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ABSTRACT 
 

 

AL-JABER, EMAN, J., Masters: 

June: [2018:], Masters of Science in Computing 

Title: Towards Accurate Loss Prediction in KAHRAMAA Water Stations 

Supervisor of Thesis: Khaled, B., Shaban. 

 

Qatar General Electricity and Water Corporation (KAHRAMAA, KM) deployed 

and started operation of water Supervisory Control and Data Acquisition (SCADA) system 

in 2006. The aims of this SCADA system are to increase the control and pumping of water 

to customers and reduce the water loss of the network. SCADA collects sensory data such 

as reservoirs’ inlet and outlet flows, reservoirs’ levels, reservoirs’ inlet water stock as well 

as status of valves and used pumps. These time-stamped data are periodically transmitted 

to several back-end servers for logging, storing, and processing. KM water network is 

composed of 35 connected stations; each includes from 3 to 12 reservoirs. Currently, KM 

lacks the ability to accurately forecast any water loss in the network, except by assuming 

that historical loses apply the same in future; causing inaccurate predictions. 

Throughout the years, there has been an increasing interest in water loss prediction. 

Different techniques are used to analyze and forecast the water loss. These techniques are 

classified into three categories, which are: statistical, machine learning and hybrid 

modeling approaches. Statistical approach depends on fitting mathematical models to the 

observed data. However, these have a disadvantage of high noise error that prevents water 

leaks to be accurately detected and forecasted. In machine learning, water loss is predicted 
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through training of various models such as Support Vector Machines, Artificial Neural 

Networks and Random Forest. The hybrid approach combines two or more techniques from 

the previously mentioned approaches. 

This thesis studies methods to accurately predict water loss in KM water stations. 

We adopt a knowledge discovery and data mining process and activities that include data 

collection, data preprocessing, feature engineering, model training, and validation. This 

is the first automated attempt for KM to predict future volumes of water to be lost. 

Moreover, several contributions are made to advance prediction accuracy including those 

related to data preprocessing (data aggregation, cleaning, and transformation), feature 

engineering (feature generation, data windowing), and model training where several 

models are optimized for high accuracy using statistically reliable evaluation (cross- 

validation). Experimental results show that the highest water loss prediction accuracy of 

the next hour, 12th hour, and 24th hour are 84.78%, 73.01%, and 71.66%, respectively. 

These results come with different settings and parameters tuning that are optimized for 

each case. Moreover, all of the above results surpass baseline models by 14.78%, 45.32%, 

and 11.50%, respectively, in accuracy. 
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CHAPTER 1: INTRODUCTION 

In this chapter, we introduce the water loss prediction problem and discuss 

motivations for tackling it. We also introduce relevant background topics such as time 

series forecasting techniques, and machine learning. Finally, we state the main objectives 

and challenges of the thesis.  

Motivations 

Water covers around 70% of the earth’s surface, and it is considered one of the most 

valuable provisions of human life. Drinking water is important for human's existence even 

though it does not offer organic nutrients. Water is used on a daily basis in almost all 

aspects of life. With one of the lowest levels of rainfall, Qatar depends on water from 

limited resources. Furthermore, with the country’s rapid population and economic growths, 

water scarcity has become a concern of increasing importance (Qatar’s Sustainable 

Development, 2012). According to Qatar National Development Strategy 2011-2016, 

Qatar’s water distribution system network loses yearly around 30%–35% of its resource. 

This is a high loss rate compared to the standard acceptable yearly leakage percentage 

which is around 18% (General Secretariat Development Planning, 2011). The high 

percentage of water loss in Qatar is critical and it manifests negatively on the costs, 

resources and environment. Therefore, it is timely important to be able to estimate and 

predict water loss to take quick and necessary actions to reduce it. 
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Qatar General Electricity and Water Corporation (KAHRAMAA, KM) 

KM was initiated in July 2000 further to the Emiri law to maintain and regulate the 

production of electricity and water to customers in Qatar. Nowadays the corporation has 

the right of being the sole distribution and transmission system operator and owner for the 

water and electricity sector in Qatar. KM main objective is to afford high quality and 

sustainable water and electricity for better living in Qatar. Moreover, by 2030, KM mission 

is to set a global benchmark for technological innovation, performance, social 

responsibility and environmental sustainability in water and electricity sectors.  

KM water distribution network consist of various elements such as transmission 

pipes, water reservoirs, pumping station, water towers. These elements are crucial 

infrastructure to provide water to the consumers. KM purchases water and electricity from 

water production plants which are known as Independent Power and Water Providers that 

are mainly owned by Qatar Petroleum. The purchased water is transmitted through 

transmission lines to water reservoirs that consist of some flow meters, water tanks, and 

pressure transmitters. Then, according to customers’ demand, the water pumped from the 

water pump stations to water tanks or directly to customers’ tanks. Customers can be 

houses, farms, industries, hospitals, schools, etc. KM water distribution network is shown 

in figure 1 below. 

The overall KM water distribution network is controlled, monitored and analyzed 

by the National Water Control Center (NWCC) which is introduced in the next section. 
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Figure 1. KM water distribution network. 
 

 

National Water Control Center (NWCC) 

The NWCC in Qatar is one of the powerful water monitoring and controlling 

systems in the Middle East. It started in 2009 using a SCADA system to ease the 

management, monitoring and controlling the whole water distribution network (WDN) and 

production in desalination plants. Nowadays, there are 35 water reservoirs and pumping 

stations and nine desalination plants all over the state of Qatar as shown in figure 2. KM 

has a daily total water stock of approximately 901.3 million gallons (MIG) and daily water 

distribution around 361.55 MIG. In general, the main responsibilities of SCADA engineers 

are to control, analyze and monitor the water forwarded from the desalination plant, water 

demand, reservoir capacity and water distribution. Moreover, they are also responsible for 



  

   

4 

 

monitoring the water flow, pressure, and water quality to give the customers the highest 

quality of water. Furthermore, Qatar is divided into different areas which are called District 

Metering Area (DMA) to facilitate the detection of any problem in a specific location such 

as water leak, quality, cutting, etc. In that regard, NWCC has to optimize the flow and 

pressure due to the demand change considering different factors such as holidays, seasons 

or weather. 

 

 

 
 

Figure 2. Water reservoirs and desalination plants in Qatar.  
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Figure 3 shows a snapshot from the SCADA system for one of KM water reservoirs 

and pumping stations, named “Airport Station”. As noted in below figure, the station 

consists of several components including valves (1), flow meters (2), pumps (3), pipes (4), 

sensors (5), reservoirs (6), and pressure transmitters (7). Currently, controlling and 

monitoring the WDN. In that station as illustrated below has the following: 

1. Two water inlets for water received by the desalination plants. Each inlet has pressure 

transmitter that shows the water pressure in that line, flow meter to represent the water 

flow in that line and water quality device to show the water qualities within that line. 

2. Ten water tanks that show the water levels. 

3. Nine pumps to pump the water received from the water tanks to DMA’s. 

4. Various number of valves that can be opened and closed by SCADA control engineer 

according to water demand and water forwarded to that stations. 

5. Three outlet lines which have the same devices installed for the inlet lines. However, 

each outline line is forwarding water to one DMA site, so three outlet lines means three 

DMA customer sites.  
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Figure 3. Components of KM airport reservoir and pumping station. 
 

 

Time Series Forecasting 

The readings received by KM SCADA system is a time-stamped data that are 

periodically transmitted to several back-end servers for logging, storing, and processing. 

This wealth of collected data, however, is not being utilized to its full potentials to foresee 

losses in order to prevent them. 

Time series models have been the basis for any analysis and application of studying 

the behavior of process over a period of time. Times series models is a time oriented 

sequence of data (i.e., hourly, daily, and monthly) on a point of interest variable 

1 

2 

3 

4 
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(Montgomery, Jennings & Kulahci, 2015). The applications of time series models are 

diversified, such as weather prediction, sales prediction, inventory studies, etc. In decision-

making associated with the uncertainty of the future, time series models is one of the most 

robust methods for forecasting. Mostly, future prediction and decision making for such 

processes will be based on what would be an expected result. The need for these 

expectations and predication has encouraged organizations to build forecasting techniques 

to be ready to face the apparently risky future. Also, time series models usually combined 

with data mining algorithm techniques to assist in understanding the behavior of the data 

and enable to forecast future patterns and trends in the data behavior (Montgomery, 

Jennings & Kulahci, 2015) (Box, Jenkins, Reinsel & Ljung, 2015). 

Selecting the best forecasting technique is not the only aspect that affects prediction 

accuracy. Forecasting horizon is another aspect to consider that effects accuracy, where the 

horizon is the number of steps forecasted in the future. The higher the horizon, the more 

difficult the forecasting process is. Furthermore, another factor to look at when 

constructing the forecasting system is the number of variables, i.e., multivariate or 

univariate time series. In univariate time series problem only one variable is used, such as 

using the historical data of water loss to predict its future value. On the other hand, 

multivariate time series captures several variables, such as using the water input and output 

flow, stock level, and holiday seasons to predict the data of specific variable. This thesis 

investigates the efficiency of different machine learning techniques in forecasting time 

series of water loss. Different models and horizons and forecasting models for multivariate 
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time series data are investigated. 

Machine Learning 

KM lacks the ability to accurately forecast any water loss in the network by using 

any model, except by assuming that the exact historical loses apply the same in future; 

causing inaccurate predictions. 

Kevin P. Murphy (2012) explained machine learning as an area derived from the 

broad area of Artificial Intelligence, which intends to simulate intellectual abilities of 

humans by machines. Specifically, machine learning takes into consideration the important 

question of how to make machines capable to ‘learn.' Learning in this framework is 

considered as an inductive interference, where one notices examples that show incomplete 

information about some data represented. Two learning approaches are known in this field: 

supervised and unsupervised learning. In supervised learning, there is a label represented 

in every example. It is assumed to be the answer to a question about the example. In case 

the label is discrete, then the learning process is aimed at solving a classification problem. 

