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Abstract

Critical size bone defects that do not heal spontaneously are among the major reasons for the disability in majority of people
with locomotor disabilities. Tissue engineering has become a promising approach for repairing such large tissue injuries
including critical size bone defects. Three-dimension (3D) porous scaffolds based on piezoelectric polymers like poly
(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) have received a lot of attention in bone tissue engineering due to their
favorable osteogenic properties. Owing to the favourable redox properties, titanium dioxide (TiO,) nanostructures have
gained a great deal of attention in bone tissue engineering. In this paper, tissue engineering scaffolds based on P(VDF-TrFE)
loaded with TiO, nanowires (TNW) were developed and evaluated for bone tissue engineering. Wet-chemical method was
used for the synthesis of TNW. Obtained TNW were thoroughly characterized for the physicochemical and morphological
properties using techniques such as X-Ray diffraction (XRD) analysis and transmission electron microscopy (TEM).
Electrospinning was used to produce TNW incorporated P(VDF-TrFE) scaffolds. Developed scaffolds were characterized by
state of art techniques such as Scanning Electron Microscopy (SEM), XRD and Differential scanning calorimetry (DSC)
analyses. TEM analysis revealed that the obtained TiO, nanostructures possess nanofibrous morphology with an average
diameter of 26 + 4 nm. Results of characterization of nanocomposite scaffolds confirmed the effective loading of TNW in P
(VDF-TrFE) matrix. Fabricated P(VDF-TrFE)/TNW scaffolds possessed good mechanical strength and cytocompatibility.
Osteoblast like cells showed higher adhesion and proliferation on the nanocomposite scaffolds. This investigation revealed
that the developed P(VDF-TrFE) scaffolds containing TNW can be used as potential scaffolds for bone tissue engineering
applications.
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1 Introduction

Accidental trauma, sports injuries, developmental defor-
mities, tumor resection and infection can lead to significant
loss of bone tissue which cannot be repaired naturally.
These critical size bone defects form the major reason for
the disability in several people with locomotor disabilities.
Bone tissue engineering is emerging as a promising option
to regenerate or repair large tissue defects without the
potential limitations associated with autologous and allo-
geneic bone grafts like disease transmission, immune
rejections and lack of availability [1, 2]. Ideally, bone tissue
engineering aims to regenerate the natural bone which is a
porous framework mainly consisting of collagen fibers that
run through hydroxyapatite and living cells such as osteo-
blasts. The main goal of bone tissue engineering is the
generation of a functional bone tissue in the defected area
by using a combination of polymeric scaffolds, cells, and
signalling cues [3, 4].

The use of electrospun polymeric biomaterials for bone
tissue engineering applications attained considerable
importance owing to their ability to act as porous 3D sup-
ports for cell adhesion and proliferation [5, 6]. Poly(viny-
lidene fluoride-co-trifluoroethylene) copolymer [P(VDF-
TrFE)] has huge potential as scaffold for tissue engineering
applications due to its piezoelectric property and bio-
compatibility [7]. In piezoelectric materials such P(VDF-
TrFE), even small vibration or mechanical stretching during
the muscular movement can produce transient surface
charges which can help in cell adhesion and proliferation.
Among the four different crystalline phases in P(VDF-
TrFE) such as a, B, v, and 9, electroactive 3 phase plays the
key role in facilitating cell proliferation [8, 9]. Earlier stu-
dies demonstrated the potential of P(VDF-TrFE) based
scaffolds for the ability to repair or regenerate damaged
skeletal muscles and spinal cord defects [10, 11]. Moreover,
electrospun P(VDF-TrFE) scaffold along with cardiovas-
cular cells was reported as a suitable biomaterial for the
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cardiovascular tissue engineering [12]. In addition, several
studies showed that the physicomechanical properties of
these piezoelectric polymers can be improved or tuned by
the incorporation of nanofillers [13, 14].

