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ABSTRACT 

ABOUEATA, NADA, MAHMOUD, Masters: June: 2019, Masters of Science in 

Computing 

Title: Time-Aware Workload Prediction for Proactive Auto-Scaling of Web 

Applications 

Supervisor of Thesis: Khaled, Bashir, Shaban 

Proactive auto-scaling techniques aim to predict the future workload of web 

applications to provision the required resources, such as virtual machines (VMs), ahead 

of time. Nevertheless, deciding the optimal number of resources to allocate is a 

challenging task due to the dynamic nature of workload characteristics and the 

difficulty of predicting them. Most of the existing workload approaches only consider 

one workload feature which is typically the volume of requests to characterize and 

predict the workload. In this thesis, we report the design and development of a time-

aware workload prediction model that considers the request time features in order to 

achieve better workload characterization and prediction. We explore two different 

approaches, namely Time-Aware Single-Modeling and Time-Aware Multi-Modeling. 

The Time-Aware Single-Modeling approach builds one model for the entire time-space 

and has three variations: multivariate regression, univariate Long Short-Term Memory 

Neural Networks (LSTM), and multivariate LSTM neural network model. While, Time-

Aware Multi-Modeling approach develops a prediction model for each time partition 

discovered using a periodicity detection component.  

The proposed solutions are evaluated using two real workload datasets: Library 

portal at Qatar University and NewsLink portal in Pakistan.  The results demonstrate 

that the time-aware approaches achieve more accurate predictions of the workload 
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patterns compared to other existing approaches. Also, it has been shown that the 

achieved improvements are statistically different than existing approaches.  
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Chapter 1:  Introduction  

With the increased hosting of web applications on the cloud, a wide variety of 

techniques have been developed to improve the scalability of hosted applications while 

minimizing the cost. One of the main characteristics of cloud hosting is elasticity as the 

application owners can acquire, and release resources as needed. These resources 

include virtual machines (VMs), computation storage, and bandwidth. Deciding and 

scaling the appropriate resources to provision to maintain the desired application 

performance remains a challenging problem. Under-provisioning of resources may lead 

to performance degradation while over-provisioning incurs unnecessary cost wasted on 

unused resources. In the case of burst workload, the under-provisioned application leads 

to costly Service Level Agreement (SLA) violations. Hence, there is a trade-off 

between meeting SLAs and minimizing the provisioning cost. Therefore, it is necessary 

to develop effective techniques to automatically allocate resources according to the 

current application demand. For this purpose, many auto-scaling techniques have been 

proposed in the literature.  

Auto-scaling techniques are classified into two categories namely, reactive and 

proactive. Reactive techniques are based on a set of predefined rules defined by the 

system administrator. These rules define thresholds on performance metrics such as the 

response time and/or on hardware counters such as CPU, RAM, and bandwidth usage. 

When an indicator crosses the threshold, this trigger scaling to bring the system back to 

a normal state. However, such scaling takes places after the performance degradation 

occurs and may lead to SLA violations during the time it takes to provision additional 

resources. Additionally, reactive autoscaling is incapable of dealing with a rapid 

increase in workload [21]. On the other hand, Proactive based techniques aim to predict 
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the required number of resources beforehand to avoid any overhead delay in response 

time. Generally, scaling can either be done horizontally or vertically. Horizontal scaling 

refers to adding or removing virtual machines (VMs). While, vertical scaling refers to 

adapting the number of resources allocated, such as RAM and CPU, to an already 

running VM. Due to the time needed to boot newly added VMs, proactive based 

techniques are gaining significant interest compared to reactive based techniques. 

1.1.  Problem Statement  

Most of the existing workload characterization and prediction methods only 

consider the number of incoming requests (i.e. arrival rate)  [3, 5, 8, 15, 24, 28] to 

characterize the workload. However, web applications workload is a complex multi-

facets concept which can be characterized by different properties such as the workload 

periodicity, burstiness, mean request arrival rate, and variance of the request arrival 

rate, etc. [6]. For instance, the resources needed to serve 1000 heavy load requests are 

different than serving the same number of requests but generating low load. Recently 

the work proposed in [11] considers both the response document size and the response 

time to characterize and predict the workload. However, such approach does not 

consider the temporal characteristics of the workload. Generally, web applications are 

subjected to dynamic workloads which could exhibit repeated pattern over time. In fact, 

the time taken by the server to respond can be influenced by both the requested 

document size and the number of requests submitted to the server at the current time t. 

Therefore, we believe that considering the workload temporal features can improve the 

workload characterization and increase the prediction accuracy. There are different 

ways to consider and include the request time characteristics. In this study, we propose 

two different models: Time-Aware Single-Modeling and Time-Aware Multi-Modeling. 

The proposed approach extends the work proposed in [11]. We consider the request 
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time, in addition to the document size and response time features considered by [11] 

with the aim of achieving better workload characterization and prediction. 

1.2.  Thesis Objective 

The focus of this thesis is to achieve more accurate predictions of the workload. The 

following are the main objectives of the thesis: 

 Design a time-aware approach that incorporates the request time characteristics 

in order to achieve better workload characterization and more accurate 

prediction.  

 Investigate and evaluate different ways of including the request time 

characteristics to improve the workload predictions.  

 Conduct a comprehensive performance evaluation to compare the proposed 

time-aware approach with the state-of-art methods reported in the literature.  

1.3.  Thesis Significance  

We believe that this work is highly important as more accurate workload 

prediction allows better autoscaling to meet the application desired performance at a 

minimal cost. This yields improved application performance and the reduction of SLA 

violations. Additionally, it could also be beneficial for the service providers seeking to 

optimize their resources utilization. 

Although many research works have been done in this area, there are still 

opportunities for further improvement in workload characterization and prediction 

accuracy. 

The remainder of the thesis is organized as follows. Chapter 2 presents the 

background and concepts needed for the remainder of this thesis.  First, it discusses 

the general concepts of time series analysis.  Then it introduces motif discovery and 
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Minimum Description Length (MDL) based time series clustering.  Chapter 3, 

presents a review of the related work in workload characterization and periodicity 

detection area. Our developed solutions and its different variations are presented in 

Chapter 4. Chapter 5, discusses the experimental setup, datasets, and obtained results. 

Finally, we conclude the thesis and present some directions for future work. 
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Chapter 2:  Background  

In this chapter, we present the background and concepts needed for the 

remainder of this thesis.  Section 2.1.  presents the general concepts of time series 

analysis.  Section 2.2.  & Section 2.3. introduces motif discovery and MDL-based time 

series clustering, respectively.  

2.1.  Time Series Analysis  

Definition 1. A Time Series T of length n is an ordered list of n real observations 

which collected at fixed time intervals, where  

𝑇 = { 𝑡1 , 𝑡2 , 𝑡3 , … . , 𝑡𝑛} 

 

Definition 2. A Time Series Sampling Rate is defined as the sampling rate r at which 

the time series observations are collected. Formally,  

𝑇𝑟 = { 𝑡1
𝑟  , 𝑡2

𝑟  , 𝑡3
𝑟  , … . , 𝑡𝑛

𝑟} 

 

Definition 3. A Subsequence S of length m of the time series T of length n is a short 

m-length time series subsets of T, which defined as  

𝑆𝑖
𝑚  = { 𝑡𝑖  , 𝑡𝑖+1 , 𝑡 𝑖+2 , … . , 𝑡𝑖 + 𝑚−1}   Where   1 ≤  𝑖 ≤ 𝑛 + 𝑚 − 1 

 

Definition 4. A Motif M of length k is the pair of the two most similar subsequences 

of length k, which defined as  

𝑀𝑘 = { 𝑆𝑖
𝑘  , 𝑆𝑗

𝑘} 
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2.2.  Motif Discovery in Time Series  

Motif discovery is an important subroutine that has been used in different time 

series mining tasks and applications such as classification, clustering and anomaly 

detection [29]. It is used to find the two most similar subsequences in a time series. The 

most well-known motif discovery algorithm “Mueen-Keogh” (MK) is claimed to be the 

fastest algorithm. However, MK method is an exact algorithm that runs for a fixed motif 

length specified by the user, and considered to be intractable (i.e. not scalable) for 

enumeration purposes due to the massive distance computations needed for all motif 

lengths [22]. In fact, deciding the optimal length of motif is a challenging task for 

realistic datasets. Thus, to overcome this problem, a motif discovery method has been 

proposed called MOEN to enumerate all motifs for a range of lengths. MOEN algorithm 

searches for all motifs within the specified range of lengths and outputs only the 

maximally covering motifs, where no other motifs cover it.  

