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ABSTRACT 

MOGHADDASI, ABDOLALI, M., Masters of Science: December : 2018, 

Materials Sciences and Technology 

Title: Polymer-matrix nanocomposite membranes for water treatment 

Supervisor of Thesis: Igor Krupa. 

A new generation of advanced fibrous materials with high surface area, large number of 

pores, high flexibility and adjustable wettability were manufactured from different 

materials which are viable for many applications related to environment especially oil 

water separation.  

This thesis is focused on the preparation and characterization of two new different 

polymeric systems applicable in water/oil separation and oil impurities detection. The 

material system for sensor development is based on styrene isoprene styrene (SIS) 

elastomer filled with multiwalled carbon nanotubes and system for water/oil separation is 

composed by co-polyamide (coPA) electrospun mat covered by MXene sheets. 

Preparation of composites based on styrene isoprene styrene block polymer (SIS) modified 

by carbon nanotubes (CNTs) involves optimization of the component ratio and processing 

conditions utilizing electrospinning method. SIS has ability to absorb oil due to its 

oleophilic behavior and CNTs enhance the electrical conductivity of composite. The 

principle of oil sensing is based on the changes of electrical conductivity because of 

volumetric changes of material due to oil absorption.   

Separation of oil from water is performed using membrane technology. We prepared coPA 

mats via optimization of the polymer solvent/ratio conditions using electrospinning 

technique. MXene nanoplatelets were prepared from commercial MAX phase by strong 

etching with HF and delamination.  
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CoPA mats covered by MXene nanoparticles and this bilayer system was used for water/oil 

separation. The separation efficiency up to 99.5% which indicates that it is valuable 

material for separation oil from water.   
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CHAPTER 1: INTRODUCTION 

1.1 General Background 

One of the most important fields that allocated many researcher efforts from long 

time is water purification and treatment. The health and safety of water in different regions 

that facing lack of water like arid and semi-arid areas is vital, so more research and studies 

needed to make the limited sources of water healthy and in good condition for human uses. 

These studies are very important for recovery, recycling and reusing of water. Treatment 

of alternative sources of like seawater, river water and wastewater met huge number of 

researches. Qatar also connected to the sea from several directions and most of oil 

companies and large industries are often set up along the coast and because of the large 

transportation of industrial and commercial ships, there is a high probability of pollution 

of the seawater. On the other hand, because the only way to provide fresh water is seawater 

and a significant amount of contamination is due to oil and petrochemicals, therefore, it is 

important to find methods help us to recognize the presence of oily materials and to 

separate them from water. In regard to tackle issues related to water/oil separation we 

proposed and prepared sensors and membrane, which can detect oil in water and separate 

it in the next step. 

In this thesis polymeric material, namely styrene isoprene styrene (SIS) copolymer 

mixed with carbon nanotube (was used as a material which can be potentially applied as 

the oil sensor. The second investigated system is based on the co-polyamide mat prepared 

by electrospinning and coated by MXene layers.  

Electrospinning is a very useful method used in preparation of membranes and mats 

from various polymers and their composites with size of nanofibers around few tens 
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nanometers. The composite combine properties of both components. [1]–[3]. Recently, 

many polymer nanocomposites reinforced by CNT’s, MXenes, graphene etc. were 

prepared using electrospinning technique. Electrical, mechanical and thermal properties of 

polymeric matrices are significantly improved through mixing with nanocarbon structures 

such are CNT’s and graphene and final materials are suitable for various applications 

including sensors, membranes for water treatment etc. [4], [5].  

Polymer membranes showed high efficiency in separation oil from water and 

economically are cheaper that inorganic membranes [6]. Nevertheless, accumulation of 

particulates inside the pores have negative effect on separation process [7], [8]. Most of 

membranes for microfiltration (MF) and ultrafiltration (UF) are prepared using polysulfone 

(PSO) [9], cellulose acetate (CA) [10], polyacrylonitrile (PAN), polyvinylidene fluoride 

(PVDF) [11], [12] and polyamide (PA). However, polymeric membranes have fouling 

tendency their surfaces experienced many modifications that enhance antifouling and 

increase their hydrophilicity.  

1.2 Objectives 

This work focuses on preparation and characterization of two new different 

polymeric systems. The first one would be potentially applicable for development of 

sensors detecting various types of oil in water and the second one is convenient for 

water/oil separation. System for sensor development is based on styrene isoprene styrene 

(SIS) elastomer filled with multiwalled carbon nanotubes and system for water/oil 

separation is composed by co-polyamide (coPA) mat covered by MXene sheets. In more 

details, the scope of this work is focused on the following activities:  

1. Detection of oil in water using electrically conductive polymeric sensors. This work 
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consists of two parts: 

a. Preparation of composites based on SIS modified by carbon nanotubes (CNTs) 

what involves optimization of the component ratio and processing conditions utilizing 

electrospinning method. SIS has ability to absorb oil due to its oleophilic behavior and 

CNTs enhance the electrical conductivity of composite. The principle of oil sensing is 

based on the changes of electrical conductivity as a consequence of volumetric changes of 

material due to oil absorption. An excellent dispersion of CNTs is very important in SIS-

CNT preparation process.  

b. Despite, the fact that SIS is well soluble in various organic, unipolar solvents, the 

preparation of mats requires careful selection of an appropriate solvent and optimization of 

processing parameters.   

c. Study of electrical properties of prepared composites and characterization of the 

sensing sensitivity. 

2. Separation of oil from water using membrane technology (polymeric membrane) 

which involves coming parts: 

a. Preparation of coPA mate via optimization of the polymer solvent/ ratio conditions 

using electrospinning technique. 

b. Synthesizing of MXene from commercial MAX phase by strong etching with HF 

and delamination.  

c. Fabrication of coPA mats covered by MXene nanoparticles   

d.  A Study the effect of MXene particles on water/oil separation efficiency. 
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CHAPTER 2: LITERATURE REVIEW   

In this chapter, a brief overview of oil / water separation techniques in general is provided. 

Furthermore, of the membrane techniques preparation, particularly membranes used for 

oil/water separation will be discussed and incorporation of nanosized material specially 

CNT’s and MXene to the structure of nanofiber. The preparation of composites’ 

membranes using electrospinning technique and their applications as sensors and 

membranes in different field especially oil /water separation will be summarized. 

2.1 Sensors 

Any sensing system consist of three core parts, the sensing element, transducer and 

the output unit. The energy simulated by input signal and external source of energy needed 

is considered for classification of sensors as passive and active sensors. The passive sensor 

operation is based on simulation of energy by input signals without effect of any external 

source of energy. For example, piezoelectric sensors, which are able to produce electrical 

charge without influence of any external energy under mechanical stress [13]. More 

examples of passive sensors are photodiode and thermocouple [14], [15]. Unlike passive 

sensors, active sensors to simulate energy need signal or extra energy from external energy 

source. The sensors modify the signal to create an output signal. Strain gauge and heat 

sensing resistor are examples of active sensors. Strain gouge computes applied load based 

on change in resistivity and supplied current alternation. Likewise, heat sensing resistor 

notifies the resistivity without producing any current can be measured to compute the 

temperature in presence of external signal [16]–[18]. Additionally, sensors are also 

classified on the base of physical contact between sensing element and the analyte to 

contact and non-contact sensors. Laser sensor is example of non-contact sensors to measure 
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the distance while typically, chemicals and gas sensors count as contact sensors which 

direct physical contact needed between analyte and sensor [14], [19], [20].  