For continuous labels, the problem to be solved is known as a regression problem. In 

unsupervised learning, one tries to reveal hidden regularities such as clusters or to find 

anomalies in the data like detecting unusual act in machine function, and this learning 

approach usually used in network intrusion (Murphy, 2012). In this study, we are 

investigating the supervised learning approach to solve the prediction problem. We are 

looking to answer the question “How much water loss is likely to accrue from a water 

station in next hour or next day?.” We are building models that learn from the time series 
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data collected from SCADA in one of the KM water stations.  

The process in the above steps to apply and construct ML-based models for 

forecasting values of unseen target data is illustrated in Figure 4. In the training part, data 

with known target values are collected; a subset of features is selected, and then used to 

develop a prediction model. There are several subsets of features selected and different ML 

algorithms used; therefore, there are different predictors that can be trained. In the testing 

part, the produced models from the training part are validated and evaluated. Various 

methods are used in model validation. 

In the deployment part, the best model and features will be used to process unseen 

data and generate prediction results. The model performance is kept on check to validate 

its prediction results. Basically, in changing environments, the process of training, testing, 

and deployment are regularly repeated to achieve high accuracy of results. This iterative 

process can be carried-out to improve performance of the models as historical data become 

increasingly available. 
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Figure 4. Iterative process of applying and constructing ML-based prediction models. 
 

 

Objectives and Challenges 

The primary objective of this study is to accurately predict water loss in KM water 

stations. The prediction is aimed for one-step and multi steps ahead in the future. The goal 

for the prediction results are to overcome current manual and baseline process to detect the 

water loss. Various techniques are to be investigated in order to achieve the purpose of 

constructing accurate prediction models. Specifically, the following are the work 

objectives and challenges of the thesis: 

1. Identify and apply the proper data preprocessing steps prior to developing the 

prediction models.  

2. Engineer effective features to be used to train and test the forecasting models.  
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3. Tune the developed models in order to achieve the highest accuracy for different 

horizons. 

4. While working towards the previous objectives, we introduce and investigate new 

methods that yield improvements in performance. 

Contributions 

As it will be elaborated in the following chapters of the thesis, we have achieved 

and made the following contributions: 

1. We built an integral multi-stage learning techniques that achieved the highest water 

loss prediction accuracy reaching 84.78 %. 

2. Models are dynamically adaptable to data changes overtime. 

3. Serve for different applications in water loss in different areas in water network. 

4. Apply prediction for one step and multistep. 

5. Feature modeling multivariate. 

Thesis Organization 

The rest of this thesis is organized as follows: background and literature review on 

related work is given in Chapter 2. Chapter 3 discusses the thesis methodology. In Chapter 

4, we present and analyze the experimental results. Finally, we conclude the thesis and 

provide recommendations in Chapter 5. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

Current KM Water Loss Calculations 

A series of challenges has recently emerged in water distribution field, triggered by 

the rapid shift in constructing and deploying enormous water reservoir utilities in order to 

satisfy customer’s need. As one of the biggest challenges to comply with these changes is 

detecting water loss along the water network. The water SCADA datacenter in KM is 

responsible for calculating, detecting, and predicting water loss along the water network 

by continually collecting the distributed flow coming out from the desalination plants, 

reservoir and pumping station (RPS) inlet and outlet flow and pressure, reservoir levels 

and the DMA flow. Currently in KM, the collected data from the SCADA system is used 

to manually calculate the water loss estimation and prediction using mathematical formulas 

formed according to engineer’s knowledge and experience. 

Concretely, calculating the water loss is done in three parts, where the first part is 

computing the water loss from the desalination plants to RPS using equation (1): 

ª :5; L ˆ :& A O = H EJ = P E K J4( K N S= N @ A @4( HK S;‰ F¸
‰@5

ˆ :42 54+ JH A P4( HK S;̧˘
¸ @5           (1), 

Where D is the number of desalination plants, RPS is the number of RPS and the 

final result is in m3.  

The second part is to find the leaks inside the RPS station. This can indicate the 

usability and lifetime of the mechanical devices of the station such as pumps, valves and 

transmitters because the longer the age of the device, the higher possibility of leakage. This 
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part is divided into three steps. First, calculating the water stock of the RPS as in equation 

(2): 

         (2), 

Where R is the number of the reservoir inside the station and the final result in m3.  

The second step is to find the water loss by taking today’s total stock, yesterday’s 

total stock, RPS inlet total flow, and RPS outlet total flow into consideration when 

calculating the loss: 

            (3), 

The final step is getting the total water loss of all the stations, i.e., the network: 

         (4), 

Where FM is the number of outlet flow meter inside the station, DMA is the number 

of district meter areas that the station pumping water to it and the final result in m3.  

There are many challenges encounters the engineers for calculating the water loss, which 

are: 

 Time consuming because these manual calculations are done in daily, monthly and 

yearly basis. 

 Cost ineffective because there are dedicated personnel that the company hires to do 

this specific task which cost the company financially. 

 Data coming from SCADA is inaccurate at times or has zeros because of some error 

in the system. In these cases, they are ignored or not considering in the calculations 
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which will affect the results. Currently, there are no algorithms or models to follow 

in order to analyze these cases. 

In this study, we will apply a data mining techniques to estimate and predict the 

water loss in water reservoirs to overcome the shortcomings of the existing manual 

processes. 

Literature Review 

In this section, we will look into different techniques used to analyze and calculate 

the water loss. These techniques can be classified into three categorize which are: analyzing 

and calculating water loss using machine learning, statistical, and hyper model approaches. 

Statistical Approach 

The proposed approach in Candelieri et al. (2014) merged both the machine 

learning methods and statistical hydraulic simulation of leakage. In this paper, Candelieri 

et al. developed a scenario (similarity) graph whose edges are weighted by the similarity 

between each pair of nodes. The similarity in terms of pressure and flow variations induced 

by two different leaks. This scenario will grant to move from feature space into scenarios 

Network Space and clarify the grouping problem of similar leakage scenarios as a graph 

clustering task. Their aim with clustering graph to maximize the sum of weights of edges 

within each cluster (intra-cluster similarity), at the same time minimizing the sum of the 

weights of the edges connecting nodes in different clusters (intercluster similarity) 

(Candelieri, Conti & Archetti, 2014). 

The clustering method is used based on the eigenvalues analysis that is different 
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than the traditional clustering methods such as k-means. The proposed clustering method 

is called “spectral clustering,” that can be implemented by two techniques. The first 

technique is recursive bi-partitioning that divides the scenarios graph into two subgraphs 

and then is recursively used on each sub-graph until the wanted number of groups is 

achieved. The second technique is using the k-mean in the space identified by the smallest 

appropriate eigenvectors of the normalized Laplacian affinity matrix of the scenarios graph 

(Candelieri, Conti & Archetti, 2014). 

The evaluation of the leak localization compared against the “localization Index”. 

The experiment is done in real WDN in a small town in the north of Italy by using the 

proposed k-means clustering (spectral clustering). At the same time, the dataset used in 

clustering is also employed by the regression model to estimate the prediction severity of 

the leakage. The regression model used is a simple least median squared linear regression 

which the researchers proved that is reliable by getting the Relative Mean Absolute Error= 

0.8764% and Root Relative Mean Squared Errors= 2.5368% on 10 fold cross validation 

(Candelieri, Conti & Archetti, 2014). 

Lijuan et al. (2012) reported a model-based leak detection method performed by 

the hydraulic simulation software of EPANET and optimized by the genetic algorithm. 

This process did not require extensive measurements or high capital cost but making use 

of a few monitoring pressure heads obtained from the water distribution networks. 

The optimal value of the parameters will be drawn according to the objective function and 

constraint variables by compiling M-file in genetic algorithm toolbox (GUI) of Matlab and 
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setting running parameters (Lijuan, Hongwei, & Hui, 2012). 

The genetic algorithm continuously updates a population of individual solutions. In 

each step, the genetic algorithm picks a random individual from the current population to 

be parents and consumes them to produce the children for the next generation (Lijuan, 

Hongwei, & Hui, 2012). 

To extend the optimization toolbox capabilities, Matlab environment were used to solve 

the genetic algorithm. All the functions used are MATLAB M-files, made up of MATLAB 

statements that implement specialized optimization algorithms (Lijuan, Hongwei, & Hui, 

2012). 

The whole approach is applied to a test network; it comprises of 82 pipe sections 

with 79 pipelines in distributing the network, 53 junction nodes and 30 loops.  

The estimated leakage amounts are smaller than the actual that is because that 

model built was based on virtual leak pipes and simulated leakage amounts that ignored 

the effects of leakage on water consumption and Supply of water (Lijuan, Hongwei, & Hui, 

2012). 

The weakness of statistical leak detection is that noise interferes in the statistical 

analyzes, and some leaks were hidden in the noise that prevented them from being detected. 

Machine Learning Approach 

In water networks, whenever there is a leak in the pipeline, the pressure of the flow 

drops suddenly in leak position and generates a negative pressure wave (NPW) in the 

pipeline. The pressure data can be collected by the pressure sensors installed in the pipeline, 
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and the negative pressure wave can be sensed by these sensors. Locating the leak can be 

determined by calculating the time difference between the arrival times of the negative 

wave in each sensor (Hou & Zhang, 2013). To analyze pressure readings a data mining 

approach is adopted to take a decision on the presence of the leak. Support vector machine 

(SVM) learning algorithm (Chen, Ye, Chen & Su, 2004) is used in this study. The NPW 

detection was performed as a two-class pattern classification task. The two classes are 

"NPW absent" and "NPW present". Along with SVM module, a nonlinear classifier is 

trained using supervised learning to detect the presence of NPW in pressure curve 

automatically. Thus, a small leak may be easily detected out of the noise. Furthermore, to 

process the pressure signal, a wavelet transform is used. Li Yo Bi (2010) also tested the 

wavelet transform for leak detection. The monitoring system acquired internal parameters 

of the pipeline from the existing SCADA system. The reported horizon for leak detection 

by this method is 2 minutes, and estimation error for leak localization is stated to be 2%. 

