
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

TIME-AWARE WORKLOAD CHARACTRIZATION AND PREDICTION FOR

PROACTIVE AUTO-SCALING OF WEB APPLICATIONS

 BY

NADA MAHMOUD ABOUEATA

A Thesis Submitted to

the Faculty of the College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Computing

 June 2019

© 2019 Nada Aboueata. All Rights Reserved

ii

COMMITTEE PAGE

The members of the Committee approve the Thesis of

Nada Aboueata defended on 17/04/2019.

 Dr. Khaled Bashir Shaban

 Thesis/Dissertation Supervisor

Dr. Abdelkarim Erradi

 Thesis/Dissertation Co-Supervisor

 Prof. Abdelaziz Bouras

Committee Member

Prof. Fethi A. Rabhi

Committee Member

Approved:

Abdel Magid Hamouda , Dean, College of Engineering

iii

ABSTRACT

ABOUEATA, NADA, MAHMOUD, Masters: June: 2019, Masters of Science in

Computing

Title: Time-Aware Workload Prediction for Proactive Auto-Scaling of Web

Applications

Supervisor of Thesis: Khaled, Bashir, Shaban

Proactive auto-scaling techniques aim to predict the future workload of web

applications to provision the required resources, such as virtual machines (VMs), ahead

of time. Nevertheless, deciding the optimal number of resources to allocate is a

challenging task due to the dynamic nature of workload characteristics and the

difficulty of predicting them. Most of the existing workload approaches only consider

one workload feature which is typically the volume of requests to characterize and

predict the workload. In this thesis, we report the design and development of a time-

aware workload prediction model that considers the request time features in order to

achieve better workload characterization and prediction. We explore two different

approaches, namely Time-Aware Single-Modeling and Time-Aware Multi-Modeling.

The Time-Aware Single-Modeling approach builds one model for the entire time-space

and has three variations: multivariate regression, univariate Long Short-Term Memory

Neural Networks (LSTM), and multivariate LSTM neural network model. While, Time-

Aware Multi-Modeling approach develops a prediction model for each time partition

discovered using a periodicity detection component.

The proposed solutions are evaluated using two real workload datasets: Library

portal at Qatar University and NewsLink portal in Pakistan. The results demonstrate

that the time-aware approaches achieve more accurate predictions of the workload

iv

patterns compared to other existing approaches. Also, it has been shown that the

achieved improvements are statistically different than existing approaches.

v

DEDICATION

To my parents, for their endless support, love, and faith in me.

To my siblings, and special thanks to my brothers Khaled and Waleed for their

endless support, love and for helping me in all the struggles I had with my thesis.

To my friends, my supporters who never let me down, thanks for your love, support

and all adventures we had during this journey

vi

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Dr. Khaled and my co-supervisor

Dr. Abdelkarim, for their continuous support and encouragement. This thesis would not

have been completed without their valuable supervision, patience, and support.

Honestly, it was my honor to work with them.

Thank you from the bottom of my heart!

vii

TABLE OF CONTENTS

DEDICATION .. v

ACKNOWLEDGMENTS .. vi

LIST OF TABLES .. x

LIST OF FIGURES .. xi

Chapter 1: Introduction .. 1

1.1. Problem Statement .. 2

1.2. Thesis Objective .. 3

1.3. Thesis Significance ... 3

Chapter 2: Background .. 5

2.1. Time Series Analysis ... 5

2.2. Motif Discovery in Time Series ... 6

2.3. MDL-based Time Series Clustering ... 8

Chapter 3: Literature review .. 11

3.1. Workload Characterization and Prediction ... 11

3.1.1. Web Workload Characterization and Prediction 12

3.1.2. Cloud Workload Characterization and Prediction 14

3.2. Periodicity Detection ... 17

3.2.1. Autocorrelation ... 18

3.2.2. Time Series Clustering .. 19

viii

3.2.3. Subsequence Time Series Clustering ... 20

3.2.4. Discussion .. 23

3.3. Baseline System .. 24

3.3.1. Workload Characterization Model .. 25

3.3.2. Workload Pattern Prediction Model .. 25

Chapter 4: Methodology .. 26

4.1. Workload Characterization Model ... 26

4.1.1. Time-Aware Single-Modeling... 26

4.1.2. Time-Aware Multi-Modeling .. 26

4.2. Workload Pattern Prediction Model ... 34

4.2.1. Time-Aware Single-Modeling... 34

4.2.2. Time-Aware Multi-Modeling .. 38

Chapter 5: Experimental Evaluation... 39

5.1. Experimental Setup ... 39

5.1.1. Datasets Collection ... 39

5.1.2. Training and Testing Data Splits ... 40

5.1.3. Evaluation Measures ... 41

5.2. Results .. 41

5.2.1. Workload Characterization Evaluation .. 42

5.2.2. Workload Pattern Prediction Evaluation .. 51

ix

Chapter 6: Conclusion and Future Work .. 57

6.1. Future Work .. 58

References ... 59

Appendix ... 63

x

LIST OF TABLES

Table 1. Example of the MDL Principle... 9

Table 2.Strengths and Weaknesses of Periodicity Detection Researches. 23

Table 3: Statistical Features Extracted per Month .. 44

Table 4: Intensity-Based Workload Partitioning Results of the Library Portal 45

Table 5: Workload Pattern Prediction Error for all Time-Aware Single-Modeling

Approaches. The Best Score per Horizon is Boldfaced .. 53

Table 6: Workload Pattern Prediction Error of Time-Aware Multi-Modeling Approach.

 .. 54

Table 7: Workload Pattern Prediction Error of Proposed Approaches and Baseline

Systems. The Best Score per Horizon is Boldfaced ... 56

Table 8:The Tuned Parameters Values that Produce the Minimum Prediction Error . 63

xi

LIST OF FIGURES

Figure 1: MOEN enumeration example ... 7

Figure 2. Workload characterization categories .. 11

Figure 3. Periodicity detection techniques .. 17

Figure 4. The Baseline system architecture – taken from [11] 24

Figure 5: Time-Aware workload prediction using periodicity detection approach 27

Figure 6: Architecture of the proposed periodicity detection component 28

Figure 7. Two workload patterns that similar in structure but different in intensity .. 29

Figure 8: Univaraite modeling ... 35

Figure 9: Multivaraiate modeling ... 35

Figure 10: RNN architecture .. 37

Figure 11: Example of an anonymized apache access log. .. 40

Figure 12: Multiple train and test approach .. 41

Figure 13: Residual error with increasing number of clusters over all datasets 43

Figure 14: Number of request per day for the library portal 44

Figure 15: The 1st level periodic patterns extracted from the library portal dataset ... 46

Figure 16: Level 2.1 periodic patterns extracted from the library portal dataset 47

Figure 17: Level 2.2 periodic patterns extracted from the library portal dataset 47

Figure 18: Number of requests per hour of the newsLink portal 49

Figure 19: Level 1.1 periodic patterns extracted from the newsLink portal dataset ... 50

Figure 20: Level 1.2 Periodic patterns extracted from the newsLink Portal Dataset .. 50

file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842546
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842547
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842548
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842549
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842550
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842551
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842552
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842553
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842554
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842555
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842556
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842557
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842558
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842559
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842560
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842561
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842562
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842563
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842564
file:///C:/Users/na15629/Desktop/Thesis_FinalVersion_NadaAboueata_200900288%20(002).docx%23_Toc15842565

1

Chapter 1: Introduction

With the increased hosting of web applications on the cloud, a wide variety of

techniques have been developed to improve the scalability of hosted applications while

minimizing the cost. One of the main characteristics of cloud hosting is elasticity as the

application owners can acquire, and release resources as needed. These resources

include virtual machines (VMs), computation storage, and bandwidth. Deciding and

scaling the appropriate resources to provision to maintain the desired application

performance remains a challenging problem. Under-provisioning of resources may lead

to performance degradation while over-provisioning incurs unnecessary cost wasted on

unused resources. In the case of burst workload, the under-provisioned application leads

to costly Service Level Agreement (SLA) violations. Hence, there is a trade-off

between meeting SLAs and minimizing the provisioning cost. Therefore, it is necessary

to develop effective techniques to automatically allocate resources according to the

current application demand. For this purpose, many auto-scaling techniques have been

proposed in the literature.

Auto-scaling techniques are classified into two categories namely, reactive and

proactive. Reactive techniques are based on a set of predefined rules defined by the

system administrator. These rules define thresholds on performance metrics such as the

response time and/or on hardware counters such as CPU, RAM, and bandwidth usage.

When an indicator crosses the threshold, this trigger scaling to bring the system back to

a normal state. However, such scaling takes places after the performance degradation

occurs and may lead to SLA violations during the time it takes to provision additional

resources. Additionally, reactive autoscaling is incapable of dealing with a rapid

increase in workload [21]. On the other hand, Proactive based techniques aim to predict

2

the required number of resources beforehand to avoid any overhead delay in response

time. Generally, scaling can either be done horizontally or vertically. Horizontal scaling

refers to adding or removing virtual machines (VMs). While, vertical scaling refers to

adapting the number of resources allocated, such as RAM and CPU, to an already

running VM. Due to the time needed to boot newly added VMs, proactive based

techniques are gaining significant interest compared to reactive based techniques.

1.1. Problem Statement

Most of the existing workload characterization and prediction methods only

consider the number of incoming requests (i.e. arrival rate) [3, 5, 8, 15, 24, 28] to

characterize the workload. However, web applications workload is a complex multi-

facets concept which can be characterized by different properties such as the workload

periodicity, burstiness, mean request arrival rate, and variance of the request arrival

rate, etc. [6]. For instance, the resources needed to serve 1000 heavy load requests are

different than serving the same number of requests but generating low load. Recently

the work proposed in [11] considers both the response document size and the response

time to characterize and predict the workload. However, such approach does not

consider the temporal characteristics of the workload. Generally, web applications are

subjected to dynamic workloads which could exhibit repeated pattern over time. In fact,

the time taken by the server to respond can be influenced by both the requested

document size and the number of requests submitted to the server at the current time t.

