
 

QATAR UNIVERSITY 

   COLLEGE OF ENGINEERING 

ILLUMINANT ESTIMATION BY DEEP LEARNING 

BY 

 

HASSAN H. MIQDAD 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

A Thesis Submitted to 

the Faculty of the College of 

Engineering 

in Partial Fulfillment 

of the Requirements 

for the Degree of      

Master of Science /Electrical Engineering 

 
 
 
 
 

 June  2018 
 

© 2018. Hassan H. Miqdad. All Rights Reserved. 



  
   

ii 
 

COMMITTEE PAGE 
 

The members of the Committee approve the Thesis of Hassan H. Miqdad 

defended on 08/05/2018. 

 

 
 

Prof. Mustafa Serkan Kiranyaz 

 Thesis/Dissertation Supervisor 
 
 
  

Prof. Abdesselam Bouzerdoum 

 Committee Member 
 
 
 

Dr. Noor Ali S A Al-Maadeed  

Committee Member 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved: 

 
 
 
 
 
Khalifa Al-Khalifa, Dean, College of Engineering 

 

 



  
   

iii 
 

ABSTRACT 

 
MIQDAD, HASSAN, H., Masters : June : 2018:, Masters of Science in Electrical Engineering  

Title: Illuminant Estimation by Deep Learning 

Supervisor of Thesis: Mustafa, Serkan, Kiranyaz. 

  

Computational color constancy refers to the problem of estimating the color of the 

scene illumination in a color image, followed by color correction of the image through a 

white balancing process so that the colors of the image will be viewed as if the image was 

captured under a neutral white light source, and hence producing a plausible natural 

looking image. The illuminant estimation part is still a challenging task due to the ill-

posed nature of the problem, and many methods have been proposed in the literature 

while each follows a certain approach in an attempt to improve the performance of the 

Auto-white balancing system for accurately estimating the illumination color for better 

image correction. These methods can typically be categorized into static-based and 

learning-based methods. Most of the proposed methods follow the learning-based 

approach because of its higher estimation accuracy compared to the former which relies 

on simple assumptions. While many of those learning-based methods show a satisfactory 

performance in general, they are built upon extracting handcrafted features which require 

a deep knowledge of the color image processing. More recent learning-based methods 

have shown higher improvements in illuminant estimation through using Deep Learning 

(DL) systems presented by the Convolutional Neural Networks (CNNs) that 

automatically learned to extract useful features from the given image dataset. In this 
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thesis, we present a highly effective Deep Learning approach which treats the illuminant 

estimation problem as an illuminant classification task by learning a Convolutional 

Neural Network to classify input images belonging to certain pre-defined illuminant 

classes. Then, the output of the CNN which is in the form of class probabilities is used 

for computing the illuminant color estimate. Since training a deep CNN requires large 

number of training examples to avoid the “overfitting” problem, most of the recent CNN-

based illuminant estimation methods attempted to overcome the limited number of 

images in the benchmark illuminant estimation dataset by sampling input images to 

multiple smaller patches as a way of data augmentation, but this can adversely affect the 

CNN training performance because some of these patches may not contain any semantic 

information and therefore, can be considered as noisy examples for the CNN that can 

lead to estimation ambiguity. However, in this thesis, we propose a novel approach for 

dataset augmentation through synthesizing images with different illuminations using the 

ground-truth illuminant color of other training images, which enhanced the performance 

of the CNN training compared to similar previous methods. Experimental results on the 

standard illuminant estimation benchmark dataset show that the proposed solution 

outperforms most of the previous illuminant estimation methods and show a competitive 

performance to the state-of-the-art methods. 
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CHAPTER 1: INTRODUCTION 

 

The area of Artificial Intelligence (AI) and machine learning has recently gained 

much attention and popularity in the field of computer vision due to the remarkable 

success and breakthrough performance introduced by the Deep Learning systems and 

more specifically Convolutional Neural Networks in the task of object classification [1], 

and many other high-level computer vision tasks which have been inspired by that 

success including object detection and tracking [2], semantic segmentation [3], and face 

recognition [4]. Besides computer vision, Deep Learning and CNNs are getting more 

involved and became state-of-the-art techniques in other research areas such as speech 

recognition [5], and machine translation [6]. 

Today, the intensive number of research efforts on the implementation of CNNs 

in various applications have been initiated after the rapid development of high-end 

powerful computers and processors introduced by the latest Graphical Processing Units 

(GPUs). The need for such sophisticated processors has become a must due to the 

computationally intensive complicated structures of Deep Learning models including 

CNNs which are getting more complex in terms of increased depth and number of 

parameters [7]. According to NVIDIA Corporation, a pioneer trademark for the design 

and manufacturing of computer graphics, the high speed and energy efficiency features 

provided by GPUs compared to conventional CPU-based platforms made GPUs state-of-

the-art in training deep neural networks [8]. 

Computer vision problems can typically be categorized into high-level and low-

level problems. High-level vision problems include but not limited to object 
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classification, object detection and tracking, semantic segmentation, and face recognition. 

Low-level vision problems are mostly related to the image processing domain include 

image de-noising and de-blurring [9], image super-resolution [10], image enhancement 

[11], and the well-known 3A’s image processing functions in digital camera image 

processing pipeline which are: Auto-Focus, Auto-Exposure, and Auto-White Balance 

[12]. 

The problem of Auto-White Balance in digital photography is commonly known 

in the literature as “computational color constancy”, which is still a longstanding problem 

and an active research topic due to its ill-posed nature [13]. In this thesis, we propose a 

highly effective approach to achieve an utmost accuracy for white balancing in digital 

images. In the next sub-section, we shall detail this problem in depth whilst discussing 

the state-of-the-art approach. 

 

1.1 Background 

Color constancy is a feature of the human vision system (HVS) which enables 

humans to account for the color of the illumination source, and hence it allows to 

perceive true colors of objects in a scene unchanged to different light sources and varying 

illumination conditions. Then, the objective is to emulate the ability of HVS in color 

images through the computational color constancy which refers to the process of 

estimating the color of the scene illumination in a color image, followed by color 

correction through some sort of transformation which uses the illuminant estimate 

information so that colors of the image will be viewed as if the image was taken under a 

reference illuminant (e.g. canonical white light source) [14], [15]. An illustration of 
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correct and incorrect white balanced image is depicted in Figure 1. Despite its apparent 

simplicity, it is still a challenging task yet for computers due to the ill-posed nature of the 

illuminant estimation problem which arises from the fact that the observed color in an 

image is a function of the intrinsic properties of the object surface (surface reflectance), 

and the illuminant color (spectral distribution of the illuminant) where both quantities are 

unknown. Therefore, it is an under-constrained problem [13]. 

 

 

  
 

Figure 1. Correct white balance (neutral) vs. incorrect white balance (bluish) [16] 

 

 

Computational color constancy is considered a fundamental concern in the camera 

industry (both still image and video) that requires the production of a plausible natural 

looking images/video frames without user intervention (i.e. automatically estimating and 

removing the illuminant color casts) [13], [19]. The so-called “Automatic White 
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Balance” process in digital cameras is crucial, especially in mobile phones cameras as the 

manual mode of selecting the right preset for white balancing in professional cameras 

requires a user experience in photography and color image processing. Besides, setting 

the camera to manual white balancing in long outside live events of TV broadcasting 

requires the attention of the cameraman or the end-user to varying illumination conditions 

which affect the aesthetic look of the picture. In addition, color constancy is a necessary 

pre-processing step for various computer vision applications such as semantic 

segmentation, texture classification, and visual recognition where color is an important 

feature. 

The computational color constancy problem has yielded a great deal of research, 

especially for the illuminant estimation part, and many methods have been proposed in 

the literature. The vast majority of these methods assume a uniform illumination across 

the scene, and they mainly fall into two groups: static-based methods and learning-based 

methods [13]. The former group of methods do not need any training of data and can 

apply directly to images (i.e. fixed/static parameters setting), while the later estimate the 

illuminant based on a model that needs to be trained on some dataset. The learning-based 

technique has become more prevalent in literature and most of the recent works in the 

illuminant estimation follow this approach due to its higher accuracy in general compared 

to the static-based approaches [17]. Most learning-based methods are based on some 

handcrafted features (i.e. for a given dataset, the extracted features are manually 

designed), which require a domain expertise in the image processing and data 

representation [14], [17]. Hence, recent state-of-the-art works have been motivated 

toward using the power of CNNs in learning illuminant estimation models [14], [17]. The 
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main advantage behind the remarkable success of CNNs in a variety of applications is the 

automatic learning capability to extract useful and complex features from the given 

dataset for a specific task. The majority of the recent CNN-based methods treat the 

illuminant estimation as a regression problem [17], [18], [19], except for one work which 

approached the problem as an illuminant classification [14]. Besides, most of these 

methods are patch-based input (i.e. each input image of the dataset is sampled to multiple 

patches) to overcome the limited number of images available in computational color 

constancy benchmark datasets. Such patch-based approach can be thought as a data 

augmentation, which is a well-known issue and usually a required process in training 

deep CNN models. However, this may offer many challenges to the task and deteriorate 

the overall performance due to the ambiguity presented in some local estimates of 

patches where semantic information is nearly absent. 

 

1.2 Thesis Objective 

The key objective set for this thesis is to achieve a high performance and accurate 

illuminant estimation for the computational color constancy problem by performing the 

following steps: 

1) Study and review the different proposed approaches in the literature, and more 

specifically investigate the gaps and limitations presented in the CNN-based 

illuminant estimation methods. 

2) Exploit the proven capabilities of CNNs in the task of object classification, 

and propose an optimized CNN classification-based illuminant estimation 

solution. 



  
   

6 
 

3) Propose a new approach for dataset augmentation which shall enhance the 

performance of CNN training. In fact, the size and representation of the 

dataset is very crucial to the performance of the CNN. 