Various nanoparticles have been used in polymeric
biomaterials to improve their biological performance
[15-18]. Titanium dioxide (TiO,) nanostructures have
several applications in many areas such as in dye-
sensitized solar cells, photocatalysis, and biomedical
equipment [19, 20]. Both in vitro cell culture studies and
animal experiments demonstrated that TiO, nanoparticles
can encourage cell migration depending upon the effec-
tive concentration and the size of nanoparticles [21, 22].
Application of TiO, nanotubes for bone regeneration was
extensively studied by Adhikari et al. [23]. TiO; nanos-
tructures can activate macrophages which will trigger cell
migration and repair/regeneration of damaged tissue [24].
Since the photocatalytic reactions occurs on the surface
of TiO, nanostructures play the main role in the cellular
response, a high surface area-to-volume ratio is vital for
getting a desired outcome [25]. Unlike the other mor-
phological forms of TiO, (nanopowders, nanotubes and
nanowires), TiO, nanowires (TNW) are highly promising
due to their high surface area to volume ratio and
resulting superior catalytic performance. Studies have
shown that the TiO, nanoparticles can induce the gen-
eration of harmful reactive oxygen species (ROS) in
biological system [26]. Thus, the use of such nano-
particles in biological system should be in a highly
controlled manner to avoid the deleterious effects due to
the excess ROS generated. However, under normal phy-
siological conditions, ROS participates in several
important biomolecular signalling pathways [27].
Although unnecessary and higher production of ROS can
result in deleterious effects, an optimal level can exert
beneficial outcomes in tissue regeneration and repair
[28]. Earlier report suggests that incorporation of TiO,
nanoparticles in scaffolds can improve adhesion of
osteoblast cells on the scaffolds [29]. Our recent report
suggests that incorporation of TiO, nanorods can improve
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the cell adhesion, proliferation, angiogenic and wound
healing potential of electrospun polycaprolactone (PCL)
scaffolds [30]. A study by Lin and co-workers have
shown that the loading of TiO, nanoparticles in P(VDF-
TrFE) copolymer results in a considerable improvement
in dielectric properties compared to neat ferroelectric
copolymer [31]. Thus, incorporation of TNW in P(VDF-
TrFE) scaffolds may result in greater cell adhesion and
cell viability which are necessary for the success of an
engineered bone construct.

Herein this paper, we describe the design and develop-
ment of highly porous electrospun piezoelectric tissue
engineering scaffolds based on P(VDF-TrFE) and TNW
with superior ability to support fibroblast and osteoblast like
cell proliferation.

2 Experimental
2.1 Materials

P(VDF-TrFE) (70/30 PVDF/TrFE ratio) was supplied by
Piezotech SAS, France. TiO, nanoparticles (Average dia-
meter 25nm), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) and DAPI (4,6-diamidino-2-
phenylindole) were purchased from Sigma Aldrich, USA.
Phalloidin was obtained from Applied Biosystems, USA.
Fetal Bovine Serum (FBS), Antibiotic-Antimycotic solution
and Dulbecco’s Modified Eagles Medium (DMEM) were
purchased from Himedia, India. Acetone, N, N-Dimethyl
formamide (DMF) and Paraformaldehyde was obtained
from Merck (India).

2.2 Synthesis of TiO, nanowires

The wet chemical method was used for the synthesis of
TNW using commercial TiO, nanoparticle as the TiO,
precursor as described earlier with slight modifications [32].
The reaction mixture was composed of NaOH aqueous
solution (10 mol/l, 20 ml) and the TiO, precursor (0.2 g).
This mixture was kept for hydrothermal reaction at 160 °C
for 24 h in a Teflon-coated autoclave and then permitted to
slowly cooldown to room temperature. Obtained white
precipitate was sequentially washed in water and ethanol
until the pH value reached 7. This nanoparticle suspension
was centrifuged (8000 rpm) and dried at 60 °C. Calcination
was performed at 500 °C for 6 h.

XRD analysis was performed to determine the crystalline
nature and the structural characteristics of TNW (see Sec-
tion 2.4.3 for details). High Resolution Transmission
Electron Microscope, HR-TEM (JEOL JEM-2100) was
used to assess the size distribution and morphological fea-
tures of synthesized TiO, nanowires.

2.3 Fabrication of electrospun P(VDF-TrFE)/TNW
nanocomposites

Electrospinning technology was used to develop P(VDF-
TrFE)/TNW nanocomposite scaffolds. Electrospinning
instrument was supplied by Holmarc, India. DMF: acetone
solvent mixture was used to prepare P(VDF-TrFE) solutions
with varying concentration of TNW. Then, composite
scaffolds with 0, 0.5, 1, 2 and 3% w/w of TNW with respect
to the polymer hereafter referred as P(VDF-TrFE), P(VDF-
TrFE)/TNW-0.5, P(VDF-TrFE)/TNW-1, P(VDF-TrFE)/
TNW-2, and P(VDF-TrFE)/TNW-3) respectively were
fabricated. 10 ml of the polymer/nanoparticle suspensions
were used for making each scaffold. Total polymer or
polymer/nanofiller concentration was maintained as 15% w/
v. The flow rate of the solution, tip to collector distance and
the applied DC voltage were set as 1 ml/h, 15 cm and 15kV
respectively. After the completion of the spinning process,
electrospun scaffolds were collected and used for
characterizations.