MOEN algorithm frees the user from the burden of specifying the exact length 

of motif, also it has been proved that it is an order of magnitude faster than the native 

solutions of motif discovery [22].  The speed-up comes from the lower bound (LB) 

applied on the normalized distances to prune most of the distance computations for the 

next motif lengths once the best motif of the first length is found.  To illustrate the main 

intuition behind the lower bound in speeding-up the algorithm, we show an example 

below – taken from [22].  

Example  

Given the motifs length that ranges between (7, 9). First, the list of top-k motifs 

of length 7 is generated, as shown in Figure 1 (A). After the list is generated, the lower 

bound of the distance for the next length 8 is computed using the max distance in the 

first list. In fact, this lower bound is used to exclude the motifs that have distances 
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greater than lower bound in the subsequent lengths, as shown in Figure 1 (C).  This is 

because none of the skipped motifs can have smaller distance than the lower bound for 

the next length.  Therefore, skipping these motifs helps to confine the search space and 

thus reduce the time complexity.  

 

 

 

 

 

 

Figure 1: MOEN enumeration example 
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2.3.  MDL-based Time Series Clustering  

The description length (DL) of data m is defined as the number of bits needed 

to describe the data m. The main intuition behind the Minimum Description Length 

(MDL) concept is to find a model or hypothesis that has the best ability to compress on 

a given dataset. In the context of time series clustering, the hypothesis is declared as 

the cluster center and the more compression ability of the hypothesis, is the more 

similarity of subsequences would be. To illustrate the MDL principle, we show an 

example below – adapted from [26]- using discrete data structure. 

Example  

  Given the name “Felix” with its variations in different languages: Felix 

(English), Felice (Italian), and Félix (French). If it requires 8 bits to store each letter, 

then the description length for all names  DL(D) = (5 ∗ 8) + (6 ∗ 8) + (5 ∗ 8) =

128 𝑏𝑖𝑡𝑠. On the hand, with MDL, if “Felix” is determined to be the hypothesis, then 

we do not have to store all names except the hypothesis and the difference between 

hypothesis and other names variations.  Through MDL, we use only 16 bits to store 

the last two letters of the 2nd name, and 8 bits to store the second letter of the 3rd name, 

as shown in Table 1. Thus, in total we use only 64 bits to store all names  DL(D|H) 

= (5 ∗ 8) + (2 ∗ 8) + (1 ∗ 8) = 64 𝑏𝑖𝑡𝑠.  Notice that the bitsave indicates the 

compression ability of the hypothesis and the similarity degree of other names 

variations according to the hypothesis.  
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Table 1. Example of the MDL Principle 

 

 

 

 

 

 

 

Next, we present the required definitions of MDL in the context of time series 

clustering.  

 

Definition 5. The entropy of a time series T is a lower bound of the total number of bits 

required to represent T, which defined as  

𝐻(𝑇) =  − ∑ 𝑃(𝑇 = 𝑡) log2 𝑃(𝑇 = 𝑡)  𝑡    

𝑤ℎ𝑒𝑟𝑒 P is the probability that symbol t will occur 

Definition 6. A description length (DL) of a time series T is defined as the total number 

of bits required to represent T, which can be calculated as follows: 

𝐷𝐿(𝑇) =  𝑚 × 𝐻(𝑇) 

Definition 7. A Hypothesis (H) is defined as the subsequence that used to encode or 

compress other subsequences.  

Definition 8. A conditional description length of subsequence A, given the hypothesis 

H, is defined as follows:  

𝐷𝐿(𝐴 | 𝐻) =  𝐷𝐿(𝐴 −  𝐻) 

Definition 9. A Description Length of a Cluster C (DLC) is the total number of bits 

required to represent all subsequences belongs to C. The center of the cluster is 

  H = null    

DL(H) = 0                  

H = 'Felix' 

DL(H) = 40 

D DL(D) DL(D|H) 

Felix 40 0 

Felice  48 16 

Félix  40 8 

Total  128 bits 64 bits 
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presented as the hypothesis H which used to encode other subsequences. DLC of cluster 

C is defined as follows:  

𝐷𝐿𝐶(𝐶) =  𝐷𝐿(𝐻) +  ∑ 𝐷𝐿(𝐴 | 𝐻)

𝐴 𝜖 𝐶

 

Definition 10. A bitsave is the total numbers of bits saved after applying a specific 

action. Formally, bitsave is defined as follows:  

𝑏𝑖𝑡𝑠𝑎𝑣𝑒 = 𝐷𝐿(𝐵𝑒𝑓𝑜𝑟𝑒) − 𝐷𝐿(𝐴𝑓𝑡𝑒𝑟) 

 

In the context of time series clustering, bitsave is calculated after applying the following 

actions:  

 Creating new cluster C’ using subsequence A and B  

𝑏𝑖𝑡𝑠𝑎𝑣𝑒 = ( 𝐷𝐿(𝐴) + 𝐷𝐿(𝐵)) − 𝐷𝐿𝐶(𝐶′) 

 Adding subsequence A to existing cluster C 

𝑏𝑖𝑡𝑠𝑎𝑣𝑒 = ( 𝐷𝐿(𝐴) + 𝐷𝐿𝐶(𝐶)) − 𝐷𝐿𝐶(𝐶′) 

 Merging two clusters, C1 and C2 to cluster C’ 

𝑏𝑖𝑡𝑠𝑎𝑣𝑒 = ( 𝐷𝐿𝐶(𝐶1) + 𝐷𝐿𝐶(𝐶2)) − 𝐷𝐿𝐶(𝐶′) 
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Chapter 3:  Literature review  

In this chapter, we review some of the works that have done in the areas of 

workload characterization and prediction, and periodicity detection.  Because none of 

the periodicity detection studies have been applied to the web workload domain, the 

papers that have been reviewed in this section are categorized into:    

1. Workload Characterization and Prediction.  

2. Periodicity Detection.  

3.1.  Workload Characterization and Prediction  

Generally, workloads can be investigated and characterized from two different 

perspectives: Conventional web workload and Cloud workload, as shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Conventional web workloads are characterized in terms of HTTP requests 

issued by the clients, page properties, and access patterns [6]. On the other hand, cloud 

workloads are characterized in terms of resources usage, such as virtual machines, CPU 

Figure 2. Workload characterization categories 
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and RAM utilization [6]. Many research studies have been proposed and experimented 

with different solutions to characterize and predict the workload. Some of the works 

characterize the web workloads in terms of HTTP requests arrival rate, as done in [3, 

5, 8, 15, 24, 28]. Meanwhile,  other works characterize the workload of applications 

deployed on cloud infrastructures in terms of hardware counters, such as CPU and 

RAM utilization, as done in [9, 10, 12, 16, 20, 30]. The papers that have been reviewed 

in this section are categorized into Web Workload and Cloud Workload characterization 

and prediction. 

3.1.1.  Web Workload Characterization and Prediction  

Most of the existing works characterize the application workload only in terms 

of requests arrival, as done in [3, 5, 8, 15, 24, 28]. Generally, time series prediction 

models are categorized into two classes, namely stochastic and deep neural networks 

models. Time series data can represent different forms of stochastic processes. The 

most widely stochastic prediction models used in the literature are, Autoregressive 

(AR), Moving Average (MA), Autoregressive Moving Average (ARMA), and 

Autoregressive Integrated Moving Average (ARIMA) [32]. Also, deep neural networks 

models have proven their effectiveness in workload prediction. The most common and 

popular time series neural networks models used in the literature are, Feed-Forward 

(FFN), Backpropagation (BNN), Time Delay (TDNN), and Error Correction neural 

network (ECNN) [24]. The papers that have been reviewed in this section are 

categorized based on the technique used in the prediction phase into Deep Neural 

Networks Models and  Stochastic Models . 

3.1.1.1. Deep Neural Networks Prediction Models  

Nikravesh et al. [24] leverage both machine learning techniques, SVM and back 

propagation Neural Network, to implement the workload prediction model. The novelty 
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of this study is by building an adaptive workload prediction which chooses 

automatically the appropriate prediction model, either SVM or NN, based on the 

incoming workload pattern. In this work, they focus on three types of workload which 

are: growing workload, periodic workload and unpredictable workload. The results 

showed that the SVM trained model performs better with the growing and periodic 

workload, while NN trained model has better prediction with the unpredictable 

workload. As opposed to the work done in [24], Kumar et al. [15] make use of feed-

forward Neural Network and self-adaptive differential evolution algorithm. The model 

is trained using the self-adaptive differential evolution algorithm (SaDE) to learn the 

optimal hyper-parameters for the NN model.  The SaDE approach has proven its 

effectiveness in training feed-forward neural network [17], compared to other 

population-based approaches such as PSO, GA, etc [1, 13]. The proposed model 

compared with the well-known back-propagation network algorithm and the proposed 

model was capable to reduce the prediction error up-to 0.001. 