 

1.3 Thesis Scope 

The scope of this thesis is to tackle the illuminant estimation part of the 

computational color constancy problem which is the most crucial part of the task. This 

thesis works on the common assumption of single illuminant within a scene and 

illumination variations occur only from scene to scene. Besides, the proposed CNN 

solution is camera-specific (i.e. different models will be trained separately for different 

camera-specific benchmark datasets) where sensor variations among different camera 

models are out of the scope of this thesis.  

 

1.4 Thesis Outline 

This thesis started firstly with an introductory chapter (Chapter 1) which aims to 

present the motivations of utilizing recent state-of-the-art DL systems in the field of 

computer vision. Besides, it states the problem of computational color constancy and 

recent approaches to solve it. The rest of the thesis is organized as follows. In Chapter 2, 

a formulation of the illuminant estimation problem of computational color constancy is 

described, together with a literature review of classical and state-of-the-art approaches. In 

Chapter 3, a background on the Artificial Neural Network (ANN) and CNN is explained. 

In Chapter 4, a detailed illustration of the proposed CNN solution, datasets, and the 

training strategy is presented. In Chapter 5, the experimental results on benchmark 
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datasets based on some performance metrics are assessed and discussed. Finally, Chapter 

6 concludes the thesis and draws some remarks on the limitations of this work and future 

directions. 
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CHAPTER 2: PROBLEM FORMULATION AND LITERATURE REVIEW 

 

2.1 Problem Formulation 

 The image values 𝝆(𝑥, 𝑦) = (𝜌𝑅(𝑥, 𝑦), 𝜌𝐺(𝑥, 𝑦), 𝜌𝐵(𝑥, 𝑦))
𝑇 under the common 

assumption of a Lambertian surface, which reflects light equally among all directions 

[13], can be expressed as a function of the light source (illuminant spectral power 

distribution) 𝐸(𝑥, 𝑦, 𝜆), the surface spectral reflectance 𝑆(𝑥, 𝑦, 𝜆), and the camera sensors 

spectral sensitivities  𝑪(𝜆) = (𝐶𝑅(𝜆), 𝐶𝐺(𝜆), 𝐶𝐵(𝜆))
𝑇: 

𝝆(𝑥, 𝑦) =  ∫ 𝐸(𝑥, 𝑦, 𝜆) 
 

𝜔

𝑆(𝑥, 𝑦, 𝜆)𝑪(𝜆)𝑑𝜆 (1) 

 

where 𝜆 is the light wavelength, 𝜔 is the visible spectrum, and (𝑥, 𝑦) corresponds to the 

pixel spatial location. Under the further assumption of a single uniform illumination 

across the scene, the observed color of the illuminant 𝝆𝐸 = (𝜌𝑅
𝐸 , 𝜌𝐺

𝐸 , 𝜌𝐵
𝐸)𝑇 in the image 

(i.e. the projection of the illuminant spectral power distribution on the camera sensors 

spectral sensitivities) can be expressed as: 

𝝆𝐸 = ∫ 𝐸(𝜆) 
 

𝜔

𝑪(𝜆)𝑑𝜆 (2) 

 

 Then, the aim of the computational color constancy is to estimate this quantity 

(i.e. the scene illuminant chromaticity) to correct for the colors in an image. However, 

since the only known information is the camera sensors spectral sensitivities, 𝑪(𝜆) and 

the observed image values, 𝝆(𝑥, 𝑦), illuminant estimation is an under-constrained 

problem, and hence it needs further assumptions to solve it. Therefore, various illuminant 
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estimation methods have been proposed in the literature, each of which is based on 

different simplifying assumptions. In the next sub-section, a review of the different 

approaches and methods for the illuminant estimation will be presented. 

 

2.2 Literature Review 

 As mentioned earlier, illuminant estimation methods can typically be categorized 

into static-based and learning-based methods. The former involves methods that do not 

need any supervision or tuning and can be applied directly to images (i.e. fixed/static 

parameters setting), while the latter involves methods that estimate the illuminant based 

on a model that is learned by a supervised manner. 

 

2.2.1 Static-Based Methods 

 Static-based methods estimate the scene illuminant by making assumptions about 

the nature of the color images in the aim of exploiting statistical or physical properties of 

the scene, so they can be further distinguished to methods based on low-level statistics 

and methods based on the physics-based dichromatic reflection model [13]. 

 The most common and well-known assumption of the low-level statistics based 

methods is made by the Gray-World method [20], which states that under a neutral 

illumination, the average reflectance in a scene is achromatic (i.e. gray), and hence the 

color of the illuminant can be estimated as the shift or deviation from gray of the 

averages in the color channels of the image. The main drawback of this method is that it 

may fail to estimate the illuminant color when the captured scene is dominated by large 

uniformly colored surfaces such as walls. White-Patch is another well-known method 
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belonging to the first group of static-based methods [21], where it is assumed that the 

maximum values in the RGB color channels of an image are caused by a perfectly 

reflecting surface in the scene, hence the name white patch. Therefore, the illuminant 

color estimation in practice using this assumption is simplified by computing the 

maximum value in the separate color channels. Besides Gray-World and White-Patch 

methods which make use of the distribution of colors in an image (i.e. pixel values) to 

build their assumptions, Gray-Edge method [22] utilizes higher order statistics, namely 

image derivatives to build their assumption. Hence, instead of the average reflectance, 

Gray-Edge method assumes that the average color of edges or gradient of edges is gray, 

then the color of the illuminant is estimated as the offset of the averages of the edges (or 

gradient of edges) in the color channels from gray. Van de Weijer et al. [22] proposed a 

unified formulation which incorporates different low-level statistics-based methods into a 

single framework. Indeed, the aforementioned methods and other extended versions of 

them have been shown to be instantiations of this formulation:  

𝝆𝐸(𝑛, 𝑝, 𝜎) =  
1

𝑘
(∬|∇𝑛𝝆𝜎(𝑥, 𝑦)|

𝑝𝑑𝑥𝑑𝑦)

1
𝑝
 (3) 

 

where 𝑛 denotes the derivative order, 𝑝 denotes the Minkowski-norm, 𝑘 is constant to 

make 𝝆𝐸 (color of the illuminant) has unit length, and 𝝆𝜎(𝑥, 𝑦) =  𝝆(𝑥, 𝑦)  ∗  𝑔𝜎(𝑥, 𝑦) is 

the image convolution with a Gaussian filter with scale parameter 𝜎. Table 1 illustrates 

the combination of the parameters setting (𝑛, 𝑝, 𝜎) which correspond to different 

methods. 
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Table 1: Parameters Setting for Various Low-Level Statistics Based Methods [19] 

 

Method 𝑛 𝑝 𝜎 

Gray-World [20] 0 1 0 

White-Patch [21] 0 ∞ 0 

Shades-of-Gray [23] 0 4 0 

General Gray-World [22] 0 9 9 

First order Gray-Edge [22] 1 1 6 

Second order Gray-Edge [22] 2 1 1 

 

  

 The second line of research on static-based methods estimate the illuminant color 

by analyzing the content of the scene in an image to exploit the information about the 

physical interaction between the objects and the illuminant, and hence such methods are 

referred to as physics-based methods. While the vast amount of static-based methods 

restricts their assumptions to the Lambertian reflectance assumption of image formation 

model (1), the physics-based methods make use also of the more generalized image 

formation model that incorporates the dichromatic reflection model which considers the 

specular reflection component as well [13]. In [24], the dichromatic reflection model has 

been exploited, so that pixels of one surface in a scene is projected into the CIE 

chromaticity space. Then, it was found that the color of the illuminant can be recovered 

when the surface dichromatic line is intersected with the Planckian locus (plot of the CIE 

chromaticity coordinates of a black-body radiator). In addition, other methods of the 

same category attempt to exploit bright areas in the captured scene represented by 

specularity or highlights, to obtain a good estimation of the illuminant color [25], [26], 
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[27], [28]. For example, Drew et al. [26] showed that the best illuminant estimation can 

be found by computing the geometric mean of bright pixels (usually, specular highlights). 

 Recent advancement in building more useful statistical assumptions for improved 

computational color constancy has been made through the understanding and the 

emulation of the human vision system [29], [30]. However, these methods are still 

believed to be not fully understanding the complex nature of the human vision system 

and the built-in mechanism behind the color constancy process [14]. Therefore, the recent 

motivation toward adopting Deep Learning/CNN in solving the illuminant estimation 

problem is because of its complex structure that is inspired by the concept of the 

biological visual systems. 

 Despite the advantages of the static-based methods of simple implementation and 

fast computation of the illuminant color, the accuracy, in general, is very low compared 

to the learning-based methods and the overall performance is limited to the pre-defined 

assumptions that may not be satisfied in some cases. Such an example is mentioned 

earlier where it was argued that the Gray-World assumption can be violated in the case 

that the captured scene is dominated by large uniformly colored surfaces. 