2.4 Characterization of P(VDF-TrFE)/TNW
nanocomposite scaffolds

2.4.1 Scanning electron microscopy (SEM) analysis

Morphology of developed scaffolds were characterized
using scanning electron microscopy (SEM). Samples were
coated with gold and analysed using a JEOL JSM
6390 scanning electron microscope at 30 kV. ImagelJ soft-
ware was used to measure the fiber diameter. Fiber diameter
distribution and average fiber diameter were determined
from the diameters of 100 fibers at random positions.

2.4.2 Fourier-transform infrared (FTIR) analysis

Both neat and P(VDF-TrFE)/TNW nanocomposite scaf-
folds were subjected to FTIR analysis to find out the var-
iation in crystalline phases due to TNW incorporation.
Analysis was performed using a Perkin Elmer (USA),
spectrum 400 FTIR spectrometer with PIKE Gladi ATR
(USA) attachment and DTGS detector (on a diamond
crystal). Analysis was performed at a scan rate of 15 scans
and a resolution of 4cm~'. Data were collected between
450-3500 cm ™! with 15 scans at 4 cm™' resolution.

The B-phase fraction in the scaffolds were determined by
Lambert-Beer law as given in Eq. (1).

Ap

(E2)Aa + AB (1)

F(p) =

where, F(P) is the B-phase fraction, Aa is the absorbance at
764 cm™! and A is the absorbance at 840 cm™'. Ko (6.1 x
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10*cm® mol™!) and KB (7.7 x 10*cm®’mol™!) are the
absorption coefficients at 764 and 840 cm™' respectively.

2.4.3 X-ray diffraction (XRD) analysis

XRD analysis of P(VDF-TrFE) and nanocomposite scaf-
folds were performed using PANalyticalX’Pert Pro X-Ray
diffractometer. The current and applied voltage were 30 mA
and 45 kV respectively.

2.4.4 Differential scanning calorimetry (DSC)

DSC analysis was carried out in two steps using a Perkin
Elmer, Diamond DSC apparatus. In the first step, scaffold
samples (5 mg) were heated from —50 to +250 °C at 10 °C/
min in the presence of nitrogen flow (20 ml/min). In order to
remove the thermal history, samples were kept at +250 °C
for 1 min and then cooled at the rate of 10 °C/min to —50 °
C. In the second step, samples were again heated to
4250 °C and cooled to —50 °C under above mentioned
conditions. From the heating ramp, thermal properties such
as melting temperature (T,,) and ferroelectric-paraelectric
transition temperature (Tgp) were obtained. From the
cooling ramp, the crystallization temperature (T.) and the
paraelectric-ferroelectric transition temperature (Tp.g) were
calculated.

2.4.5 Mechanical strength and strain characteristics

Uniaxial tensile testing was used to find out the mechanical
strength and strain characteristics of the scaffolds. Tensile
characteristics of the samples such as maximum elongation,
ultimate tensile strength and Young’s modulus (MPa) were
determined from the stress-strain curves. Tests were carried
out using a Tinus Olsen H50 KT Universal Testing
Machine by adhering to ASTM D 882 standard (500 N load
cell, 1 mm/min crosshead speed) on rectangular samples
(6 x 1 cm size, 1 0.4 mm thickness). Young’s moduli were
calculated from the slope of the linear region of the stress-
strain curves. Average values of tensile properties were
calculated from five tests.

2.4.6 In vitro cell adhesion and cell viability studies

UMR-106 rat osteoblast like cells and mouse L-929 fibro-
blast cells were used to evaluate the cell adhesion and
proliferation on neat and nanocomposite scaffolds. Both the
cell lines were supplied by National Centre for Cell Science
(NCCS), Pune, India. The scaffolds were cut into 1 x 1 cm
size and sterilized by 70% ethanol treatment for 20 min and
subsequent UV exposure for 20 min. The scaffolds were
prewetted in DMEM medium overnight. Osteoblast like
cells (50,000 cells/cm?) and fibroblasts were seeded on the
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scaffolds and cultured in 24 well plates with 0.5 ml suitable
media (DMEM containing 10% FBS and 1% Antibiotic-
Antimycotic solution) for 24 h at 37 °C with 5% CO, sup-
ply. Cell seeded control wells without any samples were
also maintained. To observe the cell adhesion, samples were
fixed with 4% paraformaldehyde, stained with 4,6-diami-
dino-2-phenylindole (DAPI) and phalloidin. A fluorescent
microscope (Leica DMI 3000B, Germany) was used to
capture the images. To determine the viability of the cells
grown on the scaffolds, MTT cell viability assay was per-
formed after 24 h, 3 days and 7 days based on the manu-
facturers protocol (n = 3).