3.1.1.2. Stochastic Prediction Models 

Differently, studies in [3, 5, 8] use different time series stochastic models for 

workload prediction. Calheiros et al. [5] make use of ARIMA statistical model for 

workload prediction. The proposed model applies feedback from the last observed load 

to update the model on the run. The predicted workload is passed to a scaling decision 

model to allocate resources accordingly. The experiments showed that the proposed 

model leads to efficiency in resource utilization with minimal impact in QoS for users.  

Similarly, Ali-eldin et al. [3] analyze the trend and seasonality of Wikipedia website 

workload using time series models. Based on the analyzed workload patterns, they 

propose a simple cubic spline prediction algorithm that can predict workload patterns, 

in terms of the number of requests (i.e arrival rate), with MAPE of 2%. 
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As opposed to the work done in [3, 5], Cezar et al. [8] develop an adaptive 

method that uses different combinations of time series models, instead of developing 

a single time series prediction model for all cases of workload patterns. The selection 

of the best prediction model is decided by a genetic algorithm. They use five different 

statistical models, which are: Naïve model, autoregressive model, autoregressive 

moving average, and Autoregressive Integrated Moving Average.  The proposed 

approach leads to an accurate prediction of the application workload. In addition, it 

shows that the proposed method can adapt different pattern of time series data and 

does not need a huge volume of historical data for prediction models training.  

3.1.2.  Cloud Workload Characterization and Prediction  

Some of the works in proactive auto-scaling consider and characterize the cloud 

workload in terms of resources usage, such as CPU and RAM usage, as done in  [9, 

10, 12, 16, 20, 30]. Similarly, to section 3.1.1. , the papers that have been reviewed in 

this section are categorized based on the technique used in the prediction phase into 

stochastic models and neural networks models. 

3.1.2.1. Deep Neural Networks Prediction Models  

Recently, machine learning techniques have proven their efficiency and 

effectiveness in cloud workload prediction [12, 30].  Tran et al. [30] proposed a 

forecasting model using Neural Network technique. This work exploits CPU and 

RAM usages simultaneously. The main intuition behind this idea is to predict each 

resource usage with considering the relation between all historical resource usages, 

CPU and RAM usages. So in that way, they avoid missing any relationship among the 

historical resource usage in the prediction phase. The proposed prediction phase 

consists of three main sub-components: preprocessor, learning algorithm, and 

forecasting model. The preprocessor component uses a fuzzy approach to transform 
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the monitored resource usage into a fuzzy time series, which later used as an input of 

the learning component. They use the neural networks algorithm to exploit the 

historical data of CPU and RAM resource utilization and then predict the future values 

accordingly. The predicted values are then passed to a scaling decision model to make 

the final decision of VMs resources allocation. 

Similarly, Islam et al. [12], utilize Error Correction  Neural Network (ECNN) 

and linear regression algorithms to forecast the future demand of CPU usage.  During 

the training phase, the neural network and linear regression are fed with historical data 

of CPU usages to predict the future demand. The produced models from the training 

phase, are validated using sliding window technique, where the input x represents a 

vector of resource usages over k time intervals and the predicted value y, is r steps 

ahead of the input window [12]. The results show that the neural network model using 

the optimal window size outperform the prediction accuracy of linear regression 

models.  

As opposed to the works done in [12, 30],  the works in [9, 16] develop an 

adaptive workload prediction model based on the workload pattern. Both works [9, 

16] focus on forecasting CPU resource usage. Gong et al. [9] proposed two prediction 

model, namely: signature-driven and state-driven prediction model. The signature 

model is used when historical resource usages exhibit repeated patterns, meanwhile, 

the state-driven model is used when the historical resource usages does not follow any 

pattern. Differently,  Liu et al. [16] proposed to assign different prediction models 

according to the structural change of the workload.  They classified workloads into 

two categories: fast time-scale data and slow time-scale data. The results showed that 

the linear regression model manages to predict the slow time-scale data accurately. In 

the meantime, SVM model was able to adopt the dramatic changes in fast time-scale 
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data.  

3.1.2.2. Stochastic Prediction Models  

The most common stochastic prediction model used in the literature is ARIMA, 

as done in [10, 20]. Huang et al. [10] proposed a Prediction-based Dynamic Resource 

Scheduling (PDRS) approach for resource allocation of virtualized cloud systems. The 

proposed system consists of four main components: NodeAget, System Monitor, 

Resource Demand Predictor, and Elastic Scheduler. The NodeAget is deployed on 

each cluster server, and it is responsible to collect the resource usages statistics, which 

represents the CPU usage in this study. These statistics are then collected by the 

System Monitor component for a predefined measurement interval. Thereafter, the 

Resource Demand Predictor employs an ARIMA model to predict the usage statistics 

collected by the System Monitor component. The main novelty of this work is that the 

resource demand predictor component employs multi-step prediction, first to predict 

the future usage of each resource type, then analyze the predicted CPU usages to 

determine the state of the server in the next scheduling interval. Each state has its 

lower and upper bound of the CPU usage. Predicting the server state is helpful to 

overcome the issue of over-estimation or under-estimation of resource usages 

prediction. Based on the predicted information, resource usages, and server state, the 

Elastic Scheduler component allocates the required number of VMs. The results 

showed that the proposed system improves the prediction error and allocate resources 

with an acceptable level of SLA. Similarly, Meng et al. [20] proposed  CURPA,  a 

container resource utilization prediction algorithm which based on ARIMA time 

series model. However, this work leverages the docker container as it is more 

lightweight than the virtual machines and easier to be deployed.  The resources usage 

considered in this study is the CPU utilization. The CPU usages are used to train a 



 

17 

 

prediction model based on ARIMA, which later will be predicted by the trained 

model. The predicted usage is then used by a provision model to allocate the sufficient 

number of resources by adopting a horizontal auto-scaling approach to increase or 

decrease the number of containers. The results showed that by taking advantage of 

ARIMA and Docker container, CURPA managed to achieve high prediction accuracy.  

3.2.  Periodicity Detection  

One way to include the request time characteristic is by considering the 

workload periodicity. Many works in the literature have been proposed to address the 

periodicity detection problem in many fields such as finance, e-commerce, medicine, 

science, image analysis, etc.  The papers that have been reviewed in this section are 

categorized based on the periodicity detection technique that has been used: 

Autocorrelation and Time Series Clustering, as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Periodicity detection techniques 
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3.2.1.  Autocorrelation  

Autocorrelation function (ACF) is one of the tools used to find repeated patterns 

in time series data. ACF measures the correlation between the original signal and a 

shifted version of itself with different time lags. The correlation values range between 

1 and -1. Intuitively, if the correlation is near 1 then a repeated pattern is declared at 

lag t, while an autocorrelation near 1 means that the signal has an opposite direction at 

lag t. On the other hand, a random signal has an autocorrelation of 0 at all-time lags. 

Many studies consider ACF for periodic pattern identification  [7, 31]. Vlachos 

et. al  [31] proposed a non-parametric approach which based on ACF and DFT for 

periodicity detection in time series data. They utilize a two-tier approach by 

combining both methods, Periodogram and Autocorrelation method, which called 

AUTOPERIOD. The first step consists of extracting the candidates periods, e.g., hints, 

by using the Periodogram method. These candidates may be false due to the spectral 

leakage problem in the periodogram method. Thus, they have developed a verification 

step by using the autocorrelation function, to verify the correctness of the candidate 

periods produced by the periodogram. The intuition is that if the candidate periods 

reside on the hill of the ACF, then this is considered as a correct period. Otherwise, 

the candidate period is discarded and considered as a false alarm. Similarly,  

Calzarossa et al. [7] analyzes and predicts the dynamic of web content changes. They 

proposed system consist of two components: pattern identification and forecasting 

component.  In the pattern identification component, they utilize the ACF and 

decomposition method to identify temporal patterns. The ACF function computed at 

different time lags ranges varying from one hour up to one week.  The peaks detected 

by the autocorrelation function identify daily patterns of the time series which 
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repeated every 24 hours. To identify the temporal patterns more accurately, they 

decompose time series data into three components: trend, seasonality and remainder 

components. The weekly and daily patterns are captured by the trend and seasonal 

competent, respectively. After that, the forecasting component uses numerical fitting 

techniques to identify the parameters of the trigonometric polynomial that best fit the 

trend and seasonal patterns.  On the other hand, it uses ARIMA model to fit the 

remainder part.  

