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ABSTRACT 
 

AZIZ, NAEEM, A, Masters : January : 2019, Environmental Sciences 

Title: Mobile Epifauna Associated to Artificial Substrates in Offshore Qatari Waters 

Supervisor of Thesis: Dr. Radhouane Ben-Hamadou 

Offshore human-made structures including oil and gas platforms and other energy producing 

structures, such as foundations of windfarms, serve as hard substratum supporting diverse marine 

communities of invertebrates both sessile and motile. Stainless-Steel Plates were used to study the 

spatial distribution and connectivity among mobile invertebrate assemblages in the North of the 

Qatari EEZ. Thirty plates were deployed, at depths between 10 and 44 m, in each of six offshore 

sites, along a transect defined between natural and artificial reefs (i.e., oil platforms). After one 

year, two replicate plates per 5 m depth interval were retrieved and analyzed for each site. A total 

of 2302 specimens, belonging to 42 operational-taxonomic-units and 32 families were identified. 

These were comprised of 14 families of annelids, 8 arthropods, 5 echinoderms, 2 gastropods, 2 

platyhelminths and 1 sipunculid. Multivariate analysis for abundance and biomass showed that both 

Site and Depth, as well as their interaction, had significant effects on the mobile macrofaunal 

community. A general trend of total abundance and average number of taxa decreasing with depth 

was observed, although with some notable exceptions. Cumulative dominance was consistently 

larger for biomass, relatively to abundance, at all depths and sites, resulting in positive values of 

the W statistic, which suggest low levels of disturbance. Nevertheless, an increasing trend of the 

W statistic with distance from the oil field was also observed, with the minimum value at the site 

closest to the oil platforms. Strong positive correlations were observed between some groups of 

mobile and sessile taxa, such as sipunculids and polyclads with bivalves and decapods with 

barnacles. These mobile-sessile relationships are believed to be mainly driven by trophic 

interactions and habitat provision. These results highlight the important ecological role of oil 
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platforms in the Arabian Gulf as it has demonstrated the capacity of offshore stainless-steel surfaces 

to be rapidly colonized by diverse assemblages of mobile macrofauna. Accordingly, knowledge 

gathered in this project is expected to contribute to reconcile the planning, operation and 

decommissioning stages of oil platforms with sustainable management of marine ecosystems in the 

Arabian Gulf. 
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BACKGROUND 

Marine Artificial Substrates and Their Ecological Significance 

Artificial structures get introduced into the marine environment either by accident such as due to 

shipwrecks or intentionally for various purposes such as coastal protection or oil and gas 

exploitation. One of the first uses of the artificial reefs was by Persians to block Indian pirates out 

of the Tigris River (Williams, 2006). Artificial structures may also be introduced for re-establishing 

the lost or damaged substrates to increase the abundance of target species of benthos and the 

associated nekton. Artificial structures are indeed increasingly seen as tools for the improvement 

of fisheries and the protection of key marine ecosystems, due to their capability of providing 

substrate for the settlement of marine benthos (Friedlander et al., 2014; García & Salzwedel, 1993; 

Page et al., 2009; Zintzen et al., 2008). Artificial reefs have been successfully deployed for 

rehabilitation and recovery of affected natural coral reefs worldwide (Burt et al., 2011; Perkol-

Finkel et al., 2005).  

Various human-made structures including oil and gas platforms and other energy producing 

structures, such as foundations of windfarms, when deployed into offshore waters serve as hard 

substratum supporting diverse marine communities of invertebrates both sessile and motile. Oil and 

gas rigs typically have a prohibiting zone of at least 500 m around them, which prevents fishing 

and other human impacts, but also restricts sampling for scientific purposes. This deployment 

process is not simply the addition of new hard substratum to the marine environment but the 

formation of novel habitats which are distinguishable from those that occur naturally (Zintzen et 

al., 2008).  
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Coral reefs are at risk worldwide (Munday, 2004). Coral reefs, although covering only 0.2% of the 

total marine environment area, are known to harbor about one third of all identified marine species, 

being considered the most diverse marine ecosystem and are estimated to contain 1 – 2 million 

(known and unknown) reef associated species worldwide (“Coral reefs | WWF,” n.d.; Reaka, 2005). 

The three-dimensional complex structure provides numerous ecological services, complex species 

interdependencies and sources for several medicinal compounds. These extensive landscapes 

provide protection to species from predators and to coasts from storms or wave erosions (Veron et 

al., 2009). Various anthropogenic activities including overfishing of the reef associated species and 

inputs of nutrients and pollutants from coastal activities have caused coral mortalities as well as 

reduced coral recruitment (Sandin et al., 2008). Moreover, other stressors such as introduced alien 

species are also indirectly related to these more localized man-induced disturbances (Wilson et., 

2006). However, despite the climatic and anthropogenic disturbances there exists reefs that are 

relatively free of direct human damage due to their geographic remoteness. Such reef ecosystems 

have been observed to attain great recovery rates even after experiencing a mass bleaching event, 

for example, in the case of Chagos Archipelago, Indian Ocean which went through severe mortality 

(>90%) during the 1998 warming event but recovered back rapidly reaching values like those 

existed during Holocene (Perry et al., 2015). 

Climate related disturbances such as warming sea waters, rising sea levels and ocean acidification 

as well as human-induced pressure and disease outbreaks are all speeding up the changes in coral 

reefs across the globe (Perry et al., 2015). The 2016 mass bleaching event caused about 51% 

reduction in coral cover in the Great Barrier Reef and western Coral Sea (Stuart-Smith et al., 2018).  
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Artificial substrates and their associated coral reef ecosystems are significantly replacing natural 

reefs and therefore natural habitats for marine benthos and associated organisms (Sanabria-

Fernandez et al, 2018). Additionally, artificial habitat enhances the ecosystem's carrying capacity 

producing a sustained increase in biomass of fish and invertebrates.  

Quantifying the effect of artificial reefs in producing sustainable increase in fishery production was 

first studied by Polovina & Sakai (1989) in the northern Japanese waters. Japanese government has 

been spending US$ 10 million annually on the construction and deployment of artificial reefs in 

coastal waters throughout its history of long commercial use of artificial reefs. The study by 

Polovina & Sakai (1989) showed that the regional catch per unit of the Pacific giant octopus, 

previously habitat-limited, was enhanced positively with the addition of artificial reefs. Hence, the 

fish populations are not only limited by recruitment (survival, dispersal and settlement) but can also 

be restricted by availability of suitable habitat (space-resource limitation) which in return may 

negatively affect the food availability, reproductive output as well as trigger an increased predation 

rate (Macreadie et al., 2011). 

The goals of Artificial Reef (AR) ecology mainly addressed colonization and succession; recent 

studies focused on hydrodynamics, bioenergetics, and food webs, and the role played by reefs in 

species recruitment. The recent researches (including the current study) focuses on the variations 

in the epibiotic community composition and structure as the aim of AR research has shifted from 

improving fisheries as a resource to additionally the restoration of the marine ecosystems (Lee et 

al., 2018). 
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Oil Platforms 

One third of the oil and gas extracted worldwide is from offshore sources with thousands of oil and 

gas platforms distributed worldwide from the North Sea to the Southern Asian seas (Torquato et 

al., 2017). Page et al. (2009) estimated over 8,000 offshore active oil/gas platforms globally with 

additional 1,500 on their way to completion. The current numbers are likely to be much greater as 

new oil and gas marine fields are exploited as opposed to traditional terrestrial reservoirs. 

Offshore platforms have been known to indirectly provide a large sophisticated artificial habitat for 

a range of colonizers comprising of invertebrates and fishes (Torquato et al., 2017). Moreover, the 

platforms anchored to the seabed, extending up into the atmosphere provide substratum throughout 

the complete vertical water profile. The complex structure of these platforms further plays an 

important role in providing a large three-dimensional surface for marine organisms over a relatively 

small footprint of seafloor.  

Places where fouling assemblages settle and grow on the submerged portions of offshore oil/gas 

platforms have previously been reported such as in Beibu Gulf of China, the Gulf of Mexico, off 

the Californian coast, the southern Arabian Gulf which encompass Qatari waters (Stachowitsch et 

al., 2002), the Mediterranean, and the Celtic and North Sea (Stap, Coolen, & Lindeboom, 2016). 

Several thousands of oil and gas platforms in northern Gulf of Mexico have been a source of hard 

substratum for marine organisms (Zintzen et al., 2008). For example, more than 40 invertebrate 

colonizers belonging to seven phyla were recorded at the offshore platforms of Carpinteria, Santa 

Barbara Channel (California, USA) by Bram et al. (2005). On the other hand, recruitment density 

(secondary production), a proxy for evaluating the ecosystem functioning, was observed to be 

extremely high (by an order of magnitude, 104.7 - 886.8 g m-2 y-1) in the oil and gas platforms off 

the California coast compared to any other marine ecosystems which indicate high levels of 

recruitment (Claisse et al., 2014). Besides, some sizable platforms have been estimated to provide 
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acres of hard substratum for the epibenthic assemblages (Sammarco et al., 2012). 

Apart from providing suitable area for the recruitment and growth of marine invertebrates and 

fishes, offshore platforms are subjected to minimum human pressure and are usually located in 

deep waters with strong currents. Open marine systems have been known to have potential for 

dispersal of many marine species, during their pelagic phases, over large distances and long periods 

of time (Molen et al., 2018). Hence, these substrates can act as stepping stones to bio-geographic 

expansions by facilitating genetic connectivity of the species that flow in through the larval 

dispersal especially for crucial organisms such as corals and coral associates allowing connectivity 

between the reefs. Thus, a better understanding of the type of species that exist within and around 

the platforms and other several thousand offshore energy structures worldwide is essential to 

estimate the effects of these platforms on the associated marine biota (Stap et al., 2016). 

Friedlander et al. (2014) while studying the oil platforms in Gabonese waters off the coast of west 

Africa describes these platforms as oases of biodiversity. Thirty-four percent of the total fish 

species recorded was new to the Gabonese waters and six percent to the Western African 

continental shelf (Friedlander et al., 2014). The Gabonese platforms acted as stepping stones 

allowing in the fish species that were seen to have Amphi-Atlantic affinities, previously unknown 

to local Gabonese waters. However, these stepping stones may also be a source of invasive species 

that may produce adverse effects on the local community. 

Several physical and biological factors such as disturbance, temperature fluctuations, food 

availability, light availability, biological competition and predation and transportation of larvae by 

currents could contribute to the spatial variations in macro-benthic assemblage structure and 

dynamics (Page et al., 2008). Previous studies such as Page & Hubbard (1987) found vertical 

patterns of the macrofaunal assemblages, with certain groups of taxa abundant at specific depths. 

For instance, the mussel Mytilus edulis was found abundant at an offshore oil platform in Santa 

Barbara Channel, California, between the sea-surface and 20 meters sub-surface and this 
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distribution was defined by its trophic mode (Page & Hubbard, 1987). 

Depth associated patterns in a benthic community structure examined using deployed artificial 

substrates at depths 8, 16 and 24 m concluded depth-specific species relation, where most species 

were consistently abundant at specific depths. Patterns of total abundances of major taxonomic 

groups maintained for depths at both studied geographic sites (Islands) and during the two 

considered seasons (Rule & Smith, 2007). Depth was considered the structuring factor for the 

epifaunal assemblages of subtropical rocky reefs. Also, Bram et al., (2005), while examining the 

early development of an invertebrate assemblage at an offshore oil platform concluded that the 

depth influenced the growth rates along with other factors. 

The general patterns of abundance, species richness and biomass of marine species decreased with 

increasing depth. These generally known patterns of density and abundance of macrobenthos 

decreasing with depth is believed to be mainly because of decreasing primary production and food 

supply (particulate matter) down the water column (Vedenin et al., 2018).  

Similarly, to the depth-related variations, the macrofaunal distribution and community structure 

may also be defined by geographic spatial gradients such as the gradient between two reefs or 

gradient down the offshore reefs all the way from the coastal sources.  

According to Page et al. (2008) the spatial variations in the recruitment and growth rates of selected 

macrofaunal species on seven offshore oil and gas platforms were defined by prevailing 

oceanographic gradients along the channel. Some of the selected taxa exhibited a general increase 

in abundance with increasing distance along the channel from south-east towards north-west and 

some were more abundant in the southern platforms. The study concluded that an assessment of 

these colonizing assemblages could be a useful indicator of short- or long-term change in the marine 

climate (Page et al., 2008). Stap et al., (2016) found that species composition and abundance on the 

five oil platforms varied over depth and along the distance-from-shore gradient. The species 

richness (S) decreased significantly with increasing distance from shore. Friedlander et al. (2014), 
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while studying benthic communities on 10 oil platforms in Gabonese waters, concluded three 

distinct clusters formed by the platforms in the ordination space. The study found higher diverse 

assemblages of the benthos in the southern and inshore platforms when compared to other locations. 

Similarly, it observed highest number of fish species in the northern platforms, partly due to the 

platforms in the north being the oldest ones. 

Production platforms can provide habitat for epibiotic invertebrates that can be of various sizes and 

many of these species are found common with natural habitats despite the distinct physical and 

biological environment of the offshore platforms (Bram et al., 2005). The ecological dimensions 

such as biological structure and function of these artificial habitats as well as their physical 

characteristics imitate natural reefs to variable degrees. Therefore, it is pivotal to study the 

community structure in such isolated and disconnected marine habitats, to compare their structural 

and functional similarity and variability to the natural ecosystems. High habitat structural 

complexity is usually associated to highly diverse and abundant marine communities. Hence, 

decommissioning thousands of oil and gas platforms, at the end of their service life, must consider 

the potential effects on the community of invertebrates and fishes inhabiting these habitats and 

incorporate options such as rigs-to-reefs (Claisse et al., 2014).  
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Rigs to Reefs 

Another important reason to study these artificial habitats is to contribute to the planning of the 

decommissioning stage of the oil platforms. Considering the substantial habitat and diversity losses 

in coastal reefs, the perceived capacity and ecological significance of the offshore structures is 

gaining increasing importance. Numerous programs have tried to promote the transition of 

decommissioned platforms into artificial reefs (Dauterive, 2000; Kaiser & Pulsipher, 2005; Lee et 

al., 2018; “Louisiana Aims to Turn Shut-Down Oil Rigs into Reefs,” 2017; “Proposed law could 

jumpstart California’s rigs-to-reefs program,” n.d.; “Relics to Reefs,” n.d.; Macreadie et al., 2011; 

Rezek et al., 2018; Techera & Chandler, 2015). However, only a limited amount of studies has been 

conducted on ‘active’ rigs.  