2.5 Statistical analysis

In order to find out the statistical significance of hypotheses,
un-paired Student’s #-test and “One-way ANOVA” were
carried out using GraphPad- Prism. A P value less than 0.05
considered as a determinant of significant difference
between tested groups.

3 Results
3.1 Characterization of TNW

XRD pattern (Fig. 1) of TNW after calcination at 500 °C for
6 h shows major diffraction patterns located at 26 = 25.5°,
37.8°, 48.2°, 54.2°, 55.2°, 63.0°, 69.2°, 70.4° and 75.2
corresponding to (101), (004), (200), (105), (211), (204),
(116), (220) and (215) planes corresponds to anatase phase
of TiO,, respectively. Other peak located at 20 =27.58°
was due to (110) plane of rutile phase [33]. Other peaks of

27.5
R(110)
55.2
_ 542  A(211)
=f - A(105) 69.2 70.4
K A(116)  A(220)
> 25.5
=
2 1 A(101)
..g 37.8  48.2
= | A(004) A(200) 75.2
A(215)
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o
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Fig. 1 XRD pattern of TNW which were calcined at 500 °C. Par-
entheses ‘A’ and ‘R’ denotes anatase and rutile crystalline phases,
respectively
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Fig. 2 Morphological and structural features of the synthesized
materials. Representative TEM images at two different magnifications
(a, b), HR-TEM image (c¢) and SAED pattern (d) of TNW. Parentheses
‘A’ and ‘R’ in the labels of (d) denotes anatase and rutile crystalline
phases, respectively

rutile phase were not clearly visible in the XRD pattern.
Non calcined samples showed only a few peaks which were
undistinguishable from the background scattering, sug-
gesting the amorphous structure.

TEM images provided the details such as morphology
and size distribution of the synthesized TNW. The TEM
image demonstrated that the obtained nanostructures pos-
sess fiber like elongated morphological features with mean
diameter of 25 + 5 nm (Fig. 2a). The length of the nanowires
varied from 100 nm to several micrometers. Higher mag-
nification image showed that each nanowire was formed by
the merger of many small fibers with average diameter of
2.4+ 1.2nm (Fig. 2b). Interestingly, each such small fiber
unit were formed by the union of several monocrystalline
units (Fig. 2¢). Obtained SAED result shows the diffraction
pattern of TiO, nanostructures that mostly composed of
anatase phase [34] (Fig. 2d). However, the presence of
(110) plane indicate the coexistence of rutile phase also.

3.2 Basic characterization of electrospun P(VDF-
TrFE)/TNW membranes

3.2.1 Morphology of scaffolds
Morphological characteristics of the scaffolds are presented

in Fig. 3a. The porous scaffolds were composed of ran-
domly oriented fibers with good pore interconnectivity.

Individual fiber diameter was measured from SEM micro-
graphs and the fiber diameter distribution graphs are pro-
vided in Fig. 3b. Average fiber diameter of electrospun P
(VDF-TrFE) scaffolds were slightly reduced with the higher
loading of TNW (Table 1).

3.2.2 FTIR analysis

FTIR spectra of neat and nanocomposite scaffolds are given
in Fig. 4. The spectra of electrospun P(VDF-TrFE) indicates
the presence of the « phase related bands at 509 and 764 cm™!
and the p phase related bands at 470, 845, 1080, 1180, 1284,
1400 cm! (Fig. 4a) [35]. Intensity of IR bands corresponding
to P phase was stronger than those corresponding to o phase
in the case of all the samples (Fig. 4b). Figure 4b (Inset)
shows the influence of TNW loading on the percentage of
relative fraction of f-phase content (F(B)%) in P(VDF-TtFE).
For neat electrospun P(VDF-TtFE), P(VDF-TrFE)/TNW-0.5
and P(VDF-TrFE)/TNW-1, F(B) were found to be about
76-77%. Whereas, for P(VDF-TrFE)/TNW-2, the F() was
about 81%. In contrast, F(f) of P(VDF-TrFE)/TNW-3 was
considerably less than the neat and composite scaffolds (about
66%). Thus, FTIR analysis demonstrated that the electro-
active § phase crystallization was promoted by TNW at 2%
w/w loading. However, higher content of TNW (3% w/w)
inhibited the B phase formation.