Despite the success of ACF function in periodic pattern extraction, ACF doesn’t 

give the details about when exactly each identified pattern occurs. For example, ACF 

might give you that there is a pattern which is repeated every 5 hours, however without 

any insights when exactly this pattern is repeated within the day (i.e., the starting and 

ending hour of the repeated pattern). For this purpose, Time series clustering 

techniques are discussed in the next section to address this limitation.  

3.2.2.  Time Series Clustering 

As mentioned in the previous section that ACF doesn’t declare clearly the time 

boundaries of the discovered periodic patterns. One way to address this gap is by using 

time series clustering techniques. Clustering is the most common solution to uncover 

hidden repeated patterns in time series data. As stated in [2], time series clustering 

related works are classified into three categories as following: 

a) Whole Time-series clustering: This clustering is similar to the conventional 

ways to cluster discrete objects. In the context of time series, discrete objects 

are presented as a set of individual time series, with the objective to group 

similar time series into the same cluster/group. 

b) Subsequence Time-series clustering (STS): As opposed to the Whole time-

series clustering, subsequence clustering is performed on a single stream of time 
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series data. This category consists of two steps: first extracting set of 

subsequences from the original time series stream using a sliding window, and 

then cluster similar subsequences into same groups.  

c) Time-point clustering: The notation of clustering here is clustering time points 

based on a combination of their temporal proximity and similarity between time 

points values.  

Given all time-series clustering categories discussed above, STS clustering 

category is the best fit for this thesis because the web applications workload is 

presented as a single stream of time series data. Web workload time series data should 

be partitioned into meaningful subsequences, and then cluster these subsequences into 

groups. By this way, periodic patterns can be declared using these clusters.   

3.2.3.  Subsequence Time Series Clustering  

Nevertheless, extracting the most meaningful subsequences for clustering from 

a single stream of time series data is a challenging task. As stated in  [14], all studies 

conducted before 2003 tried to cluster every single subsequence in the original time 

series which leads to the well-known issue of meaningless clustering results in STS 

clustering. Therefore, many works have been proposed later to address this issue. The 

papers that have been reviewed in this section focus mainly on the time series 

clustering algorithms which based on the minimum description length (MDL) 

distance measure.  

3.2.3.1. MDL-based Clustering Method  

The most recent works on STS clustering (STS) [18, 19, 26, 27] address the 

problem of meaningless clustering results by the following ideas. First, STS clustering 

requires ignoring some data from the time series. In fact, the observations proved that 

any attempt on trying to cluster every single subsequence of a time series might lead to 
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meaningless results. The meaningless results are due to the noisy parts included in the 

clustering process. Thus, ignoring some subsequences is needed to avoid any 

meaningless results. Second, clustered subsequences are not allowed to overlap with 

each other. By using these two ideas, [18, 19, 26, 27]  resolve the meaningless problem 

in STS clustering.  All studies in [18, 19, 26, 27] leverage motif discovery methods to 

extract meaningful subsequences. Motif discovery method aims to find the two most 

similar subsequences in a given time series. The most common algorithm used in the 

literature to find the most similar pair of motifs is MK algorithm [23]. 

Both works in [26, 27] use MK motif discovery algorithm to subsequence the 

original time series and find out the most meaningful list of motif pairs. Given the list 

of motif pairs discovered by MK, authors in [26] make use of the Minimum 

Description Length (MDL) similarity measure to find the best hypothesis that has the 

highest ability to compress the data. The compression ability indicates the degree of 

similarity between the model and subsequences. For example, if the compression 

ability achieved by the model is high, this indicates that there is a high similarity 

between the model and subsequences. The proposed clustering algorithm defines three 

operations, which are: creating a cluster, adding to cluster, and merging clusters. The 

proposed approach iteratively adopts the idea of MDL to calculate the number of bits 

saved for each operation and then chooses the operation that maximizes the number of 

bits saved. Differently, the work proposed in [27] uses data encoding distance measure 

to choose the optimal operation in each step of clusters construction.  

Despite the success of both approaches [26, 27] in achieving meaningful 

clustering results, a predefined parameter is still needed by the MK algorithm to define 

the approximate length of subsequences. Nevertheless, defining the optimal length of 

the subsequence is a challenging task. Therefore, many works in the literature have 
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been proposed to address this issue by automating the process of finding the optimal 

length of subsequences.  

Madicar et al. [18] proposed a parameter-free STS clustering which eliminates 

the burden on the users to set the subsequence length parameter. The proper length of 

the subsequence is found by running the MK motif discovery algorithm [23] iteratively 

at different lengths starting from length 2 up-to-half of the time series length. The 

discovered motifs are then ranked based on the Euclidean distance similarity measure 

and their frequency. After that, all kth-best motif are passed to the clustering algorithm. 

Similarly to [26, 27], the clustering process in [18] defines three operations: add, create 

and merge. The error for each operation is calculated and then choose the operation 

that minimizes the error. The error per cluster is defined as the summation of Euclidean 

distance between each subsequence in a cluster.  

Madicar et al. [19] proposed an enhanced version of [18] to improve the quality 

of the discovered motifs and to address the high variability in the subsequences widths. 

Similar to the work in [18], [19] consists of two main phases: selection of the proper 

subsequence length process and clustering process. In the first phase, they combine both 

MDL and MK motif discovery to improve the quality of the discovered motifs.  The 

MDL is used to rank the priority of the motif results. For the clustering process, it uses 

the same idea of the clustering process used in  [18, 26, 27]. The results proved the 

robustness of the proposed approach in handling the high variability of subsequences 

length. 
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3.2.4.  Discussion  

In this section, we present a comparison between the proposed approaches under 

autocorrelation and subsequence time series clustering.  The strengths and weaknesses 

of the proposed works under each method are presented in Table 2. The strength is 

assessed in terms of two dimensions, namely, parameter-free and scalability on large 

datasets. On the other hand, weaknesses are evaluated in terms of lack of time 

boundaries.  It can be noticed from Table 2, subsequences time series clustering 

approaches address the gap of declaring the time boundaries of the discovered pattern. 

However, those algorithms are not scalable on large datasets due to the motif discovery 

method used in these studies. More details on an alternative scalable method of motif 

discovery, is already presented in section 2.2.  

 

 

Table 2.Strengths and Weaknesses of Periodicity Detection Researches. 

 
  

                  Strength  Weakness  

Article Method Parameter-

free 

Scalability Lack of time 

boundaries 

 

[31] 
 

ACF 

 

✔ 

 

✔ 

 

✔ 

[7] ✔ ✔ ✔ 

 

[19] 
 

Subsequence 

Time Series 

Clustering 

 

✔ 

  

[18] ✔   

[26]    

[27]    
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3.3.  Baseline System  

The proposed approach extends the work presented in [11]. In this study, we 

consider  [11] as the baseline system that is not using time-aware approach. The 

baseline system, shown in Figure 4, composed of two models namely, workload 

characterization model and workload pattern prediction model. The detailed 

components of each model are described in the following subsections.  

 

 

 

Figure 4. The Baseline  system architecture – taken from [11]  
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3.3.1.  Workload Characterization Model  

The workload characterization model consists of three main components: 

a) URI Space Partitioning:  

The application URIs are partitioned into different partitions based on two 

features: response time and document size. The partitioning model uses the 

unsupervised clustering algorithm, K-means, to partition the application URIs.   

b) Probabilistic URI Workload Modeling: 

Given the URIs space partitions, each URI is modeled by a probabilistic 

representation vector (𝑣𝑝). The probabilistic workload modeling measures the 

probability of the URI to lie in each cluster. The URI probability shows the 

distribution of URI along each partition, which given by:  

𝑣𝑝(𝑖)
=   

𝑞𝑖

𝑞𝑡
 

where  𝑞𝑖  are the URI occurrences in the i-th partition and 𝑞𝑖   is the total 

number of the URI occurrences over all partitions.  

c) Workload Pattern Identification   

Given the URIs distribution in each cluster, this component computes the 

representation vector (i.e., workload pattern) of the received URIs in a given 

time interval. This vector shows the distribution of URIs along each cluster, and 

the summation of all distributions yield the total number of incoming requests 

in that time interval. Later in this thesis, we refer to the time interval by a 

sampling rate.  

3.3.2.  Workload Pattern Prediction Model  

The workload prediction model considers two methods of time series 

forecasting namely, moving average and non-negative least square regression (NNLS) 

methods. The prediction model will be used later to predict the workload patterns. 