Therefore, we believe that considering the workload temporal features can improve the

workload characterization and increase the prediction accuracy. There are different

ways to consider and include the request time characteristics. In this study, we propose

two different models: Time-Aware Single-Modeling and Time-Aware Multi-Modeling.

The proposed approach extends the work proposed in [11]. We consider the request

3

time, in addition to the document size and response time features considered by [11]

with the aim of achieving better workload characterization and prediction.

1.2. Thesis Objective

The focus of this thesis is to achieve more accurate predictions of the workload. The

following are the main objectives of the thesis:

 Design a time-aware approach that incorporates the request time characteristics

in order to achieve better workload characterization and more accurate

prediction.

 Investigate and evaluate different ways of including the request time

characteristics to improve the workload predictions.

 Conduct a comprehensive performance evaluation to compare the proposed

time-aware approach with the state-of-art methods reported in the literature.

1.3. Thesis Significance

We believe that this work is highly important as more accurate workload

prediction allows better autoscaling to meet the application desired performance at a

minimal cost. This yields improved application performance and the reduction of SLA

violations. Additionally, it could also be beneficial for the service providers seeking to

optimize their resources utilization.

Although many research works have been done in this area, there are still

opportunities for further improvement in workload characterization and prediction

accuracy.

The remainder of the thesis is organized as follows. Chapter 2 presents the

background and concepts needed for the remainder of this thesis. First, it discusses

the general concepts of time series analysis. Then it introduces motif discovery and

4

Minimum Description Length (MDL) based time series clustering. Chapter 3,

presents a review of the related work in workload characterization and periodicity

detection area. Our developed solutions and its different variations are presented in

Chapter 4. Chapter 5, discusses the experimental setup, datasets, and obtained results.

Finally, we conclude the thesis and present some directions for future work.

5

Chapter 2: Background

In this chapter, we present the background and concepts needed for the

remainder of this thesis. Section 2.1. presents the general concepts of time series

analysis. Section 2.2. & Section 2.3. introduces motif discovery and MDL-based time

series clustering, respectively.

2.1. Time Series Analysis

Definition 1. A Time Series T of length n is an ordered list of n real observations

which collected at fixed time intervals, where

𝑇 = { 𝑡1 , 𝑡2 , 𝑡3 , … . , 𝑡𝑛}

Definition 2. A Time Series Sampling Rate is defined as the sampling rate r at which

the time series observations are collected. Formally,

𝑇𝑟 = { 𝑡1
𝑟 , 𝑡2

𝑟 , 𝑡3
𝑟 , … . , 𝑡𝑛

𝑟}

Definition 3. A Subsequence S of length m of the time series T of length n is a short

m-length time series subsets of T, which defined as

𝑆𝑖
𝑚 = { 𝑡𝑖 , 𝑡𝑖+1 , 𝑡 𝑖+2 , … . , 𝑡𝑖 + 𝑚−1} Where 1 ≤ 𝑖 ≤ 𝑛 + 𝑚 − 1

Definition 4. A Motif M of length k is the pair of the two most similar subsequences

of length k, which defined as

𝑀𝑘 = { 𝑆𝑖
𝑘 , 𝑆𝑗

𝑘}

6

2.2. Motif Discovery in Time Series

Motif discovery is an important subroutine that has been used in different time

series mining tasks and applications such as classification, clustering and anomaly

detection [29]. It is used to find the two most similar subsequences in a time series. The

most well-known motif discovery algorithm “Mueen-Keogh” (MK) is claimed to be the

fastest algorithm. However, MK method is an exact algorithm that runs for a fixed motif

length specified by the user, and considered to be intractable (i.e. not scalable) for

enumeration purposes due to the massive distance computations needed for all motif

lengths [22]. In fact, deciding the optimal length of motif is a challenging task for

realistic datasets. Thus, to overcome this problem, a motif discovery method has been

proposed called MOEN to enumerate all motifs for a range of lengths. MOEN algorithm

searches for all motifs within the specified range of lengths and outputs only the

maximally covering motifs, where no other motifs cover it.

MOEN algorithm frees the user from the burden of specifying the exact length

of motif, also it has been proved that it is an order of magnitude faster than the native

solutions of motif discovery [22]. The speed-up comes from the lower bound (LB)

applied on the normalized distances to prune most of the distance computations for the

next motif lengths once the best motif of the first length is found. To illustrate the main

intuition behind the lower bound in speeding-up the algorithm, we show an example

below – taken from [22].

Example

Given the motifs length that ranges between (7, 9). First, the list of top-k motifs

of length 7 is generated, as shown in Figure 1 (A). After the list is generated, the lower

bound of the distance for the next length 8 is computed using the max distance in the

first list. In fact, this lower bound is used to exclude the motifs that have distances

7

greater than lower bound in the subsequent lengths, as shown in Figure 1 (C). This is

because none of the skipped motifs can have smaller distance than the lower bound for

the next length. Therefore, skipping these motifs helps to confine the search space and

thus reduce the time complexity.

Figure 1: MOEN enumeration example

8

2.3. MDL-based Time Series Clustering

The description length (DL) of data m is defined as the number of bits needed

to describe the data m. The main intuition behind the Minimum Description Length

(MDL) concept is to find a model or hypothesis that has the best ability to compress on

a given dataset. In the context of time series clustering, the hypothesis is declared as

the cluster center and the more compression ability of the hypothesis, is the more

similarity of subsequences would be. To illustrate the MDL principle, we show an

example below – adapted from [26]- using discrete data structure.

Example

 Given the name “Felix” with its variations in different languages: Felix

(English), Felice (Italian), and Félix (French). If it requires 8 bits to store each letter,

then the description length for all names  DL(D) = (5 ∗ 8) + (6 ∗ 8) + (5 ∗ 8) =

128 𝑏𝑖𝑡𝑠. On the hand, with MDL, if “Felix” is determined to be the hypothesis, then

we do not have to store all names except the hypothesis and the difference between

hypothesis and other names variations. Through MDL, we use only 16 bits to store

the last two letters of the 2nd name, and 8 bits to store the second letter of the 3rd name,

as shown in Table 1. Thus, in total we use only 64 bits to store all names  DL(D|H)

= (5 ∗ 8) + (2 ∗ 8) + (1 ∗ 8) = 64 𝑏𝑖𝑡𝑠. Notice that the bitsave indicates the

compression ability of the hypothesis and the similarity degree of other names

variations according to the hypothesis.

9

Table 1. Example of the MDL Principle

Next, we present the required definitions of MDL in the context of time series

clustering.

Definition 5. The entropy of a time series T is a lower bound of the total number of bits

required to represent T, which defined as

𝐻(𝑇) = − ∑ 𝑃(𝑇 = 𝑡) log2 𝑃(𝑇 = 𝑡) 𝑡

𝑤ℎ𝑒𝑟𝑒 P is the probability that symbol t will occur

Definition 6. A description length (DL) of a time series T is defined as the total number

of bits required to represent T, which can be calculated as follows:

𝐷𝐿(𝑇) = 𝑚 × 𝐻(𝑇)

Definition 7. A Hypothesis (H) is defined as the subsequence that used to encode or

compress other subsequences.

Definition 8. A conditional description length of subsequence A, given the hypothesis

H, is defined as follows:

𝐷𝐿(𝐴 | 𝐻) = 𝐷𝐿(𝐴 − 𝐻)

Definition 9. A Description Length of a Cluster C (DLC) is the total number of bits

required to represent all subsequences belongs to C. The center of the cluster is

 H = null

DL(H) = 0

H = 'Felix'

DL(H) = 40

D DL(D) DL(D|H)

Felix 40 0

Felice 48 16

Félix 40 8

Total 128 bits 64 bits

10

presented as the hypothesis H which used to encode other subsequences. DLC of cluster

C is defined as follows:

𝐷𝐿𝐶(𝐶) = 𝐷𝐿(𝐻) + ∑ 𝐷𝐿(𝐴 | 𝐻)

𝐴 𝜖 𝐶

Definition 10. A bitsave is the total numbers of bits saved after applying a specific

action. Formally, bitsave is defined as follows:

𝑏𝑖𝑡𝑠𝑎𝑣𝑒 = 𝐷𝐿(𝐵𝑒𝑓𝑜𝑟𝑒) − 𝐷𝐿(𝐴𝑓𝑡𝑒𝑟)

In the context of time series clustering, bitsave is calculated after applying the following

actions:

 Creating new cluster C’ using subsequence A and B

𝑏𝑖𝑡𝑠𝑎𝑣𝑒 = (𝐷𝐿(𝐴) + 𝐷𝐿(𝐵)) − 𝐷𝐿𝐶(𝐶′)

 Adding subsequence A to existing cluster C

𝑏𝑖𝑡𝑠𝑎𝑣𝑒 = (𝐷𝐿(𝐴) + 𝐷𝐿𝐶(𝐶)) − 𝐷𝐿𝐶(𝐶′)

 Merging two clusters, C1 and C2 to cluster C’

𝑏𝑖𝑡𝑠𝑎𝑣𝑒 = (𝐷𝐿𝐶(𝐶1) + 𝐷𝐿𝐶(𝐶2)) − 𝐷𝐿𝐶(𝐶′)

11

Chapter 3: Literature review

In this chapter, we review some of the works that have done in the areas of

workload characterization and prediction, and periodicity detection. Because none of

the periodicity detection studies have been applied to the web workload domain, the

papers that have been reviewed in this section are categorized into:

1. Workload Characterization and Prediction.

2. Periodicity Detection.

3.1. Workload Characterization and Prediction

Generally, workloads can be investigated and characterized from two different

perspectives: Conventional web workload and Cloud workload, as shown in Figure 2.