2.1.1 Conductive Polymeric Composites (CPCs)  

Newly, many researches are conducted the work on conductive polymer 

composites for liquid and gas sensing. CPCs have low density, they are flexible, and they 

possess some level of electrical conductivity [21]–[25]. The CPCs resistivity increase once 

they exposed to organic solvent vapor or liquid due to wetting the CPCs by organic solvent 

and diffusing into the composite resulting in swelling of polymer matrix, therefore 

increasing the space between conductive fillers thereby increasing of the resistivity. The 

resistivity of CPCs will release to its initial value after removing from the solvent vapor 

due to desorption of the vapor that leads to de-swelling of the polymer matrix and 

accordingly decrease of the distance between conductive filler and resistivity [26], [27]. In 

addition to the solubility of the solvent to polymer the sensing functioning depending on 

thicknesses, the content of conducive filler and the organic vapor saturated pressure [28]–

[31]. Typically, for CPCs preparation, solution or melting mixing is used for an 

incorporation of conductive nanofiller into polymer matrix [32]. Distribution, size and 

geometrical parameters (e.g. aspect ratio) of nanoparticles are crucial for reaching of 

percolation threshold, which is known as the critical volume percentage of conductive 

nanoparticles at transition of polymer from insulator to conductive. From this reason, 

conductive nanofiller such as CNTs, graphite and carbon black are often preferred as they 

can form continuous conductive network with a matrix at low concentrations [33]–[37]. 

2.1.2 Application of Sensors 

The sensors development represents important research activity due to the large use 
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in industry including applications such are electronic devices, agriculture, aviation, 

biomedical and automation. The classification of sensors is based on their function in 

detecting signals from the subject that can be used for qualitative and quantitative 

measurements. The signals can be electrical, chemical, mechanical, radiant, magnetic or 

thermal [38]–[40]. Among other applications, sensors also have found applicability in oil 

detection. The principle is the change of some physical or chemical properties in the 

presence of oil in water. Here are some types of sensor used for detecting the signals comes 

from physical or chemical changes occurs on species. 

2.1.3 Classification Sensors: 

Sensors classification is based on the type of response and the application they are 

used for. Optical sensor response to optical inputs like light velocity, wavelength and 

frequency [41]. Chemical sensors are based on interaction of the sensing surface with 

analyte molecules, this interaction could be ion exchange, adsorption and liquid to liquid 

extraction[42]. Recently developed advanced or smart sensors that surpassed the rest due 

to utilizing advance material which are more sensitive and accurate in 

microelectromechanical (MEMS) and nanoelectromechanical (NEMS) system [43], [44]. 

2.1.4 Carbon Nanotubes 

Carbon nanotube were discovered by Iijima in 1991 [42], and strongly influenced 

advances in polymer nanocomposite field. The first reinforced polymer nanocomposite by 

carbon nanotube reported by Ajayan et al. [45]. Carbon nanotubes are rolled up of 

hexagonal structure graphene into cylindrical shape, which caped from sides, by half from 

of fullerene structure. There are different kinds of CNTs, which are SWCNTs, or single 

walled carbon nanotubes, which include single shell of graphene and MWCNTs or multi-
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walled carbon nanotubes, which have multilayer of graphene sheets. Carbon nanotube 

based on atomic arrangement can be metallic or semiconducting [46].  

In this work, CNTs used due to its excellent electrical conductivity to be insert 

inside electrospun mat form obtaining electrically conductive polymer, which is able to 

response to resistivity changes due to volumetric changes. 

2.1.5 Carbon Nanotubes/Polymer Nanocomposites 

Polymer composites widely used in industrial applications as sensors, electrical 

insulators, aerospace applications, thermal insulator, automobiles etc. However, there were 

some limitation for polymer composites therefore due to huge application incorporation of 

CNTs with excellent properties into the polymer matrix structure as a filler helped in 

conquering the limitations. 

2.1.6 Preparation of Carbon Nanotubes/polymer Nanocomposites 

To enhance the properties of CNTs/polymer, homogeneous dispersion of carbon 

nanotubes is very critical by keeping tough interaction and adhesion between the filler and 

matrix. Several methods were utilized to optimize performance of dispersibility and 

interaction. The most common methods are in situ polymerization, solution mixing and 

melt processing, which are commercially scalable. CNTs can be dispersed well in a specific 

solvent followed by the polymer dissolving in the mixture. Various methods are utilized 

for enhancing the dispersion process. Ultrasonic agitation was used by Safadi et al. for 

MWNTs dispersion into the polystyrene matrix [47], [48]. Some studies represented the 

modification of CNTs surfaces for better dispersion by introducing functional groups[49]. 

Addition of surfactants is another approach to tackle the compatibility issues of polymer 

and fillers [50], [51]. To avoid agglomeration after solvent evaporation, spin casting 
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showed by Du et al [52]. Electrospinning is another method which has been used for 

producing polymer nanofibers to get optimum dispersion using electric field [53], [54]. 

2.2 Membrane 

2.2.1 Oil/water Separation Techniques 

Many techniques and equipment have been reported in literature for separation of 

oil from water. Oil occurs in water in different types of contaminations involving floating 

on water, emulsified, suspended solid and dissolved. The most known techniques or 

separator considered following parameter of oil and water: oil drop size, oil density, 

viscosity of water, concentration of oil and oil-water flow rate. These techniques utilize: 

solvent extraction, marine oily water separator, gravity plate separator, API oil–water 

separator, centrifuge oily water separator, hydro cyclone oily water separator, flotation 

technique, nutshell filtration technique, electrochemical emulsification, downhole oil–

water separation (DOWS), bioremediation technique and membrane technology.  

2.2.2 Membrane Technology 

Membrane in general is a barrier with pores in different sizes, which permits some 

small particles, molecules or ions and prevent others with larger size from passing through. 

Material that is used for membrane synthesizing must be able to form stable thin film. 

Accordingly, metals, ceramics, polymers, monolayer liquids and glass are proper materials 

for membranes [55], [56]. Basically, three phenomena are important in membranes 

preparation, namely the effect of adsorption, electrostatic interactions and molecular 

sieving [57], [58]. Classification of membrane is mainly based on pore size, and material 

used for membrane synthetization and membrane structure [59]. According to their 

structure, they can be classify as dense homogenous asymmetric membranes or porous 
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membrane [59]. Most of recent membrane are combination of both porous membrane with 

a film of dense membrane on top [60], [61]. Based on the fabrication, material membranes 

can be classified as organic, inorganic or hybrid membranes [62]. Polymers are mainly 

used in manufacturing of industrial membranes [63]. Except polymers, ceramics, metals, 

elemental carbon or zeolite are utilized used in manufacturing of inorganic membranes 

[64]. High temperature, pressure resistivity and high stability under severe conditions are 

properties of inorganic membranes [62], [65]. 

In comparison to traditional techniques, the oil removal separation processes using 

membrane are the most suitable. The traditional methods are applicable for immiscible 

oil/water mixture separation while not efficient for emulsified oil/water mixture 

particularly not when the drop size is less than 20 μm (surfactant-stabilized 

microemulsions) therefore more additional treatments are needed [66]. Classification of 

membranes can be done according to their hydrophobicity/hydrophilicity and 

oleophobicity/oleophilicity, which is based on their wettability toward water and oil [67]. 

Generally, the energy-intensive cross-flow filtration system utilizes hydrophobic (or 

superhydrophobic) and oleophilic membranes. This is not suitable for oil/water separations 

techniques dependent on gravity because of a formation of a barrier, which blocks permeation 

of oil. Hydrophobic and oleophilic membranes are fouled readily by oil while de-

emulsification process [68]. Classic hydrophilic membranes are more resistant against fouling 

and powerful for gravity-based de-emulsification [66] but not proper for free oil-water 

mixture or emulsion of water-in-oil separation, as both water and oil can freely pass through 

them. These are very considerable technical challenges in process of oil/water separation 

because the absorption of oil onto surface of membrane jointly with fouling for long term use 
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will influence the efficiency of separation [69]. Thus, the challenge is developing novel 

materials, which have large separation capacity, resistance to fouling of oil, and can be easily 

recycled. Superhydrophobic/superoleophilic or superhydrophilic/superoleophobic 

surfaces promising effective oil/water separation by removing oil from water or vice versa 

from oil/water mixtures either through absorption or filtration. 