3.2.3 XRD

XRD analysis was conducted to determine the crystalline
nature of P(VDF-TrFE) incorporated with TNW (Fig. 5).
Neat P(VDF-TrFE) scaffolds showed characteristic dif-
fraction pattern at 19.8° that indicating the o phase [36].
Peaks that correspond to the diffraction patterns of TNW
were also observed in the XRD patterns of P(VDF-TrFE)/
TNW composites scaffolds. The crystalline phase of P
(VDF-TrFE) was not affected with the addition of small
amount of TNW (2% w/w).

3.2.4 DSC analysis

The thermal behavior and crystalline characteristics of P
(VDF-TrFE) and its composites was evaluated using DSC
analysis. The first (Fig. 6a) and second (Fig. 6b) heating and
cooling cycles of the samples were recorded. Two endo-
thermic peaks were observed at ~93 and 152.8 °C for P
(VDF-TtrFE) copolymer. Melting point (Tm) and crystal-
lization point (Tc) were in the range of 150-153 and
134-136 °C respectively [37]. The thermal and crystal-
lization characteristics of electrospun bare P(VDF-TrFE)
and the composites were obtained from DSC analysis. The
ferroelectric-paraelectric transition (Tgp) of P(VDF-TrFE)

@ Springer
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Fig. 3 Morphology of developed P(VDF-TtFE) scaffolds containing various amounts of TNW. SEM images (a) and fiber diameter distribution
graphs (b) of P(VDF-TTrFE) and P(VDF-TrFE)/TNW nanocomposite scaffolds

Table 1 Fiber diameter distribution of P(VDF-TrFE) membranes

Sample Average fiber diameter +S.D. (nm)
P(VDE-TrFE) 596 +201
P(VDE-TrFE)/TNW-0.5 460 + 104
P(VDE-TrFE)/TNW-1 477117
P(VDE-TrFE)/TNW-2 437+ 116
P(VDE-TrFE)/TNW-3 484+ 112

was observed around 93 °C and could be due to the possible
melting of crystalline B-phases [38]. Another transition
around 152.8 °C was observed as a result of the melting of
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all the crystalline phases (Tm) in the polymeric matrix.
However, during the cooling step, bare scaffolds and
nanocomposite scaffolds showed exothermic peaks of T,
and Tp_g around 134-135 and 57-59 °C, respectively. It was
found that there was no considerable variation in any of the
thermal transitions during the second heating and cooling
cycle, in P(VDF-TrFE)/TNW scaffolds [39].

3.2.5 Tensile testing

The mechanical strength of the scaffolds with and without
TNW was evaluated using tensile testing (Fig. 7 and
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Fig. 5 XRD patterns of the neat P(VDF-TrFE) and P(VDF-TrFE)/
TNW nanocomposite membranes with increasing
concentration of TNW

Table 2). It was observed that the average elongation at
break of pristine P(VDF-TrFE) scaffolds was 136.4 +4.2%.
For the nanofibres that were incorporated with 0.5, 1, 2, and
3% wlw of TNW the elongation at break were 88.7 + 6%,
98.7+4.8%, 109.1 +52% and 97.5+6.8% respectively.
From this it was evident that the incorporation of TNW in
the P(VDF-TrFE) nanofibres reduced the elasticity of P
(VDF-TrFE). With the higher amount of TNW  mechanical
properties of the scaffold were considerable altered. Overall
tensile strength of the scaffold increased with the intro-
duction of certain quantity of TNW. For example, bare P
(VDF-TrFE) showed an average tensile strength of 5.3 +
2.3MPa whereas P(VDF-TrFE)/TNW-0.5 showed an
average tensile strength of 14.7+3.8 MPa. A relatively
similar result was obtained for P(VDF-TrFE)/TNW-1
(13.3 + 1.8 MPa). However, a considerable reduction in the
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in scaffold with various TNW loadings

tensile strength was observed in the case of P(VDF-TrFE)/
TNW-2  (10.3+1.6MPa) and P(VDE-TrFE)/TNW-3
(9.11 £2.3 MPa). Young’s modulus was increased from
8.3+2.1 MPa to 17.8 + 1.7 MPa upon the incorporation of
0.5 w/w TNW in P(VDF-TtFE) matrix. Higher TNW
loading decreased the Young’s modulus of the nano-
composite scaffolds.