Conventional web workloads are characterized in terms of HTTP requests

issued by the clients, page properties, and access patterns [6]. On the other hand, cloud

workloads are characterized in terms of resources usage, such as virtual machines, CPU

Figure 2. Workload characterization categories

12

and RAM utilization [6]. Many research studies have been proposed and experimented

with different solutions to characterize and predict the workload. Some of the works

characterize the web workloads in terms of HTTP requests arrival rate, as done in [3,

5, 8, 15, 24, 28]. Meanwhile, other works characterize the workload of applications

deployed on cloud infrastructures in terms of hardware counters, such as CPU and

RAM utilization, as done in [9, 10, 12, 16, 20, 30]. The papers that have been reviewed

in this section are categorized into Web Workload and Cloud Workload characterization

and prediction.

3.1.1. Web Workload Characterization and Prediction

Most of the existing works characterize the application workload only in terms

of requests arrival, as done in [3, 5, 8, 15, 24, 28]. Generally, time series prediction

models are categorized into two classes, namely stochastic and deep neural networks

models. Time series data can represent different forms of stochastic processes. The

most widely stochastic prediction models used in the literature are, Autoregressive

(AR), Moving Average (MA), Autoregressive Moving Average (ARMA), and

Autoregressive Integrated Moving Average (ARIMA) [32]. Also, deep neural networks

models have proven their effectiveness in workload prediction. The most common and

popular time series neural networks models used in the literature are, Feed-Forward

(FFN), Backpropagation (BNN), Time Delay (TDNN), and Error Correction neural

network (ECNN) [24]. The papers that have been reviewed in this section are

categorized based on the technique used in the prediction phase into Deep Neural

Networks Models and Stochastic Models .

3.1.1.1. Deep Neural Networks Prediction Models

Nikravesh et al. [24] leverage both machine learning techniques, SVM and back

propagation Neural Network, to implement the workload prediction model. The novelty

13

of this study is by building an adaptive workload prediction which chooses

automatically the appropriate prediction model, either SVM or NN, based on the

incoming workload pattern. In this work, they focus on three types of workload which

are: growing workload, periodic workload and unpredictable workload. The results

showed that the SVM trained model performs better with the growing and periodic

workload, while NN trained model has better prediction with the unpredictable

workload. As opposed to the work done in [24], Kumar et al. [15] make use of feed-

forward Neural Network and self-adaptive differential evolution algorithm. The model

is trained using the self-adaptive differential evolution algorithm (SaDE) to learn the

optimal hyper-parameters for the NN model. The SaDE approach has proven its

effectiveness in training feed-forward neural network [17], compared to other

population-based approaches such as PSO, GA, etc [1, 13]. The proposed model

compared with the well-known back-propagation network algorithm and the proposed

model was capable to reduce the prediction error up-to 0.001.

3.1.1.2. Stochastic Prediction Models

Differently, studies in [3, 5, 8] use different time series stochastic models for

workload prediction. Calheiros et al. [5] make use of ARIMA statistical model for

workload prediction. The proposed model applies feedback from the last observed load

to update the model on the run. The predicted workload is passed to a scaling decision

model to allocate resources accordingly. The experiments showed that the proposed

model leads to efficiency in resource utilization with minimal impact in QoS for users.

Similarly, Ali-eldin et al. [3] analyze the trend and seasonality of Wikipedia website

workload using time series models. Based on the analyzed workload patterns, they

propose a simple cubic spline prediction algorithm that can predict workload patterns,

in terms of the number of requests (i.e arrival rate), with MAPE of 2%.

14

As opposed to the work done in [3, 5], Cezar et al. [8] develop an adaptive

method that uses different combinations of time series models, instead of developing

a single time series prediction model for all cases of workload patterns. The selection

of the best prediction model is decided by a genetic algorithm. They use five different

statistical models, which are: Naïve model, autoregressive model, autoregressive

moving average, and Autoregressive Integrated Moving Average. The proposed

approach leads to an accurate prediction of the application workload. In addition, it

shows that the proposed method can adapt different pattern of time series data and

does not need a huge volume of historical data for prediction models training.

3.1.2. Cloud Workload Characterization and Prediction

Some of the works in proactive auto-scaling consider and characterize the cloud

workload in terms of resources usage, such as CPU and RAM usage, as done in [9,

10, 12, 16, 20, 30]. Similarly, to section 3.1.1. , the papers that have been reviewed in

this section are categorized based on the technique used in the prediction phase into

stochastic models and neural networks models.

3.1.2.1. Deep Neural Networks Prediction Models

Recently, machine learning techniques have proven their efficiency and

effectiveness in cloud workload prediction [12, 30]. Tran et al. [30] proposed a

forecasting model using Neural Network technique. This work exploits CPU and

RAM usages simultaneously. The main intuition behind this idea is to predict each

resource usage with considering the relation between all historical resource usages,

CPU and RAM usages. So in that way, they avoid missing any relationship among the

historical resource usage in the prediction phase. The proposed prediction phase

consists of three main sub-components: preprocessor, learning algorithm, and

forecasting model. The preprocessor component uses a fuzzy approach to transform

15

the monitored resource usage into a fuzzy time series, which later used as an input of

the learning component. They use the neural networks algorithm to exploit the

historical data of CPU and RAM resource utilization and then predict the future values

accordingly. The predicted values are then passed to a scaling decision model to make

the final decision of VMs resources allocation.

Similarly, Islam et al. [12], utilize Error Correction Neural Network (ECNN)

and linear regression algorithms to forecast the future demand of CPU usage. During

the training phase, the neural network and linear regression are fed with historical data

of CPU usages to predict the future demand. The produced models from the training

phase, are validated using sliding window technique, where the input x represents a

vector of resource usages over k time intervals and the predicted value y, is r steps

ahead of the input window [12]. The results show that the neural network model using

the optimal window size outperform the prediction accuracy of linear regression

models.

As opposed to the works done in [12, 30], the works in [9, 16] develop an

adaptive workload prediction model based on the workload pattern. Both works [9,

16] focus on forecasting CPU resource usage. Gong et al. [9] proposed two prediction

model, namely: signature-driven and state-driven prediction model. The signature

model is used when historical resource usages exhibit repeated patterns, meanwhile,

the state-driven model is used when the historical resource usages does not follow any

pattern. Differently, Liu et al. [16] proposed to assign different prediction models

according to the structural change of the workload. They classified workloads into

two categories: fast time-scale data and slow time-scale data. The results showed that

the linear regression model manages to predict the slow time-scale data accurately. In

the meantime, SVM model was able to adopt the dramatic changes in fast time-scale

16

data.

3.1.2.2. Stochastic Prediction Models

The most common stochastic prediction model used in the literature is ARIMA,

as done in [10, 20]. Huang et al. [10] proposed a Prediction-based Dynamic Resource

Scheduling (PDRS) approach for resource allocation of virtualized cloud systems. The

proposed system consists of four main components: NodeAget, System Monitor,

Resource Demand Predictor, and Elastic Scheduler. The NodeAget is deployed on

each cluster server, and it is responsible to collect the resource usages statistics, which

represents the CPU usage in this study. These statistics are then collected by the

System Monitor component for a predefined measurement interval. Thereafter, the

Resource Demand Predictor employs an ARIMA model to predict the usage statistics

collected by the System Monitor component. The main novelty of this work is that the

resource demand predictor component employs multi-step prediction, first to predict

the future usage of each resource type, then analyze the predicted CPU usages to

determine the state of the server in the next scheduling interval. Each state has its

lower and upper bound of the CPU usage. Predicting the server state is helpful to

overcome the issue of over-estimation or under-estimation of resource usages

prediction. Based on the predicted information, resource usages, and server state, the

Elastic Scheduler component allocates the required number of VMs. The results

showed that the proposed system improves the prediction error and allocate resources

with an acceptable level of SLA. Similarly, Meng et al. [20] proposed CURPA, a

container resource utilization prediction algorithm which based on ARIMA time

series model. However, this work leverages the docker container as it is more

lightweight than the virtual machines and easier to be deployed. The resources usage

considered in this study is the CPU utilization. The CPU usages are used to train a

17

prediction model based on ARIMA, which later will be predicted by the trained

model. The predicted usage is then used by a provision model to allocate the sufficient

number of resources by adopting a horizontal auto-scaling approach to increase or

decrease the number of containers. The results showed that by taking advantage of

ARIMA and Docker container, CURPA managed to achieve high prediction accuracy.

3.2. Periodicity Detection

One way to include the request time characteristic is by considering the

workload periodicity. Many works in the literature have been proposed to address the

periodicity detection problem in many fields such as finance, e-commerce, medicine,

science, image analysis, etc. The papers that have been reviewed in this section are

categorized based on the periodicity detection technique that has been used:

Autocorrelation and Time Series Clustering, as shown in Figure 3.

Figure 3. Periodicity detection techniques

18

3.2.1. Autocorrelation

Autocorrelation function (ACF) is one of the tools used to find repeated patterns

in time series data. ACF measures the correlation between the original signal and a

shifted version of itself with different time lags. The correlation values range between

1 and -1. Intuitively, if the correlation is near 1 then a repeated pattern is declared at

lag t, while an autocorrelation near 1 means that the signal has an opposite direction at

lag t. On the other hand, a random signal has an autocorrelation of 0 at all-time lags.