 

26 

 

Chapter 4:  Methodology  

The proposed approach extends the work presented in [11] by adding a temporal 

dimension that considers the request time, in addition to the document size and 

response time features in order to deliver better workload characterization and 

prediction. The request time characteristic is included using two different approaches: 

Time-Aware Single-Modeling and Time-Aware Multi-Modeling. The upcoming 

sections present the details of how the proposed approaches extend the baseline 

system models.  

4.1.  Workload Characterization Model  

This step involves the process of generating the workload patterns (i.e. URIs 

distribution) given a predefined sampling rate, as described in Section 3.3.  Two models 

were investigated:  Time-Aware Single-Modeling and Time-Aware Multi-Modeling. 

4.1.1.  Time-Aware Single-Modeling   

In this approach, the workload characterization model generates the workload 

patterns for the entire time-space. Thus, the entire application logs are passed to the 

characterization model to generate the workload patterns.  

4.1.2.  Time-Aware Multi-Modeling   

Contrary to the Single-Modeling approach, the multi-models approach 

generates the workload patterns per each time partition as illustrated in Figure 5. The 

time partitions are identified by a periodicity detection component. The next 

subsections present the details of the proposed periodicity detection component. 
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4.1.2.1. The Proposed Periodicity Detection Component  

The periodicity detection component consists of two main models: Intensity-based 

Workload Partitioning and Hierarchical Time partitioning, as shown in Figure 6. The 

Intensity-based Workload Partitioning model partitions the entire URIs space into 

different partitions based on the intensity of the workload. The workload is considered 

as the number of requests. Then, the discovered partitions are passed to the Hierarchical 

Time Partitioning model to extract the periodic patterns. The detailed components of 

each model are described in the next subsections. 

 

 

 

 

 

Figure 5: Time-Aware workload prediction using periodicity detection 

approach 
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Figure 6: Architecture of the proposed periodicity detection component  
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a) Intensity-based Workload Partitioning 

This model is responsible for partitioning the URIs space based on the workload 

intensity, before passing it to the hierarchical time partitioning model. The workload 

pattern intensity is measured as the number of requests received at time t. As mentioned 

earlier in Section 3.2.3. , the subsequence time series clustering methods are used to 

extract periodic patterns. A popular approach of the time series clustering is structure-

based clustering, which looks for similar patterns in change (i.e. structural similarity) 

regardless of the pattern’s intensity (i.e. amplitude of signal) [2].  For example, two 

workload patterns might be identified as similar patterns because they have similar 

structure although they may have different intensity as illustrated in Figure 7. In fact, 

workload patterns with similar structures and different intensity should be considered 

different as each one requires different amount resources based on the intensity. 

Therefore, to avoid this problem we propose an intensity-based workload partitioning 
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which is responsible to partition the URIs space based on the workload intensity, before 

performing the hierarchical time partitioning for periodic patterns extraction. The 

proposed model is composed of two main components: Data Sampling and Features 

Extraction component. The proposed model is composed of two main components: 

Data Sampling and Features Extraction component. The Data Sampling component 

samples the historical logs using a predefined sampling rate. For example, if the 

sampling rate is hour, then the sampled data (S) is expressed as the total number of 

requests received per hour. The Features Extraction components uses k-means 

clustering algorithm to partition the sampled data using four statistical features, which 

are: mean (Smean), standard deviation (Sstd), minimum (Smin) and maximum (Smax).  

b) Hierarchical Time Partitioning  

Given the data partitions produced by the previous model, this model extracts 

periodic patterns in a top-down hierarchical fashion. Generally, the periodic patterns 

are identified using a subsequence time series clustering method (STS) given a 

predefined sampling rate. The levels in this model are computed recursively, such that   

each periodic pattern identified at level n, is the input to the next level to extract the 

periodic patterns from each. In addition, the sampling rate used at each level is reduced 

as we go down the hierarchy. The main intuition behind this idea is that zooming-in 

into small partitions at each level of the hierarchy might help in extracting more 

meaningful periodic patterns. For example, if k periodic patterns are extracted at level 

n, then at level (n+1) our approach will zoom-in into each pattern declared at the 

previous level n to extract periodic patterns from each, as illustrated in Figure 16 and 

Figure 17.   This model is composed of three main components: Data sampling, 

Subsequence time series clustering, and Periodic patterns extraction. The details of 

these components are explained in the next subsections. 



 

31 

 

i. Data Sampling 

Given the URIs space per partition, these partitions are sampled using a 

sampling rate which gets reduced as we go down the hierarchy. The main 

intuition behind this idea is that the sampling rate is directly proportional to 

the size of partitions at each level. For example, monthly sampling rate would 

be used to extract patterns from a yearly dataset, meanwhile, daily sampling 

rate would be used with monthly datasets. Therefore, in this component, if 

data partitions at level n are sampled using a monthly rate, then subsequent 

partitions at level n+1 are sampled using a daily rate. 

ii. Subsequence Time Series Clustering 

 Afterward, the sampled data is passed to a subsequence time series 

clustering (STS) method to extract similar patterns.  For this purpose, we 

use the MDL-based clustering method proposed in [26]. This method [26], 

consists mainly of two stages: subsequences extraction and clustering stage. 

In the subsequence extraction phase, we extract the most meaningful 

subsequences from the entire series of time series data. After that, the 

extracted subsequences are passed to the clustering stage.  

The STS clustering algorithm proposed in [26], makes use of MK [23] 

motif discovery algorithm for subsequences extraction stage. However, MK 

is not scalable for enumeration purposes, as mentioned in section 2.2.  

Therefore, to overcome this problem, we replaced the MK method used in 

[26] by MOEN motif discovery method [22]  to enumerate all motifs for a 

range of lengths.  

Algorithm 1 shows the pseudocode of the modified version of the MDL-

based clustering approach. The algorithm takes the time series and minimum 
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and maximum length of motif as an input, and the final clusters of similar 

subsequences as an output. First, the algorithm enumerates all motifs given 

the minimum and maximum length of motif. Then, the enumerated motifs are 

then passed to the next stage “clustering stage”. The clustering stage is done 

in a bottom-up hierarchical fashion. It defines three operations, which are: 

create a cluster, add to cluster and merge clusters. At each level of the 

hierarchy, it tries all operations and chooses the best operator. The algorithm 

uses the minimum description length distance measure (MDL) to calculate the 

number of bits saved by each operator and then chooses the operator that 

maximizes the number of bits. The algorithm terminates in two ways: if the 

best possible operator cannot save more bits, or all data are used.  

iii. Periodic Patterns Extraction 

 Given the subsequences clusters produced by the STS clustering 

component, not all similar subsequences in each cluster can be declared 

periodic. As we might have similar subsequences that occur at random places 

of the time series. Therefore, the proposed model declares periodicity in each 

cluster if at-least two members occur within the same place of the time series. 

For example, a periodicity is declared if the similar subsequences in a cluster 

occur between 1:00 pm and 2:00 pm. Meanwhile, if the similar subsequences 

occur at totally different places, let us say one occurs at 6:00 am, and other 

occur at 2:00 pm, then this case is not declared as periodic patterns. The 

extracted periodic patterns are then passed again to the “Hierarchal Time 

partitioning model” to extract periodic patterns from each pattern partition 

identified at the previous level of the hierarchy.  
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After extracting periodic patterns partitions, each partition is passed to the Workload 

Characterization Model to generate the workload patterns per each partition.  

4.2.  Workload Pattern Prediction Model  

Given the workload patterns generated by the Workload Characterization 

Model, this model is responsible for predicting the workload patterns at the next time 

interval. The following subsections present the steps taken to develop a single and 

multi-time-aware prediction models, respectively: 

    

4.2.1.  Time-Aware Single-Modeling 

In this approach, we develop one prediction model for the entire time-space. 

Basically, the steps taken to develop a single time-aware prediction model, are as 

follows:   

1. Features Engineering  

Given the workload patterns generated by the Workload Characterization Model, 

the features engineering process is applied to extract different features from the 

workload patterns. The features could be categorized into two categories based on the 

modeling type:  

a) Univariate Modeling: uses one feature to construct the feature matrix and 

target value, as shown in Figure 8.  In this study, we consider the number of 

requests as a feature to construct the model.  

b) Multivariate Modeling: incorporates different time features to construct the 

feature matrix. The time features considered in this study are: month, day of 

week, hour of day, minute of the day, is weekend, and is holiday. This method 

includes the extracted time features and number of requests at time (t) as the 

features matrix to predict the next number of requests, as shown in Figure 9. 
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2. Time Windowing  

Time windowing is one of the transformation techniques used in time series 

prediction. Since the web applications workload data is a time series data, we consider 

the window size and time horizon to transform the workload data. Figure 8 illustrates 

the concept of window size, by selecting the last k number of requests from time (t) to 

(t+window) as the feature matrix. On the other hand, the time horizon defines which 

step ahead to be predicted. For example, if the horizon is 2, then the second step ahead 

will be predicted. Figure 8 and Figure 9 illustrates how time horizon concept is applied 

to the target value.  