2.2.2.1 Superhydrophilic/superoleophobic Membranes 

Somewhat on the same surface the combination of superhydrophilicity and 

superoleophobicity is unusual, its refers to surface tension of oil and water which are (~20-

60 and ~72 mN/m respectively thus superoleophobic surface can be superhydrophobic 

[70]. Xue et al. and Tuteja et al. have leading work in this field. They fabricate a membrane 

that was simultaneously superhydrophilic and superhydrophobic in air and under water 

[71], [72]. 50 wt.% fluorodecyl POSS + PMMA (poly(methylmethacrylate)) microbeads 

mixed onto stainless steel wire mesh using electrospinning technique. Prepared membrane 

was able to remove emulsion oil with diameter larger than 1 μm [72]. Several researches 

conducted on superhydrophobicity/superhydrophilicity and many papers published [73]–

[77]. Krupa et al. worked on zwitterionic based polymer or monolayer or monolayer with 

high hydrophilicity and molecules with balanced charge, they produced modified 

membrane owing superhydrophilic/superoleophobic properties. They have drowned up a 

surface of rough gold from zwitterionic or quaternary ammonium based on monolayer with 

terminal group of chloride counterion. Superhydrophilic and underwater superoleophobic 

properties are represented by these modified surfaces, which prevent biofouling by 

repelling bacteria and cell adhesion. Another example of this type of membranes was 

created by depositing of CaCO3-based mineral coating on poly(acrylic acid) (PAA)-grafted 
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PP nanofibrous membranes [78]. Plentiful amount of water trapped in the rigid mineral 

coating from an aqueous environment resulting in a strong hydrated layer on the surface of 

membrane pore, therefore supplying underwater superoleophobicity for membrane. The 

high efficient with high water flux separation of various oil/water mixture and emulsion 

can be done under pressure or even the effect of gravity [78], [79]. 

2.2.2.2 Superhydrophobic/Superoleophilic Membranes 

The superwettable nanofiber membranes are effective in repelling water and lets oil 

to pass through it easily hence obtaining high efficiency and selectivity [80]. Stating on the 

Wenzel and Cassie-Baxter model, introducing of an adequate multiscale roughness can 

make a superhydrophobic from hydrophobic surface, while, superoleophilic from 

oleophilic surface [81]–[83]. Accordingly, by combination of appropriate rough 

topography and low surface energy can achieve a membrane surface that shows properties 

of superhydrophobic and superoleophilic simultaneously [84], [85]. Superhydrophobic and 

superoleophilic membranes are efficient for separation oil from water even for low 

concentrations. Superhydrophobic and superoleophilic membranes first reported by Jiang 

et al. in 2011 was develop by coating still mesh with thin film of hydrogel (polyacrylamide 

(PAM)) to be used for separation oil from water [74]. The separation efficiency of oil/water 

mixture was more than 99%. Disadvantages of such material the supporting mesh was 

owing pores with large size which was not suitable for separation of emulsified oil/water 

[86]. Polyamide membrane with silica nanoparticles for oil/water separation demonstrated 

high permeate flux and stability was fabricated by Maad et al. The membrane presented 

superydrophobicity in the air and superoleophilicity in neutral underwater. A simple 

method was displayed by Zhang et al. in their work they utilized modified phase-inversion 
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process for fabrication of superhydrophobic/superoleophilic poly(vinylidene fluoride) 

(PVDF) membrane [84]. In this process, PVDF was dissolved in N-methyl-2-pyrrolidone 

and an inert solvent additive such as ammonia water added to solution. Emulsions of both 

micro- and nanometer-sized surfactant-free and surfactant stabilized was separated by 

filtration driven only with gravity. The purity of oil in filtrate was more than 99.95 wt.% 

and flux 1710 L m−2 h−1. 

2.2.2.3 Nanofibrous Ultrafiltration Membranes 

Recently, electrospun nanofibrous membranes were proposed as good candidates 

for various kinds of water purification because the show higher permeability and lower 

cost of energy in comparison than traditional techniques [87], [88]. In order to prevent 

fouling problems of membranes, membranes surfaces are modified via deposition of a thin 

layer of hydrophilic materials , like chitosan [89], polyamide [90], or polyvinylalcohol) 

(PVA) [91], [92], by interfacial polymerization or physical adsorption. For obtaining high 

flux for separation of oil/water emulsion, modification of nanofibrous ultrafiltration 

membranes by hydrophilic membrane was performed by Chu et al. [89], [91]. 

 

 

Figure 1 The three-tier approach to the fabrication of high-flux and low-fouling 

ultrafiltration membranes. (b) Typical top structure of a fractured composite membrane 

[91]. 
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Figure 1 a and b, representing three layers of high flux and low fouling 

ultrafiltration membrane which consist of nonwoven microfibrous as a substrate coated 

with electrospun nanofibrous (PVA, PAN, etc.) then covered with hydrophilic layer such 

as chitosan or PVA hydrogel. The flux and antifouling properties enhanced significantly 

for prepared membrane due to its high porosity and smooth, thin layer of barrier [89], [91], 

[92].  

2.2.2.4 Smart special Wettable Nanofibrous Membranes 

Stimuli-responsive wettability membrane have received an attraction due to their 

relevance in essential studies and applications in industry [93], [94]. An external 

accelerator or stimulus must apply to achieve a controllable surface wettability. Several 

stimuluses were reported like temperature [95], pH [96], [97], electric fields [98], light 

[99], and gas [100]. The acidic and basic functional groups on polymer structure give the 

polymer behavior of pH-responsive wetting due to influencing of polymer morphology and 

charges by various pH solutions. A smart fibrous membrane fabrication was reported by 

Li and co-workers. Fibers of poly(methyl methacrylate)-block- poly(4-vinylpyridine) 

(PMMA-b-P4VP) were deposited on mesh of stainless steel using electrospinning method 

[101]. The fabricated membrane was provided with convertible surface wettability via the 

PH-responsive P4VP and the PMMA, which has underwater oleophilicity/hydrophilicity 

properties toward emulsified oil in water. PMMA-co-poly(N,N-diethylaminoethyl 

methacrylate) (PDEAEMA) nanofibrous membranes were developed recently as CO2-

responcive for surface wettability control which represented a switchable oil/water 

wettability for controllable separation of oil/water emulsion [100]. According to this design 

a hydrophilic chain extended from the reaction of CO2 with PDEAEMA tertiary amine 
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groups [102], [103] which can recover its overall hydrophobicity properties when exposed 

to N2 for removing CO2. Thus, the alternating CO2/N2 stimulation performs the adjustment 

of the fabricated nanofibrous membranes oil/water wettability. In addition, CO2-

responsiveness together with porous nanostructure empower the membranes to function as 

oil/water on-off switch. Additionally, smart dual layer nanofibrous membrane is also 

prepared for oil/water separation that has tendency to oil-transport capacity [104].  

2.2.3 Classification of Membranes 

Membranes can be classified according their pores size and subsequent ability to 

rejecting certain size particles. Nanofiltration (NF) membranes have ability of rejecting 

particles with size less than 0.002 µm. Ultrafine filtration (UF) membranes can remove 

particles which have size range from 0.005-2 µm and works at pressure range of 10-700 

kPa. Microfiltration (MF) membranes operates on removing particles and contamination 

in size range of 0.08-2 µm and works at pressure range of 7-100 kPa [105].  

2.2.4 Advantages and Disadvantages of Polymeric Membranes 

Since oily content is hydrophobic and sticking on hydrophobic surfaces, the fouling 

will reduce by utilizing hydrophilic membranes. Two major methods are used to improve 

polymeric membranes hydrophilicity, chemical or physical modification of membrane 

surfaces or via adding hydrophilic material to the polymer structure [7]. However, various 

parameters influence the membrane functioning even on membranes with modified surface 

including trans-membrane pressure, temperature, velocity of cross flow and pH. 