Salam (2015), used a detector device to detect a leak and connected to a 

computerized system to collect and process the data by using SVM. As an application is 

implemented in Water Pipe Network System in Taman Khayangan Resident Makassar 

where an EPANET 2.0 simulation software is used to process the data. The data collected 

from the pipeline system is acquired from local drinking water company in Makassar. 

Then, this data is input into EPANET 2.0 to apply the SVM model to detect the location 

and size of the leak on the pipe. It was claimed that the results were accurate in predicting 

the leak size with root mean squared error (RMSE) average 0.06785 and leak location with 
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RMSE of 0.1382. Also, the average accuracy found for this application is 85.68% to predict 

the leak size and 76.14% to predict the leak location (Salam, 2015). 

Nasir et al. (2014) use differential sensors of pressure that recognize a small change 

in the size of the leak. The water distribution system of Saudi Arabia is simulated and 

modeled in ERPANET application, and the input data is taken from this application. Then, 

DTREG and MATLAB software are used to process these data using ANN and SVM 

models. The conclusion of this experiment is that ANN model is more sensitive and not 

stable to noise than SVM. But, the performance of ANN is better if the noise is small. 

The final results of the experiments were the value of the squared correlation 

coefficient (R) at errors of order 0.01 is 0.89 for SVM and 0.55 for ANN, and also the mean 

squared error (MSE) value is 1.2 for SVM and 12 for ANN. So, for their simulated system 

SVM model is more applicable for leak detection in a noisy environment than ANN models 

(Nasir, Mysorewala, Cheded, Siddiqui & Sabih, 2014). 

On the other hand, by combining the machine learning approach to hydraulic 

simulation is what it is presented by Candelieri et al. (2014) paper. The goal was to enhance 

the leakage management by using an analytical leak localization by reducing costs and time 

for examining and repairing of water distribution network. 

Many clustering algorithms are applicable; all of them require a particular measure 

(similarity or distance) to be decided in order to compare two objects that, in this case, are 

two vectors of flow and pressure difference at pipes and junctions. At the end of clustering 

process, a measure should be considered to allow the high quality of the solution with 
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respect to the goal (Candelieri, Soldi, Conti & Archetti, 2014).  

An SVM model classifier has been used to train the data of the difference in flow 

and pressure of each scenario as input and the cluster supported by Spectral Clustering as 

target output (class label). So, the SVM classifier learns to approximate the non-linear 

mapping carried out by Spectral Clustering and to approximate the most probable cluster 

which the actual vectors of differences in flow and pressure belongs to (Candelieri, Soldi, 

Conti & Archetti, 2014). The best SVM classifier configuration settings used for this data 

are C = 1 and γ = 1. The learned SVM classifier has been validated on a separate test set, 

related to leakage scenarios retrieved on values of severity different from those already 

adopted, for example, new leaks. The study has been applied in a real case study, in two 

pilots of the European project ICeWater and Milan, Italy (Candelieri, Soldi, Conti & 

Archetti, 2014).   

Herrera et al. (2010) compared and described multiple predictive models for 

forecasting water demand. The models are acquired using time series flow data from water 

consumption in an urban area of a city in south-eastern Spain. 

Namely, the study took into account ANN, multivariate adaptive regression splines 

(MARS), projection pursuit regression (PPR), support vector (SVR) and random forests 

(RF) regression. Also, the researchers propose a simple model based on the weighted 

demand profile resulting from their exploratory analysis of the data (Herrera, Torgo, 

Izquierdo & Pérez-García, 2010). 

The results of this comparison have recognized SVR models as the most accurate 
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models, approximately followed by MARS, PPR and RF. The experiments have also 

showed a weak performance of the different of neural networks that were considered. 

Finally, a heuristic model based on the empirical analysis of the regularities of the time 

series has shown its limitations when compared to these more sophisticated modelling 

approaches (Herrera, Torgo, Izquierdo & Pérez-García, 2010). 

In one study by Kim et al. (2015) an effective daily water demand forecast method 

is used where two algorithms are combined: Genetic and neural network algorithms and 

they call it a neuro-genetic algorithm. The main feature of this study is adding more 

parameters that affect the water demand such as previous day's water demand, temperature, 

sunshine duration and day type that have a major impact on forecasting to give a better 

results. The experiment done in this study is for City of Seoul, South Korea.  

The neural network model used in this experiment had a backpropagation algorithm 

in it and named in this study as NNBP and the genetic algorithm along with neural network 

model tested is named NNGA. Nine groups of NNBP are tested and trained. Then, nine 

groups of NNGA are created to get the best results in the water demand forecasting. The 

final results showed that applying neuro-genetic model with input parameters of two 

previous day's demand and todays along with the temperature parameter only give better 

performance forecasting today's water demand. The criteria used to judge if the 

performance is good or not are RMSE, Relative Root Mean Square Error, Absolute Mean 

Bias, and Mean Absolute Percentage Error. Out of 18 models that are tested, NNGA model 

found it has the best result where RMSE = 50422.33 (Kim, Hwang & Shin, 2011). 
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Hyper Approach 

In Bakker's et al. (2014) Paper three various forecasting models for flow are 

studied:  a transfer/ noise, an Adaptive Heuristic and multiple linear regression models. 

The performance of the models was analyzed both with and without using weather input, 

to determine the possible performance improvement because of using weather data. The 

final results showed that when using the weather data the largest forecasting errors may 

reduce by 11% and the average errors by 7%.   
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CHAPTER 3: METHODOLOGY 

In this study, different models are built by learning from data. After the learning 

stage of the dataset, these models will be used to classify new data instances. The approach 

follows a process which is identical to the process introduced in knowledge discovery from 

databases (KDD) by Han and Kamber (2011). The process cycle and their order are 

described in figure 5 and outlined below: 

 

 

 
 

Figure 5. The knowledge discovery process. 
 

 

1. Defining Objectives: In this cycle, the objectives of the exercised process are 

established and determined. One of these objectives could be model training and 

testing which consists of regression and classification models. Regression models are 
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one of the forecasting modeling technique where the target variable to be 

approximated is continued. On the other hand, classification is also one of the 

prediction modeling technique that predicts the class label of unknown records, so, 

the target label is discrete. 

2. Collecting Data: This activity includes collecting of raw data and defining 

different features. To target this, data sources are recognized, and the features are 

chosen according to the objectives established in previous activity step and the 

subject area knowledge. 

3. Data Preprocessing: This step evolves data cleaning from outliers and noise, 

handling missing values …etc. Data visualization and exploration are another 

techniques which are used to discover interesting trends and relations between the 

various features. Additionally, features or/and which are reduced and transformed 

for an efficient and effective performance of the following activity.  

4. Data Mining: In this step, algorithms are applied, and models are built to 

accomplish the objectives stated in step 1. There exists a plenty of these algorithms 

to be exploited, and each could behave differently to the type of data and selected 

features. Additionally, some algorithms have parameters that sometimes need to be 

optimized to enhance the performance. 

5. Evaluation: The output of the previous step is analyzed, interpreted and evaluated. 

Reliable statistical evaluations are usually used. For example, classifiers are 

evaluated by adopting a portion of the available data. It is used as hidden data that 
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have known classes; therefore, classifier output accuracy can be estimated. 

Additionally, the size of the hidden data is decided in relation to the over-all size 

of available data.  

6. Taking Actions: If the evaluation is acceptable, models are applied. This is an 

application dependent step, which depends on previous steps. In classification, the 

best-selected features, and the presented classification models are used to 

categorize new data instance.  

In a real application, these process steps are repeatedly performed whether partially 

or as a whole process. For example, in step 4, the algorithms are usually repeatedly tested 

and tuned. On the other hand, in step 5, to test the efficiency and effectiveness of the 

process. The details of the process activities related to this study are presented in the 

following sections (Benhmed, Shaban & El-Hag, 2014). 

Data Collection 

SCADA system which is implemented in KM collects sensory data such as 

reservoirs’ inlet and outlet flows, reservoirs’ levels, reservoirs’ inlet water stock as well as 

the status of valves and used pumps in all over Qatar. These time-stamped data are 

periodically transmitted to several back-end servers for logging, storing, and processing. 

KM water network is composed of 35 connected stations; each includes from 3 to 10 

reservoirs.   
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Feature Engineering 

Data Pre-Processing 

Data preprocessing is a wide field in data mining and contains a number of various 

techniques and strategies that are interrelated in different ways. The aim of data pre-

processing is to boost the data mining analysis with respect to cost, time, and quality (Tan, 

2006).  

Data preprocessing consists of different techniques such as data transformation, 

data cleaning and data reduction. Data transformation is when the data transformed to give 

a more efficient data mining result and the data patterns is easier to understand. Two forms 

of transformation are mostly used discretization and normalization. Data cleaning goal is 

to solve data inconsistency, missing values and reduce data outliers. Data reduction goal 

is to reduce the representation of the dataset while obtaining integrity of the original data 

and give more efficient analytical result (Han, Pei & Kamber, 2011). 

 Feature Selection 

Feature Selection is one of the ways to determine which attribute features to be 

input it to the model. This technique reduces the dimensionality of the data to enhance the 

performance of the learning algorithm, easiness in interpreting the data and speed up the 

learning (Hall, Witten & Frank, 2011). 

The feature selection can be heuristically through a well understanding of the data 

patterns and features, or automatically by using filtering methods or wrapper methods 

(Tan, 2006).   
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In our study, we use the heuristically method for feature selection of the dataset by 

relying on KAHRAMAA’s operation expertise for calculating the water loss and by 

automatically by using decision tree models such as J48, RF and Random trees(RT). 