 

 

Figure 9: Multivaraiate modeling 

Figure 8: Univaraite modeling  
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3. Prediction Models     

We used two different methods to build the prediction models: NNLS Linear 

Regression and Long Short-Term Memory Neural Networks (LSTM).  

a) Non-Negative Least Square Regression (NNLS): 

The NNLS is one type of least square methods that are used to estimate the coefficients 

of the fitted linear regression model. A simple linear regression model equation is 

shown in the below equation:  

𝑌 =  =  α +  βX 

 

The coefficients (β and α) are estimated by minimizing the sum of squares of the 

differences between the actual values and the predicted values. NNLS apply a 

constrained least square such that the estimated coefficients are not allowed to be less 

than 0.  

b) Long Short-Term Memory Neural Networks (LSTM) 

Recurrent Neural Network has received great attention for modeling time series 

data due to its effectiveness in remembering patterns for long durations of time. This is 

achieved by the time dependency property in RNNs. Figure 10 shows how the time 

dependency property is achieved through the cyclic connections between the units in 

RNNs.  Each unit in RNN considers the previous predictions and information learned 

from them to predict the future ones. In fact, RNNs are only effective with short term 

dependencies.  However, it turns out to be ineffective when the predictions need to 

remember larger range of dependencies. This is due to a well-known problem RNN 

suffers from, which is Vanishing Gradient.  
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Long Short-Term Memory (LSTM) is one variant of RNNs that was designed 

to solve the problem RNN suffers when dealing with long term dependencies. The 

Vanishing Gradient issue is resolved by including a memory cell that consists of three 

main gates: forget gate, input gate and, output gate. The LSTM updates the memory 

cell using these gates by controlling what information to forget or keep (forget gate), 

what information to update (input gate), and what information to output (output gate).  

Due to the effectiveness of this method in modeling and predicting time series 

data, LSTM is used in this work to model and predict web applications workload. 

LSTM hyperparameters that can be tuned to improve the LSTM performance include 

the activation function, number of layers, number of neurons, number of epochs, batch 

size, to name a few. In this thesis, we have varied the activation function, the number 

of layers, and the number of neurons in each layer. LSTM method is sensitive to the 

scale of data. Therefore, we have used the Min-Max scaling method, which scales the 

data to a range of [0,1] or [-1,1]. The equation of Min-Max scaling method is shown 

below:  

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛
 

Figure 10: RNN architecture 
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4.2.2.  Time-Aware Multi-Modeling   

Given the workload patterns generated by the Workload Characterization 

Model per time partition, a prediction model is developed for each partition.  In this 

approach, we have used a simple univariate regression-based model to predict the 

workload per time partition.  
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Chapter 5:  Experimental Evaluation  

This chapter presents the experiments that we conducted to evaluate the 

proposed solutions. We start by presenting the evaluation setup in section 5.1. We then 

present the experiments and discuss the results in section  5.2.  

5.1.  Experimental Setup   

This section describes the datasets collection, training and testing data splits, 

and the evaluation measures used to evaluate the proposed approach.  

5.1.1.  Datasets Collection  

To evaluate the proposed approach, we obtained the web server access logs from 

two real workload datasets generated by the Library Portal at Qatar University1 and 

News Portal (NewsLink2) in Pakistan. Qatar University Library portal is a publicly 

available site used to access the library resources and services. The NewsLink portal is 

a news portal that collects the news from different resources. The workload access logs 

store information about the client requests and server response. This log entries include 

client IP address, resource requested URL, request timestamp, the status code of the 

server response, number of bytes transmitted by the server (e.g., document size), 

elapsed time of the requested file (e.g., response time), client user agent, and others. 

Figure 11 shows five records of the Library portal access logs collected by an Apache 

web server. The IP addresses of the clients are anonymized to ensure their privacy. In 

this work, we only consider three features namely, document size, response time and 

request timestamp for workload characterization and prediction.  

The Library Portal access logs are collected from March 2018 to July 2018. 

                                                

1 http://mylibrary.qu.edu.qa   
2 http://newslink.pk  

http://mylibrary.qu.edu.qa/
http://newslink.pk/


 

40 

 

Meanwhile, the NewsLink access logs are collected across one day, 30 Sep 2017.  Since 

the obtained News Link access logs are small, we emulate a periodic behavior of arrival 

rates over five days. This is done, by replicating the behavior of one day over five days. 

In addition, we added a normal random noise with a scale factor of 50 to the periodic 

behavior.  

 

 

 

 

 

 

5.1.2.  Training and Testing Data Splits 

We have used the multiple train and test approach that used specifically with 

time series data [4], to split our datasets. This approach trains different models to predict 

the test data split as shown in Figure 12. The main idea is that once the test dataset 

becomes available, the model is recalibrated using the previous train and test datasets. 

For the Library Portal dataset, we start by using three weeks of data for training and 

one-week data for testing. On the other hand, for News Link Portal dataset, we start 

with one-day for training and one-day data for testing  

 

 

 

 

Figure 11: Example of an anonymized apache access log. 
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5.1.3.  Evaluation Measures  

In this work, the prediction error is calculated as the difference between the 

actual and the predicted workload pattern. Given the predicted workload pattern                               

𝑝𝑡 =  [ ď1, ď2 , ď3, . . . . , ď𝑘] and actual workload pattern 𝑝𝑡 =  [𝑑1 , 𝑑2 , 𝑑3 , … . . , 𝑑𝑘]  at 

time 𝑡, where 𝑘 represents the number of partitions and 𝑑𝑖 is the distribution over 

partition 𝑖 , the prediction error is calculated as follows: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = ∑|( ď𝑖 −  𝑑𝑖)|

𝑘

𝑖=1

 

 

5.2.  Results   

In this section, we present and compare the obtained results of the baseline 

system and proposed approaches. We start by presenting the workload 

characterization evaluation in section 5.2.1. We then evaluate the workload pattern 

prediction model in section 5.2.2.  

 

 

Figure 12: Multiple train and test approach 
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5.2.1.  Workload Characterization Evaluation  

Before evaluating the prediction model, we first need to generate the workload 

patterns, which represents the URI distributions at a given sampling rate. This step is 

done using the workload characterization model proposed in [11] . For the proposed 

time-aware single-modeling approach, the workload patterns are generated over the 

entire time-space. On the other hand, with the multi-modeling proposed approach, the 

periodic time partitions are first extracted using the periodicity detection component. 

Then, these time partitions are passed to the workload characterization model to 

generate the workload patterns per each time partition. The upcoming sections present 

the results of generating the workload patterns for both proposed approaches.  

5.2.1.1. Time-Aware Single-Modeling 

Given the application URIs space of Library Portal and News Link datasets, the URIs 

are partitioned into different clusters based on two features: response time and 

document size. To identify the optimal number of clusters (k), we used the elbow 

method as an indicator of the appropriate number of clusters.  Figure 13 shows the 

residual error at different number of clusters which ranges between 2 and 26 for the 

library portal datasets, and ranges between 2 to 10 for the news link portal. It can be 

clearly seen that the residual error starts to flatten significantly at k = 12 and k = 7 for  

the library and NewsLink portal, respectively. Thus, from this experiment, we identified 

k = 12 and   k = 7 as the optimal number of clusters for the library and news link portal, 

respectively. 

Given the optimal number of URIs clusters, the workload patterns are then 

generated using the Workload Characterization Model [11]. The workload patterns are 

generated using two sampling rates: one-hour rate and 10-minutes rate.  
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5.2.1.2. Time-Aware Multi-Modeling  

In this approach, the periodic patterns are first extracted by the periodicity 

detection component. Then, the workload patterns are generated per time partition. 