  

2.2.2 Learning-Based Methods 

 One line of research of learning-based methods seeks to estimate the illuminant 

through a combination of different illuminant estimation methods and then, learning a 

model which decides the best performing method or combination of methods for each 

input image based on exploiting certain scene characteristics trained prior on a dataset of 

images. Various methods following this approach have been proposed in the literature. 
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Some methods like in [31], [32] use either the output of all the involved methods or some 

of them in producing the final illuminant estimate. In [31], a combination of a statistics-

based method and a physics-based method is introduced where each of them produces 

likelihood outputs for a predefined set of illuminants so that the final illuminant estimate 

is a contribution of the weighted average of both likelihood outputs. In [32], various 

combining techniques have been explored for different illuminant estimation methods, 

where the output of all or some of the investigated methods can contribute to the final 

illuminant estimate. For example, one examined technique is to use the average value of 

all estimates. Another explored technique is to compute the Euclidean distances between 

the illuminant estimates of all methods projected into the rg-chromaticity color space, 

then the average of the two closest illuminant estimates is used as a final illuminant 

estimation. In comparison to these methods, Gijsenji and Gevers [33] propose a different 

combining strategy where the natural image statistics are exploited to train a model which 

selects the most appropriate or the best performing illuminant estimation among the 

different existing methods for each input image. In this method, a maximum likelihood 

classifier based on a mixture of Gaussians is trained on the statistical features of natural 

images extracted by the Weibull parameterization which provides some sort of a 

weighting relation between the image content and the selection of the most proper 

illuminant estimation method. Rather than features extracted by Weibull 

parameterization, several other features are investigated in different frameworks to select 

the best performing illuminant estimation method or combination of methods. For 

example, in [34] the selection of the most appropriate illuminant estimation method 

among different given methods for each input image is decided by a decision forest 
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which is trained based on features expressed as low-level visual properties of the image 

content. In addition to the exploitation of natural image statistics, the incorporation of the 

scene semantic information is found to be also useful in selecting the appropriate 

illuminant estimation method. In [35], a selection technique of the illuminant estimation 

method is proposed based on analyzing and classifying the semantic content of the image 

belonging to a specific known scene category. Another similar approach which exploits 

the scene semantic information is proposed by Bianco et al. [36] where images at first are 

classified into indoor and outdoor, as well as an “unsure” class that corresponds to 

images that the indoor-outdoor classifier is uncertain about. Then, various strategies to 

decide and tune the most appropriate method or combination of methods among the 

different low-level statistics-based illuminant estimation methods [22], are explored for 

each class. In comparison to [35], [36] which use the scene semantic information to 

merely classify input images to a certain scene category/class and apply different 

illuminant estimation methods based on the scene category, Van de Weijer et al. [37] 

propose to exploit high-level visual information by firstly modelling the image as a 

composition of semantic classes like road, grass, and sky, where each class can be 

described based on its color information, texture, and position in the image. After that, a 

set of illuminant estimates is computed for each input image using different illuminant 

estimation methods, and then selecting the estimate that produces the most likely 

semantic content of the image (i.e. plausible image such that sky tends to be bluish and 

grass tends to be greenish). 

 Another line of research of learning-based methods attempts to estimate the 

illuminant color directly by learning their own model based on exploiting various scene 
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characteristics and features extracted from a data set of images. An earlier well-known 

kind of methods following this approach is the Gamut-based method which has been 

firstly proposed by Forsyth [38], where it is assumed that under one illuminant, only a 

limited number of colors can be perceived in real-world images. Hence, any differences 

in the colors of an image occur due to a deviation in the illuminant color. Following this 

assumption, the method works as described in the below steps: 

1)  Compute the canonical gamut (i.e. the limited number of perceived colors under 

the known canonical illuminant) which is learned from the training images by 

observing as much as possible the colors of objects under the canonical 

illuminant. 

2) Estimate the illuminant color of a test image by firstly computing its gamut which 

is assumed to be represented by all the observed colors in the image, then select 

the most proper mapping among a group of feasible mappings (i.e. mappings 

which can transform the test image gamut to be within the canonical gamut) and 

apply it to the canonical illuminant to estimate the test image illuminant color. 

The selection procedure of the proper gamut mapping is rather a point of discussion in 

the literature where for example in [38], the appropriate mapping is the diagonal matrix 

with the largest trace which produces the most colorful scene. However, Bernard [39] 

proposed to take the average or a weighted average over the feasible mappings instead of 

selecting a certain mapping as in [38], which improved the results. Many extensions and 

variations of the Gamut-based method have been studied in the literature either to 

improve results or to solve the problems associated with the failure of the diagonal model 

which may result in a null solution [40], [41], [42]. However, all of these extensions deal 
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only with image intensities wherein a more recent framework [43], it has been shown that 

the use of image derivatives results in a better performance and also overcomes the issues 

related to the null solution of the diagonal model. Another group of direct learning-based 

methods uses chromaticity histograms as the key features to learn their model for 

illuminant estimation such as in the color by correlation work [44], and the machine 

learning frameworks [45], [46]. For example, in [45], [46] neural network and support 

vector regression are trained on large binarized chromaticity histograms that represent the 

training images as features, then the output is represented by the rg-chromaticity of the 

estimated illuminant. However, extending the chromaticity histograms to the full three-

dimensional RGB histograms as in the Bayesian frameworks [47], [48] has been found to 

be more useful in providing more accurate illuminant estimation. In [49], Chakrabarti et 

al. have shown that rather than building models based on statistics of per-pixel colors, 

exploiting statistics that can be deduced from the spatial color structure in a color image 

is much effective and more informative for the illuminant color estimation. They made a 

comparison between the empirical histograms or distributions (over a dataset of images 

after white-balancing) of the red channel values of individual pixels and the output of a 

band-pass filter, and they observed that the histogram for the filter output present more 

informative structure (unimodal and symmetric) that can be represented by simple 

parametric models. From that key observation, they constructed their method by firstly 

defining a parametric statistical model for a white-balanced image through a 

decomposition of the image using a series of spatially de-correlating filters followed by 

modeling color statistics independently of each sub-band. Then, the model parameters are 

learned to fit to a training dataset of white-balanced images and use this learned model in 
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a maximum likelihood framework to estimate the color of the illuminant for a test image. 

In the exemplar-based framework [50], the authors propose to exploit surfaces in the 

image as the key feature and the problem has been addressed by unsupervised learning of 

a proper model for each segmented surface in the training images where both texture and 

color features are utilized for building the surface models. Then, the model of each 

segmented surface in a test image is compared to all training surface models and the set 

of the nearest neighbor models to the test surface model is selected for the illuminant 

estimation of the test surface through a histogram matching process. The final illuminant 

estimate is computed by taking the mean or the median of the illuminant estimates over 

the test surfaces. In a recent work, Cheng et al. [51] propose to extract four simple color 

features from the image and train an ensemble of K pairs (rg-chromaticity) of regression 

trees for each feature. The training images are firstly sorted based on the ground truth r-

chromaticity and grouped equally into K local overlapping groups. Then, the regression 

trees are trained such that each tree pair is computed from the training samples that are 

biased to the local region of that pair. The final estimate of the illuminant chromaticity is 

computed by finding cross-feature consensus deduced from the estimations of all the 

regression trees. 

 The key observation from all the surveyed methods is that the extracted features 

from the image dataset for building different models are manually designed (i.e. 

handcrafted features), which require a domain expertise in the color image processing 

and data representation. Therefore, most of the recent works have been motivated toward 

utilizing CNN for solving the illuminant estimation problem due to its automatic learning 

ability in extracting the useful features for the given task. 
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The first attempt to use CNN for the illuminant estimation was proposed by 

Bianco et al. [19] where the problem has been addressed by incorporating the automatic 

feature learning with regression to estimate the illuminant color. The adopted CNN 

architecture operates on small, local patches of spatial size of 32×32 as inputs in attempt 

to overcome the limited number of training images in the available benchmark dataset 

which is a necessary requirement for training CNNs. Besides, the network architecture is 

simple consisting of only one convolutional layer followed by one max-pooling layer for 

feature extraction and ends with a single fully-connected layer that eventually outputs 

three values representing the RGB values of the locally estimated illuminant. These local 

estimates from an image are then pooled to obtain a one global illuminant estimate. 

Although the proposed method shows a satisfactory performance compared to many 

previous methods, but it is still lower than two recent learning-based methods that are 

built upon handcrafted features. This is likely because of the relatively small size of the 

sub-sampled patches compared to the original image size where many of these patches 

may not carry any semantic information which can lead to estimation ambiguity. In 

addition, the shallower network utilized in the method is not deep enough to extract 

sufficient features for the illuminant estimation problem. In [18], Shi et al. improved the 

performance of the patch-based CNNs for the illuminant estimation by introducing a 

novel architecture which consists of two interacting CNNs of moderate size called 

“Hypotheses network” and “Selection network”. The former is designed to produce two 

hypotheses for an illuminant estimation of an input patch in a two-branch structure, while 

the latter adaptively makes a decision or selection of one of the generated estimations by 
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the Hypotheses network to be the final illuminant estimate for the input local patch. The 

global illuminant estimate for the full input image is produced by performing a median 

pooling on the local estimates. A more effective solution than [18], [19] is proposed by 

Hu et al. [17] at Microsoft research where a fully convolutional network architecture is 

integrated with a novel pooling layer, namely Confidence-weighted pooling layer in an 

end-to-end learning process. Unlike the patch-based CNN methods [18], [19], the 

proposed method by Microsoft takes the full image as input and the task of the 

Confidence-weighted pooling layer is to mask out the local patches within the image that 

lead to estimation ambiguity (e.g. textureless walls) and merge only the estimates from 

patches which are more informative (e.g. human faces) for estimating the global 

illuminant color of the image. In the work proposed by Barron [52], the problem of the 

illuminant estimation is reformulated as a 2D spatial localization task in a log-

chrominance space, so the input image is transformed into various chroma histograms, 

for which convolutional filters are trained to discriminatively evaluate possible illuminant 

color estimations in the chroma plane. Although the method shows a competitive 

performance, it highly ignores the semantic context in the image as the spatial 

information is weakly encoded in these chroma histograms. It can be noticed that the 

majority of these CNN-based methods [17], [18], [19] treat the illuminant estimation 

problem as a regression problem, except for one work which approached the problem as 

an illuminant classification [14]. In the work proposed by Oh et al. [14], the images 

firstly are clustered into K-clusters based on the ground-truth rg-chromaticity and then, 

the CNN is trained using the training images with the new cluster labels to classify 

images into K illuminant clusters where the output is in the form of class probabilities. 
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The illuminant color estimate of a test image is computed by taking a weighted sum of 

the cluster centroids using the class probabilities of the CNN output. This method also 

operates on patches as input to overcome the shortage of training images and the adopted 

CNN architecture is so deep in terms of the number of learnable parameters which may 

worsen overfitting since the available dataset for this task is small. 