 Time Windowing 

Windowing is one of the data mining transformation technique mostly used in 

prediction of time series data. Since KM’s dataset is a time series data and our target to 

predict the water RPS loss. In general, time series data and its transformed structure are 

conceptually shown below in figure 6: 

 

 

 
 

Figure 6. Windowing technique. 
 

 

The parameters of the "Windowing" operator grant changing the size of the 

windows as shown in figure 6 the colored vertical boxes on the left. While the overlap 

between the windows is known as a step size and the last value in a window is called a 
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label variable (green box in the figure above) which is applied for forecasting. Thus a time 

series data is now changed into a generic data set which can be processed by any of the 

available data mining operators.  

Model Training and Testing 

Regression and classification models are machine learning methods for building 

forecasting models from dataset given. The models are acquired by recursively partitioning 

the dataset and fitting a simple forecasting model within each partition. Accordingly, the 

partitioning can be displayed graphically as a decision tree. Regression trees are 

constructed for dependent variables that take ordered discrete values or continues and 

predict a particular value in future. On the other hand, Classification trees are constructed 

for dependent variables that take an unlimited number of unordered values and predict a 

range in future. 

Regression 

Linear Regression 

Linear regression (Han, Pei & Kamber, 2011), uses the equation of a straight line 

which is  y = mx + b and figures out the suitable values for m and b to predict the value of 

y depends on value of x. Mostly, the Linear regression models are used to show the 

relationship between two factors. The factor that is being forecasted is called the dependent 

variable. The factors that are used to forecast the value of the dependent variable are named 

the independent variables.   
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Multilayer Perceptron (MLP) 

MLP is a static neural system that contains consecutive layers which exchange and 

communicate the information through synaptic connections expressed by an adaptive 

weight. The MLP structure comprises an input layer which is built of some perceptions 

equal to the number of data attributes. On the other hand, the output layer contains one 

perceptron in regression or more when the task for classification, so the number of the 

perceptron is identical to the number of classes to be predicted, while rest of the other layers 

are hidden (Tan, 2006). 

Sequential Minimal Optimization Regression (SMOReg) 

The Sequential Minimal Optimization (SMO) algorithm was created by John 

Platt in 1998 which is usually combined with Radial Basis Function (EBF) kernel used for 

prediction process. In WEKA program, SMO algorithm uses SVM for learning and the 

model named SMOReg (Shevade, Keerthi, Bhattacharyya & Murthy, 2000). 

Classification 

J48 

J48 is one of the decisions trees that applies Quinlan’s C4.5 algorithm (1993) for 

producing unpruned or pruned C4.5 tree. Moreover, the C4.5 algorithm is an improvement 

of Quinlan’s ID3 algorithm. The decision trees produced by J48 usually used for 

classification, where J48 algorithm forms decision trees from a group of labeled training 

data applying the concept of information entropy. It applies the case that every attribute of 

the data could be used to create a decision by breaking the data into smaller subsets. 
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J48 analyzes the normalized information gain (difference in entropy) that results 

from selecting an attribute for dividing the data. To build or give a decision, the highest 

normalized information gain attribute is chosen. Next, the algorithm repeated on smaller 

subsets. The stop condition of splitting reached if all instances in a subset associated with 

the same class. After that, a leaf node is built in decision tree informing to select that class. 

However, it can also occur that none of the features deliver any information gain. In that 

case, J48 algorithm constructs a decision node higher up in the tree employing expected 

value of the class (Quinlan, 1993). The pseudo code of J48 shown below in figure 7: 

 

 

 
Figure 7. The pseudo code of J48 algorithm (Quinlan, 1993). 
 

1. Check for base cases. 

2. For each attribute : 

a) Find the feature that best divides the training data such as 

information gain from splitting on . 

3. Let  be the attribute with highest normalized information gain. 

a) Create a decision node that splits on  

4. Recurs on the sub-lists obtained by splitting on  and add those 

nodes as children of node. Stop when the stopping condition is met 
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J48 algorithm works on both discrete and continuous attributes, attributes with 

distinct costs, and training data with missing attribute values. Also, it affords an option for 

pruning trees after creation (Quinlan, 1993). 

RF 

RF is a novel algorithm to the area of data mining and is constructed to generate 

accurate predictions that do not over-fit the data (Breiman, 2001). RF algorithm builds 

several trees, and each tree is created with randomized subset predictors. Therefore, the 

name “random” is called. An enormous number of trees (500 to 2000) developed, so, 

“forests” of trees is called. The number of predictors applied to discover the best split at 

every node is a randomly picked subset of the total number of predictors, the trees are 

getting larger to a maximum size without pruning, and aggregation is done by averaging 

the trees. Out of the bag samples usually applied to compute an unbiased error rate and 

variable importance, removing the need for a test set. On the other hand, a big number of 

trees are built, there is a restricted generalization error that means that no overfitting is 

attainable which is an advantage for forecasting. 

By building each tree to maximum size without pruning and picking only the best 

split of the random subset at each node, RF algorithm attempts to control some prediction 

strength while producing a distinction between trees (Breiman, 2001). Random predictor 

selection reduces the correlation between un-pruned trees and maintains the bias low by 

handling an ensemble of unpruned trees; variance is also reduced. The pseudo code shown 

in below figure 8 summarized the RF Algorithm. One of the advantages of RF algorithm 
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is that the forecasted output relies on only one user-selected parameter. Hence, the number 

of predictors to be picked is random at each node.  

 

 

 
Figure 8. The pseudo code of RF algorithm (Breiman, 2001). 
 

 

RT 

RT models have been widely used in the area of machine learning recently. When 

we have k random features at each node, a RT is a tree form at random from a group of 

possible trees. Therefore, the name “random” means that each tree in the group of trees has 

Let  be the number of trees to build for each of  iterations. 

1. Select a new bootstrap sample from training set. 

2. Grow an un-pruned tree on this bootstrap. 

3. At each internal node, randomly select  predictors and determine 

the best split using only these predictors. 

4. Do Not perform cost complexity pruning. Save tree as is, alongside 

those built thus far. 

Output overall prediction as the average response (regression) or majority vote 

(classification) from all individually trained trees. 
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an equally chance of being sampled. So, the division of trees is “uniform.” RT could be 

created efficiently, and the mixture of large groups of RT mainly leads to an accurate model 

(Han, Pei & Kamber, 2011). 

Ensemble Methods 

This section introduces some methods for enhancing classification accuracy by 

collecting the forecasts of multiple classifiers. These methods are well-known as ensemble 

methods. The ensemble method builds a group of base classifiers from training data and 

carries out a classification models by taking a vote on the forecasts made by each base 

classifier. This section clarifies why ensemble methods likely to carry out better than any 

single classifier. 

Boosting 

Boosting (Han, Pei & Kamber, 2011) is a repetitive procedure used to alter the 

distribution of training examples so that the base classifiers will spotlight examples that 

are complicated to classify. Dissimilar than bagging, boosting appoints a weight to each 

training example and could frequently change the weight at the end of each boosting cycle. 

The weights appointed to the training examples may be used in the following ways: 

1. The weights may be used as a sampling distribution to build a group of bootstrap 

samples from the original data. 

2. The weights may be used by the base classifier to learn a model that is biased to a 

higher weight examples. 

In past years, many implementations of the boosting algorithm have grown in 
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different fields. These algorithms distinct in terms of: 

1. How the weight of the training examples are amended at the end of boosting cycle. 

2. How the forecasting builds by each classifier are linked.  

An implementation called AdaBoost algorithm investigated next. 

AdaBoost. Allow  express a set of  training examples. As 

primary process of AdaBoost algorithm, the priority of a base classifier  counts on its 

error rate, which is expressed in Equation 5 as 

 

Equation 5: Counting error rate in AdaBoost algorithm 

Where  if the forecast  is true, otherwise 0. The significance of classifier 

 is defined by the flowing parameter in Equation 6, 

 

Equation 6: The importance of classifier  

Hence that if the error rate is close to 0,  has a large positive value and if the error 

rate close to 1,  has a significant negative value. 

  The parameter  is also applied to update the weight of training examples. To 

demonstrate, let  express the weight assigned to example  during the  

boosting cycle. The weight update method for AdaBoost algorithm is represented in 

Equation 7:  
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Equation 7: The weight update method in AdaBoost algorithm 

Where  is the normalization factor applied to guarantee that . The 

weight update equation which is expressed in Equation 7 decreases the weight of examples 

classified correctly and increases the weights of incorrectly classified examples.  

Rather than using a majority voting scheme, the forecasting made by each classifier 

 is weighted depending on . This method grants AdaBoost algorithm to punish models 

that have low accuracy. Furthermore, if any in-between cycles give an error rate bigger 

than 50%, the weight are returned to their original uniform values, , and the 

resampling method is done again (Freund & Schapire, 1996).  

Bagging 

Bagging or bootstrap aggregating, is an approach that frequently samples (with 

replacement) from a dataset conforming to a uniform probability distribution. Each 

bagging sample has an identical size as the original data. By reason, the sampling is done 

with replacement, part of instances usually presents many times in the same training set, 

while others could be excluded from the training set. On average, a bagging sample  

consists nearly 63% of the original training data due to every sample has a probability 

 of being chosen in each  . If N is adequately large, that probability converges 

to . After training the k classifiers, a test instance elected to the class that 

earns the highest number of votes (Breiman, 1996).  
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Comparing Experimental Results 

Cross Validation 

In cross-validation, each record in the dataset is used the same number of iterations 

for training and testing. To demonstrate this method, suppose we divide the data into two 

equal-sized subsets. First, we select one of the subsets for testing and the other is for 

training. Then, we exchange the roles of the subsets so that the previous testing dataset 

becomes the training dataset and vice versa. This method is called a two-fold cross-

validation. On the other hand, the k-fold cross-validation approach generalizes the cross-

validation method by dividing the data into k equal-sized partitions. In each run, one of the 

partitions is selected for testing while the rest of them selected for training. The process is 

repeated k times so that each partition is selected for testing exactly once.  