Many studies consider ACF for periodic pattern identification [7, 31]. Vlachos

et. al [31] proposed a non-parametric approach which based on ACF and DFT for

periodicity detection in time series data. They utilize a two-tier approach by

combining both methods, Periodogram and Autocorrelation method, which called

AUTOPERIOD. The first step consists of extracting the candidates periods, e.g., hints,

by using the Periodogram method. These candidates may be false due to the spectral

leakage problem in the periodogram method. Thus, they have developed a verification

step by using the autocorrelation function, to verify the correctness of the candidate

periods produced by the periodogram. The intuition is that if the candidate periods

reside on the hill of the ACF, then this is considered as a correct period. Otherwise,

the candidate period is discarded and considered as a false alarm. Similarly,

Calzarossa et al. [7] analyzes and predicts the dynamic of web content changes. They

proposed system consist of two components: pattern identification and forecasting

component. In the pattern identification component, they utilize the ACF and

decomposition method to identify temporal patterns. The ACF function computed at

different time lags ranges varying from one hour up to one week. The peaks detected

by the autocorrelation function identify daily patterns of the time series which

19

repeated every 24 hours. To identify the temporal patterns more accurately, they

decompose time series data into three components: trend, seasonality and remainder

components. The weekly and daily patterns are captured by the trend and seasonal

competent, respectively. After that, the forecasting component uses numerical fitting

techniques to identify the parameters of the trigonometric polynomial that best fit the

trend and seasonal patterns. On the other hand, it uses ARIMA model to fit the

remainder part.

Despite the success of ACF function in periodic pattern extraction, ACF doesn’t

give the details about when exactly each identified pattern occurs. For example, ACF

might give you that there is a pattern which is repeated every 5 hours, however without

any insights when exactly this pattern is repeated within the day (i.e., the starting and

ending hour of the repeated pattern). For this purpose, Time series clustering

techniques are discussed in the next section to address this limitation.

3.2.2. Time Series Clustering

As mentioned in the previous section that ACF doesn’t declare clearly the time

boundaries of the discovered periodic patterns. One way to address this gap is by using

time series clustering techniques. Clustering is the most common solution to uncover

hidden repeated patterns in time series data. As stated in [2], time series clustering

related works are classified into three categories as following:

a) Whole Time-series clustering: This clustering is similar to the conventional

ways to cluster discrete objects. In the context of time series, discrete objects

are presented as a set of individual time series, with the objective to group

similar time series into the same cluster/group.

b) Subsequence Time-series clustering (STS): As opposed to the Whole time-

series clustering, subsequence clustering is performed on a single stream of time

20

series data. This category consists of two steps: first extracting set of

subsequences from the original time series stream using a sliding window, and

then cluster similar subsequences into same groups.

c) Time-point clustering: The notation of clustering here is clustering time points

based on a combination of their temporal proximity and similarity between time

points values.

Given all time-series clustering categories discussed above, STS clustering

category is the best fit for this thesis because the web applications workload is

presented as a single stream of time series data. Web workload time series data should

be partitioned into meaningful subsequences, and then cluster these subsequences into

groups. By this way, periodic patterns can be declared using these clusters.

3.2.3. Subsequence Time Series Clustering

Nevertheless, extracting the most meaningful subsequences for clustering from

a single stream of time series data is a challenging task. As stated in [14], all studies

conducted before 2003 tried to cluster every single subsequence in the original time

series which leads to the well-known issue of meaningless clustering results in STS

clustering. Therefore, many works have been proposed later to address this issue. The

papers that have been reviewed in this section focus mainly on the time series

clustering algorithms which based on the minimum description length (MDL)

distance measure.

3.2.3.1. MDL-based Clustering Method

The most recent works on STS clustering (STS) [18, 19, 26, 27] address the

problem of meaningless clustering results by the following ideas. First, STS clustering

requires ignoring some data from the time series. In fact, the observations proved that

any attempt on trying to cluster every single subsequence of a time series might lead to

21

meaningless results. The meaningless results are due to the noisy parts included in the

clustering process. Thus, ignoring some subsequences is needed to avoid any

meaningless results. Second, clustered subsequences are not allowed to overlap with

each other. By using these two ideas, [18, 19, 26, 27] resolve the meaningless problem

in STS clustering. All studies in [18, 19, 26, 27] leverage motif discovery methods to

extract meaningful subsequences. Motif discovery method aims to find the two most

similar subsequences in a given time series. The most common algorithm used in the

literature to find the most similar pair of motifs is MK algorithm [23].

Both works in [26, 27] use MK motif discovery algorithm to subsequence the

original time series and find out the most meaningful list of motif pairs. Given the list

of motif pairs discovered by MK, authors in [26] make use of the Minimum

Description Length (MDL) similarity measure to find the best hypothesis that has the

highest ability to compress the data. The compression ability indicates the degree of

similarity between the model and subsequences. For example, if the compression

ability achieved by the model is high, this indicates that there is a high similarity

between the model and subsequences. The proposed clustering algorithm defines three

operations, which are: creating a cluster, adding to cluster, and merging clusters. The

proposed approach iteratively adopts the idea of MDL to calculate the number of bits

saved for each operation and then chooses the operation that maximizes the number of

bits saved. Differently, the work proposed in [27] uses data encoding distance measure

to choose the optimal operation in each step of clusters construction.

Despite the success of both approaches [26, 27] in achieving meaningful

clustering results, a predefined parameter is still needed by the MK algorithm to define

the approximate length of subsequences. Nevertheless, defining the optimal length of

the subsequence is a challenging task. Therefore, many works in the literature have

22

been proposed to address this issue by automating the process of finding the optimal

length of subsequences.

Madicar et al. [18] proposed a parameter-free STS clustering which eliminates

the burden on the users to set the subsequence length parameter. The proper length of

the subsequence is found by running the MK motif discovery algorithm [23] iteratively

at different lengths starting from length 2 up-to-half of the time series length. The

discovered motifs are then ranked based on the Euclidean distance similarity measure

and their frequency. After that, all kth-best motif are passed to the clustering algorithm.

Similarly to [26, 27], the clustering process in [18] defines three operations: add, create

and merge. The error for each operation is calculated and then choose the operation

that minimizes the error. The error per cluster is defined as the summation of Euclidean

distance between each subsequence in a cluster.

Madicar et al. [19] proposed an enhanced version of [18] to improve the quality

of the discovered motifs and to address the high variability in the subsequences widths.

Similar to the work in [18], [19] consists of two main phases: selection of the proper

subsequence length process and clustering process. In the first phase, they combine both

MDL and MK motif discovery to improve the quality of the discovered motifs. The

MDL is used to rank the priority of the motif results. For the clustering process, it uses

the same idea of the clustering process used in [18, 26, 27]. The results proved the

robustness of the proposed approach in handling the high variability of subsequences

length.

23

3.2.4. Discussion

In this section, we present a comparison between the proposed approaches under

autocorrelation and subsequence time series clustering. The strengths and weaknesses

of the proposed works under each method are presented in Table 2. The strength is

assessed in terms of two dimensions, namely, parameter-free and scalability on large

datasets. On the other hand, weaknesses are evaluated in terms of lack of time

boundaries. It can be noticed from Table 2, subsequences time series clustering

approaches address the gap of declaring the time boundaries of the discovered pattern.

However, those algorithms are not scalable on large datasets due to the motif discovery

method used in these studies. More details on an alternative scalable method of motif

discovery, is already presented in section 2.2.

Table 2.Strengths and Weaknesses of Periodicity Detection Researches.

 Strength Weakness

Article Method Parameter-

free

Scalability Lack of time

boundaries

[31]

ACF

✔

✔

✔

[7] ✔ ✔ ✔

[19]

Subsequence

Time Series

Clustering

✔

[18] ✔

[26]

[27]

24

3.3. Baseline System

The proposed approach extends the work presented in [11]. In this study, we

consider [11] as the baseline system that is not using time-aware approach. The

baseline system, shown in Figure 4, composed of two models namely, workload

characterization model and workload pattern prediction model. The detailed

components of each model are described in the following subsections.

Figure 4. The Baseline system architecture – taken from [11]

25

3.3.1. Workload Characterization Model

The workload characterization model consists of three main components:

a) URI Space Partitioning:

The application URIs are partitioned into different partitions based on two

features: response time and document size. The partitioning model uses the

unsupervised clustering algorithm, K-means, to partition the application URIs.

b) Probabilistic URI Workload Modeling:

Given the URIs space partitions, each URI is modeled by a probabilistic

representation vector (𝑣𝑝). The probabilistic workload modeling measures the

probability of the URI to lie in each cluster. The URI probability shows the

distribution of URI along each partition, which given by:

𝑣𝑝(𝑖)
=

𝑞𝑖

𝑞𝑡

where 𝑞𝑖 are the URI occurrences in the i-th partition and 𝑞𝑖 is the total

number of the URI occurrences over all partitions.

c) Workload Pattern Identification

Given the URIs distribution in each cluster, this component computes the

representation vector (i.e., workload pattern) of the received URIs in a given

time interval. This vector shows the distribution of URIs along each cluster, and

the summation of all distributions yield the total number of incoming requests

in that time interval. Later in this thesis, we refer to the time interval by a

sampling rate.

3.3.2. Workload Pattern Prediction Model

The workload prediction model considers two methods of time series

forecasting namely, moving average and non-negative least square regression (NNLS)

methods. The prediction model will be used later to predict the workload patterns.