As the global number of offshore oil and gas rigs approaching de-commissioning is ca. 6,500 rigs, 

there is an increasing need for the employment of a "rigs-to-reefs" decommissioning program in 

the offshore waters to convert the prospective obsolete rigs into artificial reefs, on a large scale. 

Rigs-to-Reefs (RTR) was first performed in 1979 off the Coast of Florida followed by other regions 

worldwide such as Southeast Asia, Mexico and North Sea countries (Macreadie et al., 2011). These 

rigs to reefs programs left in place the ‘under the water’ parts of the man-made structure (aka rigs-

to-reefs) and are expected to sustain biological production, enhance ecological connectivity, and 

ease conservation and restoration of deep-sea benthic community for example by protecting cold-

water corals on natural substrates by physically limiting access to the area by coastal fishing 

trawlers. However, if the rigs to reefs conversion is not implemented correctly there are possible 

negative impacts such as the release of abandoned contaminants on rigs, introduction of invasive 

species in its function as a stepping stones and changes to benthic habitats and associated marine 

food webs (Macreadie et al., 2011). 

The structural design, specifically the stainless-steel component, makes the RTRs a suitable habitat 
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for invertebrate colonization and growth. Sedentary macro-invertebrates were found commonly 

dwelling within the oil rigs of California (Henry M. Page et al., 2008), explaining the affinity for 

the rigs by variety of species. Sessile macro-invertebrates are more commonly found on these steel 

anchors as compared to concrete reef anchors. In a study in Oahu, Hawaii; shallow-water corals 

preferred colonizing painted steel than concrete or tires (Fitzhardinge et al., 1989), on the other 

hand, deep-water corals such as Lophelia pertusa inhabited steel substrate of the decommissioned 

platforms in the North Sea inferring steel’s suitability to support deep-water corals communities 

(Bell & Smith, 1999). Nevertheless, communities growing on the artificial habitats are often 

different than their natural counterparts regardless the age of the rigs (Burt et al., 2009); this 

difference is likely a consequence of structural and substrate differences. However, for places with 

extreme habitat destruction and absence of important natural communities nearby, the artificial 

substrates would offer a valuable opportunity for colonization regardless of the substrate material, 

resulting in ecosystem rehabilitation and fisheries yield enhancements. 

The research into Artificial Reefs (AR) has tremendously expanded from an early basic AR design 

and deployment aiming from fisheries enhancement to various other beneficial purposes. Other 

benefits of RTRs to the oil and gas industry is the substantial saving on decommissioning costs 

(Macreadie et al., 2011). The financial expense of the complete decommissioning is large. It’s 

estimated for the oil and gas platforms in the North Sea at £17.6 billion between 2016 and 2025 

whereas for the UK continental shelf to 2050 is £47 billion (Molen et al., 2018). Thus, the prospect 

of leaving the submerged part in situ is an attractive cost-cutting opportunity (Techera & Chandler, 

2015). Therefore, the goals of artificial reefing include human socio-economic aspect along with 

environmental conservation and is sustainable as it provides economic benefits alongside the social 

and environmental benefits. The current study near the Al Shaheen oil platforms may provide dual 

economic benefits of reducing decommissioning costs to oil and gas operators as well as improving 

the fisheries yield apart from the environmental benefits. 
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Arabian Gulf 

The Arabian/Persian Gulf is a shallow, semi-closed and relatively younger seawater basin 

originated about 15,000 years ago (Torquato et al., 2017). About 1,000 km in length and 370 km 

wide at its widest point, the Gulf has an average depth of ca. 35 m making of the Gulf a shallow 

seawater basin. Along its southeastern side, the Gulf is outlined by the coasts of Qatar, Bahrain and 

UAE. To the south, it connects with Gulf of Oman through the 56 km wide Strait of Hurmuz (Feary 

et al., 2011) which allows in the Indian Ocean Surface Water (IOSW). The sources of freshwater 

are limited to riverine inputs mainly through the now dammed Tigris and Euphrates in Iraq 

discharging 35-133 km3 per annum (Quigg et al., 2013) and inadequate precipitation typical of a 

desert region. The Gulf lies in the sub-tropics within 24° and 30° N and surrounded by deserts 

making it one of the hottest open sea on Earth. The SSW temperatures exceed 35 - 36 °C in summer 

and fall below 15 °C during the colder months (Robinson et al., 2013). Water salinity generally 

stays high >45 psu (Torquato et al., 2017) in addition to marine fauna capable of surviving >48 ppt 

(Riegl & Purkis, 2012). The high salinity is a result of excessive evaporation and lack of adequate 

precipitation (Robinson et al., 2013). Qatari territorial waters are also characterized by low 

precipitation (around 70 mm year-1) and high evaporation resulting in high salinities ranging from 

40 psu along its northern and eastern coasts up to 70 psu along the southwestern coast (Quigg et 

al., 2013). 
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The Arabian (Persian) Gulf experiences a unique seasonal cycle which establishes a gulf-wide 

cyclonic overturning circulation in the summer. The incoming water through the Strait of Hormuz 

flowing north along the Iranian coast joins the river plume at Shatt-Al-Arab up north and 

subsequently, flows back southeastward moving through the coasts of Kuwait, Saudi Arabia and 

around Qatar before reaching western parts of the Southern coasts. The south-westwards surface 

currents in the southern Gulf and around the shallow west of Qatar achieve typical speeds of 10 – 

20 cm/s. In contrary, the bottom layer attains speeds of 5 – 10 cm/s but increases to 20 – 30 cm/s 

after it passes through the Strait of Hormuz on its way outwards of the Arabian Gulf (Kämpf & 

Sadrinasab, 2006). Water circulation and currents are important for larval dispersal (Sammarco et 

al., 2012) especially for the offshore setting where the currents are stronger relative to the inshore 

waters. 

Artificial reefs have been deployed for over a hundred years in the Arabian Gulf mainly to establish 

fisheries and improve yields (Feary et al., 2011). Originally, the deployment of the artificial 

substrates for reef development was intentional using tree trunks, stones, pottery being sunk into 

coastal waters. Currently, the reefs are unintentional reefs because of other anthropogenic activities 

such as the oil and gas industry explorations which started in the Gulf after the discovery of oil 

deposits in 1950s and later coastal development. Such structures are now causing unforeseen 

consequences for coastal management such as the introduction of invasive species and changes to 

the natural benthic habitats (Feary et al., 2011).  
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Oil Platforms of Arabian Gulf 

The Arabian Gulf homes around 800 offshore oil and gas platforms (Albano et al., 2016). Oil 

platforms in the Arabian Gulf are anchored to the sea-bed via pillars that act as supports holding 

the platforms above the water surface. Hence, these platforms extend along the entire water column, 

from the sea-surface all the way down to the sea-bed, imitating a simple rocky island. These 

important hard substrates in the Gulf waters provide a hard substrate to marine wildlife and a 

medium for sessile taxa to settle, that subsequently allow the growth of mobile organisms as well 

as attracting other larger organisms for feeding purposes, forming a complete unique habitat.  

Several coral communities have been known to grow surrounding the oil and gas platforms in 

Qatari territorial waters (Maghsoudlou et al., 2008). These production platforms are suitable areas 

for coral’s recruitment and growth. Extensive coral cover has been previously observed in the 

submerged parts of offshore production platforms in Al Shaheen Oil Field platforms at various 

depths indicating the importance of artificial reefs in recruiting corals in areas where the sea-bed is 

naturally soft  and corals lack the hard substrates required for anchoring and subsequent life stages 

(cf. NPRP No.: 7-1129-1-201). Burt et al. (2011) & Burt et al. (2009) found higher coral cover in 

the artificial mature reefs (>25 years) such as breakwaters than on their natural counterparts in 

southern Arabian Gulf (UAE). The invertebrate community composition inhabiting offshore 

platforms in southern Arabian Gulf has been studied by Stachowitsch et al. (2002). This study 

confirmed the idea that large artificial reefs such as the oil and gas platforms can support diverse 

and abundant coral and fish communities, despite their structural and functional differences. 

Furthermore, maturing of artificial reefs would allow the associated benthic communities to 

develop into similar communities as could be expected on the local natural reefs (Burt et al., 2011). 
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Al Shaheen Oil Field platforms (northern offshore Qatari waters) provide a great hotspot to the fish 

assemblages where a highly diverse fish community was recently found comprising of 83 taxa 

(Torquato et al., 2017). Most of the taxa identified were native to the Arabian Gulf with some new 

species identified, adding to the currently known Qatari fauna. The findings of this study prove the 

oil/gas platforms as vital habitat for diverse community of fishes and a candidate of an interesting 

study of the fish assemblage structure. 

Moreover, the offshore setting and protected platforms limits the anthropogenic disturbance 

significantly. The platforms also act as a shelter for invertebrates and juvenile fishes due to its 

structural complexity that alters the water currents preventing the planktonic stages from getting 

drifted away, hence, enhancing their recruitment and subsequent growth. This ultimately 

contributes positively to commercial fisheries at local or regional scale (Truchon et al., 2015).  
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Corals of Arabian Gulf 

More than 70% of the corals of the Arabian Gulf are degraded or dead and the remaining are 

considered under the status of threatened species (Burt et al., 2014). Coral reefs have been exposed 

to environmental and anthropogenic pressures and consequently has led to coral loss and the 

conversion of coral reefs in broken fragments. Coral loss or recovery has major impacts on the 

entire marine ecosystem, not only limited to species relevant for fisheries (e.g. snappers, groupers, 

etc.) or tourism (e.g. angel-fishes and butterfly-fishes), but to the complete trophic chain and the 

ecosystem functioning (Hoegh-Guldberg et al., 2007). 

Arabian Gulf homes highly diverse and abundant macrofaunal invertebrates forming the largest 

regional marine ecosystem (George, 2012). Also, these invertebrates are a vital source of food for 

consumers at higher trophic levels. The physical and biological parameters of the Gulf greatly 

influence the occurrence and distribution of these marine invertebrates. The physical conditions 

include sediment type, salinity, temperature, depth and physical disturbance and biological 

conditions include primary productivity and interspecies relationships such as biological 

competition, commensalism and parasitism. The macro-invertebrates generally comprise of 

polychaetes, crustaceans and molluscs. Polychaetes are well known to be found in every benthic 

marine sediment (Naser, 2011). Given that >97% of the sea-bed in the Arabian Gulf is dominated 

by sand and mud, hence, the dwelling macrobenthos would form a large and diverse marine 

ecosystem.   
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The Arabian Gulf is characterized by extreme seawater temperature and salinity limiting the 

diversity and reefing potential of the native coral species (Rezai et al., 2004). According to the 

historical records, the tough environmental conditions of the Arabian Gulf and mass coral bleaching 

events of 1996 and 1998 significantly reduced live coral cover in the shallow waters to less than 

1% with a little recovery particularly in the corals of deeper regions or corals subjected to least 

anthropogenic effect (Wilson et al., 2002). The paper states the biggest threats to the benthic 

communities are from dredging and land reclamation. Moreover, brine and cooling water 

discharges from industrial facilities such as power generation, desalination, gas liquefication and 

more recently district cooling are adding a thermal and high salinity load to an already naturally 

stressed environment. Anthropogenic effects would arguably be critical for the biodiversity and 

abundance of macrobenthos living in an environment which is predominantly nature stressed 

(Naser, 2011). 

Contrasting from these coastal environmental and anthropogenic settings, the natural marine 

conditions several miles off the Qatari coastline provide an appropriate setting for the settlement, 

recruitment and growth of the local precious offshore reefs. Offshore reef communities have been 

generally protected and are the least exposed to anthropogenic damage. Northern and Eastern coasts 

of Qatar provide favorable conditions for coral growth; however, the best growing conditions are 

found in the offshore waters, far away from brine discharges and coastal developments. 
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OBJECTIVES 

The overall aim of this study is to investigate the level of biological connectivity existing between 

natural and artificial reefs (i.e., oil platforms) in offshore Qatari waters. The focus will be in 

assessing the mobile macrofauna recruited in settlement plates deployed offshore along a transect 

between natural and artificial reefs.  

The specific objectives are: 

1. Assessing vertical and horizontal spatial variations in recruitment and community structure 

of mobile macrofauna associated with settlement plates, deployed along a transect between 

the ‘Al Shaheen’ oil field and adjacent natural reefs. 

2. Assess the association between the mobile epifauna with the sessile (fouling) assemblages. 

3. Characterization of the most abundant functional groups of the mobile fraction of 

macrofaunal assemblages 

The knowledge gathered in the project is expected to contribute to the planning of the 

decommissioning stage of the oil platforms, by assessing their capacity to function as artificial 

reefs, enhancing local productivity and connectivity (as stepping stones) between existing natural 

reefs. 
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METHODOLOGY 

Study Area 

The Al Shaheen field is located ca. 40 miles offshore north from Qatari coast. Figure 1 below 

depicts the map of the study area, which encompasses the oil platforms at Al Shaheen oil field. 

 

 

Figure 1. Map of the study area showing the six sites of deployment (1-AF to 6-IM), between the 

Al-Shaheen oil platforms (crossed circles) and the natural reefs (dashed areas) 
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Several kilometers North-West of Block 5 exists natural coral reefs (Figure 1).  At least two reefs 

have been described around Block 5, and one of them, Umm Al Arshan has been considered one 

of the most diverse in the southern Arabian Gulf, characterized by a high cover and likely less 

impacted by earlier coral bleaching events and long-term stress (Burt et al., 2017; Burt et al., 2016). 

No significant literature is known about these unique offshore reefs inferring the need of extensive 

field study to determine the coral reefs structure, cover, depth range, connectivity, health status and 

the associated fauna i.e. fish and invertebrates. 

The study area was chosen as a transitional area between natural reefs and artificial reefs i.e. oil 

platforms in offshore deep waters. Lastly, the area is less exposed to unwanted anthropogenic 

activities, far from industrial and urban developments and associated dredging works in Qatar 

coastal regions. 

Deployment of the Settlement Plates  

In October 2016 the stainless-steel (20x20 cm) settlement plates (abbreviated to SS-Plates) were 

deployed offshore, at depths ranging from 10-15m (top) and 45-48m (bottom) at six locations 

between the Al-Shaheen oil platforms and the natural reefs.  