Cross-validation method has the advantage of applying as much data as possible 

for training. Also, the test datasets are mutually exclusive, and they effectively cover the 

entire dataset. 

Baseline 

The RMSE and accuracy rate is not very meaningful to show the forecasting 

performance of the model's algorithm used in this experiment. Therefore, in this 

experiment, we compare the classification models results against a baseline model results 

to show how the data mining algorithm models enhance the forecasting concept to detect 

the water loss in water stations. 

The simplest models used in this experiment is to take the dataset as a baseline and 
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discretize the attribute (RPS LOSS) into three and four bins with equal frequencies, then 

blindly classify each value with its significant bin. The final step, we calculate the correctly 

classified instances in baseline and compare it with correctly classified instances in each 

classification models to emphasize the prediction performance of classification models 

against the baseline.  
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CHAPTER 4: EXPERIMENTAL RESULTS 

Dataset Collection 

In this study, Airport water station hourly data has been chosen to apply the data 

mining algorithms and analyze it. The data used are: 

1. Water Station Inlets: It is a flow meter reading that reads how much water entering 

the station from different desalination plants. The readings in Million Gallon (MIG). 

2. Water Station Outlets: It is a flow meter reading that reads how much water pumping 

out the station to different district areas. The readings in Million Gallon (MIG). 

3. Water Reservoir level: It is the water level in each tank inside the station. The 

readings in Meter (m). 

Data Preprocessing 

There are some negative and zero data has been presented in the dataset which is 

mostly presented in flow meters readings for the inlet and output data of the station and in 

reservoir level data. These noisy data are presented in input and output flow meters data 

are because of communication loss, faulty device, or there is no water in the pipeline. The 

following solution has been done: - if zeros presented consecutively ( more than hour) and the station pumping water 

to customers means it is a faulty device (not recording the data) in this case we 

don’t ignore these zeros we take average of last collected data with the first data 

taken after the zero data and replace the result in all zeros. - If zeros presented consecutively (more than hour) and the station not pumping 
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water to customer means there is no water in the pipeline in this case we leave 

the zero as it is. - If zeros presented only one-hour means there is communication loss or power 

disruption in this case we take the same action as the first case by taking the 

average. 

On the other hand, noisy data also presented in reservoir tank level data which is 

because of various reasons but mostly because of Loss of communication, first construction 

of the reservoir tank or because there is a maintenance in the reservoir tank. The following 

solution has been applied to overcome this noisy data: - If the zeros presented at the beginning and last more than a week means that the 

reservoir is in construction phase and not yet in service in this case the zeros are 

ignored or deleted. - If the zeros presented for few hours and we see the zeros in all the reservoirs means 

there is loss in communication of the reservoir and in this case we don’t ignore 

these zeros we take average of last collected data with the first data taken after the 

zero data and replace the result in all zeros. - If the zeros presented for few hours in this particular reservoir means there is 

maintenance in the reservoir and in this case the zeros are ignored or deleted. 
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 Feature Engineering 

Formatting Data 

An additional columns has been added to represents Qatar’s temperature, season, 

holiday and day of the week. The season column is added to represents the weather seasons 

in Qatar, in order to be consistent and to make forecasting easier, meteorologists divide the 

year into 4 meteorological seasons of 3 months each (numbered accordingly): 

1. Spring: starting from 1st of March 1 till 31st of May. 

2. Summer:  starting from 1st of June 1 till 31st of August. 

3. Fall: starting from 1st of September till 30th of November 30. 

4. Winter: starting December 1 and ending February 28 (February 29 in a Leap Year). 

The “day of the week” column is added to let the system recognize and learn the 

data and recognize the water loss during the week days. The numbering of the week days 

is as the following: 

1. Sunday (1) 

2. Monday (2) 

3. Tuesday (3) 

4. Wednesday (4) 

5. Thursday (5) 

6. Friday (6) 

7. Saturday (7) 

On the other hand, the highest demand and losses also depends on the holiday 
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seasons, the Eid, school break and Ramadan seasons are mostly have the highest demands. 

Also, three columns are created which are the “Total Inlet” which sum up all the water 

inlets readings, “Total Outlets” which sum all the water outlet readings and “Total Stock” 

which represent the sum of all reservoir’s level. Moreover, an additional column is added 

“RPS LOSS” that represents the hourly loss in the station, equation 3 is used to calculate 

the loss in each hour.  

The file used is in CSV format in order to analyze it via Rapid Miner application. 

Feature Selection 

According to KAHRAMAA’s operation for calculating the water loss, I have 

decided to use the following attributes that have a major influence on data mining 

algorithms:  

 Month 

 Day 

 Day of the week 

 Hour 

 Total Inlet 

 Total Outlet 

 Total Stock 

 RPSLOSS 

 Temp 
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 Season 

 Holiday 

Snapshot of the dataset used is shown below in figure 9: 

 

 

 
 

Figure 9. Dataset snapshot. 
 

 

Therefore, the inlet, outlet and reservoir level columns are deleted since we sum 

them all. 

Data Windowing 

The main items in Windowing is the window size used which is 24 to represent a 

day, and the step size used in this experiment 12 because the water distribution pattern is 

changing every 12 hours. While, the horizon used is 1, 12 and 24 as recommended by 
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KAHRAMAA engineer expert. On the hand, to test the accuracy of daily dataset an hourly 

dataset is used to compare the accuracy and mean squared error between them.  

Implementation and Tools 

Two processes used in this experiment, the first process is used to test the 

classification models as shown in below figure 10, where four operators for setting up 

windowing and analyzing the predicted data. “Read CSV” operator is used to import the 

time-series data needed to be predicted which is saved as a CSV file. All time series will a 

date column (Month, Day, and Hour) and this must be treated with special care. The 

imported data is then windowed with “windowing” operator which is installed in Rapid 

Miner application via the series extension that windowed the data into different sizes, steps 

and horizons which make the prediction process of water loss more predictable and easier 

to learn. Also, it creates a new label attribute accordingly for the water loss. Then, the data 

is discretized by “Discretize by Frequency” operator which discretize the label attribute 

into different number of bins depending on the range of data, in this experiment the attribute 

is discretized into 3 and 4 bins for testing to predict the water loss  and classify them 

according the bins number.  The last operator is the “Cross Validation” operator which 

partitioned the data set into k subsets of equal size. Out of the k subsets, a single subset is 

retained as the testing data set and the remaining k − 1 subsets are used as training data set. 

The cross-validation process is then repeated k times, with each of the k subsets used 

exactly once as the testing data. The k results from the k iterations then combined to 

produce a single estimation. The value k is adjusted using the number of validations 
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parameter which is 10 iterations in our experiment. Hence that the second process used is 

the same as the first process except the discretization operator is not used for testing the 

regression algorithm models. 

 

 

 
 

Figure 10. Main process implementation. 
 

 

The validation process which is shown in figure 11 has two sections, the training 

and testing sections where a WEKA learning classification and regression algorithm 

models are implemented in training section. On the other hand, the performance operator 

in testing section is used to produce accuracy and error results of the classification and 

regression prediction. 
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Figure 11. Validation process environment. 
 

 

Forecasting Algorithms Setup 

The algorithms used in batch procession is tuned to improve the prediction 

accuracy. Which is implemented in validation process for learning and predicting the data. 

The classification models algorithms settings is shown in table (1), the regression models 

algorithms settings is shown in table (2) and ensemble methods settings shown in table (3). 
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Table 1  
 
Classification Model Algorithms Parameters 
 
    
Algorithm Parameter Value Justification 
    
J48 confidence 

threshold for 
pruning 

0.2 Pruning reduces the complexity of 
the final classifier, and improves 
predictive accuracy by the reduction 
of overfitting. 

    
 Min. No. of 

instances per leaf 
2 Depends on the dataset itself, so it is 

tuned to improve the accuracy of the 
result 

    
RF No. of trees to build 10 Depends on the dataset itself, so it is 

tuned to improve the accuracy of the 
result 

    
 No. of features 0 This feature is when we need to 

manually set the number of trees. 
However, to consider an unlimited 
number of feature so we set it to 0. 

    
 Max. Depth of trees 0 This feature is when we need to 

manually set the number of trees. 
However, to consider an unlimited 
number of feature so we set it to 0. 

    
RT No. of attributes 

randomly 
investigated 

10 In our test we didn’t tune this feature 
since we are testing it. 

    
 Min. No. of 

instances per leaf 
1 Depends on the dataset itself, so it is 

tuned to improve the accuracy of the 
result 

    
 Seed for random 

number generator 
1 The default number is one and it 

gave more accurate results. 
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Table 2  
 
Regression Model Algorithms Parameters 
 
    
Algorithm Parameter Value Justification 
    
Linear Regression Attribute selection 

method 
0 Depends on the datasets 

itself, so it is tuned to 
improve the accuracy of 
the result. 

    
Multilayer 
Perceptron 

Learning rate for the 
backpropagation 
algorithm 

0.3 Depends on the datasets 
itself, so it is kept its 
default value. 

    
 Momentum Rate for 

the backpropagation 
algorithm  

0.2 Depends on the datasets 
itself, so it is kept its 
default value. 

    
 Number of epochs to 

train through.  
500 The number of trained 

epochs used depends on 
the dataset. In this case, 
the default value used.  

    
SMOReg The complexity 

constant   
1 In our test we don’t tuned 

this feature since we are 
testing it. 

    
 Normalization 0 It means that we want to 

normalize the result. 
    
 Seed for random 

number generator 
1 The default number is one 

and it gave more accurate 
results. 
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Table 3  
 
Ensemble Method Algorithms Parameters 
 
    
Algorithm Parameter Value Justification 
    
AdaBoostM1 Percentage of 

weight mass to base 
training on  

100% The default number is 100 
and it gave more accurate 
results. 