26

Chapter 4: Methodology

The proposed approach extends the work presented in [11] by adding a temporal

dimension that considers the request time, in addition to the document size and

response time features in order to deliver better workload characterization and

prediction. The request time characteristic is included using two different approaches:

Time-Aware Single-Modeling and Time-Aware Multi-Modeling. The upcoming

sections present the details of how the proposed approaches extend the baseline

system models.

4.1. Workload Characterization Model

This step involves the process of generating the workload patterns (i.e. URIs

distribution) given a predefined sampling rate, as described in Section 3.3. Two models

were investigated: Time-Aware Single-Modeling and Time-Aware Multi-Modeling.

4.1.1. Time-Aware Single-Modeling

In this approach, the workload characterization model generates the workload

patterns for the entire time-space. Thus, the entire application logs are passed to the

characterization model to generate the workload patterns.

4.1.2. Time-Aware Multi-Modeling

Contrary to the Single-Modeling approach, the multi-models approach

generates the workload patterns per each time partition as illustrated in Figure 5. The

time partitions are identified by a periodicity detection component. The next

subsections present the details of the proposed periodicity detection component.

27

4.1.2.1. The Proposed Periodicity Detection Component

The periodicity detection component consists of two main models: Intensity-based

Workload Partitioning and Hierarchical Time partitioning, as shown in Figure 6. The

Intensity-based Workload Partitioning model partitions the entire URIs space into

different partitions based on the intensity of the workload. The workload is considered

as the number of requests. Then, the discovered partitions are passed to the Hierarchical

Time Partitioning model to extract the periodic patterns. The detailed components of

each model are described in the next subsections.

Figure 5: Time-Aware workload prediction using periodicity detection

approach

28

Figure 6: Architecture of the proposed periodicity detection component

29

a) Intensity-based Workload Partitioning

This model is responsible for partitioning the URIs space based on the workload

intensity, before passing it to the hierarchical time partitioning model. The workload

pattern intensity is measured as the number of requests received at time t. As mentioned

earlier in Section 3.2.3. , the subsequence time series clustering methods are used to

extract periodic patterns. A popular approach of the time series clustering is structure-

based clustering, which looks for similar patterns in change (i.e. structural similarity)

regardless of the pattern’s intensity (i.e. amplitude of signal) [2]. For example, two

workload patterns might be identified as similar patterns because they have similar

structure although they may have different intensity as illustrated in Figure 7. In fact,

workload patterns with similar structures and different intensity should be considered

different as each one requires different amount resources based on the intensity.

Therefore, to avoid this problem we propose an intensity-based workload partitioning

0

20

40

60

80

100

120

0 2 4 6 8 10 12

W
o

rk
lo

ad
 In

te
n

si
ty

Time

Workload Pattern Intensity

Figure 7. Two workload patterns that similar in structure but different in

intensity

30

which is responsible to partition the URIs space based on the workload intensity, before

performing the hierarchical time partitioning for periodic patterns extraction. The

proposed model is composed of two main components: Data Sampling and Features

Extraction component. The proposed model is composed of two main components:

Data Sampling and Features Extraction component. The Data Sampling component

samples the historical logs using a predefined sampling rate. For example, if the

sampling rate is hour, then the sampled data (S) is expressed as the total number of

requests received per hour. The Features Extraction components uses k-means

clustering algorithm to partition the sampled data using four statistical features, which

are: mean (Smean), standard deviation (Sstd), minimum (Smin) and maximum (Smax).

b) Hierarchical Time Partitioning

Given the data partitions produced by the previous model, this model extracts

periodic patterns in a top-down hierarchical fashion. Generally, the periodic patterns

are identified using a subsequence time series clustering method (STS) given a

predefined sampling rate. The levels in this model are computed recursively, such that

each periodic pattern identified at level n, is the input to the next level to extract the

periodic patterns from each. In addition, the sampling rate used at each level is reduced

as we go down the hierarchy. The main intuition behind this idea is that zooming-in

into small partitions at each level of the hierarchy might help in extracting more

meaningful periodic patterns. For example, if k periodic patterns are extracted at level

n, then at level (n+1) our approach will zoom-in into each pattern declared at the

previous level n to extract periodic patterns from each, as illustrated in Figure 16 and

Figure 17. This model is composed of three main components: Data sampling,

Subsequence time series clustering, and Periodic patterns extraction. The details of

these components are explained in the next subsections.

31

i. Data Sampling

Given the URIs space per partition, these partitions are sampled using a

sampling rate which gets reduced as we go down the hierarchy. The main

intuition behind this idea is that the sampling rate is directly proportional to

the size of partitions at each level. For example, monthly sampling rate would

be used to extract patterns from a yearly dataset, meanwhile, daily sampling

rate would be used with monthly datasets. Therefore, in this component, if

data partitions at level n are sampled using a monthly rate, then subsequent

partitions at level n+1 are sampled using a daily rate.

ii. Subsequence Time Series Clustering

 Afterward, the sampled data is passed to a subsequence time series

clustering (STS) method to extract similar patterns. For this purpose, we

use the MDL-based clustering method proposed in [26]. This method [26],

consists mainly of two stages: subsequences extraction and clustering stage.

In the subsequence extraction phase, we extract the most meaningful

subsequences from the entire series of time series data. After that, the

extracted subsequences are passed to the clustering stage.

The STS clustering algorithm proposed in [26], makes use of MK [23]

motif discovery algorithm for subsequences extraction stage. However, MK

is not scalable for enumeration purposes, as mentioned in section 2.2.

Therefore, to overcome this problem, we replaced the MK method used in

[26] by MOEN motif discovery method [22] to enumerate all motifs for a

range of lengths.

Algorithm 1 shows the pseudocode of the modified version of the MDL-

based clustering approach. The algorithm takes the time series and minimum

32

and maximum length of motif as an input, and the final clusters of similar

subsequences as an output. First, the algorithm enumerates all motifs given

the minimum and maximum length of motif. Then, the enumerated motifs are

then passed to the next stage “clustering stage”. The clustering stage is done

in a bottom-up hierarchical fashion. It defines three operations, which are:

create a cluster, add to cluster and merge clusters. At each level of the

hierarchy, it tries all operations and chooses the best operator. The algorithm

uses the minimum description length distance measure (MDL) to calculate the

number of bits saved by each operator and then chooses the operator that

maximizes the number of bits. The algorithm terminates in two ways: if the

best possible operator cannot save more bits, or all data are used.

iii. Periodic Patterns Extraction

 Given the subsequences clusters produced by the STS clustering

component, not all similar subsequences in each cluster can be declared

periodic. As we might have similar subsequences that occur at random places

of the time series. Therefore, the proposed model declares periodicity in each

cluster if at-least two members occur within the same place of the time series.

For example, a periodicity is declared if the similar subsequences in a cluster

occur between 1:00 pm and 2:00 pm. Meanwhile, if the similar subsequences

occur at totally different places, let us say one occurs at 6:00 am, and other

occur at 2:00 pm, then this case is not declared as periodic patterns. The

extracted periodic patterns are then passed again to the “Hierarchal Time

partitioning model” to extract periodic patterns from each pattern partition

identified at the previous level of the hierarchy.

33

34

After extracting periodic patterns partitions, each partition is passed to the Workload

Characterization Model to generate the workload patterns per each partition.

4.2. Workload Pattern Prediction Model

Given the workload patterns generated by the Workload Characterization

Model, this model is responsible for predicting the workload patterns at the next time

interval. The following subsections present the steps taken to develop a single and

multi-time-aware prediction models, respectively:

4.2.1. Time-Aware Single-Modeling

In this approach, we develop one prediction model for the entire time-space.

Basically, the steps taken to develop a single time-aware prediction model, are as

follows:

1. Features Engineering

Given the workload patterns generated by the Workload Characterization Model,

the features engineering process is applied to extract different features from the

workload patterns. The features could be categorized into two categories based on the

modeling type:

a) Univariate Modeling: uses one feature to construct the feature matrix and

target value, as shown in Figure 8. In this study, we consider the number of

requests as a feature to construct the model.

b) Multivariate Modeling: incorporates different time features to construct the

feature matrix. The time features considered in this study are: month, day of

week, hour of day, minute of the day, is weekend, and is holiday. This method

includes the extracted time features and number of requests at time (t) as the

features matrix to predict the next number of requests, as shown in Figure 9.

35

2. Time Windowing

Time windowing is one of the transformation techniques used in time series

prediction. Since the web applications workload data is a time series data, we consider

the window size and time horizon to transform the workload data. Figure 8 illustrates

the concept of window size, by selecting the last k number of requests from time (t) to

(t+window) as the feature matrix. On the other hand, the time horizon defines which

step ahead to be predicted. For example, if the horizon is 2, then the second step ahead

will be predicted. Figure 8 and Figure 9 illustrates how time horizon concept is applied

to the target value.

Figure 9: Multivaraiate modeling

Figure 8: Univaraite modeling

36

3. Prediction Models

We used two different methods to build the prediction models: NNLS Linear

Regression and Long Short-Term Memory Neural Networks (LSTM).

a) Non-Negative Least Square Regression (NNLS):

The NNLS is one type of least square methods that are used to estimate the coefficients

of the fitted linear regression model. A simple linear regression model equation is

shown in the below equation:

𝑌 = = α + βX

The coefficients (β and α) are estimated by minimizing the sum of squares of the

differences between the actual values and the predicted values. NNLS apply a

constrained least square such that the estimated coefficients are not allowed to be less

than 0.

b) Long Short-Term Memory Neural Networks (LSTM)

Recurrent Neural Network has received great attention for modeling time series

data due to its effectiveness in remembering patterns for long durations of time. This is

achieved by the time dependency property in RNNs. Figure 10 shows how the time

dependency property is achieved through the cyclic connections between the units in

RNNs. Each unit in RNN considers the previous predictions and information learned

from them to predict the future ones. In fact, RNNs are only effective with short term

dependencies. However, it turns out to be ineffective when the predictions need to

remember larger range of dependencies. This is due to a well-known problem RNN

suffers from, which is Vanishing Gradient.