Evaluation on Library Portal Dataset  

We present how the proposed periodicity detection is used to extract periodic 

patterns from the library portal dataset. First, we start with the Intensity-based 

Workload Partitioning Model, followed by the Hierarchical Time Partitioning Model.  

a) Intensity-based Workload Partitioning 

As shown in Figure 14, the library portal has similar patterns over months but 

with different workload intensities. Therefore, we run the intensity-based workload 

partitioning model on this dataset with day sampling rate. Then, we extract four 

statistical features, Smean , Sstd , Smin , and Smax per month. The months are then 

clustered based on the statistical features shown in Table 3 using k-means clustering 

method. We run k-means across different number of clusters which ranges between 2 

Figure 13: Residual error with increasing number of clusters over all datasets 
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and 5. Results show that the optimal number of clusters is k=2.  Table 4 shows that k-

means splits the months into two clusters: March, April, and May in one cluster, and 

June and July in another cluster. In fact, these splits show the workload behavior at 

Qatar University, as the first three months represent a busy period at the university 

compared to June and July period.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Statistical Features Extracted per Month 

 

 

 

Month Smean Sstd Smin Smax 

March 51224.5 11782.8 25189 75465 

April 57516.3 15178.7 29734 86084 

May 41949.9 10109.2 21915 59714 

June 18251.4 6514.6 9484 32079 

July 19229.6 4416.5 7755 29066 

Figure 14: Number of request per day for the library portal 
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Table 4: Intensity-Based Workload Partitioning Results of the Library Portal 

 

 

 

  

 

 

 

b) Hierarchical Time Partitioning 

Given the time partitions produced by the Intensity-based Workload Partitioning 

model, each partition is passed to the Hierarchical Time Partitioning model. For 

simplicity, we have shown below the levels of the hierarchy. 

 

Level # 1: Hierarchical Time Partitioning  

Given the partitions extracted by the Intensity-based Workload Partitioning 

model, we sample these partitions using day sampling rate. Then, the sampled data is 

passed to the STS to extract periodic patterns. Figure 15 shows the periodic patterns 

extracted at this level. The highlighted boxes show the partitions that did not show-up 

as periodic patterns. Meanwhile, the others show the discovered periodic patterns. 

 

 

 

 

 

Month Cluster ID 

March 1 

April 1 

May 1 

June 2 

July 2 
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Level # 2.1: Hierarchical Time Partitioning  

Given the periodic patterns extracted at level # 1, we sampled these partitions 

using a smaller one-hour sampling rate. Then, each sampled data is passed to the STS 

to extract periodic patterns. Figure 16 shows the periodic patterns extracted at this level.  

It can be clearly seen, that the extracted periodic patterns mostly start at the early 

morning hours and ends before noon. In fact, this shows how the proposed periodicity 

detection component can extract patterns that reflect a realistic behavior that represents 

a low activity period in the morning hours which increases gradually in the later hours.  

 

Level # 2.2: Hierarchical Time Partitioning  

Differently than level 2.1, level 2.2 samples the periodic patterns extracted at 

level # 1 using a smaller 10-minutes sampling rate. This shows the periodic patterns 

which appear when the data is sampled using a smaller sampling rate. Figure 17 shows 

the periodic patterns extracted at this level.  Like level 2.1, most of the patterns extracted 

at this level happens to start at the early morning hours and ends before noon.  

 

Figure 15: The 1st level periodic patterns extracted from the library portal 

dataset 
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Figure 16: Level 2.1 periodic patterns extracted from the library portal dataset 

 

Figure 17: Level 2.2 periodic patterns extracted from the library portal dataset 
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Workload Characterization Model: After extracting the periodic partitions, the 

workload characterization model performed on each time partition to generate the 

workload patterns at one-hour and 10-minutes sampling rate. For the time partitions 

extracted with one-hour sampling rate, the experiments show that the optimal number 

of clusters to cluster the application URIs per time partition is k = 10. Meanwhile, For 

the time partitions extracted with 10-minutes sampling rate, the experiments show that 

the optimal number of clusters to cluster the application URIs per time partition is k = 

8. 

Evaluation on the NewsLink Portal Dataset 

Similarly, we present how the proposed periodicity detection is used to extract 

periodic patterns from the NewsLink dataset. First, we start with the Intensity-based 

Workload Partitioning Model, followed by the Hierarchical Time Partitioning Model.  

a) Intensity-based Workload Partitioning 

As shown in Figure 18, the NewsLink portal has similar patterns over days without 

any differences in the workload intensities. Therefore, this step is skipped, and the 

original historical logs are passed immediately to the Hierarchical Time Partitioning 

Model.  
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b) Hierarchical Time Partitioning 

Since the size of NewsLink portal is very small (only five days), we run the 

Hierarchical Time Partitioning Model only for one level with two sampling rates: one-

hour rate and 10-minutes rate. The level with both sampling rates is shown below.  

 

Level # 1.1: Hierarchical Time Partitioning  

The historical logs of NewsLink are passed to the Hierarchical Time 

Partitioning model and sampled using one-hour sampling rate.  Then, the sampled data 

is passed to the STS to extract periodic patterns. Figure 19 shows the periodic patterns 

extracted at this level.  

 

 

Figure 18: Number of requests per hour of the newsLink portal 
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Level # 1.2: Hierarchical Time Partitioning  

Differently than level 1.1, level 1.2 sample the historical logs of NewsLink 

using a smaller sampling rate: 10-minutes rate. This just to show the periodic patterns 

that appear at a smaller sampling-rate, as shown in Figure 20.  

 

 

 

 

 

 

 

 

 

Workload Characterization Model: After extracting the time partitions, the workload 

characterization model performed on each time partition to generate the workload 

patterns at one-hour and 10-minutes sampling rate.  For the time partitions extracted 

with one-hour sampling rate, the experiments show that the optimal number of clusters 

Figure 19: Level 1.1 periodic patterns extracted from the newsLink portal 

dataset 

Figure 20: Level 1.2 Periodic patterns extracted from the newsLink Portal 

Dataset 
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to cluster the application URIs per time partition is k = 5. Meanwhile, For the time 

partition extracted with 10-minutes sampling rate, the experiments show that the 

optimal number of clusters to cluster the application URIs space per time partition is k 

= 5.  

5.2.2.  Workload Pattern Prediction Evaluation 

This model is evaluated by predicting the workload patterns generated by the 

Workload Characterization Model at two sampling rates: one-hour and 10-minutes 

rates. The workload patterns at one-hour rate, are predicted at different time horizons 

which ranges between 1 to 3 with a step of size. While, the workload patterns at ten-

minutes rate are predicted at 1,6, 18 horizons.  

The prediction models are tuned with different parameters to achieve the best 

performance. For the univariate modeling, the window size is tuned using two ranges. 

With 10-minutes sampling rate, the window sizes have been chosen from range 5 to 20 

with a step of size 5. Meanwhile, with one-hour sampling rate, the window sizes have 

been chosen from range 1 to 5 with a step size of 1. In addition to that, we have chosen 

four parameters to tune the LSTM model, which are: (1) Activations functions: Sigmoid 

function (Sigmoid), Hyperbolic tangent function (tanh), and Rectified linear unit 

function (Relu) (2) Number of hidden layers  have been chosen from range 1 to 3 with 

a step of size 1 (3) Number of neurons in hidden layers have been chosen from range 

10 to 20 with a step of size 5. The following sections present the experiments conducted 

to evaluate all proposed solutions: Time-Aware Single Modeling and Time-Aware 

Multi-Modeling   
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5.2.2.1. Time-Aware Single Modeling 

We have developed three variations of time-aware single-modeling, namely: 

Multivariate Regression, Multivariate LSTM, Univariate LSTM. The features 

considered in both, multivariate and univariate models, are already described in Section 

4.2.1.  The models have been tuned using different parameters to achieve the minimum 

prediction error. Table 8 in the appendix shows the tuned parameters values that 

produce the minimum prediction errors.  

We experimented the prediction models at different time horizons and sampling 

rates. Table 5 shows the minimum prediction error achieved by the single modeling 

approaches. It can be noticed that the Multivariate Regression approach outperforms all 

other approaches across all time horizons, when the data is sampled using one-hour 

sampling rate. This improvement is consistent over both datasets.  On the other hand, 

with 10-minutes sampling rate, none of the improvements are achieved consistently by 

one approach over all time horizons and datasets. Therefore, we cannot draw a clear 

conclusion for predictions with 10-minutes sampling rate. Meanwhile, we can conclude 

that the Multivariate Regression approach is the best among the time-aware single 

modeling approaches in handling the predictions with one-hour sampling rate. This 

indicates that the features extracted using the multivariate modeling are indicative 

features which help the prediction model to predict the workload patterns at one-hour 

rate.  
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Table 5: Workload Pattern Prediction Error for all Time-Aware Single-Modeling 

Approaches. The Best Score per Horizon is Boldfaced 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

* M stands for Multivariate and U stands for Univariate modeling   

 

 

 

5.2.2.2. Time-Aware Multi-Modeling 

 This approach develops a prediction model per time partition which is extracted 

by the proposed periodicity detection component. As is the case in Time-Aware single 

modeling, the prediction models have been tuned using different parameters. We 

experimented the prediction models at different time horizons and sampling rates. Table 

6 presents the minimum prediction errors achieved by thee multi-modeling approach. 