Table 1 contains the geo-coordinates of the six sites 1-AF to 6-IM as depicted in Figure 1. This 

linear arrangement was used to assess the gradient of connectivity between natural reefs and oil 

platforms. 

Several factors such as substratum texture (hard or soft), complexity of the structure, spatial 

positioning are believed to affect how the benthic invertebrates settle on a substratum (Mckenzie 

et al., 2011). Accordingly, the stainless-steel plates were chosen to mimic the materials and texture 

of the pillars of the neighboring oil platforms. Furthermore, they were anchored vertically in the 

water column to match their spatial orientation to that of platforms. The structural complexity of 

submerged plates was less sophisticated than the platforms due to logistical considerations. 
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Each mooring line held 30 plates along the water column, spaced at 1 m depth intervals. This 

number and spacing of the plates allowed a good representation of recruitment at various depths, 

while maintaining the total weight of each structure within reasonable operational limits. Mooring 

lines were secured to the seabed with two concrete anchors (approximately 40 kg each) and attached 

to the rope via an acoustic release unit, which can be activated from the surface (Figure 2, left & 

middle). The ropes were kept in vertical orientation though the use of three buoys (4x14 L trawl 

floats) on the top of each mooring rope (Figure 2, right). 

 

        

Figure 2. Mooring line (left) supported by two concrete anchors and one acoustic release unit 

(middle) and; 4x14 L trawl floats (right). 
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Table 1                 

Sites and Their Geo-Coordinates as Recorded by Research Vessel Janan Navigation System Upon 

Sample Retrieval On 3 – 6 Nov 2017 

Site Latitude Longitude 

1 - AF N26 49 40.1 E51 19 39.8 

2 - DE N26 45 54.8 
 

E51 26 41.8 
 

3 - BC N26 44 09.8 
 

E51 33 20.8 
 

4 - GH N26 41 56.0 
 

E51 38 08.5 
 

5 - LJ N26 41 15.1 
 

E51 42 32.5 
 

6 - IM N26 38 59.2 
 

E51 45 56.4 
 

 

 

Environmental Variables 

Vertical profiles were obtained at each site using the Vessel’s CTD (Sea-Bird Electronics 

SBE911plus). Variables measured included Depth, Temperature, Salinity, Density, Dissolved 

Oxygen, Fluorescence (Table 2), Turbidity, PAR/Irradiance, pH, Oxidation Reduction Potential 

and Pressure. 
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Table 2                 

Date and Time for Fluorescence recorded at each site  

Site Date Time (GMT) 

6-IM 4-Nov-17 6:53 
4-GH 4-Nov-17 8:22 
2-DE 4-Nov-17 12:22 
1-AF 5-Nov-17 5:31 
3-BC 5-Nov-17 7:36 
5-LJ 5-Nov-17 10:34 

 

 

Sampling and Retrieval of Substrates 

Half of the total deployed plates were collected a year after the initial deployment, during a research 

cruise with the RV Janan, between 03 and 06 November 2017. Figure 3 depicts a submerged 

sampling unit totally colonized by invertebrate macrofauna. 

 

 

Figure 3. Submerged plate covered with invertebrates. 

 

Ropes with the moored SS-Plates were retrieved from the seabed using the acoustic release system 

(AR-60-E Acoustic Release System – Sub Sea Sonics) to allow the 3 buoys (Figure 4, right) holding 
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the rope in vertical orientation to float to the surface to be collected via the central large crane on 

RV Janan (Figure 4, left). 

 

  

Figure 4. Retrieval of fouling plates onboard the RV Janan; detail of crane operation (left) and 

trawl floats used to support the structure (right). 

 

All the plates retrieved were immediately photographed, on the rear deck of the vessel, using a 

Nikon D7100 camera with paired Ikelite TTL strobes (Figure 5). 

 

 

Figure 5. Photo-quadrat of a sampling unit. 
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All the six structures were removed from the water. and all plates photographed, but only half of 

them (every other one) were collected from each structure for analysis. Plates (samples) at each 

depth that lie within each 5 m depth interval were considered as replicates for that depth interval. 

In some cases, it may be a single sample with no replicates at an interval. Number of samples 

(depths) from each structure that were used for analysis are depicted in Supplementary Table 8 

(Appendix A – Supplementary Tables) The other half of the plates were maintained attached to the 

rope and re-deployed, with minimal disturbance, in the same locations, to be resampled after a 

second year of deployment. 

 
Scraping, Pre-Sorting & Preservation  

The retrieved plates were transferred to containers into the washing room of the vessel for 

determining fresh weighing, scraping and sorting the macrofauna and preserving it into containers 

(Figure 6). 

 

 

Figure 6. Receiving freshly retrieved samples into the RV Janan washing room for processing 
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A paint scraper was used to dislodge the settled organisms from the retrieved SS-Plates. Damage 

to the organisms was minimized by applying the paint scrapper at the contact point between the 

organisms and the plate to which they were attached. During the scraping each plate was placed in 

a see-though plastic container and the macrofauna emptied into it. 

The collected macrofauna was then washed using a seawater shower and the collected water was 

filtered through a dual mesh (500 and 50microns) with the first mesh stopping macrofauna and the 

second mesh stopping or collecting the meiofauna (Figure 7).  

The meiofauna fraction was then preserved into falcon tubes, using absolute ethanol and stored in 

boxes that were refrigerated until they were shipped for taxonomic analysis (data not used in this 

thesis). 

 

 

Figure 7. Washing room in RV Janan showing meshed tubes, containers, seawater shower etc. 

 

The macrofauna fraction was then placed in a specialized plastic non-reactive food grade sealed 

containers. Containers of size 1000 ml and 500 ml were used for storage with some samples fitting 

the entire collected biomass into one 500 ml bottle while some samples with higher biomass 

required several 1000 ml containers. Different sized containers were used to minimize weight and 
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storage space required. Half the samples retrieved were preserved in absolute ethanol and the other 

half in 5% buffered formalin solution with seawater. Formalin was used as it preserves samples for 

longer without any prior distortion to the sample, however, formalin is poisonous and carcinogenic 

and an irritant even in its vapor form specially to the human eyes and soft tissue in the airways and 

lungs (Fischer, 1905).  

Post-fixation the containers were checked for the double labels (external and internal waterproof 

labels) and then refrigerated at – 1 ° C until the arrival to the Doha Port (Figure 8). 

 

   

Figure 8. Left to Right: Refrigeration of preserved samples, Pre-taxonomic sorting using lit 

magnifiers & Taxonomical identification at ESC, Research Complex, QU. 

 

Upon arrival at Doha Port the sample containers were loaded into large ice boxes that were loaded 

onto a pickup for immediate transfer to the pre-prepared cold room in Qatar University laboratories, 

BCR A201. The Principal Investigator enabled our access to the university and the cold room where 

the ice boxes were unpacked, sorted and loaded onto the shelves. 
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Lab Sorting  

The sample containers were emptied using funnels and sieves of 50 microns while the drained 

ethanol and formalin waste being poured out into empty bottles for disposal according the Qatar 

University chemical safety regulations. The ethanol samples were urgently processed to prevent 

previously mentioned distortion to the samples while the buffered seawater formalin 5% samples 

were processed later in Environmental Sciences Centre (Research Complex, QU), under a fume-

hood, because of the earlier mentioned toxicity. 

The samples were then transferred to large plastic trays for study and sorting under large 

illuminated magnifying glasses (MAGNASCOPE R1-89-01) (Figure 8). The time intensive sorting 

first separated carefully the sessile portion from mobile part of the macrofauna. Secondly, the 

mobile macrofauna was further sorting into major taxonomic groups such as Annelids, Mollusks, 

Crustaceans, Echinoderms etc. and preserved into smaller container such as falcon tubes (5ml, 

15ml, 50ml) and eppendorfs with correct labeling prior to their taxonomic identification. 

The formalin-fixed samples were first processed inside fume-hood where they were washed thrice 

with water in meshed sieves after the removal of the buffered formalin seawater into a separate 

empty and well labelled bottle for disposal purpose. Subsequently, the washed macrofauna was left 

in trays inside the fume hood for approximately 20-30 minutes to let the toxic chemical evaporate 

as well as to reduce the smell. This was followed by the routine sorting work. 

The sorted samples were preserved back into different vials but with Absolute Ethanol and stored 

into cold room or refrigerator (-1 °C) for later taxonomical processing. 79 out of 90 sampling units 

were sorted and processed. This number was chosen for replication purpose i.e. at least 2 replicates 

per sampling interval of 5 m depth of the water column. 
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Taxonomic Identification 

The mobile assemblages were identified based on their morphology (Figure 8). The taxonomic 

identification was performed using Zeiss SMZ-168 and Olympus SZ2-ST Stereo Microscopes 

(Germany). The task was validated by the weeks of daily training received by a taxonomic specialist 

in the ESC, Research Complex. Several scientific classification books and taxonomic keys were 

used to identify the taxa to at least the taxonomic level family. These include the following; 1) A 

Field Guide to THE SEASHORES OF EASTERN AFRICA and the Western Indian Ocean Islands 

(Richmond, 2002); 2) A FIELD GUIDE TO THE SEASHORES OF KUWAIT AND THE 

ARABIAN GULF (Jones, 1986); 3) A GUIDE TO POLYCHAETES (ANNELIDA) in Qatar 

Marine Sediments (Alomari, 2016); 4) Atlas of Crabs of the Persian Gulf (Naderloo, 2017); 5) A 

Guide to the Marine Sediments Crustaceans of Qatar Marine Zone (Alomari, 2011). Identified Taxa 

were recorded manually on notebook with their corresponding codes for site, depth and taxa and; 

subsequently transferred into Microsoft Excel. 

Identified samples were preserved back into smaller vials such as eppendorfs, 5 ml and 15 ml falcon 

tubes labelled for dry biomass processing. Each taxon was assigned a numeric code Supplementary 

Table 9 (Appendix A – Supplementary Tables) used for labeling purpose to cut on unnecessary 

time labelling. Simultaneously, reference collections were made for the identified taxa, labelled in 

and out and stored separately for the purpose for reference photos and later observations when 

needed. The reference collection was preserved well in absolute ethanol. 
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Reference Collection 

Representative specimens (Supplementary Table 10) of the taxa were chosen and separately 

preserved for microphotography. Photo-referencing was performed using microphotography 

equipment LEICA 10450028 and Zeiss 3D Stereo Microscopes (Germany). The photos were 

further edited using Adobe Photoshop CS5 to remove unwanted bits and enhance the photo quality. 

Abundance Records 

Individuals of each taxon identified were counted and the abundance recorded on notebook along 

with their corresponding codes comprising of site, depth and taxon code (Supplementary Table 9). 

Biomass Records 

Dry weight was determined for each taxon in every sample (SS-Plate). Ethanol and water proof 

labels were removed from the previously identified sample vials. Vials were well labelled with 

permanent marker on the outside, caps removed and secured inside racks before placing them into 

the oven (Gallenkamp Hotbox Oven) at 50 °C. Samples were subjected to either 24 or 48 hours of 

drying depending on the size and number of organisms in each vial. Echinoderms and Crustaceans 

were mostly left over for 48 hours because of their relatively bigger body sizes. On retrieval the 

combined weight of each vial was recorded using Analytical Balance (Denver Instrument SI-234, 

d = 0.1 mg) followed by emptying of the vials and cleaning with a dry tissue paper wrapped around 

the edge of forceps. Subsequently, the emptied vial was weighed and recorded on notebook. Trials 

were performed in the initial stage of the task to make sure if any dried biomass would adhere to 

the inner walls of the vial and it was not the case. Samples left to dry for 36 hours did not exhibit 

any biomass sticking into the walls of the containers used. The dry biomass data was later 

transferred to Microsoft Excel for data analysis.  
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DATA ANALYSIS 

The raw data generated from this research was organized into Microsoft Excel and subjected to 

statistical analysis. Two orthogonal fixed factors were considered: Site and Depth. The factor Site 

had 6 levels (geographical positions), defined along a distance gradient between the natural (site 1) 

and artificial reefs (site 6). The factor Depth had 7 levels, defined at 5 m depth intervals 10-14, 15-

19, 20-24, 25-29, 30-34, 35-39 and 40-44 m. Each taxon identified was transformed into operational 

taxonomic unit (O.T.U) prior to the statistical analysis. This was done because taxa were 

taxonomically identified to different levels such as to species, genus or family levels and a few to 

class or order levels.   

Non-metric multidimensional scaling (nMDS) and Permutational multivariate analysis of variance 

(PERMANOVA) were applied based on the Bray-Curtis matrix of similarity. 

SIMPER (Similarity Percentages Routine) uses the Bray-Curtis matrix which determine the 

contribution of each taxon to the observed similarity (or dissimilarity) between samples (or between 

depth intervals) (Range et al., 2014). A subjective limit of 10 % cumulative contribution was chosen 

to highlight the taxa that contributed the most to the overall (dis)similarities between sites and 

between the depth intervals.  

Ordination by nMDS was performed as it is considered to be the most robust technique for 

representing the dataset of biotic communities (Clarke, Warwick, & Laboratory, 2001) allowing us 

to visualize the epifaunal recruitment patterns between the depths and sites. PERMANOVA with 

unrestricted of permutations (999) of raw data and Type III (partials) sum of squares was used to 

test statistically significant differences in the assemblage structure among the sites, depths as well 

as the interaction between these two factors. PERMANOVA is a highly useful tool specifically 

designed to analyze the highly variable communities in space and in time (Anderson, 2001; 

Anderson, 2017).  
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Number of Taxa (S), Abundance (N), d (diversity i.e. measurement of species richness combined 

with evenness) and J’ denotes how well uniformly distributed the individuals across the species or 

taxa. For these ecological indices the DIVERSE routine was used. 

Distance Based Linear Models (DistLM) were used to study the relationship (based on the 

biological resemblance matrix of densities) of the dependent mobile epifauna to its independent 

sessile fraction (the response variable to its explanatory variable) (Range et al., 2014). Using the 

marginal tests (999 permutations) to identify the significantly correlated variables and the BEST 

procedure which aims at producing all possible combinations of these significant variables (p<0.05) 

were selected and included into the DistLM routine. It generates a multidimensional cloud of points 

capturing all variation or inertia. It uses the sessile data matrix to explain the variations in mobile 

dataset or ordinations. Based on the AIC (Akaike Information Criterion) the Distance-based 

redundancy analysis (dbRDA) was run to ordinate and visualize the best overall DistLM solution 

(Range et al., 2014). dbRDA has the advantage of using nonparametric permutation methods which 

do not rely on assumptions of multivariate normality (Nowruzi, Elkamel, Scharer, & Moo-Young, 

2009). 