37

Long Short-Term Memory (LSTM) is one variant of RNNs that was designed

to solve the problem RNN suffers when dealing with long term dependencies. The

Vanishing Gradient issue is resolved by including a memory cell that consists of three

main gates: forget gate, input gate and, output gate. The LSTM updates the memory

cell using these gates by controlling what information to forget or keep (forget gate),

what information to update (input gate), and what information to output (output gate).

Due to the effectiveness of this method in modeling and predicting time series

data, LSTM is used in this work to model and predict web applications workload.

LSTM hyperparameters that can be tuned to improve the LSTM performance include

the activation function, number of layers, number of neurons, number of epochs, batch

size, to name a few. In this thesis, we have varied the activation function, the number

of layers, and the number of neurons in each layer. LSTM method is sensitive to the

scale of data. Therefore, we have used the Min-Max scaling method, which scales the

data to a range of [0,1] or [-1,1]. The equation of Min-Max scaling method is shown

below:

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

Figure 10: RNN architecture

38

4.2.2. Time-Aware Multi-Modeling

Given the workload patterns generated by the Workload Characterization

Model per time partition, a prediction model is developed for each partition. In this

approach, we have used a simple univariate regression-based model to predict the

workload per time partition.

39

Chapter 5: Experimental Evaluation

This chapter presents the experiments that we conducted to evaluate the

proposed solutions. We start by presenting the evaluation setup in section 5.1. We then

present the experiments and discuss the results in section 5.2.

5.1. Experimental Setup

This section describes the datasets collection, training and testing data splits,

and the evaluation measures used to evaluate the proposed approach.

5.1.1. Datasets Collection

To evaluate the proposed approach, we obtained the web server access logs from

two real workload datasets generated by the Library Portal at Qatar University1 and

News Portal (NewsLink2) in Pakistan. Qatar University Library portal is a publicly

available site used to access the library resources and services. The NewsLink portal is

a news portal that collects the news from different resources. The workload access logs

store information about the client requests and server response. This log entries include

client IP address, resource requested URL, request timestamp, the status code of the

server response, number of bytes transmitted by the server (e.g., document size),

elapsed time of the requested file (e.g., response time), client user agent, and others.

Figure 11 shows five records of the Library portal access logs collected by an Apache

web server. The IP addresses of the clients are anonymized to ensure their privacy. In

this work, we only consider three features namely, document size, response time and

request timestamp for workload characterization and prediction.

The Library Portal access logs are collected from March 2018 to July 2018.

1 http://mylibrary.qu.edu.qa
2 http://newslink.pk

http://mylibrary.qu.edu.qa/
http://newslink.pk/

40

Meanwhile, the NewsLink access logs are collected across one day, 30 Sep 2017. Since

the obtained News Link access logs are small, we emulate a periodic behavior of arrival

rates over five days. This is done, by replicating the behavior of one day over five days.

In addition, we added a normal random noise with a scale factor of 50 to the periodic

behavior.

5.1.2. Training and Testing Data Splits

We have used the multiple train and test approach that used specifically with

time series data [4], to split our datasets. This approach trains different models to predict

the test data split as shown in Figure 12. The main idea is that once the test dataset

becomes available, the model is recalibrated using the previous train and test datasets.

For the Library Portal dataset, we start by using three weeks of data for training and

one-week data for testing. On the other hand, for News Link Portal dataset, we start

with one-day for training and one-day data for testing

Figure 11: Example of an anonymized apache access log.

41

5.1.3. Evaluation Measures

In this work, the prediction error is calculated as the difference between the

actual and the predicted workload pattern. Given the predicted workload pattern

𝑝𝑡 = [ď1, ď2 , ď3, , ď𝑘] and actual workload pattern 𝑝𝑡 = [𝑑1 , 𝑑2 , 𝑑3 , … . . , 𝑑𝑘] at

time 𝑡, where 𝑘 represents the number of partitions and 𝑑𝑖 is the distribution over

partition 𝑖 , the prediction error is calculated as follows:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = ∑|(ď𝑖 − 𝑑𝑖)|

𝑘

𝑖=1

5.2. Results

In this section, we present and compare the obtained results of the baseline

system and proposed approaches. We start by presenting the workload

characterization evaluation in section 5.2.1. We then evaluate the workload pattern

prediction model in section 5.2.2.

Figure 12: Multiple train and test approach

42

5.2.1. Workload Characterization Evaluation

Before evaluating the prediction model, we first need to generate the workload

patterns, which represents the URI distributions at a given sampling rate. This step is

done using the workload characterization model proposed in [11] . For the proposed

time-aware single-modeling approach, the workload patterns are generated over the

entire time-space. On the other hand, with the multi-modeling proposed approach, the

periodic time partitions are first extracted using the periodicity detection component.

Then, these time partitions are passed to the workload characterization model to

generate the workload patterns per each time partition. The upcoming sections present

the results of generating the workload patterns for both proposed approaches.

5.2.1.1. Time-Aware Single-Modeling

Given the application URIs space of Library Portal and News Link datasets, the URIs

are partitioned into different clusters based on two features: response time and

document size. To identify the optimal number of clusters (k), we used the elbow

method as an indicator of the appropriate number of clusters. Figure 13 shows the

residual error at different number of clusters which ranges between 2 and 26 for the

library portal datasets, and ranges between 2 to 10 for the news link portal. It can be

clearly seen that the residual error starts to flatten significantly at k = 12 and k = 7 for

the library and NewsLink portal, respectively. Thus, from this experiment, we identified

k = 12 and k = 7 as the optimal number of clusters for the library and news link portal,

respectively.

Given the optimal number of URIs clusters, the workload patterns are then

generated using the Workload Characterization Model [11]. The workload patterns are

generated using two sampling rates: one-hour rate and 10-minutes rate.

43

5.2.1.2. Time-Aware Multi-Modeling

In this approach, the periodic patterns are first extracted by the periodicity

detection component. Then, the workload patterns are generated per time partition.

Evaluation on Library Portal Dataset

We present how the proposed periodicity detection is used to extract periodic

patterns from the library portal dataset. First, we start with the Intensity-based

Workload Partitioning Model, followed by the Hierarchical Time Partitioning Model.

a) Intensity-based Workload Partitioning

As shown in Figure 14, the library portal has similar patterns over months but

with different workload intensities. Therefore, we run the intensity-based workload

partitioning model on this dataset with day sampling rate. Then, we extract four

statistical features, Smean , Sstd , Smin , and Smax per month. The months are then

clustered based on the statistical features shown in Table 3 using k-means clustering

method. We run k-means across different number of clusters which ranges between 2

Figure 13: Residual error with increasing number of clusters over all datasets

44

and 5. Results show that the optimal number of clusters is k=2. Table 4 shows that k-

means splits the months into two clusters: March, April, and May in one cluster, and

June and July in another cluster. In fact, these splits show the workload behavior at

Qatar University, as the first three months represent a busy period at the university

compared to June and July period.

Table 3: Statistical Features Extracted per Month

Month Smean Sstd Smin Smax

March 51224.5 11782.8 25189 75465

April 57516.3 15178.7 29734 86084

May 41949.9 10109.2 21915 59714

June 18251.4 6514.6 9484 32079

July 19229.6 4416.5 7755 29066

Figure 14: Number of request per day for the library portal

45

Table 4: Intensity-Based Workload Partitioning Results of the Library Portal

b) Hierarchical Time Partitioning

Given the time partitions produced by the Intensity-based Workload Partitioning

model, each partition is passed to the Hierarchical Time Partitioning model. For

simplicity, we have shown below the levels of the hierarchy.

Level # 1: Hierarchical Time Partitioning

Given the partitions extracted by the Intensity-based Workload Partitioning

model, we sample these partitions using day sampling rate. Then, the sampled data is

passed to the STS to extract periodic patterns. Figure 15 shows the periodic patterns

extracted at this level. The highlighted boxes show the partitions that did not show-up

as periodic patterns. Meanwhile, the others show the discovered periodic patterns.

Month Cluster ID

March 1

April 1

May 1

June 2

July 2

46

Level # 2.1: Hierarchical Time Partitioning

Given the periodic patterns extracted at level # 1, we sampled these partitions

using a smaller one-hour sampling rate. Then, each sampled data is passed to the STS

to extract periodic patterns. Figure 16 shows the periodic patterns extracted at this level.

It can be clearly seen, that the extracted periodic patterns mostly start at the early

morning hours and ends before noon. In fact, this shows how the proposed periodicity

detection component can extract patterns that reflect a realistic behavior that represents

a low activity period in the morning hours which increases gradually in the later hours.

Level # 2.2: Hierarchical Time Partitioning

Differently than level 2.1, level 2.2 samples the periodic patterns extracted at

level # 1 using a smaller 10-minutes sampling rate. This shows the periodic patterns

which appear when the data is sampled using a smaller sampling rate. Figure 17 shows

the periodic patterns extracted at this level. Like level 2.1, most of the patterns extracted

at this level happens to start at the early morning hours and ends before noon.

Figure 15: The 1st level periodic patterns extracted from the library portal

dataset

47

Figure 16: Level 2.1 periodic patterns extracted from the library portal dataset

Figure 17: Level 2.2 periodic patterns extracted from the library portal dataset

48

Workload Characterization Model: After extracting the periodic partitions, the

workload characterization model performed on each time partition to generate the

workload patterns at one-hour and 10-minutes sampling rate. For the time partitions

extracted with one-hour sampling rate, the experiments show that the optimal number

of clusters to cluster the application URIs per time partition is k = 10. Meanwhile, For

the time partitions extracted with 10-minutes sampling rate, the experiments show that

the optimal number of clusters to cluster the application URIs per time partition is k =

8.