3.2.6 Cell adhesion and cell viability of fibroblast and
osteoblastic cells

To verify the effect of fabricated P(VDF-TrFE)/TNW
nanocomposite scaffolds in mammalian cell attachment, L-
929 fibroblasts and UMR-106 osteoblast like cells were
grown on the fabricated scaffolds and assessed the cell
attachment and proliferation. Figure 8a. shows the micro-
scopic images of the L-929 cell adhesion and proliferation
on the scaffolds after 24 h of cell culture. Interestingly, P
(VDF-TrFE)/TNW scaffolds displayed the proliferation of
higher number of cells compared to the bare scaffolds.
Considerably smaller number of cells were only detected on
bare P(VDF-TrFE) and P(VDF-TrFE)/TNW-0.5 scaffolds.
The highest cell adhesion was observed on P(VDF-TrFE)/
TNW-1 scaffold. P(VDF-TrFE)/TNW-2 scaffolds also
showed relatively higher cell proliferation. However, P
(VDF-TrFE)/TNW-3 scaffolds exhibited the presence of
relatively a smaller number of adhered cells than P(VDF-
TrFE)/TNW-1.

To determine the viability of UMR-106 and L-929 cells
proliferated on P(VDF-TrFE) and P(VDF-TrFE)/TNW
scaffolds, MTT cell viability assay was carried out after
24 h, 3 days and 7 days and the results are given in Fig. 8b,
c. Retention of viability and functionality of the cells which
are seeded on a the tissue engineered product is a key factor
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that determine the success of the engineered construct [40].
Obtained results clearly demonstrated that the presence of
TNW in P(VDF-TrFE) does not considerably affect the cell
viability upto 2% w/w loading. Cells seeded on P(VDF-
TrFE)/TNW-1 and P(VDF-TrFE)/TNW-2 scaffolds exhib-
ited highercell viability than the other samples studied
(P<0.05).

4 Discussions

Electrospun P(VDF-TrFE) based biomaterials are used as
scaffolds for tissue engineering applications with promising
results. However, additional approaches need to be under-
taken to further improve the cell attachment and prolifera-
tion on these scaffolds. In this direction, we incorporated
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various amounts of titanium dioxide nanowires (TNW) in
electrospun P(VDF-TrFE) polymeric scaffolds and assessed
their applicability in bone tissue engineering by various
physicochemical and biological tests.

TNW was synthesized by wet chemical approach. Cal-
cination of synthesized amorphous TiO, at high tempera-
tures resulted in the formation of highly -crystalline
nanostructures [23, 41]. Calcination for 6 h at 500 °C con-
verted the amorphous phase of TiO, to crystalline anatase
and rutile phases of TiO, [41]. Observed broadening of
major diffraction patterns might be due to the tiny size of
the TiO, nanocrystals [42]. TEM analysis indicated the
formation of fiber like TiO, structures which were further
composed of smaller crystalline nanofibers. Synthesized
TNW were incorporated in electrospun P(VDF-TrFE)
scaffolds to improve the tensile strength and cell prolifera-
tion on the scaffolds. We observed a slight variation in the
fiber diameter of the scaffolds containing TNW. Such a
minor variation in fiber diameter can be due to the differ-
ence in solution properties such as viscosity and con-
ductivity of the spinning solution when nanoparticles were
incorporated in the polymer solution [43].

Results of FTIR analysis indicated that P(VDE-TrFE)/
TNW-0.5 showed the presence of higher amount of piezo-
active crystalline phase. This enhancement in the crystalline
phase of P(VDF-TrFE) might be due to the nucleation effect
of TNW. Small sized TiO, nanoparticles (10nm) can
improve the crystallization of PVDF based polymers [44].
Addition of small quantity of nanofillers can improve the
piezo-active phase in P(VDF-TrFE) [45, 46]. Relative
increase in FTIR peak intensity of the peaks corresponding
to B phase in the nanocomposite scaffolds (especially in P
(VDF-TrFE)/TNW-2) could be due to the nucleating effect
of TNW [38]. At higher TNW content, especially in P
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Table 2 Mechanical properties of electrospun P(VDF-TrFE)/TNW nanocomposite membrane