Abundance-Biomass Comparison curves (ABC curves) were plotted using the PRIMER-E to 

determine if the community exhibited a uniformly distributed diversity concluding it’s a disturbed 

or an un-disturbed ecosystem. 

All the multivariate analyses were performed using the PRIMER 6 statistical software with 

PERMANOVA+ add-on (PRIMER-E, Plymouth Marine Laboratory). Statistically significant 

difference between the means was chosen at p<0.05.  

Graphs were plotted using SigmaPlot software (V 11.0, Systat System, Inc.). 
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RESULTS 

Macro-Benthic Fauna 

Forty-two (42) different operational taxonomic units (OTUs) of macro-benthic recruits were 

recorded from the samples analyzed at various depths across the six sites comprising of 2302 

epibenthic mobile individuals. Amongst the total individuals, including those collected for 

reference, 1553 specimens were identified at family level. From the remaining, 663 individuals 

were successfully identified either to genus or species level and 86 individuals identified to higher 

taxonomic levels, class or order, because of missing or damaged body segments. These included 

members of Polychaeta, Nudibranchia, Decapoda, Ophiurida and Rhabditophora. 

The most diverse group in the study were the annelids belonging to 14 families; Chaetopteridae, 

Dorvilleidae, Eunicidae, Lumbrineridae, Hesionidae, Nereididae, Phyllodocidae, Polynoidae, 

Syllidae, Poecilochaetidae, Cirratulidae and the tube worms Terebellidae, Sabellidae and 

Ampharetidae. Arthropods were the next highly diverse (8 families) Alpheidae, Ampithoidae, 

Epialtidae, Galatheidae, Pilumnidae, Porcellanidae, Portunidae, Xanthidae followed by 

echinoderms (5) including three ophiurids (Ophiotrichidae, Ophiocomidae and Ophionereididae) 

in addition to echinoids (Temnopleuridae and Diadematidae). The molluscs comprised of 2 families 

Cerithiidae and Cypraeidae along with 3 individuals from the taxonomic order Nudibranchia. 

Sipunculids belonged to family Phascolosomatidae and the platyhelminthes (polyclads) to 

Discocelidae and Stylochidae. Phascolosomatidae and Stylochidae were the most abundant mobile 

taxa. Amongst the identified taxa, the crustacean Galathea sp. is believed to be recorded for the 

first time in Qatari waters. 
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The list of taxa identified, and their vertical distribution based on their average abundance in every 

5 m depth interval across the six sites is summarized in Supplementary Table 1 (Appendix A – 

Supplementary Tables). Most abundant and well distributed taxa were sipunculid Phascolosoma 

sp .1, platyhelminth Stylochidae, ophiuroids (brittle-stars) Ophiotrichidae and Ophiocomidae and 

some families of polycheates encompassing largely of Terebellidae, Nereididae, Syllidae, 

Lumbrineridae, Polynoidae, Eunicidae and Phyllodocidae. Amongst the crustaceans, Pilumnidae 

was abundant and largely distributed. Amphipods contributed to the abundance at a single site only. 

Gastropods comprised mainly of Cerithium sp. 1 and Conus sp. 

Distribution of the taxa and their average abundance at 5 m depth intervals at each site (1-AF to 6-

IM) is shown in Appendix A – Supplementary Tables (Supplementary Tables 2 – 7). At all sites 

the sipunculids and polyclads dominated the abundance within the upper layers. Polychaetes were 

recorded at all sites and depth intervals, usually with high diversity and abundance. Sites 1-AF and 

2-DE showed the highest abundance of polychaetes, compared to other sites. Echinoderms were 

also seen inhabiting the six sites but more diverse and abundant at 4-GH. Crustaceans exhibited 

high diversity and were dominant in terms of abundance at site 4-GH. Gastropods were found at 

all sites with Conus sp. and Cerithium sp. as the most frequent ones. Conus sp. was absent in site 

5-LJ. Nudibranchs were recorded in two (1-AF and 4-GH) of the six sites at a fixed depth range 

20-24 m.  
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Relationship between abundance and biomass at each depth for each site as discrete points, is 

reported in Figure 9. The observed general trend shows biomass to increase with abundance. 

However, there were some outliers for biomass, which are identified in Figure 9. The three points 

on left exhibit higher biomass due to decapods, with large body size, found in those samples. The 

point on the top right of the plot belongs to a sample that contained mostly echinoderms with 

relatively large body size and numerous Sipunculids. 

 

 

Figure 9. Total abundance vs. total biomass at each depth interval for each site. 
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The PERMANOVA results for abundance (Table 3) and biomass ( 

Table 4) show that both the factors considered (Site and Depth), as well as their interaction, had 

significant effects on the mobile macrofaunal community. The non-metric Multidimensional 

Scaling (nMDS) plots Supplementary Figure 1 and Supplementary Figure 2 (Appendix B – 

Supplementary Figures) provide a visual illustration of these results. 

 

Table 3             

PERMANOVA on the abundance of all the taxa based on Bray–Curtis resemblance matrix. 

(Abbreviations: Si: Site; De: Depth; df: degrees of freedom; SS: sum of squares; MS: mean squares) 

PERMANOVA table of results on abundance  
Source df SS MS Pseudo-F P(perm) Unique perms 
Si 5 29816 5963.2 3.0483 0.001 998 
De 6 64691 10782 5.5114 0.001 998 
SixDe** 27 71880 2662.2 1.3609 0.001 995 
Res 40 78251 1956.3    
Total 78 2.5429E5     

 

Table 4             

PERMANOVA on the biomass of all the taxa based on Bray–Curtis resemblance matrix. 

(Abbreviations: Si: Site; De: Depth; df: degrees of freedom; SS: sum of squares; MS: mean squares) 

PERMANOVA table of results on biomass 
Source df SS MS Pseudo-F P(perm) Unique perms 
Si 5 28920 5784 2.5733 0.002 998 
De 6 66288 11048 4.9153 0.001 997 
SixDe** 27 86604 3207.5 1.4271 0.009 999 
Res 37 83164 2247.7    
Total 75 2.7843E5     
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The vectors in nMDS plots shown in Supplementary Figure 1 (Appendix B – Supplementary 

Figures) depict the taxa highlighted by SIMPER (Similarity Percentages - Species Contributions) 

as the strongest contributors for dissimilarities in terms of abundance among depth intervals at each 

of the 6 sites. SIMPER highlighted 10 taxa in site 1-AF; 8, 10, 12, 8 and 10 taxa in sites 2-DE, 3-

BC, 4-GH, 5-LJ and 6-IM, respectively. Generally, amongst all the sites the sipunculid 

Phascolosoma sp. 1, flatworms of the families of Stylochidae and Discocelidae, along with certain 

families of polycheates, such as Syllidae, Terebellidae, Lumbrineridae, Ampharetidae, can be seen 

to dominate the community at shallower to moderate vertical layers (i.e. 10-29 m depth). The 

families Terebellidae, Lumbrineridae, Ampharetidae failed to contribute >10% (contribution to 

dissimilarity) in one sites i.e. 6-IM and furthermore, the site 2-DE had high relative abundance of 

Terebellidae and Lumbrineridae in the deeper depths (35-39 m) in contrast with other sites where 

they were numerous in the upper layers. Taxonomic groups with some notable exceptions in 

horizontal distribution include polychaetes Polynoidae, Syllidae that were abundant only in sites 1-

AF and, the polyclad Discocelidae in 1-AF and 5-LJ. In contrary, the taxa Phascolosoma sp. 1 and 

Stylochidae exhibited a strong positive correlation with shallow layers throughout all the sites. On 

the other hand, the ophiuroids Ophiotrichidae and Ophiocomidae are seen to have settled in higher 

numbers mainly at the intermediate depth intervals (i.e. 20-34 m depth), however, at sites 1-AF, 2-

DE and 4-GH they are more abundant in shallow to intermediate depth range (10-34 m). Other 

families of polycheates (i.e. Eunicidae, Nereididae, Polynoidae), as well as the crustaceans 

Pilumnidae, Epialtidae, Hyastenus brockii were abundant mainly in the greater depths ranging from 

30-44 meters. Population members of family Nereididae showed a strong positive correlation with 

the deep layers throughout all the sites, so did the Pilumnidae but in sites 3-BC, 4-GH, 5-LJ and 6-

IM only. The gastropod Cerithium sp. 1 was found to be particularly well represented at larger 

depths in site 3-BC. In the same site (3-BC), the vectors for the polycheate Eunicidae and the 

crustacean Hyastenus brockii are totally overlaid, demonstrating a strong correlation in their depth 
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distribution. Ampithoe sp. and Etisus demani inhabited higher abundance within moderate to deep 

layers, respectively, of the vertical profile of site 4-GH. 

The nMDS plots for biomass (Supplementary Figure 2 - Appendix B – Supplementary Figures) 

exhibit a similar general trend to the ones for abundance. Phascolosoma sp. 1 and Stylochidae can 

be seen at all sites and contribute most of the biomass at shallower depths (10-19 m). The biomass 

contributions of ophiurids Ophiocomidae and Ophiotrichidae are mainly represented at 

intermediate depths such (20-34 m), so do the marine worms Eunicidae and Nereididae but at 

greater depths (35-44 m). The crustaceans; Epialtidae, Pilumnidae, Hyastenus brockii, Etisus 

demani and Decapoda (broken decapods) added to the biomass (>10% contribution) while 

inhabiting the greater depth intervals. However, Etisus demani and Decapoda overlaid each other 

at depth 35-39 m in site 4-GH illustrating a strong positive correlation at their depth distribution 

with respect to their biomass. Gastropods Cerithium sp. 1 has shown highest biomass at the larger 

depths (30-34 m) in sites 3-BC and 5-LJ whereas Cypraea turdus generally found in upper layers 

but contributed to the overall biomass more at site 4-GH. Rhabditophora (distorted polyclads) were 

considered as part of taxa contributing the most to biomass at depth 34 m recorded only in site 6-

IM.  
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The abundance pattern of the taxa (OTUs) amongst all depths sampled across the horizontal 

distribution from site (1) through site (6) is reported in an nMDS plot (Figure 10). The taxonomic 

groups Stylochidae and Phascolosoma sp.1 dominated (abundance) at the top layers 10-19 m. Other 

groups such as Terebellidae, Ophiotrichidae, Ophiocomidae were generally abundant at the 

intermediate depths (20-34 m) whereas the bristle worms from families Eunicidae, Nereididae and 

the decapods Pilumnidae were found existing at high abundances at greater depths 30-44 m.  

 

 
Figure 10. Non-metric multi-dimensional scaling (nMDS) on abundances of all OTUs from all 

depth intervals 
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Forty-two operational taxonomic groups (OTUs) contributed to the total biomass at all sites through 

the 79 sampled water depths (SS-Plates). The total biomass summed up to 63.4 g, where the upper 

layers contributed the most (32.7 g at 10-19 m) due to higher number of taxa settled and their 

corresponding abundance as compared to the greater depths (14.2 g for depths below 30 m). This 

trend is supported by the earlier pattern for abundance across the vertical layers of the six sites. The 

taxa dominating the biomass values at different depth layers were mentioned earlier 

(Supplementary Figure 2 - Appendix B – Supplementary Figures) where sipunculid Phascolosoma 

sp. 1 and polyclad Stylochidae were the main representatives at 10-19 m followed by the ophiuroids 

at intermediate layers and decapods (e.g. Pilumnidae) at greater depths along with members of 

polychaetes Eunicidae and Nereididae. 
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There is a general trend of total abundance decreasing with depth (Figure 11). There are, however, 

notable exceptions to this pattern. Indeed, in sites 1-AF and 2-DE abundance peaks at intermediate 

depths 15-19 m and 25–29 m, respectively, and then decreases again further down the water 

column. Site 3-BC exhibited very low abundances below 25 m. In 5-LJ and 6-IM the trend reverses 

from15-19 m to 20-24 m and 20–24 m to 25-29 m, respectively, followed by the previous general 

decreasing trend until the last interval. It is important to note, however, that not all depth intervals 

in each site are represented by the same number of plates, which may explain part of the variation 

in the general, decreasing trend. 

 

 
 
Figure 11. Total Abundance per plate (mean + SE) at each Site and Depth Interval. 
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The average number of taxa is also generally decreasing with depth (Figure 12). However, sites 5-

LJ and 6-IM show fluctuations in this trend. It is not a linear trend, but the max. S at these sites was 

consistently at the shallower depth. In site 3-BC the average number of taxa decreased until 34 m 

below which it increased by twofold up to 44 m. At site 1-AF the trend reversed slightly at 25-29 

m to 30-34 m and then it followed the same general decreasing trend. Similar fluctuation took place 

in 2-DE from 30-34 m to 35-39 m. 

 

 

Figure 12. Number of Taxa per plate (mean + SE) at each Site and Depth Interval. 
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Diversity Indices 

Number of Taxa (S) and Abundance (N) were analyzed. Other indices (d, J’) were calculated but 

were only included in the Supplementary Table 11 (Appendix A – Supplementary Tables).  