Decreasing the membrane, increasing the efficiency of separation and chemical resistance 

reinforcing of membrane are necessary for polymeric membrane to be economically and 

technically useful [106]. Researcher achieved this enhancement using various techniques 
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of preparation or modification. The hydrophilicity of membrane improved using different 

methods of chemical or physical such as incorporation of nanoparticles [107], interfacial 

polymerization [108] and surface grafting. Preparation of polymeric membrane is simple, 

low cost and operating conditions are moderated. Despite these advantages the main 

disadvantages of polymeric membranes are the leaching and clustering of the incorporated 

particles [109].  

2.2.5 MXenes for Water Treatment 

MXenes are 2D particles prepared by strong etching of three-dimensional MAX 

phases by removing “A” element from MAX phase, which is mostly from group III A or 

IV A with keeping the transition metal (titanium) which is indicated by letter “M” and C 

or N that are denoted as “X” intact. The layer that exfoliated during etching is terminated 

by functional groups such as OH, F and O signified as T. Recently this new class of 

materials gain lot of interest in many applications due to high surface area, good 

mechanical and electrical properties. The 2D interlayer channels as well as high 

hydrophilicity made possible to use MXene in water desalination. Liu et al. used MXene 

membrane for pervaporation desalination. They use simple filtration method for fabrication 

ultrathin 2D MXene for water desalination purpose. The prepared MXene membrane 

showed excellent performance resulted from high hydrophilicity and transport channels 

with unique 2D interlayer structure. High water flux was recorded for MXene membrane 

(85.4/m2h) and rejection of 99.5 % of NaCl [110]. Guo and co-workers modified MXene 

via Ar Plasma for efficient water desalination. The fabricated membrane exhibited high 

rate of salt removal and total increasing in removal capacity [111].  
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2.2.6 Commercial Polymeric Membrane Performance  

Commercial polymeric membranes are used widely for various separation 

purposes. Table is showing comparison of the performance of UF Flat-Sheet membranes 

utilized for oil/water separation fabricated by different manufacturer based on the polymer 

used and their flux rate. (Table 1) 

 

2.2.7 Recent Polymeric Membrane Used for Water/oil Separation 

Some recently developed polymeric membranes and ceramic membranes with their 

fabrication/modification methods, additive and component, performance and efficiency are 

listed in Table 2. Most of polymeric membranes exhibiting high separation efficiency and 

high flux of dispersion of water.  

 

 

Table 1. Comparison of different commercial polymeric membranes based on flux rate 

[134] 

Manufacturer Series 

Type of 

membrane Polymer Use 

Flux L/m2h-

1/bar 

GE Osmonics 

 MW Hydrophilic PAN 

Oil/water 

separation 4466/1.38 

Trisep UB70 Hydrophilic 

Polyvinylidene 

Fluoride 

Industrial 

waste water 1198/0.206 

Microdyn Nadir 

 UC500 

Extremely 

hydrophilic RC Waste water 7336/2 
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Table 2. List of latest polymeric membrane fabricated and tested for separation oil/water 

emulsion [112]. 

Membrane 

name 

Fabrication/modification 

techniques 

Additives/component 

used Performance/efficiency Ref. 

Zwitterionic 

PVDF/PSH 

Blending/in situ cross-

linking/NIPS PDH 

high water flux and 98% 

flux recovery  [113] 

PLA/P34HB Blend electrospinning PLA Enhanced water flux [114] 

PES Dry-wet NIPS SiO2/ZnO High   flux [115] 

PVDF Electrospinning Silica composite 2000 L/m2h1  [116] 

PSf Blending PVP and PEG good flux of dispersion [117] 

PVDF-TiO2 

membrane 
Blending PVP and PEG 99% rejection of oil [118] 

PES/Pluronic 

membranes 

F127 Blending Pluronic F127 

fine hydrophilicity 

antifouling property [119] 

PSf Phase inversion PEG, PVP, PEI and PES 

High flux, rejection 

coefficient is high  [120] 

PTFE Deposition/coating PDA and PEI 

Superior hydrophilicity  

and chemical  stability [121] 

PMMA-b-

PNIPAAm 

Solution-casting method and 

electrospinning PNIPAAm Flux rate 9400 L/m2h [122] 

PVDF Coating NP of TiO2 Efficiency 99% [123] 

ENF Cross-linking/Coating PAN/HPEI/PDA 

High oil contact angle (162°) 

flux 1600 L/m2h [124] 

Stainless steel 

meshes Spray coating NP of WO3 Separation efficiency 99% [125] 

PVDF Grafting PVP Excellent fouling resistance [126] 

Cellulose UF 

Grafting of PNIPAAm- 

PPEGMA, ATRP PNIPAAm- PPEGMA Oil rejection 97% [127] 

PVDF-g-PAA 

Polymerization and 

electrospinning PAA super- hydrophilicity [128] 

PVDF Amidation reaction PEI 

high flux with premium 

fouling resistance [129] 

PAN-g-CA Grafting/free radical 

polymerization 
PAN Improved its hydrophilicity [130] 

PVDF Electrospinning TEA Flux >23,000 L/m2h [131] 

PVDF/SiO2-

PNIPAM 
Radical polymerization PNIPAM lower oil adsorption mile [132] 

PAN Electrospinning ZIF-8 

high flux and separation   

efficiency, OCA=159° [133] 
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CHAPTER 3: EXPERIMENTAL PROCEDURES 

3.1 Materials 

Styrene isoprene styrene (SIS) Kraton, USA), Toluene (Sigma Aldrich, USA), 

Dimethyl formamide (DMF) (Sigma Aldrich, USA), Tetrahydrofuran (THF) (Sigma 

Aldrich, USA), Carbon nanotubes modified by COOH or NH2 group (cheaptubes.com), 

Co-polyamide 6,10 (VestameltX1010, EVONIK Industries, Germany), n-propanol (Sigma 

Aldrich, USA), Ti3AlC2 (Y-Carbon, Ltd., Ukraine), Lithium fluoride (Sigma Aldrich, 

USA), sunflower vegetable oil (Adams group, USA),  

3.2 Preparation of SIS-CNT’s Sensors 

Toluene and tetrahydrofuran/dimethyl formamide mixture were chosen for 

preparation of SIS sensors to find the optimum concentration for SIS to obtain best mat 

from electrospinning.  

3.2.1 Preparation of SIS Solution in Toluene 

First, 1.5 mg CNT-NH2 added to 5.2 ml of toluene and placed for sonication by 

using inner probe sonicator (to be check every 10 minutes and this step repeated 2 times 

for 10-15 minutes each time). The same steps were done for CNT-COOH (multiwall) to 

see it’s dispersion in toluene in comparison with multiwalled CNT-NH2 dispersion. Since 

multiwalled CNT-COOH exhibited better dispersivity compare to CNT-NH2, the work was 

focused on CNT-COOH. 

For better dispersion, 2 drops of triton X (surfactant) added to the solution, and then 

0.75 g of SIS added to the mixture and stirred for 20 minutes until whole polymer dissolved 

completely. The mixture then sonicated by inner probe sonicator machine for 15 minutes.  
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3.2.2 Preparation of SIS Solution Using Mixture DMF and THF 

Solutions of SIS in THF/DMF was prepared according previous paragraph 3.2.1. 

Various concentration of SIS (from 10 to 15 wt.%) in THF/DMF 50:50 (v/v) and 

THF/DMF 80:20 (v/v) was prepared. Concentration of CNTs varied from 0.5 to 10 wt.% 

relative to concentration of polymer. 