In this thesis, we will follow the classification approach using CNN for solving 

the illuminant estimation problem and we will address all the possible issues in [14], 

especially the choice of the CNN architecture and the data augmentation strategy. 
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CHAPTER 3: MACHINE LEARNING BACKGROUND 

 

3.1 Artificial Neural Networks 

 An Artificial Neural Network (ANN) is a Machine Learning based algorithm that 

has a massively parallel distributed structure composed of simple processing units: 

“artificial neurons”, and it has the natural tendency to store experiential knowledge so 

that it has the characteristic of learning ability [57], [58]. The idea behind the ANNs was 

inspired by the brain and biological neural systems that consist of a very large number of 

neurons connected together by synapses and operating in parallel [57], [58], [59], [60]. 

For example, the human nervous system carries up to almost 86 billion neurons 

connected together by approximately 1014-1015 synapses. The dendrites of each biological 

neuron are receiving inputs signals, then the neuron generates output signals carried 

along its axon that eventually branches out and connects to other neuron’s dendrites 

through synapses. The information travels among neurons and gets influenced by these 

connecting synapses with varying degrees of strength from one neuron to another [57], 

[60]. 

 The simplest structure of ANN is the Perceptron, which is the basic computational 

unit in ANNs as depicted in Figure 2. Similar to a biological neuron, it takes a number of 

input signals 𝑥𝑗, where each input is multiplied by a synaptic weight (strength) 𝑤𝑗 to 

mimic the synapses influnce on the neuron’s dendrites. Then, it outputs the signal 𝑦 

computed by applying a non-linear activation function 𝑓(∙) on a weighted sum of its 

inputs [57], [59], [61]: 
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𝑦 = 𝑓 (∑ 𝑤𝑗𝑥𝑗 + 𝑤0
𝑑

𝑗=1
) (4) 

 

where 𝑤0 can be defined as the associated synaptic weight of a bias unit 𝑥0 = +1. The 

sigmoid function 𝑓(𝑥) = 1 (1 + 𝑒−𝑥)⁄ , and hyperbolic tangent function 𝑓(𝑥) = tanh(𝑥) 

are examples of traditionally used non-linear activation functions [57], [59], [61], while 

more recenctly used functions especially with CNNs will be discussed later in this 

chapter. 

 

 

 
 

Figure 2. A biological neuron and a simulated model of an artificial neuron [57], [62] 
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3.1.1 Multi-Layer Perceptron 

 A Multi-Layer Perceptron (MLP) is the most common ANN architecture which is 

constructed by hooking together many of simple artificial neurons in a feed-forward and 

fully-connected layers format such that the output of each neuron in every layer is 

connected with certain weights 𝑤ℎ𝑗 to all neurons of the adjacent layer. Figure 3 

illustrates an example of a three-hidden-layers MLP with four inputs in the input layer 

and six outputs in the output layer. In addition, each hidden layer has a certain number of 

hidden artificial neurons to form together a more complex fully-connected ANN structure 

useful for many tasks and applications [57], [59]. 

 

 

 
 

Figure 3. Three-hidden-layers MLP structure with 4 inputs and 6 outputs 
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3.1.2 Artificial Neural Network Training 

 The weights in an ANN are not set manually, but rather they are converged 

(learned) during a training process. The most common learning approach for training 

neural networks is the supervised learning scheme by providing a set of training 

examples, 𝒙 with corresponding ground-truth labels, 𝒚, and then the objective is to 

minimize some loss or error function, 𝑬, which is used to measure how much the 

deviation of the predicted output 𝒚̂ by the ANN from the desired (ground-truth) output 𝒚. 

The process of minimizing the loss function on the training data is carried by optimizing 

the network parameters or weights 𝑾 during an optimization session. The most popular 

and widely adopted optimization method is the Gradient Descent algorithm. There are 

mainly two learning approaches for the Gradient Descent algorithm which are the online 

learning approach presented by the Stochastic Gradient Descent (SGD) method, and the 

batch learning approach using the Mini-Batch Gradient Descent (MGD) method [57], 

[59], [63]. For a set of training examples 𝒙 with ground-truth labels 𝒚, the SGD method 

works as follows: 
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SGD Optimization 

Inputs: Normal distribution 𝑁(∙) with mean (𝜇) and standard deviation (𝜎), Max number 

 of epochs (n), Total number of training examples (m), Learning rate (𝜂) 

Output: Trained model 

1: Initialize all the network weights with small random values (e.g. from 𝑁(𝜇, 𝜎)) 

2: Repeat for epoch=1:n 

3:     Repeat for 𝒙=1:m 

4:           Compute the predicted output 𝑦̂ through a forward pass to the neural network 

5:          Compute the loss or error function 𝑬 using 𝑦̂ and 𝑦  

6:          Compute the gradients of all weights by backpropagation of the output error to all 

                           the network parameters through a backward pass using the chain rule 

7:          Update    all the network weights by a specific amount in the negative direction of 

                          their corresponding gradients, according to the update rule ∆𝑤𝑗
𝑡 = −𝜂

∂𝐸𝑡

∂𝑤𝑗
𝑡 

8:     End 

9: End 

 

Discussion: the amount of the weight update is determined by the so-called learning rate 

𝜂 which usually decreases when training progresses for convergence. Besides, it is 

considered to be in practice one of the most important hyper-parameters in training neural 

networks [57], [63]. For clarification, one complete pass over the whole training set is 

called an epoch, where the required number of epochs for a sufficient training depends on 

the complexity of the ANN structure and the dataset type. The MGD method works 

similar to the SGD method whereas the only difference is that updating the network 

parameters or weights is applied after computing and averaging the gradients over a mini-

batch of training examples, which potentially results in a much faster training process. 

The main advantage of using the MGD method is its applicability to large-scale datasets 

(i.e. in order of hundreds of thousands or even higher). Then, it is quite efficient for much 
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faster convergence to perform less network updates using averaged gradients computed 

over mini-batches, which in practice are considered to be good approximations of the 

gradients of the full loss function. In addition, this kind of mini-batch learning allows for 

much more efficient computations in practice which can be executed on platforms (e.g. 

GPUs) that support vectorized code optimizations [57]. Recently, the term “SGD” 

becomes more popular among machine learning practitioners when referring to MGD 

method. 

One of the widely known issues about the SGD optimization method is that it 

converges slowly. Thus, a simple and popular technique which considerably improves the 

performance of SGD and helps accelerate gradients toward the right direction is to 

introduce a term called “momentum” to the SGD update rule [57], [59]: 

∆𝑤𝑗
𝑡 = −𝜂

∂𝐸𝑡

∂𝑤𝑗
+ 𝛼∆𝑤𝑗

𝑡−1 (5) 

 

where 𝛼 (momentum parameter) is typically chosen in practice between 0.5 to 0.99 

depending on the task. It can be noticed from (5) that the update rule is modified by 

incorporating the previous update in the current update which has the advantage of 

smoothing the error trajectory towards convergence by help damping the oscillations that 

may occur around some local optima as a result of using plain SGD updates [57], [59]. 

 As discussed before, the learning rate 𝜂 has the crucial impact on the whole 

training process and is considered the most important hyper-parameter to be carefully 

chosen in the SGD method and its momentum version. This hyper-parameter can be set 

to a fixed value or more commonly in practice is set into a schedule. This schedule 
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usually attempts to decay the learning rate over time, and typical choices may include a 

Step decay, Exponential decay, and Linear decay schedules [57]. Recently, much 

research has been focused into proposing new optimized Gradient Descent techniques 

that aim to adaptively tune the learning rate during the training process. The most 

common algorithms in practice are the Adadelta [64], Adagrad [65], RMSprop [66], and 

ADAM [67]. 

 

3.2 Convolutional Neural Networks 

 A Convolutional Neural Network (CNN or ConvNet), is a special type of neural 

networks that has a special structure which is particularly well-suited for 2-D input data 

type such as color images [57], [63], [68]. CNNs are widely known for their remarkable 

achievements and the breakthrough performance in many computer vision tasks including 

object classification [1], object detection and tracking [2], and face recognition [4]. The 

motivation behind adopting CNNs for image-related tasks and the description of their 

special architecture will be discussed in the next sub-sections. 

 

3.2.1 Motivation 

 CNNs are quite similar to regular ANNs on the basis that both are built from 

interconnected simple artificial neurons arranged in layers and have learnable parameters 

which are optimized during a training process to minimize some loss function placed 

after the last (fully-connected) layer of the network. However, they are mainly different 

in the way how their neurons are connected to other neurons between some certain layers, 

and this is necessary when utilizing neural networks for image-related tasks as regular 
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ANNs do not scale well to images of typical sizes. For example, suppose an RGB image 

with a typical resolution of 300 × 300 pixels is given as input to a regular MLP, then a 

single hidden neuron in the first fully-connected layer would have 300 × 300 × 3 = 

270,000 weights. This number of weights is only for a single neuron and for sure a 

typical MLP would contain many of such neurons in each layer, then the total number of 

learnable parameters would be infeasibly high which inevitably would lead to stagnation 

(i.e. inability to learn). In addition, the architecture of such MLPs does not take into 

consideration the spatial structure of the image, but rather it rearranges the 2-D structure 

into a 1-D vector and treats pixels that are spatially apart on the same footing as pixels 

that are spatially adjacent. Therefore, all these issues and drawbacks of using regular 

MLPs for image-related applications have led to the motivation for using a more efficient 

architecture design that takes advantage of the spatial structure of images, and hence 

introducing the Convolutional Neural Network architecture, which addresses all of the 

issues of regular MLPs through leveraging three main ideas: local receptive fields 

(limited connection), parameter sharing, and pooling [57], [63], [68]. 

 

3.2.2 Neurons Arrangement 

 Compared to a regular MLP, the hidden neurons in the convolutional layers of a 

CNN are arranged in 3-D volumetric patterns specified by width, height, and depth, 

which is more advantageous in dealing with input types like RGB images. For example, 

an input RGB image with a resolution of 300 × 300 can be expressed as an input volume 

with a width of 300, height of 300, and depth of 3 (i.e. the color channels). Thus, each 
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layer in a CNN accepts a 3-D input volume and transforms it to a 3-D output volume 

[57]. A simple visualization of the concept of neurons arrangement in 3-D volumes is 

depicted in Figure 4. 