Based on Diversity data (Supplementary Table 11) in the site 1-AF the highest number of taxa (S) 

were found at depth interval 10-19 m totaling 241 individuals followed by 20-24 m with 45 

individuals. In 2-DE, organisms were more diverse and abundant at 15 m down to 29 m summing 

up to 276 settlers. Site 3-BC had highest abundance within 10-19 m (215 individuals); however, 

the depth interval 20-24 m exhibited a low abundance value while accommodating higher number 

of taxa (diversity). 4-GH had the upper depth interval 10-14 m rich in diversity with plentiful 

mobile invertebrates (259) followed by 148 individuals down at 15-19 m lower in species richness, 

relatively. Site 5-LJ is more abundant and diverse at 10-14 m (117) followed by a deeper layer at 

30-34 m (5-LJ) but with lower abundance, contrasting with an immediately shallower layer higher 

in species richness i.e. 25-29 m. The last site 6-IM has the upper layer 15-19 m as the most abundant 

throughout its vertical profile. This concludes to the fact the top vertical layers within 10-19 m were 

consistently more diverse and highly abundant across all the sites. Site 2-DE showed a similar 

richness and abundance but further deep to 29 m. Some irregular trends were noted in 3-BC and 5-

LJ within their deeper intervals. Regarding the greater depths the abundance and diversity both 

generally represented low values except for site 2-DE which failed to depict a linear decreasing 

trend. 
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Mobile – Sessile Relationships 

The overall best DistLM solution included 8 sessile taxa, as explanatory variables: The bivalves 

Malleus regula, Modiolus barbatus, Pinctada radiata and Pinna bicolor; the barnacles 

Amphibalanus Amphitrite and dead barnacles; sponges of the Class Hexactinellida and; tube 

polychaetes. The effect of each of these taxa on the dbRDA ordination is expressed by the vectors’ 

overlays in Figure 13. The length of the vectors is proportional to the contribution of the 

corresponding variable for the dbRDA axes. Seven mobile taxa (response variables) also showed 

particularly strong correlations to the dbRDA ordination: the sipunculids Phascolosoma sp. 1, the 

ployclads Stylochidae and the polychaetes Polynoidae, Syllidae and Lumbrineridae showed a 

strong positive correlation to Bivalves (Malleus regula, Modiolus barbatus, Pinctada radiata and 

Pinna bicolor) and tube polychaetes, at shallow to moderate depths. The decapods Pilumnidae and 

Etisus demani were also positively correlated to Dead Barnacles, but at greater depths. The 

strongest correlations were between Phascolosoma sp. 1 - Pinna bicolor (Pearson’s r = 0.80); 

Pilumnidae - Dead Barnacles (Pearson’s r = 0.78) and Etisus demani - Amphibalanus Amphitrite 

(Pearson’s r = 0.73). 
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Figure 13. Distance-based redundancy analysis (dbRDA) on untransformed data on the entire 
macrofaunal assemblage. For Mobile fraction (top) and Sessile habitat (bottom) vectors represent 
the correlations between the dbRDA ordination and densities in each depth interval (Count per 
20x20 cm Plate) of taxa contributing >10% to overall dissimilarities.  
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The crabs, sipunculids and polyclads (flatworms) were seen to be strongly correlated. The low 

dimension 2-D bubble plots (Figure 14) exhibit how with increasing count of Dead Barnacles down 

the deeper depths shows increasing abundance of crabs (Pilumnidae). Similarly, highly abundant 

bivalves at shallower depths exhibit the high abundance of sipunculids and platyhelminthes 

(polyclads) as compared to greater depths where lower light penetration restrict the productivity, 

thus, the minimal presence of bivalves accommodating a few of these two mobile assemblages 

mentioned earlier. 

 

 

Figure 14. Most Abundant Mobile Taxa Groups association to Sessile Groups. 
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ABC Curves 

Cumulative dominance is consistently larger for biomass, relatively to abundance, at all depths 

(Supplementary Figure 3 and Supplementary Figure 4 - Appendix B – Supplementary Figures), 

resulting in positive values of the W statistic (Table 5 & Table 6), suggesting a non-disturbed 

system. The same general pattern is observed among sites, except in site 6-IM, where the dominant 

taxon Phascolosoma sp. 1 shows a larger fraction of the cumulative total for abundance than for 

biomass (Supplementary Figure 5). The dominance curves saturate faster in site 3-BC, relative to 

other sites, particularly for biomass.  

All the taxa are making a small and gradual contribution to the Abundance in the curve exhibiting 

a uniformly distributed diversity. The W statistics of ABC curves for sites are also consistently 

positive, but there is an increasing trend with distance from the oil platforms, with the minimum at 

the site closest to the platforms (6-IM). In contrast, no trend is apparent for the W statistic values 

of ABC curves for depths intervals.  

 

Table 5                     

W Statistic values for Sites 

Sites  W 

1-AF 0.188906 
2-DE 0.125604 
3-BC 0.159406 
4-GH 0.10208 
5-LJ 0.112859 
6-IM 0.07377 
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Table 6                     

W Statistic values for Depths 

Depth (m) W 

10-14 0.121596 
15-19 0.0843 
20-24 0.181818 
25-29 0.207 
30-34 0.233926 
35-39 0.160195 
40-44 0.172416 

 

 

Environmental Variables 

The chlorophyll inferred through fluorescence across the water column (0 to 60 m) was recorded 

during the cruise with the RV Janan. The chlorophyll concentrations can be seen to peak between 

the 10 to 20 meters (Figure 15) and at their minimum in the greater depths. 

 

 
 
Figure 15. Chlorophyll-fluorescence (mg/m^3) across the vertical profile (0 – 60 m). 
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Sea-water temperature records from the data loggers deployed along the first deployment of the 

substrates. Temperature fluctuations at the shallow depths 10-15 m (red) and 45-50 m (blue) across 

all the six sites are shown in Figure 16. A clear thermal stratification is seen to develop starting 

around March 2017 and intensifying in the following months until November 2017 when the 

samples were retrieved. A daily thermocline gradient of 5 – 6 °C on average could be observed 

with a maximum of about 10 °C observed in September 2017. 

 

 
Figure 16. Seawater temperature records from Hobbo© data loggers deployed at 10-15 m (red) and 

45 – 50 m (blue) in each of the 6 vertical structures. 
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DISCUSSION 

To investigate the spatial dynamics of the recruits of the mobile community in offshore artificial 

reefs, the current study attempted to imitate the ecological importance of offshore oil platforms, 

acting as artificial reefs, by deploying stainless-steel plates at six sites along a transect extending 

between natural reefs to a group of oil platforms. The used material was the same as the submerged 

sections of the platforms (extending throughout the water column). Indeed, scarce information is 

available about the ecological significance of oil platforms in offshore Qatari waters and the 

Arabian Gulf. Most literature is focused on the coastal region and on sessile macrofauna. In fact, 

the sessile fraction is easier to study since it is normally comprising a larger biomass in the fouling 

communities and may also serve as a source of commercial commodity. The mobile fraction of the 

assemblage is relatively difficult to study since the organisms are in continuous motion and are 

generally expected to be affected by seasonal variations. Hence, this study tackled the often ignored 

mobile epifauna and its recruitment in offshore Qatari waters. 

Thirty-two taxonomical families were recorded in this study (Supplementary Table 1). As 

background to the findings of the current study, oyster reefs in Qatari waters were found to have 

highly diverse associated biota which included a sipunculid, a decapod and an amphipod, two taxa 

of gastropods, three polychaetes and three ophiuroids (Al-Khayat & Al-Ansi, 2008; Khayat, 2005). 

Additionally, Mohammed & Al-Ssadh (1996) reported similar taxa to this study belonging to 

annelids, crustaceans, gastropods including Cypraea turdus and Cerithium sp. and echinoderms in 

the Arabian Gulf while studying the effects of Gulf war’s oil spill (1991) on the coral reefs and 

their associated biota. Furthermore, Mohammed & Al-Ssadh (1996) stated that the abundance and 

diversity of the coral associated biota was richest in the north-east of Qatar, likewise this study that 

was performed in the northern Qatari waters in proximity of the Al Shaheen Oil Field which is 40 

miles away from coast. 
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The spatial variations along the considered factors; depths (vertical) and sites (horizontal), and their 

interaction exhibited significant effects on the mobile epifaunal community structure with respect 

to their abundance and biomass (Table 3 & Table 4). Specific patterns were observed in the vertical 

distribution (depth) of the recruits as compared to the horizontal gradient amongst the six sites 

(Figure 10, Supplementary Figure 1 & Supplementary Figure 2). The motile macrofauna 

assemblages of the current study were largely dominated by the sipunculids (Phascolosoma sp. 1) 

and polyclads (Stylochidae) as these species were found in larger abundances at shallower depths 

10-19 m (Supplementary Figure 1). Other species such as the ophiuroids and decapods tend to 

occupy moderate to deeper depths and polychaetes having a wide range vertical distribution 

(Supplementary Table 1, Supplementary Figure 1 and Supplementary Figure 2) suggesting their 

dependency on the types of habitats, which in terms of the motile organisms refers to the host 

sessile communities as habitat provider. To support the current findings on depth-dependent 

recruitment, the study by Khayat (2005) recorded similar taxa such as Pilumnidae at depths 27 - 

36 m, the genus Alpheus at 36 - 40 m, Amphipoda sp. in depths 10 - 55 m, Eunice at 19 - 55 m, 

Nereis sp. 10 - 55 m, Lumbrineris 11 - 55 m, Ophiothrix sp. (fam. Ophiotrichidae) at 10 - 23 m and 

Ophionereis sp. (fam. Ophionereididae) at 10 & 11 m. The study by Vedenin et al. (2018) in the 

Central Arctic Ocean recorded 10,117 individuals attributed to 440 taxa from 37 stations. Authors 

found similar negative correlation with depth as our study on the same parameters where the 

abundance, diversity and biomass were all negatively correlated with depth. Furthermore, 

polychaetes were most abundant and diverse in our study and so was the case for Vedenin et al. 

(2018). However, Jacobucci & Leite (2002) noticed that the gastropods, polychaetes and ophiuroids 

tended to dominate as depth increased, whereas in the current study polychaetes were abundant 

throughout the vertical column. 
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Despite having a significant effect on the horizontal distribution of the mobile macrofaunal 

community, no clear patterns were found in relation to the geographical location of the structures. 

Therefore, studying the population structure (not analyzed in the current study) in addition to the 

community structure studied may allow the visualization of the patterns and recruitment rates along 

the gradient between the natural and artificial reefs.  

Ecological mechanisms that may play a role in the spatial distribution include the feeding guilds 

(Gambi et al., 1992) of the mobile macro-fauna and the biological competition that most likely have 

caused the bivalves to exclude the barnacles from colonizing the 20x20 cm plates at the upper 

layers (Hardin, 1960). According to an unpublished study performed by an undergraduate student 

titled “Characterization of sessile benthic communities associated with the platforms in Al Shaheen 

oil field from a ROV surveillance video footage” studied the benthic communities on these 

platforms and found the first 10 m depth from the sea-surface dominated by encrusting organisms 

from phyla Bryozoa and Porifera. Biological competition is likely the explanation for their scarcity 

down the water column.  

Feeding types may explain the vertical distribution of sipunculids (Phascolosoma sp. 1) and 

polyclads (Stylochidae) dominating the upper layers. Sipunculids extract organic food from the 

sediments surface (Jumars et al., 2015) and the polyclads are active predators with parasitic 

capabilities (Cannon, 2003).  

Bivalves are filter-feeders largely dependent on phytoplankton and suspended organic particulates. 

Figure 15 depicts the chlorophyll levels, which peak between a depth of 10 and 20 m, which indeed 

corresponds to a maximum abundance of bivalves at (10-19 m). According to Fehling et al. (2012) 

“Phytoplankton underpin the marine food web”, so we can say without doubt that all the organisms 

that are the focus of this study are further up the food chain and are reliant on these phytoplanktons. 

Higher primary productivity is, therefore, believed to be the main driver for bivalves occurrence 

(Malleus regula, Modiolus barbatus, Pinctada radiata and Pinna bicolor) contributing a large 



 
   

51 
 

biomass in the upper layers of the sampled sites (Plutchak et al., 2010). A parallel study on the 

sessile hosts of the studied mobile epifauna found that Bivalves were dominating at the same 

shallow depths (Figure 13). This dominance of bivalves may have been the reason for the 

abundance of these two reported worms, through an interspecies relationship mediated by their 

feeding type such as predation by the flatworm (Stylochidae) and commensalism for the sipunculids 

(Phascolosoma sp .1).  

A significant relationship has been observed between the mobile assemblage and their sessile pre-

cursors (Figure 14). Sipunculids (peanut worms) feed on organically rich surface sediment deposits 

from which they extract their plant and animal organic matter. Accordingly, the excreted waste of 

bivalves (i.e., feces and pseudo-feces) is the main food source for deposit-feeders , which is easily 

retained within the network of bivalve abyssal threads (Kędra et al., 2018; Murina, 1984). 

Phascolosomites have been reported living in the subtidal reefs of Qatar amongst the pearl oysters 

(Al-Khayat & Al-Ansi, 2008). This explains their high abundance amongst the oysters’ dominated 

plates. 

Polyclads, on the other hand, are generally carnivores preying on a range of sessile colonial macro-

invertebrates including corals, bryozoans, ascidians, small gastropods, bivalve molluscs and 

barnacles that are plentiful in SE Arabian Gulf (Riegl & Purkis, 2012). One of their favorite preys 

is bivalves including rock and pearl oysters, scallops, mussels and even the giant clams (Cannon, 

2003). Polyclads may exhibit a parasitic feeding behavior and oysters are known to be their 

preferred host, hence, some species of polyclads are known as oyster leech. (Landers & Rhodes, 

1970) found the polyclad S. ellipticus primarily attacked small oysters whereas the larger (2+ cm 

long) could kill oysters of length reaching more than 6 cm. This leech has significantly reduced the 

productivity of oyster beds on the Atlantic and Gulfs coasts of USA, in addition, these leeches have 

caused considerable damage to oyster beds of Indian River, Cedar Key, Port Inglis, Tampa and 

Apalachichola Bay (Pearse & Wharton, 1938). Polyclads feeding on oysters and barnacles is 
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supported by studies (Merory & Newman, 2005; Pearse & Wharton, 1938) and may therefore 

explain their high association with bivalves at lower depth ranges. 

Page & Hubbard (1987) found similar findings to the current study mussels, when considering the 

vertical distribution of the mussel Mytilus edulis, in an offshore oil platform. The study found that 

this bivalve was most abundant in the 0 – 20 m depth range due to high concentration of particulate 

organic carbon which was like our findings regarding bivalves’ abundance at 10-19 m. Sipunculids 

and platyhelminths in the current study depended on these bivalves at for habitat food availability. 

Bivalves are in turn dependent on primary producers that are abundant in shallower depths 

(Plutchak et al., 2010). Based on the inferred chlorophyll fluorescence the highest primary 

productivity was found in 10 – 19 m. 

Crustaceans are known to have many marine representatives of many different forms on the reefs 

of the SE Gulf commonly called as shrimps, crabs and lobsters. Families Pilumnidae, Xanthidae, 

and the less abundant Portunidae, Epialtidae, Porcellanidae, Alpheidae and Ampithoidae have been 

reported in SE Gulf, associated to coral reefs (George, 2012). The hairy crabs, Pilumnidae, are 

small crabs closely related to the Xanthidae and usually found hiding in crevices, beneath coral 

boulders, and amongst coral rubble during the daylight on the reefs of SE Gulf. The hairy crabs 

emerge during night to feed on a variety of other macroinvertebrates including sponges and 

polychaetes as well as on pieces of algae using their large claws. The crab-barnacles association is 

likely due to crabs finding a refuge in those barnacles to hide themselves from predators. 