3.2.3 Electrospinning  

Electrospun nanofibers were fabricated by NaBond (Shenzhen, China) 

electrospinning device. Typically, 5 mL SIS/CNTs dispersions were filled into a 10-mL 

syringe, with a blunt-end, stainless steel needle type 8. The needle was connected to the 

emitting electrode of a high-voltage supply capable of generating DC voltages in the range 

of 0–50 kV. An aluminum foil on the rotation drum collector was used as the collection 

screen connected to the ground electrode of the power supply with the distance between 

the screen and the needle tip 15 cm. The electrospinning process was carried out at room 

temperature at a voltage of 15 kV. The solutions were electrospun continuously for 30 min 

at a flow rate 1.0 ml/h and drum speed of 200 RPM to obtain sufficient amount of 

electrospun fibers to be able peel them out from the aluminum support.  

3.2.4 Fabrication of Sensor 

For sensor fabrication 13 wt.% of SIS have been chosen due to most uniform fiber 

production. Loading of CNT was from 2 to 10 wt.% related to concentration of SIS. Gold 

interdigitated electrodes were provided for each sample, then, took to be coated with the 

fiber under electrospinning. Then electrospinning ran for 20 minutes under 20 KV and 2 

ml/hr. flow rate. Layer of SIS-CNTs fiber settled on interdigitated gold electrodes, which 

placed in oven for 24 hr. and 50 °C.  



20 

 

3.2.5 Sensors Absorbance Capacity Measurements 

Square piece of electrospun mat and casted film was immersed in oil for one hour, 

then removed for measuring their capacity to absorption oil and subsequently retuned back 

to oil and measurement was repeat after twenty hours. The following equation was used to 

measure absorbance capacity: 

Absorbance capacity% = (m – m0)/m0 x 100 

where, 

m0 = mass of sample 

m = mass of sample + mass of absorbed oil 

3.2.6 Resistivity Measurements 

In order to examine sensors performance, effect of saturated solvents vapor and oil 

droplets on sensors resistance were studied. 

3.2.6.1 Vapor Sensing Test 

Gold electrodes were coated with 13 wt.% SIS and 10 wt.% of CNT using 

electrospinning technique. Sensors were exposed to saturated vapor of toluene and the rest 

to saturated vapor of acetone. Then the electrodes terminals were connected to Source 

Meter system (KEITHLEY 2635A, USA) under 10 mA to measure the resistivity of 

samples. The relative resistivity (AR) for each sensor were calculated using the following 

equation 

AR = (R – R0)/R0 x 100% 

• R is the resistance at time t  

• R0 is the original resistance of the sample. 
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3.2.6.2 Oil Sensing Test  

Water, vegetable oil and their mixture with concentration 10, 100 and 1000 ppm of 

vegetable oil were prepared. Several sensors were prepared by electrospinning of 13 wt.% 

of SIS and 10 wt.% of CNT on gold electrodes. Then measured the resistivity changes 

using KEITHLEY 2635A system Source Meter upon exposing to drops of different sample 

by the time. Relative resistivities were calculated employing previous equation. 

3.3 Co-polyamide-MXene Membrane Preparation 

3.3.1 Preparation of MXene from MAXene Phase 

MXene 2D particles were prepared by three steps process, which involves, the 

etching process, washing and drying process and delamination. 

3.3.1.1 Preparing LiF.HCl Etched MXene 

Preparation of Ti3C2 was done as follow: a thermal couple was placed in oil bath 

and the temperature was adjusted to 35 °C. 15 ml of water was added to a plastic bottle 

with a cap and mixed with 15 ml of conc. HCl, followed by 30 minutes temperature 

stabilization. Then, 1.98 gram of LiF was added to the mixture with continuous stirring for 

15 minutes. 

Then, three grams of Ti3Al2C2 (MAXene) was added steadily to acid solution and kept in  

oil bath with continuous stirring for 24 hours.  

3.3.1.2 Washing and Drying Process 

The mixture was diluted by adding 50 ml of deionized water while stirring for 5 

minutes in the oil bath. Then, the mixture was removed from the bath and distributed 

equally into 50 ml falcon tubes and took for centrifugation at 3500 rpm. for 2 minutes. This 

step was repeated until appeared green color for supernatant, and pH was about 6. The 
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supernatant was removed and added ethanol followed by filtration using 0.45 µm cellulose 

nitrate membrane. The filter paper with wet product was dried overnight at room 

temperature in plastic petri dish.  

3.3.1.3 Delamination 

For delamination step, 200 ml of deionized water was degassed for 15 minutes 

using nitrogen gas. 1.2 g of prepared MXene was added to degassed water and place into 

sonicator bath for 45 minutes. Then, centrifugation at 3500 rpm for 45 minutes was done.  

3.3.2 Preparation of Co-Polyamide Membrane 

Co-polyamide membrane prepared by electrospinning the 18wt.% of co-polyamide 

in n-propanol. coPA has high solubility in n-propanol but it was accelerated by heating. 

After fabrication showed high stability even at room temperature[42]. 

Electrospun nanofibers were fabricated by NaBond (Shenzhen, China) electrospinning 

device. Typically, 5 mL coPA/CNC suspensions were filled into a 10-mL syringe, with a 

blunt-end, stainless steel needle type 8. The needle was connected to the emitting electrode 

of a high-voltage supply capable of generating DC voltages in the range of 0–50 kV. An 

aluminum foil on the rotation drum collector was used as the collection screen connected 

to the ground electrode of the power supply with the distance between the screen and the 

needle tip 10 cm. The electrospinning process was carried out at room temperature at a 

voltage of 20 kV. The solutions were electrospun continuously for 30 min at a flow rate 

0.5 ml/h and drum speed of 200 RPM in order to obtain sufficient amount of electrospun 

fibers to be able peel them out from the aluminum support.  

3.3.3 Fabrication of Co-polyamide Coated by MXene Membrane  

Glass filtration unit technique was used for fabrication of coPA/MXene 
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membranes. 50 mg of single layer MXene (Ti3C2) is added to 50 ml of deionized water and 

sonicated for 20 minutes. Then, suspension was poured onto co-polyamide membrane 

under vacuum. Subsequently membrane with formed MXene layer on surface was washed 

with water to remove all unattached MXene particles until obtaining transparent filtrate 

confirmed by UV spectroscopy. 

The similar steps in previous section was applied to prepare ML-MXene/polyamide 

membrane. 

3.3.4 Spectroscopy 

 Spectra were recorded on Spectrophotometer (Libra biochrom, USA) a Suprasil 

quartz cuvette (10 mm) from Heraeus Quarzglas GmbH. The data were obtained at a 

constant bandpass with a resolution of less than 2 nm. 

3.3.4.1 Preparation of Different Concentration of Oil Sample 

For testing the membrane efficiency, first prepared oil stock solution 1000 ppm by 

adding 0.5 gram of vegetable oil in 500 ml of deionized water and sonication for 20 

minutes. Then stock solution diluted to 100 and 10 ppm by adding 20 ml of stock solution 

in 180 ml of deionized water and 180 ml of the stock solution in 20 ml of 1000 ppm neat 

vegetable oil respectively. 

3.3.5 Filtration Using Glass Filtration System  

Glass filtration system used for testing the membranes efficiency. The prepared 

membranes were attached to the system to separate oil from water. 

3.3.5.1 Filtration Using Co-polyamide/FL-MXene Membrane 

Polyamide/FL-MXene placed in between the funnel and neck and the flask 

connected to a suction pump. Then turned on the pump and the oil samples filtered on by 
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one. First 10 ppm oil was filtered, while filtrate was collected in small glass bottle for 

spectroscopy measurement. The same procedure done for 100 ppm and 1000 ppm.  

3.3.5.2 Filtration Using Co-polyamide/ML-MXene Membrane 

The same steps followed for polyamide/ML-MXene membrane. Thus, the 

polyamide/ML-MXene placed in between the funnel and neck and sample filtered. The 

collected sample kept on small glass bottles for spectroscopy. The filtrate was colorless.  

3.3.5.3 Filtration Using Co-Polyamide Membrane 

Polyamide membrane used for filtration process. Followed the similar protocol, 

while polyamide membrane adjusted on glass filtration system and the sample filtered and 

collected for spectroscopy.  

