1.2.4. Dictionary Size Effect on Performance 

As mentioned in the previous chapter, DLSI is applied on the original 4m dataset 

and the repeated one to analyze the effect of the dictionary size. The figure below shows 

CPU time in both cases. 

Table 3: Difference in Performance between Repeated and Non-Repeated Datasets in 

Serial Mode 

SERIAL LSI 

TIME 

d h m s time (s) 

REPEATED 0 20 8 8 72488 

NON-REPEATED 2 20 55 50 248150 
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Table 4: Difference in Performance between Repeated and Non-Repeated Datasets in 

Distributed Mode 

 

DLSI 

TIME  

d h m s time (s) 

REPEATED 0 4 52 8 17528 

NON-REPEATED 0 7 50 0 28200 

 

 

Both tables show a similar trend; dictionary size affect the performance of LSI. This 

shows how LSI’s performance could vary depending on how diverse the dataset is.  

5.1.3. Discussion 

Gensim’s LSI’s effectiveness did not see a drop when distributed mode was 

leveraged. On the contrary, the effectiveness was slightly higher. This shows that the 

algorithm lives up to its promises by providing a production-ready implementation of 

distributed LSI. 

The difference in performance of LSI in both modes, serial and distributed, shows 

that gensim’s DLSI is able scale over large datasets. This is also confirmed when further 

distributing the cluster by adding more nodes. The figure clearly shows that increase the 

number of nodes boost the performance at first until it converges at a certain point. 

Most of the reported figures regarding the impact of different factors on the 

performance were as expected. However, repeating the experiment setup of the baseline 
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led to very different results. DLSI on 4 nodes (8 logical workers) took more than 8 hours 

which is not comparable to the 1h 41m reported in [49]. The distributed file system of 

RAAD could be one reason for that, as the baseline experiment reported in [30] and [49] 

was conducted on normal file systems. Another reason could be network latency between 

the nodes of RAAD, they may be communicating with multiple nodes for different jobs at 

the same time. In the baseline local machines were connected via Ethernet and exclusively 

used for DLSI. 

 

5.2. Part 2: LSI on Encrypted Data 

5.2.1. Baseline 

The table below shows the results of LSI in the baseline solution. The query used 

is “Human Computer Interaction” as mentioned in section 1.4, where all document coded 

with c letter are related to the topic of human computer interaction. 
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Table 5: Documents Ranking Applying Baseline Setup 

 

DOCID CODES DOCUMENTS BASELINE 

4 c5 

Relation of user perceived response 

time to error measurement 

0.21277076 

1 c2 

A survey of user opinion of 

computer system response time 

0.212152261 

2 c3 

The EPS user interface 

management system 

0.187983282 

0 c1 

Human machine interface for lab 

abc computer applications 

0.187382123 

3 c4 

System and human system 

engineering testing of EPS 

0.176122014 

8 m4 Graph minors A survey 0.098594039 

7 m3 

Graph minors IV Widths of trees 

and well quasi ordering 

0.069507883 

6 m2 

The intersection graph of paths in 

trees 

0.06796983 

5 m1 

The generation of random binary 

unordered trees 

0.064351132 
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5.2.2. Experiment 1 

The table below shows how experiment 1 fails to hide the matrix 𝐴 as the c-coded 

documents were not ranked at the top. The results in the table below are not similar to the 

baseline.  
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Table 6: Document Ranked According to their Normalized Similarities in Experiment 1 

 

DOCID CODES DOCUMENTS SIMILARITIES 

4 c5 

Relation of user perceived 

response time to error 

measurement 

0.911735745 

8 m4 Graph minors A survey 0.474022533 

6 m2 

The intersection graph of paths in 

trees 

-0.578188074 

5 m1 

The generation of random binary 

unordered trees 

-0.627143915 

1 c2 

A survey of user opinion of 

computer system response time 

-0.651321413 

2 c3 

The EPS user interface 

management system 

-0.671500085 

7 m3 

Graph minors IV Widths of trees 

and well quasi ordering 

-0.965122498 

0 c1 

Human machine interface for lab 

abc computer applications 

-1.351588316 

3 c4 

System and human system 

engineering testing of EPS 

-2.676347817 
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5.2.3. Experiment 2 

The aim of experiments 2 was to hide the matrix 𝐴 as well. However, it applies a 

random matrix on the results of the matrix factorization rather than the matrix itself (see 

section 4.2.3.4). The table below shows how it fails to achieve acceptable effectiveness 

score as three of the c-coded documents are retrieved last. 
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Table 7: Document Ranked According to their Normalized Similarities in Experiment 2 