Invertebrate larvae of decapods are sensitive to the diel light cycle fearing predation (Torres, 2015). 

This could be the reason that most crustaceans found were in the deeper depths where they could 

conveniently hide in the colonies of barnacles. 

On the other hand, the broad range of feeding types in ophiuroids and polycheates (Jumars et al., 

2015; Stöhr et al., 2012) have enabled them to exist at wider range of depths. Sea-urchins have an 

omnivorous nature feeding on algae, decaying matter and other animals such as sponges, barnacles 
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and bryozoans (Chrism, 2013). The distribution of their preys could be the cause of their uneven 

vertical distribution. Similarly, the major trophic role of the gastropods determines their spatial 

distribution seen as inhabiting the upper layers 10-34 m in the current study (Supplementary Table 

1). The cone gastropod Conus sp. part of reef community is a primary carnivore feeding on 

herbivores (e.g. bivalves) and deposit-feeders (e.g. sipunculids) (Kohn, 2001), both of which were 

abundant at shallower layers. Other shell gastropods found were a small reef-safe Cerith snail 

Cerithium sp. eating primarily on algae and a cowrie Cypraea turdus (accepted as Naria turdus 

(“WoRMS - World Register of Marine Species,” n.d.) that are known to feed on sessile sponges 

(Wilson & Clarkson, 2000). (Jenkins et al., 1988) reported the cowry (Cypraeidae) inhabiting the 

coral reefs in the Gulf waters and the Red Sea. 

An environmental disturbance may cause an alteration in the community composition and 

structure. Feeding strategies as an indicator of disturbance was first mentioned by (Fauchald & 

Jumars, 1979) and further studied by Metcalfe and Glasby (2008) where the feeding guilds were 

used to study the human disturbance on the composition, abundance and diversity of the 

mangrove associated polychaetes species. The study found significant differences in the diversity 

indices of the different groups (feeding guilds) between the disturbed and undisturbed sites. The 

highly diverse assemblage (Supplementary Table 1 & Supplementary Table 10 & Supplementary 

Table 11) and evenly distributed (Supplementary Figure 3, Supplementary Figure 4, 

Supplementary Figure 5) across the studied spatial dimensions is a clear indication of undisturbed 

healthy ecosystem in the offshore waters. 

Polychaetes have been well utilized as an indicators of environmental conditions, for example, in 

determining the general health of benthic communities, occurrence of organic pollution and a mix 

of other pollutants such as heavy metals and pesticides (Dean, 2008). This is because polychaetes 

have a range of diverse reproductive and feeding strategies allowing them a flexibility in 
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responding to anthropogenic disturbances and inhabiting wider range of habitat distribution. The 

dominant groups of polychaetes found in the current study include families of deposit feeders 

(Ampharetidae), omnivores (Eunicidae & Nereididae) an d carnivores (Lumbrineridae & 

Polynoidae) (Jumars et al., 2015). All the 14 families of polychaetes found in this study were also 

reported by (DiBattista et al., 2016) in the Arabian Gulf and by (Wehe & Fiege, 2002) around the 

seas of Arabian Peninsula, i.e. the Red Sea, Gulf of Aden, Arabian Sea, Gulf of Oman and Arabian 

Gulf. The greater depths referring to 35-44m were mainly occupied by families Nereididae and 

Eunicidae across all the sites (Supplementary Table 1). Both taxa form a large group of families 

and highly diverse in Gulf waters as the associates of reef platforms (George, 2012). The high 

diversity and wide spatial distribution are indication of the little to none anthropogenic disturbance 

to the studied area. 

The purpose of using the abundance-biomass comparison curves (Supplementary Figure 3, 

Supplementary Figure 4 & Supplementary Figure 5) was to assess their usefulness as tools to 

estimate ecological integrity and quality of the study area. 

Cumulative dominance was consistently larger for biomass relative to abundance at all depths 

resulting in positive values of the W statistic (Table 5 & Table 6) which is interpreted as an 

undisturbed system classifying the environment as unpolluted. Such assemblage is likely to be 

dominated by slow growing “k” strategist species with one or two species at high biomass levels 

while showing generally low species abundance compared to biomass (Yemane et al., 2005). 

Generally, all taxa made a small and gradual contribution to the abundance curve and the 

corresponding biomass. This is also reflected in the generally uniformly distributed values of the 

equability index (Supplementary Table 11) except for an outlier at site 6-IM. The W statistic 

showed a minimum at site 6-IM where the dominant taxon Phascolosoma sp. 1 represents a larger 

fraction of the cumulative total for abundance (44.76 %) than for biomass (21.61%), implying a 

change in population structure of this sipunculid and thereby causing both curves to intersect 
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(Supplementary Figure 5). However, in the closest site to the oilfield (6-IM), the disturbance could 

may not be explained to biological competition on the food sources, but it is more likely due to 

delayed recruitment rather than pollution or competition. This is confirmed by the occurrence, in 

this site, of numerous small individuals rather than well-developed big specimens. In the delayed 

recruitment scenario, the “k” species are being replaced by “r” species, which demonstrate faster 

growth and are more dominant in terms of abundance rather than biomass (Yemane et al., 2005). 

The dominance curves saturate faster particularly for biomass in site 3-BC compared to other sites 

(Supplementary Figure 5) due to the taxa Stylochidae having larger-bodied individuals causing a 

disproportional increase in the biomass when compared to abundance. 

Ocean currents have been considered as the main mechanism for larval horizontal dispersal since 

the invertebrate larvae are relatively poor swimmers (Daigle & Metaxas, 2011). The current speed 

and direction generally vary with depth. In the deeper waters, the currents are weaker resulting in 

the observed smaller number of recruits. Greater depths had relatively lesser taxa totaling 18 taxa 

at 35-39 m and 12 taxa at 40-44 m (compared to 32 taxa at 10-19 m with average abundance 6.18) 

and corresponding average abundance of 3.02 and 2.62, respectively (Supplementary Table 1 and 

for each site; Supplementary Tables 2 – 7 in Appendix A – Supplementary Tables). 

The recruitment in the study area most likely occurred in the winter months immediately after the 

plates were deployed as there was no thermocline so there was significant mixing during those 

months. This mixing and tidal currents brought the planktonic stage of these organisms to the 

recruitment sites (Verspagen et al., 2004) as the thermocline plus the shallow density driven surface 

currents would have prevented recruitment in other parts of the year. A clear thermal stratification 

(average gradient of 5 – 6 °C) was observed at all sites starting from around March 2017 and 

extending until winter (Figure 16). This temperature stratification may have prevented species 

migrating to shallower depths or vice versa, except for species which have wider tolerance to 

change in temperature. However, according to (McConnaughey & Sulkin, 1984) naturally 
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occurring thermoclines should seldom influence dispersal characteristics. 

Limited information is available on the communities of epibenthic mobile macrofauna dwelling 

inside the sessile assemblages recruited by the numerous and wide spread offshore oil platforms. 

Indeed, this study is believed to establish a baseline for further similar studies for potential 

commissioning and decommissioning of the oil and gas platforms. Moreover, it may also contribute 

to a feasibility study aiming to build and deploy artificial reefs in the deep waters aiming to enhance 

local productivity and connectivity between natural reefs. 
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CONCLUSION 
 
The 20x20 cm stainless-steel settlement plates deployed in depths ranging 10 – 44 m at six different 

sites located between the Al Shaheen Oil Platforms and offshore natural reefs in Qatari EEZ 

exhibited clear patterns in the vertical spatial distribution of mobile epifaunal assemblages. Taxa 

clearly dominant in the shallower depths such as polyclads and sipunculids were generally scarce 

from the deeper sections of the water column. The abundance, diversity and biomass were all 

negatively correlated with depth. No clear patterns were observed in the horizontal gradients 

between the reefs, hence, studying also population structure would allow in examining these 

missing patterns. Moreover, more samplings at short time intervals needed to identify the patterns 

of recruitment. Another limitation of the study was the size of the stainless-steel plates deployed 

and not very accurate vertical orientation of the plates on the slightly moving line might not have 

allowed a very accurate mimicking of the oil platforms and may affect the larval settlement due to 

lesser current energy harvested by the plates. The mobile epifaunal assemblages suggest 

undisturbed ecosystem based on the ABC curves. Analyzed data shows deployed substrates 

fulfilling role of stepping stones because similar species composition, abundance and biomass 

vertical patterns were found at all the sites exhibited high connectivity amongst the six structures. 

Eight (8) of the sessile taxa were strongly associated to seven (7) mobile taxa with sipunculids and 

platyhelminths exhibiting strongest association to the bivalves in the shallow depths and the crabs 

with the dead barnacles in the greater depths. The most dominant functional groups included 

surface deposit feeders, carnivorous flatworms and others such as polychaetes and ophiuroids 

exhibited a broad range of feeding types.  

A total of 2302 individuals were identified across 42 operational-taxonomic-units. The crustacean 

Galathea sp. is believed to be recorded for the first time in Qatari waters.  

This study will allow future research on the recruitment of macro-benthic communities on 
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artificially deployed structures in offshore waters such as through comparisons based on spatial 

distribution of taxa, abundance and biomass with regards to competition on scarce resources such 

as substrate. This and subsequent studies will allow the development of best practices on 

commissioning and decommissioning lifecycles of oil and gas platforms. However, further 

investigations are needed to determine, in a comprehensive and precise manner, the environmental 

effects on the mobile macro-faunal recruitment and community structure. Indeed, this study 

establishes a baseline information on mobile communities associated to offshore artificial reefs in 

Qatari waters. Moreover, it may contribute to the design, construction and deployment of offshore 

artificial reefs, to facilitate the rehabilitation of natural reefs and improve fisheries yields. 
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APPENDIX 

Appendix A – Supplementary Tables  

Supplementary Table 1 Distribution of Average Abundance of each taxon at 5 m depth intervals across 
the Six Sites. 

(Note: For operations O.T.U 2 was used due to some taxa identified to higher taxonomic levels in column O.T.U were reduced to 
family level as shown in O.T.U. 2 to increase the confidence level of the taxonomic identification and subsequent data analysis 
performed on the taxonomic identification)  

 

Phylum Order O.T.U O.T.U 2 10-14 15-19 20-24 25-29 30-34 35-39 40-44
- Polychaeta Polychaeta 4.00 4.33 12.50 3.33 3.00 6.00

Canalipalpata Chaetopteridae Chaetopteridae 2.00 5.00 1.00
Dorvilleidae Dorvilleidae 3.00 1.00 1.00

Eunice antennata Eunicidae 1.50 1.00 1.00 2.50 1.40 1.33 4.75
Eunicidae Eunicidae 1.00 2.00 5.50

Lumbrineridae Lumbrineridae 2.25 2.89 2.80 2.00 2.33 9.00
Lumbrineris gracilis Lumbrineridae 4.00 3.00

Hesionidae Hesionidae 4.00 1.50 1.00
Lepidontus carinulatus Polynoidae 2.00 3.00 1.00

Lepidontus sp. 1 Polynoidae 1.00
Nereididae Nereididae 5.40 2.20 2.00 6.00 3.00 3.17 2.67

Nereiphylla castanea Phyllodocidae 1.50
Nereis denhamensis Nereididae 2.00 2.25

Nereis sp. 1 Nereididae 1.00 2.00
Paralepidonotus ampulliferus Polynoidae 2.00 4.00 1.00

Perinereis nigropunctata Nereididae 8.33 2.00 1.00 6.00
Phyllodocidae Phyllodocidae 2.33 2.00 1.00 2.00 1.00 1.00

Polynoidae Polynoidae 5.00 1.83 1.67 2.00 2.00 1.00
Syllidae Syllidae 7.00 3.80 1.71 2.00 1.67

Syllis cornuta Syllidae 3.50 1.00 1.00 1.00
Syllis sp. 1 Syllidae 1.00

Typosyllis sp. 1 Syllidae 1.00 1.00 2.00
Typosyllis sp. 2 Syllidae 1.00 13.00

Sabellida Sabellidae Sabellidae 1.00 1.00
Spionida Poecilochaetidae Poecilochaetidae 1.00 1.50

Amage sp. 1 Ampharetidae 3.00
Ampharetidae Ampharetidae 1.50 3.50 1.80 4.00 2.00 2.50 1.00
Cirratulidae Cirratulidae 5.00 1.00 1.00 1.00

Cirriformia tentaculata Cirratulidae 1.00 3.00
Polycirrus aurantiacus Terebellidae 1.00

Terebellidae Terebellidae 1.00 2.00 6.67 2.00 8.80 9.67

Depth Intervals (5 m)All Sites

Annelida

Eunicida 

Phyllodocida

Terebellida 
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Supplementary Table 1 Distribution of Average Abundance of each taxon at 5 m depth intervals across 
the Six Sites. 

(Note: For operations O.T.U 2 was used due to some taxa identified to higher taxonomic levels in column O.T.U were reduced to 
family level as shown in O.T.U. 2 to increase the confidence level of the taxonomic identification and subsequent data analysis 
performed on the taxonomic identification) 

 

Phylum Order O.T.U O.T.U 2 10-14 15-19 20-24 25-29 30-34 35-39 40-44
Amphipoda Ampithoe sp. 1 Ampithoe  sp. 1 64.00 1.00

Alpheus sp. Alpheus sp. 1.00
Decapoda Decapoda
Epialtidae Epialtidae 1.00 1.00 1.00

Etisus demani Etisus demani 1.00 1.50 1.25
Galathea sp. 1 Galathea sp. 1 1.00

Hyastenus brockii Hyastenus brockii 1.00 1.00
Pachycheles sp. 1 Pachycheles sp. 1 1.00 2.75 1.00

Pilumnidae Pilumnidae 1.00 1.00 4.67
Pilumnus  sp. 1 Pilumnidae 1.00 1.33 1.00 2.40 4.00 2.29
Pilumnus  sp. 2 Pilumnidae 1.00
Thalamita  sp. Thalamita  sp. 1.00 1.00 1.00
Tiarinia  sp. 1 Tiarinia  sp. 1 1.00

Xanthidae Xanthidae 1.00
Camarodonta Salmacis  sp.1 Salmacis  sp.1 1.00
Diadematoida Echinothrix sp. 1 juvenile Echinothrix sp. 1 juvenile 2.00 1.00 1.50

Ophiocoma sp. 1 Ophiocomidae 11.00 2.00 6.50 14.50 2.00
Ophiocoma sp. 2 Ophiocomidae 1.00
Ophiocoma sp. 3 Ophiocomidae 1.00
Ophiocoma sp. 4 Ophiocomidae 3.00

Ophiocomidae Ophiocomidae 4.00 2.00 3.80 5.83 3.83 2.00
Ophionereididae Ophionereididae 1.00

Ophioneries  sp. 1 Ophionereididae 1.00
Ophiothrix savignyi Ophiotrichidae 5.00 4.00 1.00

Ophiothrix  sp. 1 Ophiotrichidae 9.00 10.00 9.50 1.00 1.00
Ophiothrix  sp. 2 Ophiotrichidae 18.00 1.00 1.00 1.00
Ophiothrix  sp. 3 Ophiotrichidae 1.00
Ophiothrix  sp. 4 Ophiotrichidae 1.00 1.00
Ophiotrichidae Ophiotrichidae 4.50 34.67 5.67 8.40 2.20 3.67

Ophiurida Ophiurida 2.33 1.00 1.00 2.00

Depth Intervals (5 m)All Sites

Arthropoda
Decapoda

Echinodermata 
Ophiurida
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Supplementary Table 1 Distribution of Average Abundance of each taxon at 5 m depth intervals across 
the Six Sites. 