3.3.5.4 Preparation of Standard Solutions of Oil for Plotting Calibration Curve 

The concentrations 50, 100, 250, 500 and 1000 ppm of vegetable oil in water were 

prepared. The transmission spectra were obtained using Libra biochrom 

spectrophotometer. The value of transmission for each concentration corresponding to 450 

nm were measured. Transmission-Concentration chart plotted (Figure 26)  

3.3.5.5 Efficiency Calculations 

The values correspond to 450 nm for each concentration (10, 100, 1000 ppm) were 

obtained from the related spectra charts before and after filtration. Efficiency of samples 

measured using the following equation: 

eff.% = 100 – [C (filtrate)/C (Stock solution)] x 100% 

Where eff% is representing the separation efficiency in %, c(filtrate) indicates the oil 

concentration in the filtrate in ppm and c(stock solution) is the oil concentration in stock 

solution. 
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3.4 Scanning Electron Microscopy (SEM) 

The surface morphology of the specimens was examined with a field emission 

scanning electron microscope (FEI-SEM, Nova Nano SEM 450) equipped with energy-

dispersive X-ray spectroscopy (EDS) with secondary electron images at 3 kV and different 

magnifications. All specimens were sputter-coated with 2 nm of gold before SEM images 

were taken.  

3.5 Transmission Electron Microscopy (TEM) 

To get higher resolution image of few-layer MXene HR-TEM FEI. TECNAI G TF 

20 was used. The specimens were dispersed well in deionized water using sonication bath 

for 20 minutes. 

3.6 Contact Angle Measurement 

The OCA35 optical system (Data Physics, Germany) was used to measure the 

wettability of prepared samples by the sessile drop technique. Liquids with a different 

surface tension (water, vegetable and diesel oil) were used to investigate wettability of the 

prepared PA samples. A volume of 1µL of each testing liquid was used to eliminate 

gravitational effects when studying the contact angle. A representative value of the contact 

angle was obtained from ten separate readings. The angle between the solid/liquid and 

liquid/vapor interface is referred to as the contact angle. 

3.7 Profilometry Measurements  

Leica DCM 8 profilometer was used to create three-dimensional optical surface 

morphology of synthesized fiber samples. Additionally, Sa (arithmetical mean height) that 

represents information on the surface roughness was recorded. Up to 70° shapes and steep 

inclinations examining of complex done by utilizing non-destructive confocal technology 
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on surface of sample.  The confocal images results from a very sensitive detector with high 

resolution up to 1.4 million pixels. Inclusive data from the sample surface with high 

disparity can be scanned. 

3.8 Atomic Force Microscopy 

Atomic Force Microscopy (AFM) was used to further elucidate 2D and 3D surface 

morphology of electrospun nanofibers using MFP3D Asylum research (USA) equipped 

with a Silicon probe (Al reflex coated Veeco model – OLTESPA, Olympus; spring 

constant: 2 N m‒1, resonant frequency: 70 kHz). Measurements were performed under 

ambient conditions using the Standard Topography AC air (tapping mode in air). An AFM 

head scanner applied with Si cantilever adjacent vertically in the sample resonant 

frequency of the free-oscillating cantilever set as the driving frequency. 

3.9 UV Spectroscopy 

Libra biochrom spectrophotometer was used for transmittance measurements. The 

transmittances spectra for various oil concentration and filtrates were created by the 

machine for wavelength range between 200 nm and 800 nm, then the values corresponding 

to 450 nm were obtained. 
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CHAPTER 4: RESULTS & DISCUSSION 

This section divided into two parts, first discuss the results related to the sensors 

and second results of membrane.  

The process of sensor fabrication displayed in Figure 2. The gold electrode was 

covered with ES mat of 13 wt.% SIS and 10 wt.% CNTs using electrospinning method to 

get SIS/CNT sensor followed by drying in the oven for 24 hours under 60 °C.  

Figure 3 demonstrates the fabrication of coPA/MXene membrane starting from 

preparation of coPA membrane by electrospinning of coPA solution in n-propanol then in 

the next step adding MXene particles to coPA membrane using glass filtration system 

technique to obtain coPA/ML and FL-MXene membranes. 

 

 

 

Figure 2 Illustration of fabrication of sensor by electrospinning of 13 wt.% of SIS and10 

wt.% of CNT on gold electrode. 
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Figure 3 Schematic of fabrication of coPA/MXene electrospun mat and emulsion 

oil/water separation process 

 

 

4.1 Sensors Characterization and Resistivity Measurements 

4.1.1 SEM Characterization of SIS Membranes   

As a first approach, SIS polymer was dissolved in toluene.  Different concentrations 

of SIS were electrospun to find the optimum concentration and condition for producing 

fibers, but no fiber produced. 

In the next step, SIS-CNTs solutions were prepared to see the ability of creating 

fibers when SIS is mixed with CNTs. However, no fiber appeared in all conditions. 

As a second approach, the mixture of tetrahydrofuran and dimethylformamide was 

selected, since THF/DMF was previously used in published works to obtain electrospun 

fibers of SIS. Various concentrations of SIS (from 10 to 15% were prepared in THF:DMF 

50:50 (v/v) and THF:DMF 80:20 (v/v). Good fibers were created for SIS in THF:DMF  

80:20 (v/v) while the solutions of SIS in THF:DMF 50:50 (v/v) were too viscous and not 
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satisfied for doing electrospinning. The best fiber quality was obtained from 13 and 15 

wt.% of SIS as it shown in Figure 4 and Figure 5. As it clear in Figure 5(a) and (b) the fiber 

produced clearly on the size of hundreds nanometer.  

In the next step, various concentration of CNTs (0.5, 1, 2.5, 5 and 10 wt.% of CNTs) 

were dispersed in the SIS solutions and electrospinning was performed. 

Figure 6 (a and b) represents the SEM result of 13 wt.% of SIS and 1 wt.% of CNT 

after electrospinning under 10 and 15 KV with flow rate of 1 ml per 1 hr. The best 

electrospun mat was obtained from 13 wt.% of SIS and 10 wt.% of CNT much better than 

15 wt.% of SIS and 10 wt.% of CNT which was containing some beads as shown in Figure 

7. In addition, 13 wt.% of SIS and CNT 10 wt.% displayed perfect uniform fiber size with 

no defects and voids in the membrane structure. 

 

a) b)  

Figure 4 SEM image of 15 wt.% of SIS in THF/DMF 80:20 (v/v) 15KV a) 20KV b) 25KV 
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a) b)  

Figure 5 SEM image of 13 wt.% OF SIS in THF/DMF 80:20 (v/v) electrospun by loading 

15 KV a) 13 wt.% SIS b) 15 wt.% SIS 

 

a) b)  

Figure 6 SEM image of 13 wt.% of SIS in THF/DMF 80:20 (v/v) 1 wt.% CNT a) 10 KV 

b) 15 KV  

 

a) b)  

Figure 7 SEM image of a) 13 wt.% of SIS and 10 wt.% of CNT b) 15 wt.% of SIS and 10 

wt.% of CNT 
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4.1.2 Oil Absorption Capacity of Casted Film and Electrospun Mat of SIS 

Oil absorption capacity were tested on casted and electrospun SIS polymer. In case 

of electrospun SIS, 3.31g of oil per 1g of SIS was absorbed within first hour with no further 

absorption.  

In case of casted film, absorption capacity increased about 10 time from 0.35 g of 

oil per 1g of film after 1 hour of immersing to 3.34 g of oil per 1g of film after 20 hours of 

immersing of the oil. Thus, the electrospun mat of SIS are expect to have an advantage for 

sensor application compare to film due to fast oil absorption. 