Evaluation on the NewsLink Portal Dataset

Similarly, we present how the proposed periodicity detection is used to extract

periodic patterns from the NewsLink dataset. First, we start with the Intensity-based

Workload Partitioning Model, followed by the Hierarchical Time Partitioning Model.

a) Intensity-based Workload Partitioning

As shown in Figure 18, the NewsLink portal has similar patterns over days without

any differences in the workload intensities. Therefore, this step is skipped, and the

original historical logs are passed immediately to the Hierarchical Time Partitioning

Model.

49

b) Hierarchical Time Partitioning

Since the size of NewsLink portal is very small (only five days), we run the

Hierarchical Time Partitioning Model only for one level with two sampling rates: one-

hour rate and 10-minutes rate. The level with both sampling rates is shown below.

Level # 1.1: Hierarchical Time Partitioning

The historical logs of NewsLink are passed to the Hierarchical Time

Partitioning model and sampled using one-hour sampling rate. Then, the sampled data

is passed to the STS to extract periodic patterns. Figure 19 shows the periodic patterns

extracted at this level.

Figure 18: Number of requests per hour of the newsLink portal

50

Level # 1.2: Hierarchical Time Partitioning

Differently than level 1.1, level 1.2 sample the historical logs of NewsLink

using a smaller sampling rate: 10-minutes rate. This just to show the periodic patterns

that appear at a smaller sampling-rate, as shown in Figure 20.

Workload Characterization Model: After extracting the time partitions, the workload

characterization model performed on each time partition to generate the workload

patterns at one-hour and 10-minutes sampling rate. For the time partitions extracted

with one-hour sampling rate, the experiments show that the optimal number of clusters

Figure 19: Level 1.1 periodic patterns extracted from the newsLink portal

dataset

Figure 20: Level 1.2 Periodic patterns extracted from the newsLink Portal

Dataset

51

to cluster the application URIs per time partition is k = 5. Meanwhile, For the time

partition extracted with 10-minutes sampling rate, the experiments show that the

optimal number of clusters to cluster the application URIs space per time partition is k

= 5.

5.2.2. Workload Pattern Prediction Evaluation

This model is evaluated by predicting the workload patterns generated by the

Workload Characterization Model at two sampling rates: one-hour and 10-minutes

rates. The workload patterns at one-hour rate, are predicted at different time horizons

which ranges between 1 to 3 with a step of size. While, the workload patterns at ten-

minutes rate are predicted at 1,6, 18 horizons.

The prediction models are tuned with different parameters to achieve the best

performance. For the univariate modeling, the window size is tuned using two ranges.

With 10-minutes sampling rate, the window sizes have been chosen from range 5 to 20

with a step of size 5. Meanwhile, with one-hour sampling rate, the window sizes have

been chosen from range 1 to 5 with a step size of 1. In addition to that, we have chosen

four parameters to tune the LSTM model, which are: (1) Activations functions: Sigmoid

function (Sigmoid), Hyperbolic tangent function (tanh), and Rectified linear unit

function (Relu) (2) Number of hidden layers have been chosen from range 1 to 3 with

a step of size 1 (3) Number of neurons in hidden layers have been chosen from range

10 to 20 with a step of size 5. The following sections present the experiments conducted

to evaluate all proposed solutions: Time-Aware Single Modeling and Time-Aware

Multi-Modeling

52

5.2.2.1. Time-Aware Single Modeling

We have developed three variations of time-aware single-modeling, namely:

Multivariate Regression, Multivariate LSTM, Univariate LSTM. The features

considered in both, multivariate and univariate models, are already described in Section

4.2.1. The models have been tuned using different parameters to achieve the minimum

prediction error. Table 8 in the appendix shows the tuned parameters values that

produce the minimum prediction errors.

We experimented the prediction models at different time horizons and sampling

rates. Table 5 shows the minimum prediction error achieved by the single modeling

approaches. It can be noticed that the Multivariate Regression approach outperforms all

other approaches across all time horizons, when the data is sampled using one-hour

sampling rate. This improvement is consistent over both datasets. On the other hand,

with 10-minutes sampling rate, none of the improvements are achieved consistently by

one approach over all time horizons and datasets. Therefore, we cannot draw a clear

conclusion for predictions with 10-minutes sampling rate. Meanwhile, we can conclude

that the Multivariate Regression approach is the best among the time-aware single

modeling approaches in handling the predictions with one-hour sampling rate. This

indicates that the features extracted using the multivariate modeling are indicative

features which help the prediction model to predict the workload patterns at one-hour

rate.

53

Table 5: Workload Pattern Prediction Error for all Time-Aware Single-Modeling

Approaches. The Best Score per Horizon is Boldfaced

* M stands for Multivariate and U stands for Univariate modeling

5.2.2.2. Time-Aware Multi-Modeling

 This approach develops a prediction model per time partition which is extracted

by the proposed periodicity detection component. As is the case in Time-Aware single

modeling, the prediction models have been tuned using different parameters. We

experimented the prediction models at different time horizons and sampling rates. Table

6 presents the minimum prediction errors achieved by thee multi-modeling approach.

Time-Aware Single Modeling

Datasets Sampling

rate

Horizons M_

Regression

M_

LSTM

U_

LSTM

Library

Portal

one-hour

 1

17.3

19.1

18

2 19.3 20.6 20.1

3 21 22.3 21.8

10-minutes

1

39.2

39.9

35.8

6 40.5 41.3 37.7

18 43.4 42.5 41

NewsLink

Portal

one-hour

1

26

27.3

27.3

2 26.5 27.5 27

3 26.7 27.6 27

10-minutes

1

36.3

42.2

38.8

6 43.7 43.3 45

18 44.3 43.3 45.9

54

Table 6: Workload Pattern Prediction Error of Time-Aware Multi-Modeling

Approach.

5.2.2.3. Summary and Comparison of the Results of all Experiments.

 To validate the effectiveness of all proposed approaches, we compare the

obtained results with the baseline systems. As explained earlier in Section 3.3.2. , w

have developed two variations of the baseline system: the first is based on the moving

average method for prediction, and the other is based on NNLS regression method.

Table 7 shows the best approach per time horizons and sampling rates. It can be noticed

that both baseline systems are almost achieved similar performance. In addition, the

Time-Aware Multi-Modeling

Datasets Sampling

rate

Horizons Data_Partitioning

Library

Portal

one-hour

 1

18.2

2 21.3

3 24.2

10-minutes

1

31.5

6 34.3

18 39.8

NewsLink

Portal

one-hour

1

29.2

2 28.4

3 30.1

10-minutes

1

23.6

6 33.6

18 33.8

55

results show that Multivariate Regression approach outperforms all proposed

approaches and baseline systems, when the data is sampled using one-hour sampling

rate. On the other hand, the data partitioning proves its effectiveness when the data is

sampled using 10-minutes sampling rate, over all proposed approaches and baseline

systems. This indicates that the sampled workload at the 10-minutes rate, is not

predictable by the single-modeling approach. In the meantime, partitioning data, make

it more predictable and thus helps the prediction model to predict it.

Also, it can be clearly noticed that the longer the horizon, the higher the

prediction error. This indicates that the last k observations of the workload are more

correlated with the next one (k+1), compared to the further ones.

We used a two-tailed paired t-test, with a significance level 𝛼 = 0.05, to indicate

statistically-significant improvements of the best approach over all other approaches.

The results of the significance test indicate that the achieved improvements are

statistically different on all datasets.

56

Table 7: Workload Pattern Prediction Error of Proposed Approaches and Baseline Systems. The Best Score per Horizon is Boldfaced

* Indicates significant improvement of the best approach over all other approaches using two-tailed paired t-test, with α=0.05

M stands for Multivariate and U stands for Univariate modeling

 Baseline systems Time-Aware Single Modeling Time-Aware-Multi-

Modeling

Dataset Sampling

rate

Horizons Moving

Average

U_ Regression M_

Regression

M_

LSTM

U_

LSTM Data_Partitioning

Library

Portal

 one-hour

1

17.8

18.2

17.3*

19.1

18

18.2

2 20.9 21.7 19.3* 20.6 20.1 21.3

3 23.7 24.6 21* 22.3 21.8 24.2

10-minutes

1

35.7

35.6

39.2

39.9

35.8

31.5*

6 37.4 37.4 40.5 41.3 37.7 34.3*

18 41.8 42.4 43.4 42.5 41 39.8*

NewsLink

Portal

one-hour

1

29.3

28

26*

27.3

27.3

29.2

2 30.3 29.2 26.5* 27.5 27 28.4

3 30.5 31.5 26.7* 27.6 27 30.1

10-minutes

1

37.3

32.1

36.3

42.2

38.8

23.6 *

6 50.2 45.3 43.7 43.3 45 33.6*

18 48.3 48 44.3 43.3 45.9 33.8*

57

Chapter 6: Conclusion and Future Work

This thesis focuses on improving the workload characterization and prediction.

We considered the request time in addition to the response time and document size, to

develop a time-aware workload prediction model. We proposed two approaches to

make it time-aware: (1) Time-Aware Single Modeling that develops one prediction

model for the entire time-space, and (2) Time-Aware Multi-Modeling that develops a

prediction model for each time-partition discovered by the periodicity detection

competent.