    
 Number of 

iterations.  
14 Depends on the datasets 

itself, so it is tuned to 
improve the accuracy of 
the result. 

    
Bagging Size of each bag  100% As a default, the size of the 

training size is the whole 
dataset. 

    
 Number of 

iterations.  
14 Depends on the datasets 

itself, so it is tuned to 
improve the accuracy of 
the result. 

 

 

Experimental Evaluation 

Cross validation is tuned to validate the results of the tested models, number of validations 

parameter is set to 10 validations which specifies the number of subsets that the dataset 

should be divided into. Furthermore, the same number of iterations will take place, each 

iteration covers testing and training the model. Sampling type used is stratified sampling 

since there is a label attribute. Both accuracy and RMSE results discussed in chapter 3 are 

reported for all experiments. 
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On the other hand, the experiment’s results are compared to a baseline results to 

show the prediction accuracy and errors.  

Results 

In this section, we represent all the results accomplished in regression and 

classification forecasting models. In Section 4.4.2.1, we illustrate the Regression models 

experiments using Linear Regression, Multilayer Perceptron, and SMOReg algorithms on 

windowed and non-windowed data. In Section 4.4.2.2, we show the Classification models 

experiments using J48, Random Forest, and Random Tree algorithms on windowed data. 

Also, in this section we show the experimental results of ensemble classification models 

using Boosting and bagging methods and compare the classifications results with the 

baseline results. 

4.4.2.1 Regression  

In this section, we need to study the effect of regression models on windowing to 

calculate prediction trend accuracy (PTA) and RMSE. Table 6 in the appendix shows the 

PTA percentage and RMSE for predicting the RPS water loss across horizon 1, 12 and 24 

using Linear Regression, Multilayer Perceptron and SMOReg algorithms and the PTA 

percentage and RMSE value for non-windowed dataset. 
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Figure 12. PTA for regression models. 
 

 

 
 

Figure 13. RMSE for regression models. 
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Figure 12 and Figure 13 illustrate the best values of PTA percentage and RMSE 

values calculated. Each column in the figures has a label indicating the algorithm used to 

achieve this result. Based on figure, we can conclude the following: 

 Not windowed dataset achieves less PTA compared to windowed data. 

 SMOReg algorithm outperforms other algorithms across all horizons. 

 PTA percentage for predicting RPS water loss is high by using Linear 

Regression and SMOReg algorithms across all horizons ranging between 

80’s and 90’s. 

 RMSE values for all algorithms is very high across all horizons ranging 

between 100 and 1000. 

4.4.2.2 Classification 

In this section, we need to study the effect of classification models on windowing 

and discretization of the dataset to calculate accuracy percentage and RMSE value. Table 

7 and 8 in the appendix shows the accuracy percentage and RMSE value for predicting the 

RPS water loss across horizon 1, 12 and 24 using J48, Random Forest and Random Tree 

algorithms with standard deviation values for all algorithms. Also, in this section, we 

represent the ensemble classification methods (Boosting and Bagging) as results shown in 

Table 9, 10, 11 and 12 in the appendix. Finally, we need to validate the classification 

models results with the baseline results represented in Tables 13-18 in the appendix. 
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Table 4  
 
Three Bins Classification for J48 Algorithm in Horizon 12. 
 
 
                                  A  B  C 
 
A [-∞- 410.455]  144  48  27 
 
B [410.455 - 531.257]  51  98  67 
 
C [531.257 - ∞]  25  75  127 
 

 

Table 5  
 
Four Bins Classification for Random Forest Algorithm in Horizon 24. 
 
 
                                  A  B  C  D 
 
A [-∞- 362.376]  113  35  16  11 
 
B [362.376 – 473.306]  31  68  56  15 
 
C [473.306- 577.658]  12  47  56  44 
 
D [577.658- ∞]  9  15  37  96 
 

 

Table 4 and Table 5 demonstrates an output screen shot of two confusion matrix 

results of two algorithms where it shows the ranges and how many correctly classified 

instances in each range. From these screenshots we conclude the following: 
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 Table 4 which shows a 3 bins classification of J48 algorithm in horizon 12, 

144 instances correctly classified or predicted to be in range [-∞ - 410.455] 

which represent a very high loss range, 98 instances correctly classified or 

predicted to be in range [410.455 - 531.257] that represent a small water 

loss range and 127 instances correctly classified or predicted to be in range 

[531.257- +∞] which represents no loss range.  

 Table 4 which shows a 4 bins classification of Random Forest algorithm in 

horizon 24, 113 instances correctly classified or predicted to be in range [-

∞ - 362.376] which represent a very high loss range, 68 instances correctly 

classified or predicted to be in range [362.376 – 473.306] that represent a 

small water loss range, 56 instances correctly classified or predicted to be 

in range [473.306– 577.658] also represents a small water loss range and 96 

instances correctly classified or predicted to be in range [577.658 - +∞] 

which represents no loss range. 

The confusion matrix is presented in the appendix for all classification models 

across all horizons. 
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Figure 14. Accuracy for 3-Bins discretization of bagging-ensemble classification models. 
 

 

 
 
Figure 15. RMSE for 3-bins discretization of bagging-ensemble classification models. 
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Figure 14 and Figure 15 illustrate the best values of accuracy percentage and 

RMSE of 3-Bins Discretization of Bagging-Ensemble Classification Models. Each column 

in the figures has a label indicating the algorithm used to reach this result, and the standard 

deviation value is also represented by each column as error bars. Based on the figures, we 

conclude the following: 

 Random Forest algorithm performs best compared to other algorithms for 

predicting the water loss in horizon 12 and 24. 

 Accuracy in horizon 1 which represents predicting the water loss after 1 

hour is high for all algorithms which are reasonable since it is easy for the 

classifier to predict the next hour and getting complicated in predicting 

further hours. The water loss prediction accuracy for all algorithms in 

horizon 1 around 80’s. 

 RMSE is minimal in the first horizon and keeps increasing in other horizons. 

However, Random Forest and J48 algorithms have low RMSE values in 

horizons 12 and 24. 

To validate the accuracy of the classification results of all models we experimented, 

we compare them with the baseline model results that is represented in Table 13 to Table 

18 in the appendix for 3-bins and 4-bins discretization across horizons 1, 12 and 24. 
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Figure 16. Accuracy for 3-bins discretization of all classification & baseline model. 
 

 

 
 
Figure 17. Accuracy for 4-bins discretization of all classification & baseline model. 
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Figure 16 and Figure 17 illustrates the best achieved accuracy percentage for all 

Classification Models and Baseline Model. Each column in the figures indicate the 

algorithm used to achieve the results, RF for Random Forest, RT for Random Tree, 

Boost_J48 for J48 algorithm using Boosting-Ensemble classification, Boost_RF for 

Random Forest algorithm using Boosting-Ensemble classification, Boost_RT for Random 

Tree algorithm using Boosting-Ensemble classification, Bag_J48 for J48 algorithm using 

Bagging-Ensemble classification, Bag_RF for Random Forest algorithm using Bagging-

Ensemble classification, and Bag_RT for Random Tree algorithm using Bagging-

Ensemble classification. Based on both figures we can conclude the following: 

 3 bins discretization for all models performs better than 4 bins discretization 

for all models. The range of accuracy for all models in 3 bins discretization 

between 20% and 80% but in 3 bins discretization is between 19% and 70% 

 The baseline model accuracy performs nearly the same as all classification 

models in horizon 1 in 3 bins and 4 bins discretization. On the other hand, 

baseline model accuracy performs worse in horizons 12 and 24 for both 3 

bins and 4 bins discretization. 

 Random Forest algorithm accuracy performs the best by using Bagging-

Ensemble classification model compared to other algorithm models in 

horizon 12 and 24 for 3 bins and 4 bins discretization. Therefore, the 

prediction accuracy of water loss after 12 hours in 3 bins discretization 

around 73.01% and 4 bins discretization around 71.77%. 
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 The best accuracy outperformed in horizon 1 is J48 algorithm by using 

Bagging-Ensemble classification model in 3 bins discretization which gave 

around 84.78% accuracy. 

 The standard deviation of Random Tree algorithm for all classification 

models has the highest values across all horizons in 3 bins and 4 bins 

discretization.  
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

After doing several experiments on water loss in one of the KAHRAMAA’s water 

station using various machine learning techniques, we have exposed to several conclusions 

and future work guidelines that are discussed in details in the following sections. 

Conclusion 

Water loss is one of the major concern that effect water utilities especially in 

KAHRAMAA Corporation in Qatar. Water loss effect the environment, cost and resources 

that effects negatively on the corporation. These water losses need to be monitored, studies 

and analyzed continually in order to be used in prediction for the future. In our thesis, we 

have used a dataset of one of KAHRAMAA water stations to predict the water loss by 

adding some new feature to enhance the prediction process. We have studied the prediction 

of water loss for one-step and multi-step ahead using various classification, regression and 

ensemble machine learning strategies, algorithms and features. 

We have experimented with different machine learning algorithms applied to 

multivariate input features, we have studied the response of time windowing on accuracy 

and root mean squared error. Based on the results of the experiments we have conclude the 

following: 

 The proposed combination between bagging ensemble method and random forest 

model resulted in better results in most results compared to all other models. 

 The highest accuracy for predicting water loss in next hour is 84.78% using 

combination between bagging ensemble method and J48 model with RMSE 0.37. 
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The result surpass the baseline models by 14.78% in accuracy. 

 The highest accuracy for predicting water loss in 12th hour is 73.01% using 

combination between bagging ensemble method and random forest model with 

RMSE 0.5. The result surpass the baseline models by 45.32% in accuracy. 

 The highest accuracy for predicting water loss in 24th hour is 71.66% using 

combination between bagging ensemble method and random forest model with 

RMSE 0.37. The result surpass the baseline models by 11.50% in accuracy. 

 Ensemble classification models outperforms the regression models for predicting 

the RPS water loss across all horizons. 