Gold interdigitated electrodes were chosen for fabricating the sensors. The electrodes was 

covered by electrospun mat of 13 wt.% of SIS 2.5, 5 and 10 wt.% of CNT for 30 min until 

they completely covered with the mat and similarly also coated with casted film of same 

concentrations (Figure 8). Average weight of the sensors used for sensing experiments was 

10 mg ± 2 mg and average thickness of sensors was 100 µm ± 10 µm were measured. 

 

a) b)  c)  

Figure 8 Gold interdigitated electrode (a), Gold electrodes coated with 13 wt.% of SIS 

fiber 2.5, 5 and 10 wt.% of CNTs using electrospinning technique (b & c). 
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4.1.3 Resistivity Measurements 

The 13 wt.% of SIS CNTs were electrospun on gold interdigitated electrodes. The 

13 wt.% of SIS and 10 wt.% of CNT sensors exposed to toluene and acetone vapors. The 

resistivity was measured by time as Figure 9a. shows the relative resistivity increasing until 

reaching the plateau point, which means that the vapors absorbed by the SIS mat swelled 

resulting in segregation of carbon nanotubes what leads to increase of resistivity. Toluene 

get earlier to equilibrium than acetone, it took five minutes while acetone after six minutes, 

which shows that absorption of toluene is faster than acetone. 

Figure 9 b. represents the relative resistivity changes by time for water and oil. 

Water did not effect resistivity whereas the sensor resistivity increases dramatically after 

adding oil and after 3 minutes was reached to plateau. 

Figure 9c represents the resistivity changes of 13 wt.% of SIS and 10 wt.% of CNT 

for several concentrations of vegetable oil. The resistivity of SIS-CNTs sensor increase by 

increasing the concentration. The higher oil concentration caused the plateau faster than 

lower concentrations. Hence, faster sensor response due to higher oil concentration. This 

happens due to swelling of SIS mat resulted from absorbing of oil which further causing in 

the CNTs disconnected. 
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a) b)  

c)  

Figure 9 Resistivity changes of 13 wt.% of SIS and10 wt.% of CNTs a) toluene and 

acetone, b) water and pure vegetable oil and c) 50,100 and 1000 ppm vegetable oil 

 

 

4.2 Result and Discussion of Membrane Part 

4.2.1 MXene Acid Etching  

Etching process of MAX phase is shown in Figure 10. Aluminum layer was remove 

via etching of MAX phase using strong HF acid created in situ (LiF+HCl) resulting in 

Ti3C2Tx. 
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Figure 10. Schematic illustration of etching of MAX phase [135]. 

 

 

4.2.2 MXene Delamination 

Delamination of MXene multilayer structure was done by ultrasonic bath, the layers 

are separated to give FL-MXene (Figure 11 b).  

 

 

 

Figure 11 (a) Illustrations of multilayered MXene. From left to right, (b) Illustrations of 

delaminated MXene. From left to right [18] 

 

 

 

 LiF+HCl 
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4.2.3 Characterization and Separation Efficiency of MXene and CoPA-MXene 

membranes 

4.2.3.1 Scanning Electron Microscopy   

Figure 12 represents the SEM image of MAX phase (Ti3AlC2). It is clearly visible 

that MAX phase contains multiple layers structure stack together. 

Strong etching using mixture of LiF and HCl removes the Al layers from the MAX 

phase, gaps appear between the layers but still joining together due to the residual forces 

which keep layer connected resulted in multilayer-MXene (Ti3C2TX) (Figure 13). 

Delamination of ML-MXene by sonication consequences in braking the weak 

residual forces therefore separation of ML-MXene and formation of single layer-MXene 

(Figure 14) in shape of small particles (lateral size around few 100 nanometers). 

 

 

Figure 12 SEM image for MAX phase from natural stone 



36 

 

 

Figure 13 SEM image of ML-MXene produced after acid etching 

 

 

 

Figure 14 SEM image of few layer MXene with different magnification after 

delamination 

 

 

4.2.3.2 Transmission Electron Microscopy (TEM) 

High resolution -TEM was employed to study structure of prepared MXene 

particles. TEM images represented the small particles in size of few nanometer. After 

delamination using sonication bath the ML-MXene layers separated to few or single layers. 

(Figure 15) 
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Figure 15 TEM image of FL-MXene 

 

 

 

4.2.3.3 Energy Dispersive x-ray Spectroscopy (EDX)   

To obtain the composition of elements in MAX phase, ML-MXene and FL-MXene 

elemental analysis or chemical characterization was done by utilizing EDX analytical 

technique. Figure 16 representing the EDX image of MAX phase (Ti3AlC2). The graph is 

plotted base on counts per second and energy (eV). There are peaks correspond to 0.25 and 

4.5 eV which is indicate existence of Ti and a peak next to 1.5 eV represents presence of 

Al elements, carbon peak appeared close to 0.1 eV. The Al wt.% is 6.93 of total and the 

at.% is 9.69 (Table 3).  
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Figure 16 Illustration of EDX graph for MAX phase 

 

 

Table 3. EDX results for MAX phase 

Element norm. C [wt.%] Atom. C [at. %] 

C 3.79 11.93 

O 5.16 12.17 

Al 6.93 9.69 

Ti 83.17 65.57 

Fe 0.95 0.64 

 

 

Figure 17 illustrating the EDX image for ML-MXene, the Al layer removed by strong 

etching with HF and HCl. The same peaks appeared as the MAX phase EDX image shown 

extra to these some new peaks also appeared on EDX image after etching correspond to 

0.7 and 2.6 eV which are for Cl and F respectively that introduced to the MXene structure 

from the acid and staid at MXene terminals. The wt.% and at. % of aluminum decreased to 

1.7 and 1.96 of total respectively while 22.11 wt.% of F atoms added to the MXene 

structure (Table 4).  
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Figure 17 EDX graph for ML- MXene 

 

 

Table 4. EDX result for ML-MXene after acid etching of MAX phase 

Element norm. C [wt.%] Atom. C [at. %] 

C 2.57 6.59 

O 6.13 11.83 

F 22.11 35.92 

Al 1.71 1.96 

Cl 0.81 0.70 

Ti 66.67 42.99 

 

 

During delamination process the residual forces between the layers broke to from 

FL- MXene the EDX image shows peaks at 0.25 and 4.5 eV for Ti, 0.7 and 0.1 eV for F 

and C respectively with no peak for Al which proofs sucesful delamination (Figure 18). Al 

element disappeared completely after sonication that represents produce of FL-MXene due 

to delamination. (Table 5) 
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Figure 18 EDX graph for FL-MXene after delamination of ML-MXene  

 
 

Table 5. EDX result for FL-MXene produced after delamination of ML-MXene 

Element norm. C [wt.%] Atom. C [at. %] 

C 5.95 15.87 

O 12.67 25.35 

F 4.30 7.25 

Ti 77.08 51.53 

 

 

The prepared membranes are displayed in Figure 19. Co-polyamide mat coated 

with ML-MXene and FL-MXene. MXene particles distributed homogenously inside and 

on coPA membrane. 
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Figure 19 Polyamide membrane (a), Polyamide/single layer-MXene membrane (b) and 

Polyamide/multi-layer-MXene membrane (c) 

 

 

4.2.3.4 Atomic Force Microscopy 

Topography of membranes surfaces was study by AFM technique. Figure 20(a) 

shows the AFM image for coPA. As it is obvious the fiber strains wove in very clear shape 

and created many pores in various size. The pores are not filled, what makes the oil 

molecules pass through membrane. Figure 20(b) represents the topography of coPA/ML-

MXene membrane. The fiber is coated with ML-MXene, the surface of membrane is 

covered by the MXene particles and the pores are becoming quite tight for neat vegetable 

oil molecules to pass through it. Figure 20(c) indicates the topography of coPA/FL-MXene 

membrane in which coPA membrane coated by FL-MXene. The particles settled inside the 

pores and on the fiber. In this membrane, the vegetable oil facing FL-MXene obstacle to 

permeate through the membrane and most of it will absorb with the FL-MXene. Thus, The 

FL-MXene less permeable to oil molecules, what made efficiency of separation high for 

coPA/FL-MXene as same as coPA/ML-MXene.  

a 

 

b c 
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a)  

b)  

c)  

Figure 20 AFM images of a) neat coPA membrane, b) coPA membrane coated by ML 

MXene and c) coPA membrane coated by FL MXene 

 

 

4.2.3.5 Profilometry Measurement 

Polyamide fiber showed regular and homogeneous structure with no appearance of 

beads. The value of Sa for pure polyamide fibers was 0.87 μm whereas the Sa value for 
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FL-MXene and ML-MXene were 1.82 μm and 1.46 μm respectively which represents that 

adding FL-MXene and ML-MXene to coPA fiber result in sharp increase in surface 

roughness (Figure 21).   