 

 

 
 

Figure 4. A simple visualization of the neurons arrangement in 3-D volumes in a CNN 

 

 

3.2.3 CNN Layers 

 The architecture of a CNN typically consists of many layers of several types, 

which are stacked together in a certain order or format to transform the input volume (e.g. 

image pixel values) into an output volume which holds, for example, the class scores if 

the CNN would be used for an object classification task. There are several types of layers 

used for building different CNN architectures, but the most important layer types that 

almost exist in every CNN topology are the Convolutional layer (CONV), Pooling layer 
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(POOL), ReLU activation function layer, and Fully-Connected layer (FC) identical to the 

hidden layers of a regular MLP [57], [63]. 

 

3.2.3.1 Convolutional Layer 

 The convolutional layer is considered to be the core layer of a CNN which is 

responsible for extracting all the useful features from a given input data to accomplish a 

certain task, and it performs most of the computational heavy lifting in the CNN. 

Limited connectivity.  As discussed earlier, connecting every single artificial neuron in 

one layer to all other neurons in the previous layer is impractical when the input data is of 

large size like typical RGB images. Thus, each neuron in a convolutional layer is 

connected only to a local, small region of the input volume, where this region is called 

the “local receptive field” of the neuron in the CONV layer, but it should be noted that 

the connectivity of the neuron is always full across the depth dimension of the input 

volume [57], [63], [68]. Then for example, if an input RGB image has a resolution of 

227×227×3 and suppose that the receptive field 𝑭 in the first CONV layer is defined 

with a spatial size of 3×3, then each hidden neuron will have a total number of only 

3×3×3 = 27 learnable weights (+1 bias), rather than (227×227×3) +1 = 154588 

parameters. The arrangement of connections between the CONV layer neurons and the 

input volume is identified through sliding the local receptive field by a certain amount 

across the whole input volume, where this amount is defined by a hyper-parameter called 

the stride, 𝑺 [57], [63], [68]. Figure 5 illustrates a simple example using a small input 

image of size 27×27×3, local receptive field of size 3×3, and stride of 2. 
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Figure 5. A visualization of the 2-D convolution between an input image and a 3× 3 filter 

with stride of 2 

 
 

 It can be noticed that as we slide the local receptive field across the entire input 

image, a 2-D activation map (also called feature map when the parameter sharing scheme 

is applied) is generated from computing the dot products between the connection weights 

and the input values under the regions defined by the local receptive fields [57], [63], 

[68]. As shown in Figure 5, the spatial size of the 2-D feature map is halved the input 

image because the local receptive field can only move 12 steps along the horizontal or 

vertical direction of the input image. The CONV layer typically generates a 𝑲 number of 

2-D activation maps (stacked together along the depth dimension of the output volume) 

for extracting different features from the given input data [57], [63], [68]. 

Parameter sharing.  The number of parameters (i.e. learnable weights and biases) in the 

CONV layer can be significantly reduced by using the “parameter sharing” scheme which 
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is built upon a reasonable assumption that if a certain feature is useful to compute or 

extract at some local receptive field, then it is likely to be also useful to extract at other 

local receptive fields in the input image. In other words, if the parameters associated with 

a certain neuron in the CONV layer are such that it can detect for example a certain 

feature such as a horizontal edge at the local receptive field of that neuron, then it should 

be also useful to detect the same feature at other local regions in the input image. This 

means that all neurons in a single 2-D activation map in the CONV layer are sharing 

exactly the same weights and bias, and that is why the activation map is called a feature 

map. Hence, it turns out that every 2-D feature map is generated by convolving the 

shared weights of that feature map with the input volume, biased by the shared bias 

value. So, this is the reason for the name Convolutional layer, and the shared weights are 

usually referred to as a filter (or alternatively a kernel) [57], [63], [68]. Parameter sharing 

scheme in practice is a big advantage in the CNNs which greatly reduces the memory 

requirements. For example, the input image in the AlexNet [1] has a resolution of 

227×227×3 and the output volume of the first CONV layer has a size of 55×55×96 = 

290,400 neurons results from using 96 filters each of size 11×11×3 slide over the input 

image by a stride of 4. Then, if each neuron in the output volume would connect to the 

input image with unique parameters, this will lead to a total number of 

290,400*(11×11×3+1) = 105,705,600 parameters which is certainly a huge number. 

However, if the parameter sharing scheme is applied, then the required number will be 

96*(11×11×3+1) = 34,944 parameters, which is considered a significant reduction. 
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3.2.3.2 Non-linear Activation Function Layer 

 The non-linear activation function layer is placed directly after each convolutional 

layer to apply an element-wise non-linear activation function to each neuron in the 

convolutional layer. The most commonly used activation function for CNNS is the 

Rectified Linear Unit (ReLU) which has the mathematical form 𝑓(𝑥) = max (0, 𝑥). Other 

types of activation functions are the conventional sigmoid function 𝑓(𝑥) = 1 (1 + 𝑒−𝑥)⁄ , 

and the hyperbolic tangent function 𝑓(𝑥) = tanh(𝑥), but these functions become rarely 

used for deep learning compared to ReLU function due to their computational 

complexity, slower convergence rate, and the gradient vanishing effect [57], [69]. Figure 

6 illustrates a comparison between these functions. 

 

 

 
 

Figure 6. The non-linear activation functions: sigmoid, tanh, and ReLU 
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3.2.3.3 Pooling Layer 

 Pooling layers are usually inserted after some CONV layers in the CNN to reduce 

the spatial size of the 2-D feature maps output from the CONV layer by summarizing a 

spatial region of the feature map into one output value, which further helps to reduce the 

number of required parameters and computations in the subsequent layers in the network. 

The most common choices for pooling are Max-pooling and Average-pooling, both of 

which operate independently on each 2-D feature map to generate a downsampled 

version of them by computing Max or the Average operation over a local spatial region 

of a feature map [57], [63], [68]. In practice, pooling layers are commonly applied to 

small regions with the spatial extent of 2×2 or 3×3, and with a stride of 2 [57]. Besides, 

they can be also used to perform a global pooling which reduces the spatial size to 1×1 

output, and it is typically used at later stages in some CNN topologies. Figure 7 illustrates 

a simple example of pooling operation on two feature maps of size 12×12, where pooling 

is applied on 2×2 regions with a stride of 2. 
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Figure 7. A simple visualization of the pooling operation applied on two feature maps 

 

 

3.2.3.4 Fully-Connected Layers 

 The Fully-Connected (FC) layer used in CNNs is the same layer type used in 

regular MLPs. Therefore, all neurons in the FC layer have full connectivity to every 

neuron in the previous layer, and their activations are computed in the same manner as 

seen before in regular MLPs. The output volume of the FC layer has a spatial size of 1×1 

and a depth identified by the number of the FC hidden neurons [57], [68]. FC layers are 

placed at later stages in the CNN for the computation of the class scores in classification 

tasks, but their use became less in more recent CNN topologies such as in [76], because 

they often account for most of the network parameters. 
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CHAPTER 4: THE PROPOSED SOLUTION 

 

4.1 System Overview 

 The proposed solution for the illuminant estimation problem is similar in concept 

to that proposed in [14], but the main differences between them lie in the CNN 

architecture, the training strategy, and the data augmentation which significantly 

improved the results. Figure 8 illustrates the overview of the proposed system which 

consists of three main design steps. Firstly, images in a given dataset are clustered into K-

clusters based on their associated ground-truth illuminant color (Figure 8-1). Then, the 

CNN is trained using the images in the train dataset with the new labels (i.e. the 

associated cluster labels) to classify images into their K illuminant clusters where the 

output of the CNN is in the form of K probabilities (Figure 8-2). Finally, the trained CNN 

is used to estimate the illuminant color of a test image by taking a weighted sum of the 

cluster centroids using the K probabilities of the CNN output (Figure 8-3). A detailed 

discussion of the implementation of each of these design steps will be presented in the 

next sub-sections. 
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Figure 8. The system overview of the proposed CNN-based illuminant estimation 

 

 

4.2 Dataset Illuminants Clustering 

 Clustering the illuminants is considered to be an important factor to use CNN in a 

proper way for the illuminant estimation problem. This is because of the similarity 

between many existing illuminants which would make the CNN discrimination of these 

illuminants quite a difficult task. For example, the benchmark Gehler-Shi dataset [47], 

[70] that consists of 568 images, contains several images captured under similar 

illumination conditions as shown in Figure 9. Consequently, clustering the image dataset 

of similar illuminations into well-separated classes would make the discrimination task of 

the CNN more efficient and easier. 
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Figure 9. Sample images in the Gehler-Shi dataset [47], [70] that are captured under 

similar illumination conditions. The ground-truth illuminant color in normalized rgb is 

shown below each image. (Note: images are gamma-corrected for display purpose) 

 

 

The utilized method for clustering the illuminants is the K-means clustering [71] 

with the squared Euclidean used as the distance measure, and the K-means++ algorithm 

[72] used for cluster center initialization. The determination of the optimal number of 

clusters K for a given dataset is often not an obvious task, and hence several techniques 

have been proposed such as the elbow method [73] and the Bayesian Inference Criterion 

(BIC) method [74] in attempt to provide the best choice of K. However, we followed the 

recommendations in a recently published work [75] which carried very comperhensive 

experiments and evaluations over different datasets using different fitness functions and 

clustering validity indices (CVIs) to provide conclusions about the best CVIs that both 
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assess the quality of the clustering solution provided by the clustering method, and the 

optimal number of K. Hence, three of the best CVIs according to [75] are selected in this 

thesis which are the Xu, WB, and Calinski-Harabasz (CH) indices. The mathematical 

formulas of these CVIs are given below along with Table 2 which explains the notations 

used in these formulas [75]. 