Samples Maximum elongation (%) Ultimate tensile strength (MPa) Young’s modulus (MPa)
P(VDF-TrFE) 136.4+4.2 53+23 83+2.1
P(VDF-TrFE)/TNW-0.5 88.7+6.0 147+3.8 17.8+1.7
P(VDF-TrFE)/TNW-1 98.7+4.8 13.3+1.8 127x1.5
P(VDF-TrFE)/TNW-2 110.9+5.2 103+1.6 104+1.8
P(VDF-TrFE)/TNW-3 97.5+6.8 9.11£23 9.5+2.3
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Fig. 8 Adhesion of L-929 and UMR-106 cells to the scaffolds after 24 h of culture (a). Cell viability of L-929 cells (b) and UMR-106 cells (c)
which were seeded on the scaffolds, as determined fby MTT assay. Data are the mean + S.D. of three independent set of experiments

(VDF-TrFE)/TNW-3, the [ phase peaks seem to be
diminished. This can be supported by other studies where a
reduction in the overall crystallinity of P(VDF-TrFE) was
observed upon the incorporation of higher quantity of TiO,
nanomaterials [47]. The plausible reason for the observed
decrease in the crystalline fraction at higher loading could
be the formation of TNW agglomerates in the polymer

matrix which might have affected p phase formation (by
affecting nucleation). In addition, this can be due to the
destruction of ordered arrangement of P(VDF-TrFE) copo-
lymer due to the agglomerates and the subsequent decrease
in crystallinity [48]. Based on the earlier studies, it can be
believed that the decrease of crystallinity with increasing
TNW content might be due to the interruption of crystal
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growth by some of the agglomerated TNW, however at low
loadings, they acted as a nucleating agents [49]. This agrees
with the results of XRD analysis where a considerable
reduction in XRD peak intensity was observed in the case of
P(VDF-TrFE)/TNW-3. In addition to the information
regarding the crystallinity, XRD data confirmed the pre-
sence of TNW in P(VDF-TtrFE) polymer matrix.

DSC analysis of the nanocomposite scaffolds was per-
formed to understand the thermal transitions of P(VDF-
TrFE) upon controlled heating and cooling. The
ferroelectric-to-paraelectric transition (Tgp) of P(VDF-
TrFE) was observed around 93 °C and could be due to the
possible melting of crystalline p-phases [38]. Another
transition near 152.76 °C was observed resulting from the
possible melting of all the crystalline phases (Tm) in the P
(VDF-TtFE). Above mentioned endothermic peak which
was observed during melting was broad due to the merging
of the melting peaks of the lower-melting o phase and the
higher melting B phase [50]. During the first heating-cooling
cycle of nanocomposite scaffolds, Tm and Tgp showed a
considerable alteration (Table 3). Highest variation was
observed for P(VDF-TrFE)/TNW-0.5 scaffolds [51]. This
might be due to the nucleation effect of TNW at lower
concentrations (as explained in the previous section).
However, during the cooling step, neat and nanocomposite
scaffolds showed exothermic peaks of T. and Tpp at
~134-135 and 57-59 °C, respectively. There was no con-
siderable variation in any of the thermal transitions during
the second heating and cooling cycle, in P(VDF-TrFE)/
TNW scaffolds [39]. This suggest that influence of TNW
alone in the nucleation and crystallization of P(VDF-TrFE)
was minimum [52]. However, the variation in thermal
transitions during first heating/cooling step indicates that
TNW played a prominent role in the crystallization during
electrospinning process which may be also due to its effect
on electrospinning parameters [53].

We performed uniaxial tensile testing of the scaffold to
understand the effect of TNW in the tensile properties of the
scaffolds. A very significant improvement in the tensile
strength of the scaffolds was observed upon the addition of
TNW. This might be due to the reinforcement effect of
TNW at optimum loading [54]. Addition of higher quantity

Table 3 Effect TNW on the thermal behavior of P(VDE-TrFE)
scaffolds during the first heating and cooling ramp

Samples Tm (°C) Tep (°C) T, (°C) Tpg (°C)
P(VDF-TtFE) 152.8 93.0 135.9 58.0
P(VDF-TrFE)/TNW- 0.5 150.5 100.8 134.6 57.8
P(VDF-TtFE)/TNW-1 152.8 95.6 135.9 57.4
P(VDF-TtFE)/TNW-2 154.1 94.3 134.6 57.8
P(VDF-TtFE)/TNW-3 154.8 95.2 135.9 58.4

