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ABSTRACT We investigate the physical-layer security of uplink single-carrier frequency-division multiple-
access (SC-FDMA) systems. Multiple users, Alices, send confidential messages to a common legitimate
base-station, Bob, in the presence of an eavesdropper, Eve. To secure the legitimate transmissions, each
user superimposes an artificial noise (AN) signal on the time-domain SC-FDMA data symbol. We reduce
the computational and storage requirements at Bob’s receiver by assuming simple per-sub-channel detectors.
We assume that Eve has global channel knowledge of all links in addition to high computational capabilities,
where she adopts high-complexity detectors such as single-user maximum likelihood (ML), multi-user
minimum-mean-square-error, and multi-user ML. We analyze the correlation properties of the time-domain
AN signal and illustrate how Eve can exploit them to reduce the AN effects. We prove that the number
of useful AN streams that can degrade Eve’s signal-to-noise ratio is dependent on the channel memories
of Alices—Bob and Alices—Eve links. Furthermore, we enhance the system security for the case of partial
Alices—Bob channel knowledge at Eve, where Eve only knows the precoding matrices of the data and AN
signals instead of knowing the entire Alices—Bob channel matrices, and propose a hybrid security scheme

that integrates temporal AN with channel-based secret key extraction.

INDEX TERMS Multi-user SC-FDMA, physical-layer (PHY) security, eavesdropping.

I. INTRODUCTION

Wireless channels are vulnerable to eavesdropping security
attacks due to their broadcast nature where an illegitimate
node can overhear confidential information about the com-
municating legitimate nodes. Information security is conven-
tionally preserved using encryption schemes implemented at
the upper layers of the protocol stack. However, such schemes
require high storage and computational capabilities. In addi-
tion, they preserve security under the assumption of lim-
ited computation capabilities and limited network parameters
knowledge at the eavesdroppers. To enhance and complement
the upper-layers security approaches, physical-layer (PHY)
security was introduced to provide security at the waveform
level by exploiting the time-varying random nature of the
wireless channel.

In his seminal work on secure communications, Wyner [2]
showed that secure transmissions are feasible as long as
the wiretap channel, i.e., the transmitter-eavesdropper chan-
nel, is more degraded than the legitimate channel, i.e., the
transmitter-legitimate receiver channel. PHY security is
quantified in terms of the secrecy capacity which is the max-
imum data rate with zero information leakage to the eaves-
dropper(s). Many research works investigated the impact of
multiple transmit antennas at various nodes on the achiev-
able secrecy rates by using data and artificial noise (AN)
precoding schemes [3] where the transmissions are designed
carefully to transmit the data signals in the direction of the
legitimate channel vectors while the AN signals are trans-
mitted along the directions orthogonal to the data vectors.
The key idea of transmitting AN signals is to confuse the
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eavesdroppers and degrade their signal-plus-interference-to-
noise ratios (SINRs) [3]-[5].

However, in Internet of Things (IoT) applications, where
the communicating devices are equipped with limited pro-
cessing and transmit power resources, only a single antenna
is typically available at the wireless nodes. In addition,
in uplink wireless transmissions, the limited transmit power
and form factor constraints at portable devices typically
prohibit equipping them with multiple transmit antennas/
radio-frequency (RF) chains. In such practical scenarios,
beamforming and spatial AN techniques cannot be imple-
mented by the uplink transmitting nodes [3]-[5] which
presents a major research challenge.

Another approach for PHY security is based on exploit-
ing the randomness of the wireless channel for extracting
identical secret keys at the legitimate communicating nodes.
Wireless channels are characterized by a reciprocity prop-
erty at a given time/frequency/space resource. That is, two
communicating nodes observe identical (or at least highly
correlated) multi-path characteristics at both ends of a wire-
less link at any instant of time. In a rich fading environment,
channel variations over time maintain a source of randomness
that can be exploited by the transmitter and the legitimate
receiver to extract two identical sets of secret key samples.
Secret key extraction and generation from wireless channel
measurements have been realized using different properties
of the received signal, e.g., received signal strength (RSS) [6],
phase differences [7], time delay (in wideband transmission)
[8], [9], and channel state information (CSI) [10]. Since RSS
is easy to measure in practice, it is often used in many
scenarios (see, e.g., [6]). Upon agreeing on secret key samples
between the legitimate transmit-receiver pair, they can be
used as one-time pad (OTP) cipher to encrypt several data
samples. OTP encryption is perfectly secure and provably
unbreakable as long as the number of secured data samples
is equal to the number of secret key samples [11]. Unfor-
tunately, the main restriction of OTP encryption is that the
number of extracted secret key samples from a random source
(i.e., channel) is too low to encrypt all the transmitted data
samples [10], [12]-[14]. This is due to the fact that the
channel reciprocity property can not be guaranteed unless the
legitimate parties measure the channel simultaneously. More-
over, perfect independence between legitimate and eaves-
dropping links is not possible in some scenarios. Increasing
the number of secret key samples has been investigated in
many works, e.g., [10], [12]-[14], and the references therein.