𝑋𝑢 = 𝑁𝑙𝑜𝑔 (√
𝑠𝑠𝑤

𝑁𝑛2
) + 𝑙𝑜𝑔(𝑘) (6) 

 

𝑊𝐵 = 𝐾
𝑠𝑠𝑤

𝑠𝑠𝑏
 (7) 

 

𝐶𝐻 =
𝑠𝑠𝑏

𝑠𝑠𝑤
×
𝑛 − 𝐾

𝐾 − 1
 (8) 
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Table 2: Notations Used in CVI Formulas [75] 

 

Description Notation and Formula 

Data item x 

Set of all items 𝐶 

Number of items 𝑛 

Total mean vector 𝐦 =
1

𝑛
∑ 𝐱

𝐱∈𝐶
 

Number of clusters 𝐾 

Data dimension 𝑁 

𝑖𝑡ℎ cluster 𝐶𝑖 

Number of items in cluster 𝐶𝑖 𝑛𝑖 

Centroid of cluster 𝐶𝑖 𝑚𝑖 = 
1

𝑛𝑖
∑ 𝐱

𝐱∈𝐶𝑖

 

Sum-of-squares for cluster 𝐶𝑖 𝑠𝑠𝑤𝑖 = ∑ ‖𝐱 −𝒎𝒊‖
2

𝐱∈𝐶𝑖

 

Within-cluster sum-of-squares 𝑠𝑠𝑤 =∑ 𝑠𝑠𝑤𝑖
𝐾

𝑖=1
 

Between-cluster sum-of-squares 𝑠𝑠𝑏 =∑ 𝑛𝑖‖𝒎𝒊 −𝒎‖
2

𝐾

𝑖=1
 

 

 

According to [75], Xu and WB indices should be minimized, while CH index should be 

maximized. Then, the conclusion is that the best data clustering solution among different 

possible solutions for a certain K (i.e. different cluster centroids for every K-means 

experiment of the same K) is the one that would maximize CH index or minimize Xu and 

WB indices. Besides, the optimal number of clusters K can be decided by the maximum 

value of CH index or the minimum values of Xu and WB indices. Since every run of a K-
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means clustering results in different cluster centroids due to different initial cluster 

centroid positions each time, then we decided to conduct an intensive experiment for the 

generation of the K-means cluster centroids to avoid possibilities of having poorly cluster 

center initialization and/or less accurate clustering solution for a certain K. The flow of 

the experiment is as follows: 

K-means Clustering Experiment 

Inputs   : Max Number of Clusters K =100, Max Number of experiments E =1000,  

    For each K-means run: Max Iterations =100, Number of replicates = 100  

Outputs: 100 K-means solutions (cluster centroids, indices), Optimal number of K 

1: Repeat for K=2:100 

2:     Repeat for E=1:1000 

3:             Define K-means arguments Dataset, K, Max Iter = 100, Replicates = 100 

4:             Compute Cluster centroids with the associated index of each data point, CVIs 

5:            Save Results 

6:     End 

7:     Find A(K) = Min (Xu (1:1000)), B(K) = Min (WB (1:1000)), C(K) = Max (CH (1:1000)) 

8:     Return Values of the K-means clustering trial that satisfies the conditions in step (7) 

9: End 

10: Find Min (A (2:100)), Min (B(2:100)), Max (C(2:100)) 

11: Return the Optimal number of clusters (K) based on the results of step (10) 

 

Discussion: for clarification, the Max Iterations argument mentioned in step (3) of the K-

means clustering experiment denotes the number of times that the K-means algorithm 

iterates to find the clustering solution, while the Replicates argument denotes the number 

of times that the K-means algorithm repeats clustering using new initial cluster centroid 

positions and returns the clustering solution with the lowest within-cluster sums of point-
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to-centroid distances. This is useful in practice to help to find a better solution with lower 

local minima or possibly a global minimum of the objective function. The K-means 

experiment has been conducted on the benchmark Gehler-Shi dataset [47], [70], where 

the full RGB information of each of the 568 illuminants (Figure 10) is used in the 

clustering process compared to [14], where the clustering of the illuminants has been only 

applied on the rg-chromaticity space. 

 

 

 

 

Figure 10. Normalized rgb values of the illuminants in the Gehler-Shi dataset [47], [70] 
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Then, the main observations of this experiment can be stated as follows: 

1) All the three CVIs agreed on the same solution among the 1000 possible solutions 

for every value of K, which gives more confidence about the provided solution. 

2) Regarding the determination of the optimal number of clusters K, none of the 

CVIs could give a clear or an explicit answer about the best choice of K as shown 

in Figure 11, Figure 12, and Figure 13, probably due to the biased distribution of 

the dataset which almost contains no clear or direct informative pattern for 

clustering. As evident from Figure 10, a huge majority of the images in the dataset 

have been collected in similar illumination conditions, while few numbers of 

other images were collected under different illumination conditions. Thus, some 

images are easy to group them in nearly unique clusters, while many others are 

left with hard decisions about the proper number of clusters that should belong to. 

However, one can deduce some useful hints by looking at the behavior of some of 

these CVIs, and more specifically the WB and Xu indices. It can be noticed from 

their plots against K that the significant amount of reduction in their values occurs 

almost in the interval between K=2 and K=50, while beyond that the reduction 

becomes insignificant as evident in the WB index in Figure 11. In addition, as 

discussed earlier that the more the clusters are further apart, the more efficient the 

CNN is to discriminate classes. Therefore, the number of clusters K has been 

empirically chosen to be 17 (Figure 14), so as to make a trade-off between the 

ease of CNN classification and accuracy in the computation of the estimated 

illuminant color from the cluster centroids. 
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Figure 11. WB-index vs. number of clusters K for Gehler-Shi dataset [47], [70] clustering 

 
 

 
 

Figure 12. Xu-index vs. number of clusters K for Gehler-Shi dataset [47], [70] clustering 
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Figure 13. CH-index vs. number of clusters K for Gehler-Shi dataset [47], [70] clustering 

 
 

Figure 14. Normalized rgb values of the Gehler-Shi illuminants clustered into K=17 
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4.3 Convolutional Neural Network Architecture 

 The CNN architecture that has been adopted in this work is the SqueezeNet v1.1 

proposed by Iandola et al. [76]. The main contribution of this architecture is that it could 

achieve the AlexNet [1] classification accuracy on the ImageNet dataset [77] with 50× 

less parameters (1,235,496 parameters), which offers many advantages of reducing the 

overfitting problem in the tasks with small datasets, fast training and inference suitable 

for real-time applications, and the feasibility of deploying small size models on FPGAs 

and limited memory devices. The authors could successfully achieve this objective by 

leveraging three main strategies for designing the CNN topology which are: 

1) Reducing the overall network parameters by using many 1×1 filters and less 3×3 

filters, as the former has 9× fewer parameters. 

2) Reducing the overall network parameters by also decreasing the number of input 

channels or feature maps to the CONV layers that have the 3×3 filters by using 

“Squeeze layers”. 

3) Preserving or maintaining higher classification accuracy with the available fewer 

parameters by downsampling the feature maps at later stages in the network (i.e. 

setting a stride of 1 in most of the network layers, and stride > 1 toward the end 

of the network) so that most of the CONV layers in the network have larger 

feature maps, which is found to provide higher classification accuracy. 

Hence, they introduced what is called the “Fire module” which is the basic building block 

of the SqueezeNet architecture, and it is composed of: 
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• Squeeze layer: a convolutional layer of (𝑠1×1) number of 1×1 filters with a stride 

of 1. 

• Expand layer: a concatenation of two convolutional layers (across the depth 

dimension) where the first one has (𝑒1×1) number of 1×1 filters with a stride of 1, 

and the second has (𝑒3×3) number of 3×3 filters with a stride of 1. The input of 

both sub-layers is taken from the output of the previous Squeeze layer. Besides, 

the number of filters used in the Squeeze layer is always less than the number of 

filters used in the sub-layers of the Expand layer, which helps to limit the number 

of input feature maps to the 3×3 filters. It should be noted that the input feature 

maps to the Expand sub-layer of 3×3 filters are 1-pixel zero-padded at the borders 

to have the same spatial size of the output feature maps of the Expand sub-layers. 

An illustration of the high-level design of the SqueezeNet v1.1 architecture is depicted in 

Figure 15. The architecture starts with a convolutional layer (Conv1), followed by 8 Fire 

modules (Fire2-9), and ends with a convolutional layer (Conv10). Three Max-pooling 

layers with a stride of 2 are used after Conv1 layer, Fire module 3, and Fire module 5. 

The output of all the convolutional layers including the Fire modules is activated with the 

ReLU activation function. The number of filters in the Fire modules is gradually 

increasing across the network. A Dropout layer has been used after Fire9 module for 

regularization, and an Average global-pooling layer is applied at the end of the network 

which reduces the spatial size of the output feature maps from the last convolutional layer 

to 1×1 for holding the class scores. The number of filters in the Conv10 layer is adjusted 

to K=17 to match the number of the illuminant clusters in our own task. Finally, a 
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Softmax layer is used after the Average global-pooling layer which squashes the class 

scores into class probabilities that sum up to 1. The full architecture design and the 

specifications of the network layers are presented in Appendix A.1 and A.2. 