DOCID CODES DOCUMENTS SIMILARITIES 

1 c2 

A survey of user opinion of 

computer system response time 

0.525876314 

6 m2 

The intersection graph of paths in 

trees 

0.508173366 

7 m3 

Graph minors IV Widths of trees 

and well quasi ordering 

0.493835488 

4 c5 

Relation of user perceived response 

time to error measurement 

0.463864958 

8 m4 Graph minors A survey 0.381556386 

5 m1 

The generation of random binary 

unordered trees 

0.10405354 

0 c1 

Human machine interface for lab 

abc computer applications 

0.042477934 

2 c3 

The EPS user interface 

management system 

0.031139106 

3 c4 

System and human system 

engineering testing of EPS 

-0.019685741 
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5.2.4. Experiment 3 

Experiment 3 shifted its goal to hide 𝐴𝑘 as formerly mentioned.  The results shown 

in the table below indicates that it managed to achieve that goal it achieved the same results 

as the baseline (justification and mathematical prove are provided in section 5.2.7). 

 

 

Table 8: Documents Ranking in Experiment 3 

 

DOCID CODES DOCUMENTS 𝑨𝒌 SPLITTED BASELINE 

4 c5 

Relation of user perceived response time to error 

measurement 

0.212771 0.212771 

1 c2 

A survey of user opinion of computer system 

response time 

0.212152 0.212152 

2 c3 The EPS user interface management system 0.187983 0.187983 

0 c1 

Human machine interface for lab abc computer 

applications 

0.187382 0.187382 

3 c4 System and human system engineering testing of EPS 0.176122 0.176122 

8 m4 Graph minors A survey 0.098594 0.098594 

7 m3 

Graph minors IV Widths of trees and well quasi 

ordering 

0.069508 0.069508 

6 m2 The intersection graph of paths in trees 0.06797 0.06797 

5 m1 The generation of random binary unordered trees 0.064351 0.064351 
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5.2.5. Experiment 4 

Experiment 4’s goal was to hide the query from the cloud server. Details later 

discussed show how 𝑞𝑘 was hidden using a random matrix 𝑟. The results shown in the table 

below indicates that similar to experiment 3 the experiment managed to achieve the same 

results as the baseline. 

Table 9: Documents Ranking in Experiment 4 

DOCID CODES DOCUMENTS SPLITTED BASELINE 

4 c5 

Relation of user perceived response 

time to error measurement 

0.212771 0.212771 

1 c2 

A survey of user opinion of computer 

system response time 

0.212152 0.212152 

2 c3 

The EPS user interface management 

system 

0.187983 0.187983 

0 c1 

Human machine interface for lab abc 

computer applications 

0.187382 0.187382 

3 c4 

System and human system 

engineering testing of EPS 

0.176122 0.176122 

8 m4 Graph minors A survey 0.098594 0.098594 

7 m3 

Graph minors IV Widths of trees and 

well quasi ordering 

0.069508 0.069508 

6 m2 

The intersection graph of paths in 

trees 

0.06797 0.06797 

5 m1 

The generation of random binary 

unordered trees 

0.064351 0.064351 



  

   

93 

 

5.2.6. Experiment 5 

Experiment five combines techniques of the previous two experiments, and similar 

to both of them it manages to achieve the same results as the baseline. 

 

 

Table 10: Documents Ranking in Experiment 5 

 

DOCID CODES DOCUMENTS SPLITTED BASELINE 

4 c5 
Relation of user perceived response time to 

error measurement 

0.21277076 0.21277076 

1 c2 

A survey of user opinion of computer 

system response time 

0.212152261 0.212152261 

2 c3 The EPS user interface management system 0.187983282 0.187983282 

0 c1 

Human machine interface for lab abc 

computer applications 

0.187382123 0.187382123 

3 c4 

System and human system engineering 

testing of EPS 
0.176122014 0.176122014 

8 m4 Graph minors A survey 0.098594039 0.098594039 

7 m3 

Graph minors IV Widths of trees and well 

quasi ordering 
0.069507883 0.069507883 

6 m2 The intersection graph of paths in trees 0.06796983 0.06796983 

5 m1 
The generation of random binary unordered 

trees 

0.064351132 0.064351132 
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Experiment 5 on Medline 

The figure below shows the effectiveness of LSI in experiment 5 compared 

to the baseline. Similar to experiment 3,4 and 5, the AP figures were exact in all 30 queries 

meaning the MAP is the same as shown by the horizontal line. 