@ Springer

of TNW produced a considerable reduction of tensile
strength of the nanocomposite scaffolds compared to those
with low loadings. It was apparent that the addition of TNW
beyond a critical value decreased the tensile strength due to
the lowering of crystalline fraction in the polymer [55].
Furthermore, higher amount of TNW results in their
agglomeration which affects their proper dispersion in the
polymer matrix [56]. Agglomeration of the particles causes
the imperfect distribution of the stress in the polymer matrix
that results in the reduction of load bearing capacity of the
scaffold. Moreover, fiber morphology of TNW also attribute
an impact on the tensile properties of the nanocomposite.
For instance, interactions at the interface of polymer and
reinforcing agent will be higher for polymer nanocompo-
sites with high aspect ratio nanofillers [57]. Relatively
strong polymer-filler interactions at interfaces can result in
higher degrees of stress transfer and, therefore, higher ten-
sile strength and modulus [58]. Moreover, increased crys-
tallinity of the polymer upon the addition of TNW might
also have played a major role in the improvement in the
mechanical strength. In light of the DSC results, nano-
composite scaffolds containing 0.5% w/w TNW showed the
highest overall crystallinity (Table 3).

TNW loaded P(VDF-TrFE) scaffolds displayed the pro-
liferation of higher number of cells compared to the neat
scaffolds. This improvement might be due to the synergistic
effect arising from the ability of TNW to improve cell
proliferation and the beneficial effect of electrical signals
generated by the piezoelectric scaffolds [59-61]. This can
be further supported by the FTIR and XRD results where an
enhancement of P crystalline phase was observed upon the
addition of TNW. This increase in piezoelectric 3 crystalline
fraction might be one of the reasons for the superior
osteoblast and fibroblast cell adhesion and proliferation on
P(VDF-TrFE)/TNW scaffolds [8]. Our results are supported
by earlier report where piezoelectric PVDF produced higher
bone formation compared to non-piezoelectric PVDF upon
implantation in rats [62]. In addition, presence of TiO,
might have played an important role in cell proliferation due
to the possible photocatalytic generation of superoxide (O, ™)
and hydroxyl (OH") radicals in an aqueous environment
[63]. Controlled application of super oxides can play a vital
role in the differentiation of osteoprogenitors [64] by acting
at key steps in osteogenic gene regulation [65]. This is
further supported by the results of our previous studies
using tissue engineering scaffolds loaded with various metal
oxide nanoparticles consistently demonstrated that metal
oxide nanoparticles can enhance cell proliferation, angio-
genesis and wound healing in vitro and in vivo conditions
[8, 66-70]. Considering the growing attention of piezo-
electric polymeric scaffolds especially in bone tissue engi-
neering, P(VDF-TrFE)/TNW nanocomposites have a great
potential for designing highly promising tissue engineered
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bone constructs. More detailed in vivo studies are required
to understand the advantages and limitations of such scaf-
folds for extended period of implantation and clinical use.

5 Conclusions

P(VDF-TrFE) scaffolds loaded with TNW (up to 3% w/w)
were developed and characterized by various physical and
biological tests to demonstrate their applicability in bone
tissue engineering. From SEM, XRD and FTIR analysis, it
was established that the TNW were successfully incorpo-
rated in the P(VDF-TrFE) fibers. Average diameter of P
(VDF-TtFE) decreased with the increasing TNW con-
centration. Results of FTIR analysis indicated that the
intensity of electroactive [ phase increased due to the
incorporation of TiO, nanowires at optimum concentrations
(about 2% w/w). X- ray diffraction studies showed that the
crystallinity of P(VDF-TrFE)/TNW nanocomposite scaf-
folds improved at relatively small concentrations of TNW.
A considerable enhancement in the mechanical strength of
nanocomposite scaffolds was evident from the tensile test-
ing results. Cell adhesion study using fibroblasts and
osteoblasts showed that P(VDF-TrFE)/TNW scaffolds
containing 1 to 2% w/w TNW promoted cell proliferation.
Cell viability study confirmed cytocompatibility of the
fabricated nanocomposite scaffolds. Overall, this study
demonstrated that TNW at optimum concentrations can
induce cell adhesion/proliferation in P(VDF-TrFE) tissue
engineering scaffolds. Since osteoblast cells were able to
adhere and grow well on the developed nanocomposite
scaffolds, they can be used as potential candidates for bone
tissue engineering applications.
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