 

 

 

 

Figure 15. A high-level design of the SqueezeNet v1.1 architecture 

 

 

4.4 Training Strategy 

4.4.1 Image Dataset 

 The benchmark Gehler-Shi image dataset [47], [70] is used for the training and 

evaluation. This dataset consists of 568 images and comprises a variety of indoor and 

outdoor scenes, which was originally captured by Gehler et al. [47] using two high 

quality DSLR cameras of type Canon 1D and Canon 5D, and saved in both Camera RAW 

format free of any manipulation or correction, and TIFF image format. Shi and Funt [70] 

proposed to reprocess the RAW images again because the provided TIFF images were 

generated automatically and hence, are non-linear (i.e. gamma corrected), demosaiced, 
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contain clipped pixels, and have the camera white balance effect. Therefore, the 

reprocessed version of the RAW images by Shi and Funt [70] are created in almost-raw 

12-bit (preserved dynamic range) PNG image format, and they are linear images (i.e 

gamma=1) in camera RGB color space. In each image, a Macbeth Color Checker (MCC) 

is included to allow for an accurate measure of the ground-truth illuminant color. Figure 

16 shows some examples of images with different illuminations in the Gehler-Shi dataset. 

 

 

 

 

Figure 16. Examples of images with different illuminations in Gehler-Shi dataset [47], 

[70] 
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4.4.2 Data Preprocessing and Augmentation 

 Providing a well-prepared dataset is indeed a crucial step for training deep 

learning systems. Thus, data preprocessing and augmentation should be handled carefully 

before submitting to the CNN. As advised by [70], the camera’s black level offset (0 for 

Canon 1D and 129 for Canon 5D) is subtracted from each image. In addition, the 

Macbeth Color Checker (MCC) in each image is masked out before training and testing, 

which is the common practice in the illuminant estimation literature. The spatial 

coordinates of the MCCs corners are measured and provided by the dataset [47]. A 

further preprocessing step is to mask out also the saturated pixels where the saturation is 

considered to happen at a threshold of 0.95 from the given saturation value (3692 for 

Canon 1D and 3563 for Canon 5D), so as to have a more conservative saturation 

masking. A good 

 practice in training deep neural networks is to normalize the input data by firstly 

computing the per-channel mean and standard deviation over the training set, then each 

image used for training and testing is subtracted from it the pre-computed per-channel 

mean followed by a division by the pre-computed per-channel standard deviation [78]. 

 One of the well-known requirements for training deep CNN models is the size of 

the dataset, which is required to be as large as possible to be able to train the complex 

structures for extracting the generalized features, and preventing the model from 

overfitting the data which considerably deteriorates the generalization capacity of the 

trained model. In fact, this is the main concern for utilizing deep learning systems for the 

illuminant estimation task due to the relatively small size of the available benchmark 

illuminant estimation dataset. Therefore, this issue has been dealt with through data 
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augmentation. In comparison to other methods [14], [18], [19], which augment the 

training data using only the conventional approaches such as sampling input images to 

smaller crops, rotating images randomly, and flipping  images horizontally, we suggested 

another approach by synthesizing new training images having the same scene content of 

the original images, but with different illuminations using the ground-truth illuminant 

color of other training images. Besides, we additionally increased the number of the 

training images by creating a horizontally flipped copy from each synthesized training 

image. 

 

4.4.3 Implementation and Training Settings 

 The implementation of the CNN was done by using the MatConvNet framework 

[79], on a computer with specifications: Intel i7-7700HQ CPU at 2.80 GHz, 32 GB 

RAM, and an NVIDIA GTX 1070 GPU. To further overcome the issue of having a small 

dataset, we followed a useful strategy commonly known as Transfer Learning [80] by 

training the CNN firstly with a very large dataset such as the ImageNet [77] which 

consists of more than 1.2 M images used for object classification task. Then, the pre-

trained network is fine-tuned for our own illuminant classification task instead of training 

the network from scratch to avoid the overfitting problem. When fine-tuning the 

SqueezeNet, the number of outputs in the Conv10 layer is changed from 1000 (number of 

ImageNet classes) to K=17 (number of illuminant classes), and its weights are initialized 

again from the Gaussian distribution similar to [76]. The network parameters are 

optimized by back-propagation using ADAM [67] with a base learning rate (LR) of 

0.0003, a batch size (BS) of 20, and a weight decay (WD) of 0.00005 for regularization. 
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The LR for all the pre-trained layers is set the same as the Conv10 layer, instead of 

smaller values, because the illuminant estimation task is quite different from the object 

classification task and hence, their weights should be more tuned to be adapted for the 

new purpose. 

 

4.5 Illuminant Estimation 

 Following the training phase of the CNN which is learned to predict the 

probability of an image (𝑰) belonging to one of the (K) illuminant clusters similar to [14], 

the illuminant color estimate (𝝆𝐸) of a test image is computed by taking a weighted sum 

of the cluster centroids (𝑪) using the K probabilities from the CNN output (𝒀̂) of the 

input test image: 

𝝆𝐸 =∑𝐶𝑛

𝐾

𝑛=1

𝑌̂𝑛 (9) 

 

𝒀̂ =

(

 
 
 

𝑃(𝑌̂ = 1|𝑰)

𝑃(𝑌̂ = 2|𝑰)

𝑃(𝑌̂ = 3|𝑰)
⋮

𝑃(𝑌̂ = 𝐾|𝑰))

 
 
 

 (10) 

 

 Indeed, incorporating all the output probabilities in the computation of the final 

illuminant color estimate is found to be in general more useful than using only the cluster 

centroid with the highest probability, as this would help to reduce the likelihood of 

making high errors in the illuminant computation for the cases when the CNN may fail to 

predict the correct cluster. 
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CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION 

 

5.1 Experimental Results 

 In this section, the performance of the proposed method is compared against 

various existing illuminant estimation methods on the benchmark Gehler-Shi dataset 

[47], [70]. The most widely used error metric for evaluating the illuminant estimation 

methods is the angular error (in degrees) between the ground-truth and the estimated 

illuminant colors which is expressed as follows [13]: 

𝑒𝑟𝑟𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝝆
𝐸
𝐺𝑇
 , 𝝆𝐸

𝐸𝑆𝑇
) =

180°

𝜋
cos−1 (

𝝆𝐸
𝐺𝑇
 ∙ 𝝆𝐸

𝐸𝑆𝑇

‖𝝆𝐸
𝐺𝑇
‖ ∙ ‖𝝆𝐸

𝐸𝑆𝑇
‖
) (11) 

 

where (𝝆𝐸
𝐺𝑇
 ∙ 𝝆𝐸

𝐸𝑆𝑇
) is the dot product of the ground-truth illuminant color 𝝆𝐸

𝐺𝑇
 and 

the estimated illuminant color 𝝆𝐸
𝐸𝑆𝑇

, and ‖∙‖ indicates the Euclidean norm. We follow 

the standard experimental settings as done in all methods for dataset evaluation by using 

the 3-fold cross validation, and report several statistical metrics of the computed errors of 

the dataset including the mean, the median, the tri-mean, the mean of the lowest 25% 

errors, the mean of the highest 25% errors, and the 95th percentile error as shown in Table 

3. Besides the quantitative analysis, some examples of color-corrected indoor and 

outdoor images are presented in Figure 17 to Figure 26 using the ground-truth and the 

estimated illuminant colors by the proposed method as a qualitative performance 

measure. For every presented image, the angular error is reported under the image, but it 

should be noted that the Macbeth Color Checkers are masked out during training and 

testing. The selected images are chosen by sorting images by increasing error, so Figure 

17 represents the image with the lowest error and Figure 26 represents the image with the 
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highest error, which indicate that the proposed method can produce plausible images, 

even for some extreme cases. The computational time to estimate the illuminant color for 

one image on a GPU using our unoptimized Matlab code is around 43 msec. 

 

 

Table 3: Performance Comparison between Various Methods on the Gehler-Shi Dataset 

 

Method Mean Median Tri-mean Best-25% Worst-25% 
95th 

Pct. 

Support Vector Regression [46] 8.08 6.73 7.19 3.35 14.89 - 

White-Patch [21] 7.55 5.68 6.35 1.45 16.12 - 

Grey-World [20] 6.36 6.28 6.28 2.33 10.58 11.30 

Edge-based Gamut [43] 6.52 5.04 5.43 1.90 13.58 - 

1st-order Gray-Edge [22] 5.33 4.52 4.73 1.86 10.03 11.00 

2nd-order Gray-Edge [22] 5.13 4.44 4.62 2.11 9.26 - 

Shades-of-Gray [23] 4.93 4.01 4.23 1.14 10.20 11.90 

Bayesian [47] 4.82 3.46 3.88 1.26 10.49 - 

General Gray-World [22] 4.66 3.48 3.81 1.00 10.09 - 

Grey Pixels [56] 4.60 3.10 - - - - 

Natural Image Statistics [35] 4.19 3.13 3.45 1.00 9.22 11.7 

Intersection-based Gamut [43] 4.20 2.39 2.93 0.51 10.70 - 

Pixel-based Gamut [43] 4.20 2.33 2.91 0.50 10.72 14.1 

Bilayer Sparse-Coding [55] 4.00 2.50 2.80 1.00 10.80 - 

Double-Opponency [29] 3.98 2.43 - - 9.08 - 

CART-based Combination [34] 3.90 2.91 3.21 1.02 8.27 - 

Spatio-Spectral [49] 3.59 2.96 3.10 0.95 7.61 - 

Bright-and-Dark Colors PCA [28] 3.52 2.14 2.47 0.50 8.74 - 

High-level Visual Information [37] 3.48 2.47 2.61 0.84 8.01 - 

Local Surface Reflectance [30] 3.31 2.80 2.87 1.14 6.39 - 

Exemplar-based [50] 2.89 2.27 2.42 0.82 5.97 - 

Corrected-Moment [53] 2.86 2.04 2.22 0.70 6.34 6.90 

CNN Regression [19] 2.63 1.98 - - - - 

Luminance-to-Chromaticity [54] 2.56 1.67 1.89 0.52 6.07 - 

Regression-Tree [51] 2.42 1.65 1.75 0.38 5.87 - 

CNN Classification [14] 2.16 1.47 1.61 0.37 5.12 - 

CCC [52] 1.95 1.22 1.38 0.35 4.76 5.85 

DS-Net / Shi et al. 2016 [18] 1.90 1.12 1.33 0.31 4.84 5.99 

FC4 [17] 1.65 1.18 1.27 0.38 3.78 4.73 

Proposed 1.85 1.25 1.36 0.40 4.35 5.33 
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Figure 17. A corrected image from the Gehler-Shi dataset, Angular Error = 0.0361° 