5.2.7. Discussion 

In this set of experiments, it was shown that applying LSI on encrypted data is 

possible. First, experiment 3 showed that it is possible to hide the index/approximated 

matrix 𝐴𝑘 from the cloud server. Second, experiment 4 showed that it is possible to hide 

the query from the cloud server. Finally, experiment 5 combined the work of both 

Figure 16: Impact of Randomized Splitting on Average Precision in Medline dataset 
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experiments, showing that it is possible to hide the index and the query from cloud server 

at the same time. 

In all experiments, the similarities were exact to the baseline. The reason our 

proposed protocol works can be backed by a simple mathematical proof as shown below. 

If we assume that both 𝐴𝑘 and 𝑞𝑘 are normalized first before calculating the cosine 

similarity. Then cos (𝐴𝑘, 𝑞𝑘) will equal 𝑞𝑘 ∗  𝐴𝑘 (note: summation was ignored assuming 

just one term for simplicity). 

Now given that 

𝐴1𝑘 =  𝐴𝑘 + 𝑅 , 𝐴2𝑘 =  −𝑅 

𝑞1𝑘 =  𝑞𝑘 + 𝑟 , 𝑞2𝑘 =  −𝑟 

Thus cos(𝑞1𝑘, 𝐴1𝑘) + cos(𝑞2𝑘, 𝐴1𝑘) + cos(𝑞1𝑘, 𝐴2𝑘) +  cos (𝑞2𝑘, 𝐴2𝑘) will equal

=  (𝐴𝑘 + 𝑅) ∗ (𝑞𝑘 + 𝑟) + (𝐴𝑘 + 𝑅) ∗ (−𝑟) + (−𝑅) ∗ (𝑞𝑘 + 𝑟) + (−𝑅) ∗ (−𝑟)

=  (𝐴𝑘 + 𝑅) ∗ (𝑞𝑘 + 𝑟 − 𝑟) + (−𝑅) ∗ (𝑞𝑘 + 𝑟 − 𝑟)

=  (𝐴𝑘 + 𝑅) ∗ 𝑞𝑘 + (−𝑅) ∗ 𝑞𝑘

=  𝑞𝑘 (𝐴𝑘 + 𝑅 − 𝑅) =  𝑞𝑘 ∗ 𝐴𝑘 

Therefore, random splitting should not yield the exact same result as the baseline 

and thus keep the effectiveness of the system intact. 

In our experiments, we adopt random splitting technique since it is homomorphic 

with respect to LSI. Our encryption scheme needs homomorphic encryption to maintain 

the results of the cosine similarity and additions. This means that cosine similarity of the 

original query 𝑞𝑘 and the matrix 𝐴𝑘 (i.e. cos (𝑞𝑘, 𝐴𝑘) or cosine of the additions) should be 

equal to the addition of the cosine similarities of  𝑞1𝑘, 𝑞2𝑘, 𝐴1𝑘 and 𝐴2𝑘 (i.e. 
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cos(𝑞1𝑘, 𝐴1𝑘) + cos(𝑞2𝑘, 𝐴1𝑘) + cos(𝑞1𝑘, 𝐴2𝑘) +  cos (𝑞2𝑘, 𝐴2𝑘)). Maintaining 

homomorphic property in other techniques like the private/public key encryption has been 

the focus of some research papers after 2010 like [60] and [61], however efficiently 

applying homomorphic public to private key encryption is still a research area.  
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Chapter 6: Conclusion and Future Work 

6.1.Overview 

In this thesis two main goals were set and reflected into two main parts; part 1 

investigates the scalability of the LSI implementation provided by gensim. Part 2 proposed 

a system to securely search over encrypted data that is indexed using LSI using free-text 

queries. The problem was formally defined describing the LSI’s challenges and the need 

for scalable LSI solution in addition to the motivation behind applying LSI on encrypted 

data. LSI variations were reviewed including the work behind the gensim framework, 

Subspace tracking for LSI along with application of LSI in the literature. In addition, 

RAAD was introduced as a distributed environment leverage to applying gensim’s 

distributed LSI. The conducted experiments are then reported along with discussions of 

insights and limitations. Several methods for applying LSI on encrypted data were 

proposed as well. The validity and results of those variation were then reported. 