 RMSE has the same pattern across horizons, it starts minimal at horizon 1, goes up 

in horizon 12 and finally goes down in horizon 24. 

Future Work 

The proposed forecasting models can be integrated with KM SCADA system to it will 

ease the manual calculations used by the SCADA engineer. The current forecasting models 

could be enhanced in several ways: (1) having data from other water stations, (2) use the 

models for systems outside the RPS stations, (3) Increase the dataset size and (4) use the 

model in different fluid systems. 

(1) Having data from other water stations: In our study we focused in one RPS water 

station which is the Airport station, however different water stations could be 

integrated to have a study that may affect the forecasting results and accuracy. 

(2) Use the models for systems outside the RPS stations: the RPS water stations are 
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mostly connected via pipes and valves, this also can be integrated using the 

proposed model to enhance the forecasting results. 

(3) Increase the dataset size: by adding more yearly time based data into the model, the 

forecasting results can be enhanced and more accurate. 

(4) Use the model in different fluid systems: Different fluid systems can apply the 

model such as oil and sewage stations since the drinking water normally has the 

same connections and systems. This could give different analysis and results. 
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APPENDIX 

Table 6  
 
PTA Percentage and RMSE using Regression Models. 
 

Window Size Horizon Model  Root Mean 
Squared 
Error 

PTA (%) 

Not windowed 

- Linear 
Regression 

218.200 67.5 

Multilayer 
Perceptron 

230.775 63.6 

SMOReg - - 

Window 24 
Step 12 

1 
Linear 

Regression 

242.243 86.2 
12 193.605 84.6 
24 463.29 76.9 
1 

Multilayer 
Perceptron 

974.767 46.2 
12 900.426 60 
24 1008.563 58.5 
1 

SMOReg 
139.317 89.2 

12 186.896 84.6 
24 181.195 81.5 
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Table 7  
 
Accuracy & RMSE for Classification Models by Discretizing the Data into 3 Bins.  
 

Windo
w Size 

Horizon Model Accuracy  RMSE Confusion Matrix 

Window 
24 

Step 12 

1 

J48 76.16% 
+/- 4.19% 
 

0.477 
+/- 0.040 
 

a b c 
a [-∞ - 426.771] 190 20 4 
b [426.771 - 559.916] 25 145 47 
c [559.916 - ∞] 6 56 170 
    

 

Random 
Forest 

76.91% 
+/- 3.65% 

0.431 
+/- 0.025 
 

 
a b c 

a [-∞ - 426.771] 188 23 8 
b [426.771 - 559.916] 29 151 42 
c [559.916 - ∞] 4 47 171 
    

 

Random 
Tree 

65.01% 
+/- 5.56% 

0.590 
+/- 0.046 
 

 
a b c 

a [-∞ - 426.771] 161 43 9 
b [426.771 - 559.916] 41 114 56 
c [559.916 - ∞] 19 64 156 
    

 

12 

J48 55.75% 
+/- 5.68% 

0.640 
+/- 0.036 
 
 

 
a b c 

a [-∞ - 410.455] 144 48 27 
b [410.455 - 531.257] 51 98 67 
c [531.257 - ∞] 25 75 127 
    

 

Random 
Forest 

62.10% 
+/- 5.96% 

0.54 
+/- 0.029 
 

 
a b c 

a [-∞ - 410.455] 156 50 19 
b [410.455 - 531.257] 47 117 64 
c [531.257 - ∞] 17 54 138 
    

 

Random 
Tree 

55.60% 
+/- 4.24% 

0.666 
+/- 0.032 
 

 
a b c 

a [-∞ - 410.455] 149 50 28 
b [410.455 - 531.257] 45 104 78 
c [531.257 - ∞] 26 67 115 
    

 

24 

J48 56.58% 
+/- 5.32% 

0.639 
+/- 0.035 
 

 
a b c 

a [-∞ - 411.628] 135 47 34 
b [411.628 - 531.257] 50 105 53 
c [531.257 - ∞] 35 68 134 
    

 

Random 
Forest 

62.03% 
+/- 4.77% 

0.544 
+/- 0.031 
 

 
a b c 

a [-∞ - 411.628] 148 45 22 
b [411.628 - 531.257] 49 123 60 
c [531.257 - ∞] 23 52 139 
    

 

Random 
Tree 

55.07% 
+/- 6.30% 

0.668 
+/- 0.049  
 

 
a b c 

A[ -∞ - 411.628] 138 59 40 
b [411.628 - 531.257] 46 104 59 
c [531.257 - ∞] 36 57 122 
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Table 8  
 
Accuracy and RMSE for Classification Models by Discretizing the Data into 4 Bins.  
 

Windo
w Size 

Horizon Model Accuracy  RMSE Confusion Matrix 

Window 
24 

Step 12 

1 

J48 58.85% 
+/- 5.32% 

0.624 
+/- 
0.041 
 

a b c d 
a [-∞ - 367.026] 121 33 8 2 
b [367.026 - 491.137] 35 75 45 12 
c [491.137 - 608.578] 8 44 81 39 
d [608.578 - ∞] 1 14 32 113 

 

Random 
Forest 

60.95% 
+/- 6.89% 

0.548 
+/- 
0.034 
 

 
a b c d 

a [-∞ - 367.026] 141 37 4 4 
b [367.026 - 491.137] 20 83 58 7 
c [491.137 - 608.578] 4 36 63 38 
d [608.578 - ∞] 0 10 41 117 

 

Random 
Tree 

54.77% 
+/- 8.48% 

0.669 
+/- 
0.067 
 

 
a b c d 

a [-∞ - 367.026] 107 33 6 3 
b [367.026 - 491.137] 49 69 42 18 
c [491.137 - 608.578] 8 55 80 38 
d [608.578 - ∞] 1 9 38 107 

 

12 

J48 47.27% 
+/- 6.23% 

0.708 
+/- 
0.038 
 

 
a b c d 

a [-∞ - 367.026] 107 29 13 14 
b [367.026 - 491.137] 32 63 53 18 
c [491.137 - 608.578] 16 53 55 46 
d [608.578 - ∞] 10 21 44 88 

 

Random 
Forest 

53.78% 
+/- 3.31% 

0.609 
+/- 
0.016 
 

 
a b c d 

a [-∞ - 367.026] 116 26 15 9 
b [367.026 - 491.137] 30 80 51 20 
c [491.137 - 608.578] 11 40 61 38 
d [608.578 - ∞] 8 20 38 99 

 

Random 
Tree 

46.53% 
+/- 6.10% 

0.73 
+/- 
0.042 
 

 
a b c d 

a [-∞ - 367.026] 100 24 11 14 
b [367.026 - 491.137] 28 68 52 19 
c [491.137 - 608.578] 22 51 56 49 
d [608.578 - ∞] 15 23 46 84 

 

24 

J48  
44.34% 
+/- 4.57% 

0.729 
+/- 
0.028 
 

 
a b c d 

a [-∞ - 367.026] 105 31 17 11 
b [367.026 - 491.137] 27 50 54 24 
c [491.137 - 608.578] 20 64 54 47 
d [608.578 - ∞] 13 20 40 84 

 

Random 
Forest 

50.38% 
+/- 6.33% 

0.636 
+/- 
0.027 
 

 
a b c d 

a [-∞ - 367.026] 113 35 16 11 
b [367.026 - 491.137] 31 68 56 15 
c [491.137 - 608.578] 12 47 56 44 
d [608.578 - ∞] 9 15 37 96 

 

Random 
Tree 

43.43% 
+/- 6.59% 

0.751 
+/- 
0.045 
 

 
a b c d 

a [-∞ - 367.026] 90 34 18 13 
b [367.026 - 491.137] 38 61 58 29 
c [491.137 - 608.578] 21 47 52 40 
d [608.578 - ∞] 16 23 37 84 
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Table 9  
 
Accuracy and RMSE for Boosting Ensemble Models by Discretizing the Data into 3 Bins  
 

Windo
w Size 

Horizon Model Accuracy  RMSE Confusion Matrix 

Window 
24 

Step 12 

1 

J48 78.58% 
+/- 3.64% 

0.445 
+/- 
0.040 
 

a b c 
a [-∞ - 426.771] 185 18 4 
b [426.771 - 559.916] 30 165 46 
c [559.916 - ∞] 6 38 171 
    

 

Random 
Forest 

79.34% 
+/- 2.35% 

0.449 
+/- 
0.025 
 

 
a b c 

a [-∞ - 426.771] 186 20 3 
b [426.771 - 559.916] 34 163 41 
c [559.916 - ∞] 1 38 177 
    

 

Random 
Tree 

66.02% 
+/- 8.29% 

0.579 
+/- 
0.071 
 

 
a b c 

a [-∞ - 426.771] 158 31 14 
b [426.771 - 559.916] 45 128 55 
c [559.916 - ∞] 18 62 152 
    

 

12 

J48 66.62% 
+/- 5.29% 

0.562 
+/- 
0.042 
 

 
a b c 

a [-∞ - 410.455] 154 28 13 
b [410.455 - 531.257] 48 131 52 
c [531.257 - ∞] 18 62 156 
    

 

Random 
Forest 

64.37% 
+/- 6.57% 

0.583 
+/- 
0.052 
 

 
a b c 

a [-∞ - 410.455] 150 40 22 
b [410.455 - 531.257] 56 135 58 
c [531.257 - ∞] 14 46 141 
    

 

Random 
Tree 

51.97% 
+/- 6.11% 

0.692 
+/- 
0.044 

 
a b c 

a [-∞ - 410.455] 132 50 27 
b [410.455 - 531.257] 57 96 78 
c [531.257 - ∞] 31 75 116 
    

 

24 

J48  
64.14% 
+/- 3.50% 

0.588 
+/- 
0.036 
 

 
a b c 

a [-∞ - 411.628] 150 38 18 
b [411.628 - 531.257] 45 124 53 
c [531.257 - ∞] 25 58 150 
    

 

Random 
Forest 

62.78% 
+/- 5.12% 

0.597 
+/- 
0.043 
 

 
a b c 

a [-∞ - 411.628] 154 55 19 
b [411.628 - 531.257] 47 123 64 
c [531.257 - ∞] 19 42 138 
    

 

Random 
Tree 

54.00% 
+/- 6.91% 

0.676 
+/- 
0.050 
 

 
a b c 

a [-∞ - 411.628] 142 59 41 
b [411.628 - 531.257] 45 93 58 
c [531.257 - ∞] 33 68 122 
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Table 10  
 
Accuracy and RMSE for Boosting Ensemble Models by Discretizing the Data into 4 Bins. 
 