 

a) b)  

c)  

Figure 21 Profile measurement of a) neat coPA membrane, b) coPA membrane coated by 

ML MXene and c) coPA membrane coated by ML MXene 

 

 

Figure 22a displays profilometry measurement of coPA and coPA/ML-MXene. 

The average thickness of coated ML-MXene on membrane was about 35µm. Whereas, the 

average thickness of coated FL-MXene on membrane was 30 µm (Figure 22) 
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Figure 22 a) Profilometry of coPA and coPA/ML-MXen with line graph b) coPA and 

coPA/FL-MXene  with its line graph 

 

 

 

35µm 

30 µm 

a 

b 
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4.2.3.6 Contact Angle Measurements 

Wettability strongly depends on chemical nature (polar or nonpolar) and surface 

roughness. In Figure 23, the contact angle of water, formamide, ethylene glycol and oil 

with the coPA, coPA/ML-MXene and coPA/FL-MXene are shown. Co-polyamide due to 

including -CO and -NH functional groups on its structure is considered to be hydrophilic 

polymer. The contact angle of water, formamide, ethylene glycol and oil on pure coPA 

membrane was 42, 4, 1 and 8° respectively. Contact angle of water, formamide, ethylene 

glycol and oil on coPA/ML-MXene membrane was 100, 20, 45 and 3° respectively and 

130, 111, 15 and 5° are the contact angle values for water, formamide, ethylene glycol and 

oil coPA/FL-MXene. From theoretical point of view, the contact angle of polar solvent 

must be less on hydrophilic surfaces. In our case, we suppose that the high surface 

roughness strongly influencing contact angle. 
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Figure 23 Contact angle for different solvents on coPA, co-polyamide-Multi Layered-

MXene and coPA few-layered MXene 
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Casted films of ML and FL Mxene were prepared in order to eliminate roughness 

parameter. Moreover, the measurement of contact angle of oil was done under water to 

mimicking real condition during oil water separation. The average contact angles of 

vegetable oil on FL-MXene and ML-MXene casted films were 159.95° and 132.52° 

respectively, which are quite high, prove oleophobicity of MXene layers. This property of 

MXene is essential in oil removal from water (Figure 24).  

 

a) b)  

Figure 24 Contact angle of vegetable oil on a) FL-MXene and b) ML-MXene casted 

films under water.  

 

 

 

 
Figure 25 Contact angle results for VO on casted film of FL-MXene and ML-MXene 
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The results indicate that the average value of contact angle of vegetable oil on FL-MXene 

underwater is higher than its relative for ML-MXene. It means that FL-MXene is more 

oleophobic towards vegetable oil comparing to ML-MXene (Figure 25). 

4.2.4 Spectroscopy Results 

4.2.4.1 Calibration Curve 

In order to estimate concentration of oil in filtrates calibration fits were done by 

preparing of mixtures of oil in water with various concentration Figure 26. The values of 

transmittance of standard mixtures correspond to 450 nm were collected, plotted and 

subsequently values was linear fitted  [42]. Subsequently, Beer-Lambert law was used to 

calculate particular concentration of oil in filtrate.  

According to the Beer-Lambert law the amount of light absorbed by a substance 

dissolved in a totally transmitting solvent directly proportional related to the path of 

solution and the concentration of substance. 

A= ε l c 

Where, A is absorbance, ε is wavelength dependence absorptivity coefficient 

(molar absorptivity), l is representing path length and c is indicating the solution 

concentration. 

 

 

Figure 26 Calibration curve T% versus concentration (ppm) 
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4.2.5 Water/oil Separation Efficiency  

Figure 27a. shows different concentrations of oil before filtration and figure 27b. 

filtrates after separation.  

 

 

Figure 27 Different oil samples before filtration (a), Oil samples after filtration using 

polyamide/FL-MXene membrane 

 

 

Figure 28 shows the separation efficiency plotted for different membranes toward 

different concentrations. The efficiency for 10 ppm vegetable through the co-polyamide 

membrane showed only 18% separation efficiency while coPA/ML-MXene exhibited 

efficiency around 99.5% and the separation efficiency increased up to 99% for coPA/FL-

MXene. Thus, the coPA more permeable to 10 ppm neat vegetable oil and only 20% 

efficient while separation efficiency for coPA/ML-MXene and coPA/FL-MXene goes up 

to 99.5% for neat oil 10 ppm. Figure 28(a). Figure 28(b & c) shows the efficiency for 100 

ppm and 1000 ppm neat oil separation. The coPA membrane represents separation 

efficiency up to 70 % and 99 % and 98 % for coPA/ML-MXene and coPA/FL-MXene. 

Similar values of efficiency for neat vegetable oil 1000 ppm. According to Sobolciak et al. 

the oil water separation depends on absorption of oil inside the membranes[42]. 

 

a b 
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a)  b)  

c)  

Figure 28 UV spectroscopy of filtrates obtained after separation of a) 10, b) 100 and c) 

1000 ppm vegetable oil in water through neat coPA and coPA coated with MXene 

membranes 

 

 

4.2.6 Flux of Dispersions Through Membranes 

Flux of dispersion through membrane decreasing with increasing the oil 

concentration. Figure 29a is showing flux of dispersion through coPA/ML-MXene at 0.5 

bar. Flux for 10 ppm is around 10000 L/m2h, decreases to 7000 L/m2h for 100 ppm and 

about 3500 L/m2h for 1000 ppm. The similar trend, decreasing of flux with increasing 

concentration of oil was observed for coPA/FL-MXene (Figure 29 b). 
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a)  b)  

Figure 29 Flux of dispersions through membrane a) coPA ML-MXene b) coPA FL-

MXene 
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CHAPTER 5: CONCLUSIONS 

5.1 Sensors 

• Electrospinning technique was used to obtain mat from SIS and SIS/CNT 

composites deposited on the gold electrodes. 

• The best mats in terms of fibers uniformity and resistivity values suitable for 

sensing experiments was obtained from 13 wt.% of SIS and 10 wt.% of CNT.  

• The prepared sensors were responding to solvent vapors and oil content.  

• Vapor sensing were done for toluene and acetone. Sensors exhibited fast response, 

where time to reach a plateau for toluene was 5 min, whereas 6 min for acetone vapors.  

• Prepared sensors were successfully used for sensing of oil in water. The lowest 

concentration of oil in water possible to qualitatively determinate was 50 ppm.  

5.2 Membranes 

• MXene was prepared successfully through etching and delaminating of MAX 

phase. Prepared MXene particles were characterized by SEM, TEM and EDX. 

• The measured contact angle of vegetable oil on MXene film under water showed 

the high oleophobicity of MXene particles, up to 152 º for FL MXene.  

• Co-polyamide membrane prepared using electrospinning technique. Co-polyamide 

membranes were covered with MXene particles. Membranes were characterized by 

profilometry measurement, AFM, and contact angle measurement.  

• coPA/MXene membranes showed high separation efficiency for oil in water 

separation, up to 98%, what indicates high potential of these type of membranes for 

separation oil from water. Prepared membrane exhibited high flux (up to 11000 L/m2h) at 

0.5 bar pressure of dispersion of water.  
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