(Note: For operations O.T.U 2 was used due to some taxa identified to higher taxonomic levels in column O.T.U were reduced to 
family level as shown in O.T.U. 2 to increase the confidence level of the taxonomic identification and subsequent data analysis 
performed on the taxonomic identification) 

 
 

Phylum Order O.T.U O.T.U 2 10-14 15-19 20-24 25-29 30-34 35-39 40-44
Caenogastropoda Cerithium  sp. 1 Cerithium  sp. 1 2.00 1.00 2.00 1.25
Littorinimorpha Conus  sp. Conus  sp. 1.50 1.75 1.00
Littorinimorpha Cypraea turdus Cypraea turdus 1.00 1.00

Nudibranchia Nudibranchia Nudibranchia 1.00
- Rhabditophora Rhabditophora 1.00

Adenoplana  sp. 1 Discocelidae 4.25 3.00
Adenoplana  sp. 2 Discocelidae 1.00

Discocelidae Discocelidae 3.00 4.00 2.50
Stylochidae Stylochidae 11.17 9.90 5.43 2.00 3.33 1.00

Stylochus  sp. 1 Stylochidae 17.75 5.00 5.00 8.00
Phascolosoma  sp. 1 Phascolosoma  sp. 1 22.86 17.15 6.08 4.78 4.40 2.67
Phascolosoma  sp. 2 Phascolosoma  sp. 2 1.00

Mollusca

Platyhelminthes
Polycladida

Sipuncula Phascolosomatida 

All Sites Depth Intervals (5 m)
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Supplementary Table 2 Taxa and their Average Abundance at 5 m Depth Interval at Site 1-AF 

 

Phylum Order O.T.U 2 10-14 15-19 20-24 25-29 30-34 35-39 40-44
- Polychaeta 3.00

Canalipalpata Chaetopteridae 2.00 1.00
Dorvilleidae 3.00 1.00
Eunicidae 2.00 1.00 16.00

Lumbrineridae 5.00 1.00 4.00 2.00 1.00
Hesionidae 1.00 1.00
Nereididae 7.00 2.00 2.00 1.00 4.50 2.00

Phyllodocidae 3.50 2.00 2.00 1.00
Polynoidae 7.00 1.00 1.00
Syllidae 4.33 4.00 2.00 1.00 1.00

Spionida Poecilochaetidae 1.00 1.50
Ampharetidae 3.00 1.00 2.00
Cirratulidae 1.00
Terebellidae 1.00 3.00 1.00 3.00 5.50
Decapoda
Epialtidae 1.00

Etisus demani 1.00
Pachycheles  sp. 1 1.00

Pilumnidae 1.00
Thalamita  sp. 1.00
Ophiocomidae 4.00 1.00
Ophiotrichidae 1.00 90.00 1.00 1.00

Ophiurida 2.00
Littorinimorpha Conus  sp. 3.00
Nudibranchia Nudibranchia 1.00

Discocelidae 4.50 3.00 4.00
Stylochidae 3.00 6.50 6.50 6.00

Sipuncula Phascolosomatida Phascolosoma  sp. 1 5.50 5.50 6.50 3.00 1.00

Ophiurida

Polycladida

Site 1-AF Depths (5 m intervals)

Annelida

Eunicida 

Phyllodocida

Terebellida 

Arthropoda

Echinodermata 

Mollusca

Platyhelminthes

Decapoda
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Supplementary Table 3 Taxa and their Average Abundance at 5 m Depth Interval at Site 2-DE 

 

Phylum Order O.T.U 2 15-19 20-24 25-29 30-34 35-39 40-44
- Polychaeta 3.00 19.00 6.00

Canalipalpata Chaetopteridae 5.00
Dorvilleidae 1.00
Eunicidae 2.00 2.00 1.50 2.50 1.00

Lumbrineridae 5.00 5.00 2.00 9.00
Nereididae 1.50 1.00 1.67 6.00 3.20

Phyllodocidae 1.00
Polynoidae 1.50 4.00 1.00
Syllidae 3.33 4.00 2.00

Sabellida Sabellidae 1.00
Ampharetidae 3.00
Cirratulidae 1.00 2.00
Terebellidae 25.00 15.00 14.00
Epialtidae 1.00

Etisus demani 1.00
Pachycheles  sp. 1 1.00 1.00

Pilumnidae 1.50
Thalamita  sp. 1.00 1.00 1.00
Tiarinia  sp. 1 1.00

Diadematoida Echinothrix  sp. 1 juvenile 1.00
Ophiocomidae 2.50 2.33 11.50 6.67 1.00

Ophionereididae 1.00
Ophiotrichidae 6.00 7.33 1.00 3.00 5.00

Ophiurida 1.00
Caenogastropoda Cerithium  sp. 1 1.00
Littorinimorpha Conus  sp. 1.00 1.00

Discocelidae 3.00 1.00
Stylochidae 6.00 6.00 8.00 3.00 1.00

Sipuncula Phascolosoma  sp. 1 12.50 12.50 10.00 8.00 3.50
Phascolosoma  sp. 2 1.00

Phascolosomatida 

Mollusca

Platyhelminthes

Eunicida 

Phyllodocida

Terebellida 

Decapoda

Ophiurida

Polycladida

Annelida

Arthropoda

Echinodermata 

Site 2-DE Depths (5 m intervals)
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Supplementary Table 4 Taxa and their Average Abundance at 5 m Depth Interval at Site 3-BC 

 

Phylum Order O.T.U 2 10-14 15-19 20-24 25-29 30-34 35-39 40-44
Eunicidae 1.00

Lumbrineridae 2.00 2.00 1.50
Hesionidae 4.00 2.00 1.00
Nereididae 7.00 3.00 1.00 2.00

Phyllodocidae 1.00
Polynoidae 2.00 2.00 1.00
Syllidae 2.00 1.00

Sabellida Sabellidae 1.00
Ampharetidae 1.50 4.00 2.00 2.50 2.00
Terebellidae 1.00 1.00 1.00 1.00

Hyastenus brockii 1.00
Pilumnidae 1.00 1.50
Xanthidae 1.00

Ophiocomidae 2.00
Ophiotrichidae 1.00 1.00

Caenogastropoda Cerithium  sp. 1 1.50
Littorinimorpha Conus  sp. 1.00

Discocelidae 4.00 5.00
Stylochidae 18.33 20.00 3.50

Sipuncula Phascolosomatida Phascolosoma  sp. 1 11.50 18.50 1.50 1.00

Annelida

Arthropoda

Echinodermata 

Mollusca

Eunicida 

Phyllodocida

Terebellida 

Decapoda

Ophiurida

Site 3-BC Depths (5 m intervals)

Platyhelminthes Polycladida
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Supplementary Table 5 Taxa and their Average Abundance at 5 m Depth Interval at Site 4-GH 

 

Phylum Order O.T.U 2 10-14 15-19 20-24 25-29 30-34 35-39
- Polychaeta 2.00 2.00 6.00

Eunicidae 1.33 1.00 1.00 3.00 1.00
Lumbrineridae 1.00 5.00

Nereididae 5.50 1.00 2.00 2.00
Phyllodocidae 1.00

Polynoidae 1.67 2.00
Syllidae 8.50 7.00 1.33

Ampharetidae 3.00
Terebellidae 5.00

Amphipoda Ampithoe  sp. 1 64.00 1.00
Alpheus  sp. 1.00
Decapoda

Etisus demani 2.00
Pachycheles  sp. 1 1.00 1.00

Pilumnidae 4.50 6.00
Diadematoida Echinothrix  sp. 1 juvenile 2.00

Ophiocomidae 5.50 1.00 5.20 7.50 1.00
Ophionereididae 1.00
Ophiotrichidae 8.17 5.00 4.50 3.33

Ophiurida 2.50 1.00 1.00
Caenogastropoda Cerithium  sp. 1 3.00
Littorinimorpha Conus  sp. 2.00
Littorinimorpha Cypraea turdus 1.00 1.00

Nudibranchia Nudibranchia 1.00
Discocelidae 3.33
Stylochidae 8.00 2.00

Sipuncula Phascolosomatida Phascolosoma  sp. 1 50.50 13.50 2.33 2.00 1.00

Terebellida 

Decapoda

Ophiurida

Polycladida

Site 4-GH Depths (5 m intervals)

Annelida

Arthropoda

Echinodermata 

Mollusca

Platyhelminthes

Eunicida 

Phyllodocida
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Supplementary Table 6 Taxa and their Average Abundance at 5 m Depth Interval at Site 5-LJ 

 

Phylum Order O.T.U 2 10-14 15-19 20-24 25-29 30-34 35-39 40-44
- Polychaeta 7.00 3.00 3.00

Eunicidae 1.00 8.00
Lumbrineridae 2.50 1.50 2.00 4.00

Nereididae 6.50 2.00 6.00 5.50 1.50 5.00
Phyllodocidae 1.00 1.00

Polynoidae 1.00 2.00 2.00 2.00 1.00
Syllidae 2.00 2.00 1.00 3.00

Ampharetidae 3.00 2.00 8.00 1.00
Cirratulidae 1.00
Terebellidae 1.00 3.00 3.00

Etisus demani 1.00 1.00 2.00
Hyastenus brockii 1.00

Pilumnidae 1.00 1.00 1.00 11.00
Camarodonta Salmacis  sp.1 1.00
Diadematoida Echinothrix  sp. 1 juvenile 2.00 2.00

Ophiocomidae 1.00 3.00
Ophiotrichidae 9.00 16.00

Ophiurida 3.00
Mollusca Caenogastropoda Cerithium  sp. 1 1.00 1.00 2.00 1.00

Discocelidae 1.00
Stylochidae 26.50 3.50 5.50 1.00

Sipuncula Phascolosomatida Phascolosoma  sp. 1 25.00 3.50 11.00 8.00 4.00

Eunicida 

Phyllodocida

Terebellida 

Decapoda

Ophiurida

Polycladida

Arthropoda

Echinodermata 

Platyhelminthes

Annelida

Site 5-LJ Depths (5 m intervals)
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Supplementary Table 7 Taxa and their Average Abundance at 5 m Depth Interval at Site 6-IM 

 
  

Phylum Order O.T.U 2 15-19 20-24 25-29 30-34 35-39 40-44
- Polychaeta 8.00 3.50

Eunicida Eunicidae 2.00 1.00
Nereididae 1.00 4.00 2.00
Polynoidae 2.33 2.00 1.00
Syllidae 1.00 1.00

Cirratulidae 5.00
Terebellidae 1.00
Epialtidae 1.00

Etisus demani 1.00
Galathea  sp. 1 1.00

Pachycheles  sp. 1 8.00
Pilumnidae 1.50 1.00 1.00 2.00 2.75

Diadematoida Echinothrix  sp. 1 juvenile 1.00
Ophiocomidae 10.00 2.00
Ophiotrichidae 1.00 8.50 1.00

Caenogastropoda Cerithium  sp. 1 2.00
Littorinimorpha Conus  sp. 1.50

- Rhabditophora 1.00
Polycladida Stylochidae 10.33

Sipuncula Phascolosomatida Phascolosoma  sp. 1 38.67 3.00 4.00 1.00

Phyllodocida

Terebellida 

Decapoda

Ophiurida
Echinodermata 

Mollusca

Platyhelminthes

Annelida

Arthropoda

Site 6-IM Depths (5 m intervals)
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Supplementary Table 8 Number of samples (shaded green) from various depths analyzed  

(Please note the symbols represent size of the vials samples were preserved in □ 1 L and ∆ 500 ml) 

 

 
  

DEPTH (m) VIALS DEPTH (m) VIALS DEPTH (m) VIALS DEPTH (m) VIALS DEPTH (m) VIALS DEPTH (m) VIALS
10 10 □□□ 10 10 10 10
11 11 11 11 11 11
12 12 12 12 ∆□ 12 □□ 12
13 13 13 13 13 13 □□
14 14 □□ 14 14 □ 14 □□ 14
15 □□ 15 15 15 15 15
16 16 ∆□ 16 ∆□ 16 □ 16 □ 16
17 □∆∆ 17 17 17 17 17 □
18 18 □ 18 □ 18 □ 18 □ 18
19 □ 19 19 19 19 19 □
20 20 □ 20 □ 20 □ 20 20
21 21 21 21 21 21 □
22 22 □ 22 □ 22 22 □ 22
23 □ 23 23 23 ∆ 23 23 □
24 24 □ 24 24 24 □ 24
25 25 25 25 25 25 ∆
26 26 □ 26 □ 26 ∆ 26 ∆ 26
27 □ 27 27 27 27 27 □
28 28 □ 28 28 ∆ 28 ∆ 28
29 □ 29 29 29 29 29
30 30 □ 30 ∆ 30 ∆ 30 ∆ 30
31 □ 31 31 31 31 31
32 □ 32 □ 32 ∆ 32 ∆ 32 ∆ 32 □
33 33 33 33 33 33
34 ∆ 34 34 ∆ 34 34 ∆ 34 □
35 35 35 35 ∆ 35 35
36 ∆ 36 □ 36 ∆ 36 36 ∆ 36 □
37 37 37 37 37 37
38 ∆ 38 38 ∆□ 38 38 □ 38
39 39 39 39 ∆ 39 39 ∆
40 ∆ 40 40 ∆ 40 40 □ 40
41 41 41 41 ∆ 41 41
42 □ 42 42 ∆ 42 42 42 □
43 43 43 43 ∆ 43 43
44 □ 44 44 ∆ 44 44 44