Windo
w Size 

Horizon Model Accuracy  RMSE Confusion Matrix 

Window 
24 

Step 12 

1 

J48 64.43% 
+/- 7.22% 

0.579 
+/- 
0.061 
 

a b c d 
a [-∞ - 367.026] 125 25 0 2 
b [367.026 - 491.137] 35 90 43 7 
c [491.137 - 608.578] 4 46 91 36 
d [608.578 - ∞] 1 5 32 121 

 

Random 
Forest 

62.76% 
+/- 5.82% 

0.601 
+/- 
0.046 
 

 
a b c d 

a [-∞ - 367.026] 134 30 3 3 
b [367.026 - 491.137] 28 91 54 9 
c [491.137 - 608.578] 3 40 72 35 
d [608.578 - ∞] 0 5 37 119 

 

Random 
Tree 

53.28% 
+/- 8.92% 

0.680 
+/- 
0.064 
 

 
a b c d 

a [-∞ - 367.026] 111 32 4 2 
b [367.026 - 491.137] 33 67 47 14 
c [491.137 - 608.578] 11 50 74 49 
d [608.578 - ∞] 10 17 41 101 

 

12 

J48 52.43% 
+/- 5.90% 

0.671 
+/- 
0.041 
 

 
a b c d 

a [-∞ - 361.468] 114 21 9 8 
b [361.468 - 473.306] 30 78 57 16 
c [473.306 - 577.658] 14 54 55 42 
d [577.658 - ∞] 7 13 44 100 

 

Random 
Forest 

55.00% 
+/- 3.40% 

0.661 
+/- 
0.026 
 

 
a b c d 

a [-∞ - 361.468] 117 24 6 11 
b [361.468 - 473.306] 32 84 59 14 
c [473.306 - 577.658] 9 47 60 38 
d [577.658 - ∞] 7 11 40 103 

 

Random 
Tree 

47.74% 
+/- 5.06% 

0.722 
+/- 
0.034 
 

 
a b c d 

a [-∞ - 361.468] 99 32 15 11 
b [361.468 - 473.306] 28 66 41 17 
c [473.306 - 577.658] 22 43 62 49 
d [577.658 - ∞] 16 25 47 89 

 

24 

J48  
49.63% 
+/- 6.14% 

0.683 
+/- 
0.047 
 

 
a b c d 

a [-∞ - 362.376] 109 26 11 5 
b [362.376 - 473.306] 33 57 47 23 
c [473.306 - 577.658] 14 60 64 40 
d [577.658 - ∞] 9 22 43 98 

 

Random 
Forest 

51.44% 
+/- 3.59% 

0.686 
+/- 
0.026 
 

 
a b c d 

a [-∞ - 362.376] 118 31 11 9 
b [362.376 - 473.306] 26 69 60 17 
c [473.306 - 577.658] 11 55 53 40 
d [577.658 - ∞] 10 10 41 100 

 

Random 
Tree 

45.99% 
+/- 4.47% 

0.734 
+/- 
0.031 
 

 
a b c d 

a [-∞ - 362.376] 96 29 26 12 
b [362.376 - 473.306] 33 57 46 20 
c [473.306 - 577.658] 21 58 59 42 
d [577.658 - ∞] 15 21 34 92 
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Table 11  
 
Accuracy and RMSE for Bagging Ensemble Models by Discretizing the Data into 3 Bins. 
 

Windo
w Size 

Horizon Model Accuracy  RMSE Confusion Matrix 

Window 
24 

Step 12 

1 

J48 81.14% 
+/- 3.64% 

0.403 
+/- 0.033 
 

a b c 
a [-∞ - 426.771] 190 18 5 
b [426.771 - 559.916] 27 164 32 
c [559.916 - ∞] 4 39 184 
    

 

Random 
Forest 

79.19% 
+/- 3.48% 

0.429 
+/- 0.018 
 

 
a b c 

a [-∞ - 426.771] 187 23 2 
b [426.771 - 559.916] 29 151 32 
c [559.916 - ∞] 5 47 187 
    

 

Random 
Tree 

76.91% 
+/- 3.21% 

0.431 
+/- 0.023 
 

 
a b c 

a [-∞ - 426.771] 188 23 8 
b [426.771 - 559.916] 29 151 42 
c [559.916 - ∞] 4 47 171 
    

 

12 

J48 64.67% 
+/- 5.67% 

0.521 
+/- 0.027 
 

 
a b c 

a [-∞ - 410.455] 153 38 12 
b [410.455 - 531.257] 46 124 58 
c [531.257 - ∞] 21 59 151 
    

 

Random 
Forest 

67.99% 
+/- 5.02% 

0.521 
+/- 0.021 
 

 
a b c 

a [-∞ - 410.455] 159 35 13 
b [410.455 - 531.257] 47 131 48 
c [531.257 - ∞] 14 55 160 
    

 

Random 
Tree 

62.10% 
+/- 3.26% 

0.54 
+/- 0.024 
 

 
a b c 

a [-∞ - 410.455] 156 50 19 
b [410.455 - 531.257] 47 117 64 
c [531.257 - ∞] 17 54 138 
    

 

24 

J48  
63.24% 
+/- 4.59% 

0.541 
+/- 0.024 
 

 
a b c 

a [-∞ - 458.681] 146 38 15 
b [458.681 - 599.894] 52 125 59 
c [599.894 - ∞] 22 57 147 
    

 

Random 
Forest 

65.96% 
+/- 5.70% 

0.533 
+/- 0.021 
 

 
a b c 

a [-∞ - 411.628] 151 35 13 
b [411.628 - 531.257] 50 133 56 
c [531.257 - ∞] 19 52 152 
    

 

Random 
Tree 

62.03% 
+/- 5.41% 

0.544 
+/- 0.032 
 

 
a b c 

a [-∞ - 411.628] 148 45 22 
b [411.628 - 531.257] 49 123 60 
c [531.257 - ∞] 23 52 139 
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Table 12  
 
Accuracy and RMSE for Bagging Ensemble Models by Discretizing the Data into 4 Bins.  
 

Windo
w Size 

Horizon Model Accuracy  RMSE Confusion Matrix 

Window 
24 

Step 12 

1 

J48 65.50% 
+/- 6.75% 

0.510 
+/- 
0.031 
 

a b c d 
a [-∞ - 367.026] 133 23 4 3 
b [367.026 - 491.137] 27 10

0 48 8 

c [491.137 - 608.578] 4 40 81 35 
d [608.578 - ∞] 1 3 33 120 

 

Random 
Forest 

63.37% 
+/- 6.47% 

0.542 
+/- 
0.034 
 

 
a b c d 

a [-∞ - 367.026] 140 28 2 3 
b [367.026 - 491.137] 20 81 48 6 
c [491.137 - 608.578] 5 50 73 31 
d [608.578 - ∞] 0 7 43 126 

 

Random 
Tree 

60.95% 
+/- 5.14% 

0.548 
+/- 
0.035 
 

 
a b c d 

a [-∞ - 367.026] 141 37 4 4 
b [367.026 - 491.137] 20 83 58 7 
c [491.137 - 608.578] 4 36 63 38 
d [608.578 - ∞] 0 10 41 117 

 

12 

J48 53.62% 
+/- 3.88% 

0.611 
+/- 
0.013 
 

 
a b c d 

a [-∞ - 361.468] 116 24 7 9 
b [361.468 - 473.306] 29 74 52 12 
c [473.306 - 577.658] 10 53 61 41 
d [577.658 - ∞] 10 15 45 104 

 

Random 
Forest 

56.06% 
+/- 3.67% 

0.608 
+/- 
0.010 
 

 
a b c d 

a [-∞ - 361.468] 121 25 4 6 
b [361.468 - 473.306] 25 82 59 12 
c [473.306 - 577.658] 10 46 52 32 
d [577.658 - ∞] 9 13 50 116 

 

Random 
Tree 

53.78% 
+/- 2.79% 

0.609 
+/- 
0.016 
 
 

 
a b c d 

a [-∞ - 361.468] 116 26 15 9 
b [361.468 - 473.306] 30 80 51 20 
c [473.306 - 577.658] 11 40 61 38 
d [577.658 - ∞] 8 20 38 99 

 

24 

J48  
49.93% 
+/- 4.57% 

0.629 
+/- 
0.022 
 

 
a b c d 

a [-∞ - 362.376] 114 25 11 9 
b [362.376 - 473.306] 30 63 57 14 
c [473.306 - 577.658] 9 53 46 36 
d [577.658 - ∞] 12 24 51 107 

 

Random 
Forest 

54.02% 
+/- 5.58% 

0.622 
+/- 
0.020 
 

 
a b c d 

a [-∞ - 362.376] 114 30 8 7 
b [362.376 - 473.306] 34 71 53 17 
c [473.306 - 577.658] 12 49 64 34 
d [577.658 - ∞] 5 15 40 108 

 

Random 
Tree 

50.38% 
+/- 6.11% 

0.636 
+/- 
0.025 
 

 
a b c d 

a [-∞ - 362.376] 113 35 16 11 
b [362.376 - 473.306] 31 68 56 15 
c [473.306 - 577.658] 12 47 56 44 
d [577.658 - ∞] 9 15 37 96 
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