 
 

Figure 18. A corrected image from the Gehler-Shi dataset, Angular Error = 0.2469° 

 
 

Figure 19. A corrected image from the Gehler-Shi dataset, Angular Error = 0.4575° 
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Figure 20. A corrected image from the Gehler-Shi dataset, Angular Error = 0.6395° 

 
 

Figure 21. A corrected image from the Gehler-Shi dataset, Angular Error = 0.8391° 

 
 

Figure 22. A corrected image from the Gehler-Shi dataset, Angular Error = 1.1416° 
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Figure 23. A corrected image from the Gehler-Shi dataset, Angular Error = 1.6891° 

 
 

Figure 24. A corrected image from the Gehler-Shi dataset, Angular Error = 2.4024° 

 
 

Figure 25. A corrected image from the Gehler-Shi dataset, Angular Error = 3.8635° 
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Figure 26. A corrected image from the Gehler-Shi dataset, Angular Error = 14.3812° 

 

 

5.2 Discussions 

 As evident from Table 3, the proposed method outperforms most of the methods 

on all metrics including the CNN-based classification method [14] that we share the same 

approach of utilizing CNN for illuminant estimation through classification. The major 

improvement in performance compared to [14] is likely because our adopted network 

which is the SqueezeNet v1.1 has much fewer learnable parameters than the AlexNet 

used by [14] which helps to combat the overfitting problem on small datasets such as the 

Gehler-Shi dataset. Besides, the data augmentation used in our method by synthesizing 

images provides the advantage of training the CNN with nearly full image content, rather 

than augmenting the data by sub-sampling the images to multiple patches, which is the 

case also for the CNN-based regression method proposed by Bianco et al. [19], where 

some of these patches may not carry any semantic information and hence, can be 

considered as noisy labels for the CNN. For some metrics, the proposed method shows a 

competitive performance to the recent state-of-the-art methods presented by the CCC 
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method [52] and the DS-Net method [18], but our method performs better on the worse-

25% and the 95th percentile metrics, which indicates a better robustness of the method in 

the worst-case examples compared to [18], [52]. The proposed method still shows a 

slightly lower performance than the state-of-the-art CNN-based method (FC4) [17] 

proposed by Microsoft research, likely because of their presented novel Confidence-

weighted pooling layer which helps improving the CNN training performance by 

automatically learning to eliminate or mask out the noisy local regions of the input image 

that do not contain useful informative data for the illuminant estimation which may cause 

ambiguity to the CNN. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

 

 In this thesis, we have introduced an effective Deep Learning based solution for 

the illuminant estimation problem. Specifically, we trained a CNN to perform 

classification on input images belonging to one of the possible pre-defined 𝐾 illuminants, 

and the classification results are combined to produce the final illuminant color 

estimation. The performance of the proposed method has been validated by comparing it 

against many other illuminant estimation methods including the most recent state-of-the-

art methods on the available benchmark illuminant estimation dataset. The results show 

that our method outperforms all the previous methods including most of the CNN-based 

methods, and it could show a competitive performance to the most recent state-of-the-art 

methods, especially on the worst-case metrics. The main contribution of this work is that 

we were able to boost the idea of solving the illuminant estimation problem through the 

CNN-based classification approach by addressing all possible issues that limit the 

performance of the previous related work [14], especially the choice of the CNN 

architecture and the strategy of the data augmentation, which greatly enhances the 

performance of the CNN-based classification approach and makes it among the top 

performing state-of-the-art methods. In our work, we have utilized the SqueezeNet v1.1 

that has the advantage of having the same classification accuracy of the AlexNet used by 

[14] with 50× less learnable parameters, which helps reducing the overfitting problem of 

deep CNNs with relatively small datasets. In addition, we proposed a novel strategy for 

data augmentation that allows for training the CNN with nearly full image content, 
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instead of sampling the input images to smaller patches, where some of these patches 

may contain no semantic information and hence, deteriorating the performance of the 

CNN training as these patches can be considered noisy labels. 

 As the future work, we plan to examine the effect of different choices for the 

number of illuminant clusters and we will also evaluate the performance of the proposed 

method on other benchmark datasets. We also plan to investigate other CNN 

architectures such as the recently published MobileNet v2 [81] by Google research which 

has the big advantage of having less number of learnable parameters, only slightly higher 

than the SqueezeNet v1.1, but with much higher classification accuracy on the ImageNet 

dataset. Besides, we seek to combine the Confidence-weighted pooling layer proposed by 

the current state-of-the-art method to our CNN architecture, which will greatly benefit 

from masking out the local noisy regions in the image, and hence improve more the 

training and inference performance. 
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APPENDIX 

A.1 Architecture of the SqueezeNet v1.1 
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A.2 Specifications of the SqueezeNet v1.1 layers 
 

Table 4: Specifications of the SqueezeNet v1.1 Layers 

ID Layer Name Layer Type Kernel Stride Pad Channel_in Channel_out Notes 

1 Data Data     3  

2 Conv1 Convolutional 3×3 2 0 3 64  

3 ReLU_Conv1 ReLU    64 64  

4 Pool1 Max-pooling 3×3 2 0 64 64  

5 Fire2/Squeeze1x1 Convolutional 1×1 1 0 64 16  

6 Fire2/ReLU_Squeeze1x1 ReLU    16 16  

7 Fire2/Expand1x1 Convolutional 1×1 1 0 16 64  

8 Fire2/ReLU_Expand1x1 ReLU    64 64  

9 Fire2/Expand3x3 Convolutional 3×3 1 1 16 64  

10 Fire2/ReLU_Expand3x3 ReLU    64 64  

11 Fire2/Concat Concatenation    128 128  

12 Fire3/Squeeze1x1 Convolutional 1×1 1 0 128 16  

13 Fire3/ReLU_Squeeze1x1 ReLU    16 16  

14 Fire3/Expand1x1 Convolutional 1×1 1 0 16 64  

15 Fire3/ReLU_Expand1x1 ReLU    64 64  

16 Fire3/Expand3x3 Convolutional 3×3 1 1 16 64  

17 Fire3/ReLU_Expand3x3 ReLU    64 64  

18 Fire3/Concat Concatenation    128 128  

19 Pool3 Max-pooling 3×3 2 0 128 128  

20 Fire4/Squeeze1x1 Convolutional 1×1 1 0 128 32  

21 Fire4/ReLU_Squeeze1x1 ReLU    32 32  

22 Fire4/Expand1x1 Convolutional 1×1 1 0 32 128  

23 Fire4/ReLU_Expand1x1 ReLU    128 128  

24 Fire4/Expand3x3 Convolutional 3×3 1 1 32 128  

25 Fire4/ReLU_Expand3x3 ReLU    128 128  

26 Fire4/Concat Concatenation    256 256  

27 Fire5/Squeeze1x1 Convolutional 1×1 1 0 256 32  

28 Fire5/ReLU_Squeeze1x1 ReLU    32 32  

29 Fire5/Expand1x1 Convolutional 1×1 1 0 32 128  

30 Fire5/ReLU_Expand1x1 ReLU    128 128  

31 Fire5/Expand3x3 Convolutional 3×3 1 1 32 128  

32 Fire5/ReLU_Expand3x3 ReLU    128 128  

33 Fire5/Concat Concatenation    256 256  

34 Pool5 Max-pooling 3×3 2 0 256 256  

35 Fire6/Squeeze1x1 Convolutional 1×1 1 0 256 48  

36 Fire6/ReLU_Squeeze1x1 ReLU    48 48  

37 Fire6/Expand1x1 Convolutional 1×1 1 0 48 192  

38 Fire6/ReLU_Expand1x1 ReLU    192 192  

39 Fire6/Expand3x3 Convolutional 3×3 1 1 48 192  

40 Fire6/ReLU_Expand3x3 ReLU    192 192  

41 Fire6/Concat Concatenation    384 384  

42 Fire7/Squeeze1x1 Convolutional 1×1 1 0 384 48  

43 Fire7/ReLU_Squeeze1x1 ReLU    48 48  

44 Fire7/Expand1x1 Convolutional 1×1 1 0 48 192  

45 Fire7/ReLU_Expand1x1 ReLU    192 192  

46 Fire7/Expand3x3 Convolutional 3×3 1 1 48 192  

47 Fire7/ReLU_Expand3x3 ReLU    192 192  

48 Fire7/Concat Concatenation    384 384  

49 Fire8/Squeeze1x1 Convolutional 1×1 1 0 384 64  

50 Fire8/ReLU_Squeeze1x1 ReLU    64 64  
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51 Fire8/Expand1x1 Convolutional 1×1 1 0 64 256  

52 Fire8/ReLU_Expand1x1 ReLU    256 256  

53 Fire8/Expand3x3 Convolutional 3×3 1 1 64 256  

54 Fire8/ReLU_Expand3x3 ReLU    256 256  

55 Fire8/Concat Concatenation    512 512  

56 Fire9/Squeeze1x1 Convolutional 1×1 1 0 512 64  

57 Fire9/ReLU_Squeeze1x1 ReLU    64 64  

58 Fire9/Expand1x1 Convolutional 1×1 1 0 64 256  

59 Fire9/ReLU_Expand1x1 ReLU    256 256  

60 Fire9/Expand3x3 Convolutional 3×3 1 1 64 256  

61 Fire9/ReLU_Expand3x3 ReLU    256 256  

62 Fire9/Concat Concatenation    512 512  

63 Drop9 Dropout    512 512 P=0.5 

64 Conv10 Convolutional 1×1 1 0 512 17  

65 ReLU_Conv10 ReLU    17 17  

66 Pool10 Avg-pooling 13×13 1 0 17 17 Global 

67 Softmax Softmax    17 17  

 