 

   
Time-Aware Single Modeling 

Datasets Sampling 

rate 

Horizons M_ 

Regression 

M_ 

LSTM 

U_ 

LSTM 

 

 

 

Library 

Portal 

 

 

one-hour 

        

       1 

 

17.3 

 

19.1 

 

18 

2 19.3 20.6 20.1 

3 21 22.3 21.8 

 

10-minutes 

 

1 

 

39.2 

 

39.9 

 

35.8 

6 40.5 41.3 37.7 

18 43.4 42.5 41 

 

 

NewsLink 

Portal 

 

one-hour 

 

1 

 

26 

 

27.3 

 

27.3 

2 26.5 27.5 27 

3 26.7 27.6 27 

 

10-minutes 

 

1 

 

36.3 

 

42.2 

 

38.8 

6 43.7 43.3 45 

18 44.3 43.3 45.9 
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Table 6: Workload Pattern Prediction Error of Time-Aware Multi-Modeling 

Approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.2.3. Summary and Comparison of the Results of all Experiments.  

 To validate the effectiveness of all proposed approaches, we compare the 

obtained results with the baseline systems. As explained earlier in Section 3.3.2. , w 

have developed two variations of the baseline system: the first is based on the moving 

average method for prediction, and the other is based on NNLS regression method.  

Table 7 shows the best approach per time horizons and sampling rates. It can be noticed 

that both baseline systems are almost achieved similar performance.  In addition, the 

   
Time-Aware Multi-Modeling 

Datasets Sampling 

rate 

Horizons             Data_Partitioning  

 

 

 

Library 

Portal 

 

 

one-hour 

        

       1 

 

18.2 

2 21.3 

3 24.2 

 

10-minutes 

 

1 

 

31.5 

6 34.3 

18 39.8 

 

 

NewsLink 

Portal 

 

one-hour 

 

1 

 

29.2 

2 28.4 

3 30.1 

 

10-minutes 

 

1 

 

23.6  

6 33.6 

18 33.8 
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results show that Multivariate Regression approach outperforms all proposed 

approaches and baseline systems, when the data is sampled using one-hour sampling 

rate. On the other hand, the data partitioning proves its effectiveness when the data is 

sampled using 10-minutes sampling rate, over all proposed approaches and baseline 

systems. This indicates that the sampled workload at the 10-minutes rate, is not 

predictable by the single-modeling approach.  In the meantime, partitioning data, make 

it more predictable and thus helps the prediction model to predict it.   

Also, it can be clearly noticed that the longer the horizon, the higher the 

prediction error. This indicates that the last k observations of the workload are more 

correlated with the next one (k+1), compared to the further ones.   

We used a two-tailed paired t-test, with a significance level 𝛼 = 0.05, to indicate 

statistically-significant improvements of the best approach over all other approaches. 

The results of the significance test indicate that the achieved improvements are 

statistically different on all datasets.  
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Table 7: Workload Pattern Prediction Error of Proposed Approaches and Baseline Systems. The Best Score per Horizon is Boldfaced 

* Indicates significant improvement of the best approach over all other approaches using two-tailed paired t-test, with α=0.05                                                           

M stands for Multivariate and U stands for Univariate modeling                           

            Baseline systems        Time-Aware Single Modeling Time-Aware-Multi-   

Modeling 

Dataset Sampling 

rate 

Horizons Moving 

Average 

U_ Regression  M_ 

Regression 

M_ 

LSTM 

U_ 

LSTM Data_Partitioning 

 

 

 

Library 

Portal 

 

   one-hour 

 

1 

 

17.8 

 

18.2 

 

17.3* 

 

19.1 

 

18 

 

18.2 

2 20.9 21.7 19.3* 20.6 20.1 21.3 

3 23.7 24.6 21* 22.3 21.8 24.2 

 

10-minutes 

 

1 

 

35.7 

 

35.6 

 

39.2 

 

39.9 

 

35.8 

 

31.5* 

6 37.4 37.4 40.5 41.3 37.7 34.3* 

18 41.8 42.4 43.4 42.5 41 39.8* 

 

 

NewsLink 

Portal 

 

one-hour 

 

1 

 

29.3 

 

28 

 

26* 

 

27.3 

 

27.3 

 

29.2 

2 30.3 29.2 26.5* 27.5 27 28.4 

3 30.5 31.5 26.7* 27.6 27 30.1 

 

10-minutes 

 

1 

 

37.3 

 

32.1 

 

36.3 

 

42.2 

 

38.8 

 

23.6 * 

6 50.2 45.3 43.7 43.3 45 33.6* 

18 48.3 48 44.3 43.3 45.9 33.8* 
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Chapter 6:  Conclusion and Future Work 

This thesis focuses on improving the workload characterization and prediction. 

We considered the request time in addition to the response time and document size, to 

develop a time-aware workload prediction model. We proposed two approaches to 

make it time-aware: (1) Time-Aware Single Modeling that develops one prediction 

model for the entire time-space, and (2) Time-Aware Multi-Modeling that develops a 

prediction model for each time-partition discovered by the periodicity detection 

competent. 

We have conducted different experiments on two realistic workload datasets 

and presented the results. The experiments were conducted at two sampling rates: one-

hour and 10-minutes rate.  The experiments showed that the time-aware approaches are 

sensitive to the sampling rates.  The results demonstrated that the multivariate 

regression model developed for the entire time-space, was the most effective approach 

in predicting the workload when sampled using one-hour rate. While, the multi-models 

approach is more effective for predicting the workload sampled using 10-minutes rate.  

Additionally, we leverage the LSTM Neural Networks for predicting the workload. 

Despite the success of LSTM in handling time series data, LSTM models failed to 

produce good results compared to other approaches. We believe that this caused by the 

size of training dataset that leads to poor generalization of predictions.   

 We contributed to the workload characterization and prediction research area 

in the following ways: (1) Propose time-aware workload characterization and 

prediction model (2) Study the sensitivity of the proposed time-aware approaches at 

different sampling rates (3) Conduct comprehensive experimental evaluation on 

realistic datasets and compare the results with the state-of-art methods.  
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6.1.  Future Work 

There are many research directions that can be considered to further improve this 

research. The important recommended future research directions are summarized 

below:   

 In this thesis, we rely on one distance measure for time series clustering, which 

is the Minimum Description Length (MDL). We plan to try other distance 

measures, such as the Dynamic Time Warping (DTW) [25], due to its strength 

in dealing with temporal drifts by measuring one-to-one and one-many 

similarity distance. We believe that DTW might affect the outcomes of the 

periodicity detection component and thus the prediction model.   

 We plan to improve the LSTM Neural Network developed in this thesis by tuning 

other hyperparameters such as the number of epochs, batch size, optimizer and 

others. In addition, we plan to train and test the model on larger datasets to 

discover its limitations and address them to improve the model.  

 We used the simple grid search method to select the best combination of LSTM 

hyperparameters. We plan to try other methods, such as greedy and dynamic 

programming approaches.  We believe that these methods will confine the search 

space and thus enable us to tune more hyperparameters.  

 We plan to extend this work to predict the workload for multi-tiered web 

applications. This will be done by predicting the workload per each tier.  
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APPENDIX 

Table 8:The Tuned Parameters Values that Produce the Minimum Prediction Error  

* NA indicates that the parameter is not applicable for the given approach.  

* M stands for Multivariate and U stands for Univariate modeling                           

   
Time-Aware Single Modeling 

Dataset Sampling 

rate 

Horizon 
M_Regression M_LSTM 

 
U_LSTM 

   windo

w 

#neur

ons 

#laye

rs 

Act. windo

w 

#neuro

ns 

#laye

rs 

Act. windo

w 

#neuro

ns 

#layers Act. 

 

 

 

Library 

Portal 

 

 

one-hour 

 

1 
NA NA 

 

20 

 

2 

 

tanh 

 

2 

 

20 

 

    1 

 

tanh 

2 20 2 tanh 2 20      1 tanh 

3 20 3 tanh 2 20      1 tanh 

 

10-minutes 

 

1 
NA NA 

 

20 

 

2 

 

relu 

 

15 

 

20 

 

1 

 

tanh 

6 10 2 tanh 10 15 1 tanh 

18 20 2 tanh 5 20 1 relu 
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1 
NA NA 
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sig 

2 20 3 tanh 3 10 3  relu 

3 20 2 tanh 2 20 2 sig 

 

10-minutes 

 

1 
NA NA 
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5 
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1 

 

relu 

6 15 3 sig 5 20 3 sig 

18 15 3 sig 5 20 2 sig 