PRESERVED IN ETHANOL PRESERVED IN FORMALIN
IM GH DE AF BC LJ
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Supplementary Table 9 Taxa Codes used for labelling during taxonomy 

 

 

O.T.U Code O.T.U Code O.T.U Code
Perinereis nigropunctata P1 Thalamita sp. C1 Conus sp. M1

Syllis cornuta P2 Pilumnus sp. 1 C2 Cypraea turdus M2
Polynoidae P3 Tiarinia sp. 1 C3 Cerithium sp. 1 M3

Paralepidonotus ampulliferus P4 Pilumnus sp. 2 C4 Nudibranchia M4
Eunice antennata P5 Hyastenus brockii C6 Phascolosoma sp. 1 W1

Cirriformia tentaculata P6 Eitsus demani C8 Phascolosoma sp. 2 W2
Nereis denhamensis P7 Alpheus sp. C9 Adenoplana sp. 1 W3

Cirratulidae P8 Ampithoe sp. 1 C10 Stylochus sp. 1 W4
Nereididae P9 Pachycheles sp. 1 C11 Stylochidae W5

Nereis sp. 1 P10 Galathea sp. 1 C12 Adenoplana sp. 2 W6
Lepidontus carinulatus P11 Pilumnidae C13 Rhabditophora W7

Syllis sp. 1 P12 Decapoda C14 Discocelidae W8
Polychaeta P13 Epialtidae C15

Polycirrus aurantiacus P14 Xanthidae C16
Nereiphylla castanea P15 Ophiothrix savignyi E1

Typosyllis sp. 2 P16 Ophiocoma sp. 1 E2
Lumbrineris gracilis P17 Ophiocoma sp. 2 E3

Lumbrineridae P18 Ophiothrix sp. 1 E4
Lepidontus sp. 1 P19 Ophiothrix sp. 2 E5
Typosyllis sp. 1 P20 Echinothrix sp. 1 juvenile E6

Terebellidae P21 Ophioneries sp. 1 E7
Amage sp. 1 P22 Ophiocoma sp. 3 E8
Phyllodocidae P23 Ophiothrix sp. 3 E9

Syllidae P24 Ophiocoma sp. 4 E10
Ampharetidae P25 Ophiurida E11

Eunicidae P26 Salmacis sp.1 E13
Hesionidae P28 Ophiothrix sp. 4 E14
Sabellidae P29 Ophiocomidae E15

Dorvilleidae P30 Ophiotrichidae E16
Chaetopteridae P31

Poecilochaetidae P32
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Supplementary Table 10 Reference Collection of Specimens 

 
  

Code O.T.U Total Code O.T.U Total
C1 Thalamita sp. 1 P1 Perinereis nigropunctata 5

C10 Ampithoe sp. 1 6 P11 Lepidontus carinulatus 3
C11 Pachycheles sp. 1 3 P12 Syllis sp. 1 1
C12 Galathea sp. 1 1 P14 Polycirrus aurantiacus 1
C13 Pilumnidae 1 P15 Nereiphylla castanea 2
C15 Epialtidae 1 P16 Typosyllis sp. 2 1
C16 Xanthidae 1 P17 Lumbrineris gracilis 2
C2 Pilumnus sp. 1 7 P18 Lumbrineridae 4
C4 Pilumnus sp. 2 1 P19 Lepidontus sp. 1 1
C6 Hyastenus brockii 1 P2 Syllis cornuta 2
C8 Etisus demani 3 P20 Typosyllis sp. 1 3
C9 Alpheus sp. 1 P21 Terebellidae 4
E1 Ophiothrix savignyi 1 P23 Phyllodocidae 4

E10 Ophiocoma sp. 4 1 P24 Syllidae 10
E13 Salmacis sp.1 1 P25 Ampharetidae 2
E14 Ophiothrix sp. 4 2 P28 Hesionidae 3
E15 Ophiocomidae 7 P29 Sabellidae 1
E16 Ophiotrichidae 20 P3 Polynoidae 6
E2 Ophiocoma sp. 1 5 P30 Dorvilleidae 2
E3 Ophiocoma sp. 2 1 P31 Chaetopteridae 3
E4 Ophiothrix sp. 1 2 P4 Paralepidonotus ampulliferus 4
E5 Ophiothrix sp. 2 5 P5 Eunice antennata 6
E6 Echinothrix sp. 1 juvenile 2 P7 Nereis denhamensis 4
E8 Ophiocoma sp. 3 1 P8 Cirratulidae 1
E9 Ophiothrix sp. 3 1 P9 Nereididae 8

M1 Conus sp. 2 W1 Phascolosoma sp. 1 14
M3 Cerithium sp. 1 3 W3 Adenoplana sp. 1 7
M4 Nudibranchia 3 W4 Stylochus sp. 1 11

W5 Stylochidae 5
W6 Adenoplana sp. 2 1
W8 Discocelidae 3

Specimens for Reference Collection Specimens for Reference Collection
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Supplementary Table 11 Diversity Data 

Diversity Data 

Site Depth SiteDepth sample S N d J' 

1-AF 10-14 1-AF10-14 1-AF-12 9 35 2.25013 0.92266 

1-AF 10-14 1-AF10-14 1-AF-14 12 60 2.68663 0.90211 

1-AF 15-19 1-AF15-19 1-AF-16 12 124 2.28202 0.47249 

1-AF 15-19 1-AF15-19 1-AF-18 10 22 2.91164 0.85654 

1-AF 20-24 1-AF20-24 1-AF-20 10 37 2.49244 0.81268 

1-AF 20-24 1-AF20-24 1-AF-23 6 8 2.40449 0.96713 

1-AF 25-29 1-AF25-29 1-AF-26 4 9 1.36536 0.87636 

1-AF 25-29 1-AF25-29 1-AF-28 5 11 1.66813 0.96096 

1-AF 30-34 1-AF30-34 1-AF-30 6 22 1.61758 0.81008 

1-AF 30-34 1-AF30-34 1-AF-32 5 7 2.05559 0.96296 

1-AF 35-39 1-AF35-39 1-AF-35 4 10 1.30288 0.78548 

1-AF 35-39 1-AF35-39 1-AF-39 2 4 0.72135 0.81128 

1-AF 40-44 1-AF40-44 1-AF-41 2 3 0.91024 0.9183 

1-AF 40-44 1-AF40-44 1-AF-43 4 20 1.00142 0.51096 

2-DE 15-19 2-DE15-19 2-DE-16 16 54 3.76036 0.88035 

2-DE 15-19 2-DE15-19 2-DE-18 5 38 1.09963 0.88144 

2-DE 20-24 2-DE20-24 2-DE-20 5 44 1.05703 0.82938 

2-DE 20-24 2-DE20-24 2-DE-22 13 68 2.84393 0.79055 

2-DE 25-29 2-DE25-29 2-DE-26 10 72 2.10444 0.78397 

2-DE 30-34 2-DE30-34 2-DE-30 8 49 1.79864 0.8097 

2-DE 30-34 2-DE30-34 2-DE-32 8 39 1.91071 0.84258 

2-DE 30-34 2-DE30-34 2-DE-34 6 7 2.56949 0.9755 

2-DE 35-39 2-DE35-39 2-DE-36 5 11 1.66813 0.80435 

2-DE 35-39 2-DE35-39 2-DE-38 12 63 2.65499 0.80085 

2-DE 40-44 2-DE40-44 2-DE-40 2 3 0.91024 0.9183 

2-DE 40-44 2-DE40-44 2-DE-42 5 18 1.38391 0.91948 

2-DE 40-44 2-DE40-44 2-DE-44 5 14 1.51569 0.70058 
3-BC 10-14 3-BC10-14 3-BC-12 9 66 1.90947 0.75031 
3-BC 10-14 3-BC10-14 3-BC-14 9 49 2.05559 0.65597 
3-BC 15-19 3-BC15-19 3-BC-16 6 37 1.38469 0.82663 
3-BC 15-19 3-BC15-19 3-BC-18 7 63 1.44818 0.63397 
3-BC 20-24 3-BC20-24 3-BC-22 8 16 2.52472 0.88521 
3-BC 20-24 3-BC20-24 3-BC-24 5 7 2.05559 0.96296 
3-BC 25-29 3-BC25-29 3-BC-26 3 4 1.4427 0.94639 
3-BC 25-29 3-BC25-29 3-BC-28 2 5 0.62133 0.72193 
3-BC 30-34 3-BC30-34 3-BC-30 2 3 0.91024 0.9183 
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3-BC 30-34 3-BC30-34 3-BC-32 2 4 0.72135 0.81128 
3-BC 35-39 3-BC35-39 3-BC-36 4 4 2.16404 1 
3-BC 40-44 3-BC40-44 3-BC-40 4 7 1.5417 0.92119 
4-GH 10-14 4-GH10-14 4-GH-10 15 186 2.67904 0.73267 
4-GH 10-14 4-GH10-14 4-GH-14 11 73 2.33075 0.62361 
4-GH 15-19 4-GH15-19 4-GH-16 10 124 1.86711 0.66395 
4-GH 15-19 4-GH15-19 4-GH-18 6 24 1.57329 0.82009 
4-GH 20-24 4-GH20-24 4-GH-20 6 33 1.43 0.80624 
4-GH 20-24 4-GH20-24 4-GH-22 5 33 1.144 0.75808 
4-GH 20-24 4-GH20-24 4-GH-24 5 11 1.66813 0.87874 
4-GH 25-29 4-GH25-29 4-GH-26 6 28 1.50051 0.9152 
4-GH 25-29 4-GH25-29 4-GH-28 6 18 1.72988 0.81448 
4-GH 30-34 4-GH30-34 4-GH-30 2 2 1.4427 1 
4-GH 30-34 4-GH30-34 4-GH-32 4 12 1.20729 0.70915 
4-GH 35-39 4-GH35-39 4-GH-36 6 13 1.94936 0.85096 
5-LJ 10-14 5-LJ10-14 5-LJ-13 13 117 2.51986 0.66354 
5-LJ 15-19 5-LJ15-19 5-LJ-17 5 15 1.47708 0.96138 
5-LJ 15-19 5-LJ15-19 5-LJ-19 4 8 1.4427 0.875 
5-LJ 20-24 5-LJ20-24 5-LJ-21 6 27 1.51707 0.88599 
5-LJ 20-24 5-LJ20-24 5-LJ-23 8 31 2.03845 0.76846 
5-LJ 25-29 5-LJ25-29 5-LJ-25 5 18 1.38391 0.84817 
5-LJ 25-29 5-LJ25-29 5-LJ-27 6 44 1.32129 0.82077 
5-LJ 30-34 5-LJ30-34 5-LJ-32 11 32 2.88539 0.92215 
5-LJ 30-34 5-LJ30-34 5-LJ-34 7 11 2.50219 0.90845 
5-LJ 35-39 5-LJ35-39 5-LJ-36 3 13 0.77974 0.84209 
5-LJ 35-39 5-LJ35-39 5-LJ-39 5 7 2.05559 0.91652 
5-LJ 40-44 5-LJ40-44 5-LJ-42 4 19 1.01887 0.7644 
6-IM 15-19 6-IM15-19 6-IM-15 6 19 1.69812 0.7887 
6-IM 15-19 6-IM15-19 6-IM-17 8 135 1.42704 0.45278 
6-IM 15-19 6-IM15-19 6-IM-19 6 32 1.4427 0.78963 
6-IM 20-24 6-IM20-24 6-IM-23 3 5 1.24267 0.86497 
6-IM 25-29 6-IM25-29 6-IM-27 5 11 1.66813 0.87874 
6-IM 25-29 6-IM25-29 6-IM-29 5 40 1.08434 0.72207 
6-IM 30-34 6-IM30-34 6-IM-31 6 11 2.08516 0.88972 
6-IM 30-34 6-IM30-34 6-IM-32 6 8 2.40449 0.93063 
6-IM 30-34 6-IM30-34 6-IM-34 2 5 0.62133 0.72193 
6-IM 35-39 6-IM35-39 6-IM-38 1 2 0  

6-IM 40-44 6-IM40-44 6-IM-40 2 2 1.4427 1 
6-IM 40-44 6-IM40-44 6-IM-42 1 3 0  

6-IM 40-44 6-IM40-44 6-IM-44 5 13 1.55948 0.78513 
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Appendix B – Supplementary Figures  
  
              

 
 
 

 
 
 

 

Supplementary Figure 1 Non-metric Multi-dimensional scaling (nMDS) ordination of the 
sampling units i.e. artificial plates based on Bray-Curtis dissimilarities of all the mobile 
assemblages in terms of abundance classified by depths in sites 1-AF to 6-IM 
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Supplementary Figure 2 Non-metric Multi-dimensional scaling (nMDS) ordination of the 
sampling units i.e. artificial plates based on Bray-Curtis dissimilarities of all the mobile 
assemblages in terms of biomass classified by depths in site 1-AF to 6-IM 
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Supplementary Figure 3 ABC Curve for Depths 10-14 to 30-39 m 
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Supplementary Figure 4 ABC Curve for Depths 40-44 m 
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Supplementary Figure 5 ABC Curve Sites 1-AF to 6-IM 
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Appendix C – Reference Pictures  

 

Supplementary Figure 6 Polychaetes: Dorvilleidae (1), Eunicidae (2), Lumbrineridae (3), 
Syllidae (4), Nereididae (5), Hesionidae (6), Phyllodocidae (7), Polynoidae (8), Sabellidae (9), 
Terebellidae (10) & Ampharetidae (11) 
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Supplementary Figure 7 Crustaceans: Ampithoe sp. 1 (1), Galathea sp. 1 (2), Thalamita sp. (3), 
Pilumnidae (4), Etisus demani (5) & Pachycheles sp. 1 (6)  
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Supplementary Figure 8 Ophiuroids: Ophiotrichidae (1), Ophiocomidae (2) & Echinoderms: 
Salmacis sp.1 (3), Echinothrix sp. 1 juvenile (4) 
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Supplementary Figure 9 Gastropods: Cerithium sp. 1 (1), Nudibranchia (2) & Conus sp. (3) 
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Supplementary Figure 10 Polyclads and Sipunculid: Discocelidae (1), Stylochidae (2) & 
Phascolosoma sp. 1 (3) 

 

 

 