We have conducted different experiments on two realistic workload datasets

and presented the results. The experiments were conducted at two sampling rates: one-

hour and 10-minutes rate. The experiments showed that the time-aware approaches are

sensitive to the sampling rates. The results demonstrated that the multivariate

regression model developed for the entire time-space, was the most effective approach

in predicting the workload when sampled using one-hour rate. While, the multi-models

approach is more effective for predicting the workload sampled using 10-minutes rate.

Additionally, we leverage the LSTM Neural Networks for predicting the workload.

Despite the success of LSTM in handling time series data, LSTM models failed to

produce good results compared to other approaches. We believe that this caused by the

size of training dataset that leads to poor generalization of predictions.

 We contributed to the workload characterization and prediction research area

in the following ways: (1) Propose time-aware workload characterization and

prediction model (2) Study the sensitivity of the proposed time-aware approaches at

different sampling rates (3) Conduct comprehensive experimental evaluation on

realistic datasets and compare the results with the state-of-art methods.

58

6.1. Future Work

There are many research directions that can be considered to further improve this

research. The important recommended future research directions are summarized

below:

 In this thesis, we rely on one distance measure for time series clustering, which

is the Minimum Description Length (MDL). We plan to try other distance

measures, such as the Dynamic Time Warping (DTW) [25], due to its strength

in dealing with temporal drifts by measuring one-to-one and one-many

similarity distance. We believe that DTW might affect the outcomes of the

periodicity detection component and thus the prediction model.

 We plan to improve the LSTM Neural Network developed in this thesis by tuning

other hyperparameters such as the number of epochs, batch size, optimizer and

others. In addition, we plan to train and test the model on larger datasets to

discover its limitations and address them to improve the model.

 We used the simple grid search method to select the best combination of LSTM

hyperparameters. We plan to try other methods, such as greedy and dynamic

programming approaches. We believe that these methods will confine the search

space and thus enable us to tune more hyperparameters.

 We plan to extend this work to predict the workload for multi-tiered web

applications. This will be done by predicting the workload per each tier.

59

REFERENCES

[1] Abdul-Kader, H. and Abdul Salam, M. 2012. Evaluation of Differnial Evolution

and Particle Swarm Optimization Algorithms at Training of Neural Network for

Stock Prediction. International Arab Journal of e-Technology.

[2] Aghabozorgi, S., Seyed, A. and Wah, T.Y. 2015. Time-series clustering – A

decade review. Information Systems. 53, (2015), 16–38.

[3] Ali-eldin, A., Rezaie, A., Mehta, A., Razroev, S., Sj, S., Tordsson, J. and

Elmroth, E. 2014. How will your workload look like in 6 years ? Analyzing

Wikimedia ’ s workload. (2014).

[4] Bergmeir, C. and Benítez, J.M. 2012. On the use of cross-validation for time

series predictor evaluation. Information Sciences. 191, (2012), 192–213.

[5] Calheiros, R.N., Masoumi, E., Ranjan, R. and Buyya, R. 2015. Workload

Prediction Using ARIMA Model and Its Impact on Cloud Applications ’ QoS.

IEEE Transactions on Cloud Computing. 3, 4 (2015), 449–458.

[6] Calzarossa, M.C., Massari, L. and Tessera, D. 2016. Workload Characterization :

A Survey Revisited. 48, 3 (2016), 1–43.

[7] Calzarossa, M.C. and Tessera, D. 2015. Modeling and predicting temporal

patterns of web content changes. Journal of Network and Computer

Applications. 56, (2015), 115–123.

[8] Cezar, J., Ricardo, E., Jose, M., Ehlers, R. and Reiff-marganiec, S. 2016.

Combining time series prediction models using genetic algorithm to autoscaling

Web applications hosted in the cloud infrastructure. (2016), 2383–2406.

[9] Gong, Z., Gu, X. and Wilkes, J. 2010. PRESS : PRedictive Elastic ReSource

Scaling for cloud systems. 2010 International Conference on Network and

Service Management. (2010), 9–16.

60

[10] Huang, Q., Shuang, K., Xu, P., Li, J., Liu, X. and Su, S. 2014. Prediction-based

Dynamic Resource Scheduling for Virtualized Cloud Systems. 9, 2 (2014), 375–

383.

[11] Iqbal, W., Erradi, A. and Mahmood, A. 2018. Dynamic workload patterns

prediction for proactive auto-scaling of web applications. Journal of Network

and Computer Applications. 124, February (2018), 94–107.

[12] Islam, S., Keung, J., Lee, K. and Liu, A. 2012. Empirical prediction models for

adaptive resource provisioning in the cloud. Future Generation Computer

Systems. 28, 1 (2012), 155–162.

[13] Karaboga, N. and Cetinkaya, B. 2004. Performance Comparison of Genetic and

Differential Evolution Algorithms for Digital. Evolution. (2004), 482–488.

[14] Keogh, E. Clustering of Time Series Subsequences is Meaningless : Implications

for Previous and Future Research.

[15] Kumar, J. and Singh, A.K. 2018. Workload prediction in cloud using artificial

neural network and adaptive differential evolution. Future Generation Computer

Systems. 81, (2018), 41–52.

[16] Liu, C., Liu, C., Shang, Y., Chen, S., Cheng, B. and Chen, J. 2017. An adaptive

prediction approach based on workload pattern discrimination in the cloud.

Journal of Network and Computer Applications. 80, June 2016 (2017), 35–44.

[17] Liu, W., Song, H., Liang, J.J., Qu, B. and Qin, A.K. 2014. Neural network based

on self-adaptive differential evolution for ultra-short-term power load

forecasting. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8590

LNBI, (2014), 403–412.

[18] Madicar, N. 2013. Parameter-Free Subsequences Time Series Clustering with

61

Various-width Clusters. (2013), 150–155.

[19] Madicar, N., Sivaraks, H. and Rodpongpun, S. 2014. An Enhanced Parameter-

Free Subsequence Time Series Clustering for High-Variability-Width Data.

(2014), 419–429.

[20] Meng, Y., Rao, R., Zhang, X. and Hong, P. 2016. CRUPA : A Container

Resource Utilization Prediction Algorithm for Auto-Scaling Based on Time

Series Analysis. 2016 International Conference on Progress in Informatics and

Computing (PIC). (2016), 468–472.

[21] Miguel-alonso, T.L.J. and Lozano, J.A. 2014. A Review of Auto-scaling

Techniques for Elastic Applications in Cloud Environments. (2014), 559–592.

[22] Mueen, A. Enumeration of Time Series Motifs of All Lengths.

[23] Mueen, A., Cash, S. and Westover, B. 2002. Exact Discovery of Time Series

Motifs. (2002).

[24] Nikravesh, A.Y. and Ajila, S.A. 2015. Towards an Autonomic Auto-Scaling

Prediction System for Cloud Resource Provisioning. (2015).

[25] Oates, T., Firoiu, L. and Cohen, P.R. Clustering Time Series with Hidden

Markov Models and Dynamic Time Warping.

[26] Rakthanmanon, T., Keogh, E.J., Lonardi, S. and Evans, S. 2011. Time Series

Epenthesis : Clustering Time Series Streams Requires Ignoring Some Data. Mdl

(2011), 547–556.

[27] Rodpongpun, S., Niennattrakul, V. and Ratanamahatana, C.A. 2012.

Knowledge-Based Systems Selective Subsequence Time Series clustering.

Knowledge-Based Systems. 35, (2012), 361–368.

[28] Roy, N., Dubey, A. and Gokhale, A. 2011. Efficient Autoscaling in the Cloud

using Predictive Models for Workload Forecasting. 2011 IEEE 4th International

62

Conference on Cloud Computing. (2011), 500–507.

[29] Torkamani, S. and Lohweg, V. 2017. Survey on time series motif discovery. 7,

April (2017), 1–8.

[30] Tran, D., Tran, N., Nguyen, G. and Nguyen, B.M. 2017. ScienceDirect A

Proactive Cloud Scaling Model Based on Fuzzy Time A Proactive Cloud Scaling

Model Based on Fuzzy Time Series and SLA Awareness A Proactive Cloud

Scaling Model Based on Fuzzy Time Series and SLA Awareness Tran and SLA.

Procedia Computer Science. 108, (2017), 365–374.

[31] Vlachos, M., Yu, P. and Castelli, V. 2005. On Periodicity Detection and

Structural Periodic Similarity. Proceedings of the 2005 SIAM International

Conference on Data Mining. (2005), 449–460.

[32] An Introductory Study on Time Series Modeling and Forecasting Ratnadip

Adhikari R. K. Agrawal.

63

APPENDIX

Table 8:The Tuned Parameters Values that Produce the Minimum Prediction Error

* NA indicates that the parameter is not applicable for the given approach.

* M stands for Multivariate and U stands for Univariate modeling

Time-Aware Single Modeling

Dataset Sampling

rate

Horizon
M_Regression M_LSTM

U_LSTM

 windo

w

#neur

ons

#laye

rs

Act. windo

w

#neuro

ns

#laye

rs

Act. windo

w

#neuro

ns

#layers Act.

Library

Portal

one-hour

1
NA NA

20

2

tanh

2

20

 1

tanh

2 20 2 tanh 2 20 1 tanh

3 20 3 tanh 2 20 1 tanh

10-minutes

1
NA NA

20

2

relu

15

20

1

tanh

6 10 2 tanh 10 15 1 tanh

18 20 2 tanh 5 20 1 relu

NewsLink

Portal

one-hour

1
NA NA

10

3

tanh

3

10

2

sig

2 20 3 tanh 3 10 3 relu

3 20 2 tanh 2 20 2 sig

10-minutes

1
NA NA

20

2

sig

5

20

1

relu

6 15 3 sig 5 20 3 sig

18 15 3 sig 5 20 2 sig