 

6.2.Achievements 

The experiments conducted in part 1 show that the gensim LSI’s is scalable, where 

DLSI performance is proportional to the number of workers used in the cluster. In general, 

DLSI outperformed serial LSI, considering some environment. The experiments also show 

that the effectiveness of LSI is not affected when distributed mode is used. The experiments 

have also raised a few limitations reported in the following section.  

Part 2 shows that the proposed system managed to hide both the index/LSI model 

𝐴𝑘 and query 𝑞 from the cloud server while maintaining the search effectiveness. Results 
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show that the effectiveness was not at all affected as the similarities were always exactly 

as the baseline. 

 

6.3.Limitations 

On the LSI performance part, few challenges have risen while using gensim which 

limit the performance based on the user’s resources. First challenge was the memory limit; 

while gensim does not need to store the whole corpus in the memory as it is memory 

independent, yet there seems to be a minimal requirement. For example, distributed LSI on 

the 4M repeated corpus using 8 workers required a minimum 16 GB memory. Second, is 

the number of topics; gensim uses Pyro to communicate serialized objects between the 

cluster entities. However, since Pyro limits the size of serialized object to 2 GB this can 

raise some issues. For example, Pyro raised an error when applying DLSI on the 100k 

Wikipedia dataset and using 400 as the number of topic. Third, is the dictionary size, a 

dataset with narrow collection of topics (and in turn vocabs) is likely to be processed faster 

than one that is highly diverse. Last, the gensim library does not provide an interface to 

assign the host and port of the nameserver. While it is assumed that other entities will 

automatically locate the nameserver, we faced some issues initializing it and had to 

manually alter the library.  

As for the security part, generating the topic model (i.e. LSI model in this work) is 

assumed to be on the client side. While this is no different from what is introduced in the 

literature, it is still a computationally intensive task. 
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6.4.Future Work 

The motivation behind gensim library is to provide a scalable solution for some of 

the existing algorithms like LSI. Since it is an open source library, a potential future work 

is to alternate the library to support search over encrypted data which mitigates the 

challenges of scalability and memory management. This combines the output of both parts 

of this work; LSI scalability and LSI over encrypted data. 

Another potential future work to integrate with, is the work of [25]. As discussed 

in section 3.1.4.2, [25] provides a methodology to scalably calculate document similarity 

with existing documents representation (Phase 3 in Figure 4) while genism provides a 

framework to scalably calculate those document representations (Phase 2 in Figure 4). 

Integrating both systems is possible noting that genism is an open source library. 
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APPENDIX I: LIST OF ALL RAAD EXPERIEMENTS 

Table 11: CPU recorded time for LSI on 100 k documents 

NO. 

DOCUMENT 

113550 

(≈100K) 

NO. 

MACHINES 

No. Workers 

Time 

Time 

(s) 

h m s 

1 (SERIAL 

LSI) 

N.A 31 39 1899 

1 2 17 26 1046 

2 4 15 29 929 

3 6 14 14 854 

4 8 13 55 835 
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Table 12: CPU recorded time for LSI on 500 k documents 

 

NO. 

DOCUMENT 

500 K     

NO. 

MACHINES 

No. Workers 

Time 

Time 

(s) 

h m s  

1 (SERIAL 

LSI) 

N.A 2 17 50 8270 

1 2 1 12 45 4365 

2 4  42 49 2569 

3 6  34 0 2040 

4 8  32 6 1926 
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Table 13: CPU recorded time for LSI on 1 M documents 

NO. 

DOCUMENT 

1 M 

NO. 

MACHINES 

No. 

Workers 

Time Time 

(s) h m s 

1 (SERIAL 

LSI) 

N.A 4 59 57 17997 

1 2 2 22 11 8531 

2 4 1 17 14 4634 

3 6 57 36 3456 

4 8 50 13 3013 
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Table 14: CPU recorded time for LSI on 1.5 M documents 

 

NO. 

DOCUMENT 

1.5 M     

NO. 

MACHINES 

No. 

Workers 

Time Time 

(s) h m s 

1 (SERIAL 

LSI) 

N.A 7 7 29 25649 

1 2 3 34 42 12882 

2 4 1 51 3 6663 

3 6 1 20 52 4852 

4 8 1 7 13 4033 
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Table 15: CPU recorded time for LSI on 2 M documents 

NO. 

DOCUMENT 

2 M 

NO. 

MACHINES 

No. Workers 

Time 

Time 

(s) 

h m s 

1 (SERIAL 

LSI) 

N.A 9 27 33 34053 

1 2 4 37 7 16627 

2 4 2 25 13 8713 

3 6 1 42 42 6162 

4 8 1 24 16 5056 