PHY security has been recently investigated for many
transmission scenarios including those based on the
orthogonal-frequency division multiplexing (OFDM) mod-
ulation scheme and its multiple-access variant, namely,
orthogonal-frequency division-multiple access (OFDMA),
see e.g. [15]-[21]. The key advantage of OFDM is its
ability to convert a frequency-selective channel into a
group of orthogonal flat-fading frequency sub-channels.
Zhang and Liu [15] constrained their problem formulation to
meet the secrecy rate requirements of all users in an OFDMA
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network while optimizing the energy harvested by all users.
In [16], a secret key generation scheme based on the precod-
ing matrix indices was proposed for securing multiple-input
multiple-output (MIMO)-OFDM systems. Qin er al. [18]
investigated the PHY security of a single-input single-output
single-antenna eavesdropper (SISOSE) OFDM system and
proposed a temporal-AN injection scheme to increase the
instantaneous secrecy rate (ISR). The problem formulation
was then extended in [19] to investigate the PHY security
of MIMOME-OFDM systems using a new hybrid spatial-
temporal AN scheme. In [20] and [21], different AN precod-
ing designs and power allocation schemes were investigated
to enhance the ISR in OFDM systems.

Single-carrier ~ frequency-division — multiple  access
(SC-FDMA) has been adopted in the uplink of wireless cel-
lular standards such as fourth generation long term evolution
(LTE) [22] as well as the forthcoming fifth generation new
radio (NR). In addition, it has been recently standardized as
the multiple-access scheme for cellular-vehicle-to-everything
(C-V2X) communication in LTE and NR side-links [23]. This
paves the way for a wide range of IoT applications to use
SC-FDMA. Furthermore, narrowband IoT (NB-IoT) was first
introduced in 3GPP Release 13, and SC-FDMA technology
is adopted for its uplink transmissions [24]. That is why
many recent research studies investigated SC-FDMA for
IoT [25]-[28]. SC-FDMA is based on single-carrier
frequency-division equalization (SC-FDE) which evolved
to realize the benefits of OFDM and single-carrier systems
as discussed in, e.g., [29] and references therein. Unlike
OFDMA systems, SC-FDMA has a relatively low peak-to-
average power ratio (PAPR) which makes it suitable for low-
power devices. Although securing uplink SC-FDMA trans-
missions is very critical, to the best of our knowledge, none of
the previous research work has considered SC-FDMA PHY
security (i.e., information-theoretic security).

Our main contributions in this paper are summarized as
follows

o We design a security scheme for SC-FDMA systems
by adding a temporal (time-domain) AN signal to the
SC-FDMA symbol. The key idea is to exploit the avail-
able temporal degrees of freedom due to the insertion of
a cyclic prefix (CP) sequence into each SC-FDMA data
symbol. The AN precoding matrix is designed carefully
to degrade the eavesdropper(s) channels only and to be
canceled at the legitimate receiver.

o We allocate different power levels to the data and
AN signals. To generalize the optimization setting,
we assume a power fraction that determines the amount
of power assigned to data signals relative to AN signals.
Our AN design does not require the instantaneous chan-
nel state information (CSI) of Eve’s link which makes
our proposed scheme robust in mitigating eavesdropping
attacks even when the eavesdroppers remain passive to
conceal their presence.

« We investigate the average secrecy rate performance
when Bob adopts the conventional linear block ZF and
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MMSE detection strategies. We show that these detec-
tion strategies reduce to simple per-sub-channel filter-
ing. That is, the detector design has low complexity at
the legitimate receiver, which is a practical scenario for
IoT devices.

o« We consider the worst-case eavesdropping scenario
where Eve is assumed to have very high computational
capabilities and investigate three high-complexity detec-
tors at Eve’s receiver; namely, single-user ML, multi-
user MMSE, and multi-user ML. We analyze the design
complexity and the achieved data rate in each scenario.
In addition, we consider the worst-case eavesdropping
scenario where Eve has knowledge of the CSI of the
Alices-Bob links and accounts for AN correlation in
her detectors’ designs. We compare the average secrecy
rates under these detection strategies for different system
design parameters.

o We show that the number of AN streams that Alice can
inject without harming Bob is equal to the number of CP
samples. We prove that, out of those streams, the number
of useful AN streams that can actually degrade Eve’s
SINR is the maximum of the Alice-Bob’s and Alice-
Eve’s channel memories. The remaining AN streams lie
in the null space of the Alice-Eve’s channel matrix. This
prevents Alice from wasting her power on useless AN
streams.

o We derive a new closed-form expression for the average
secrecy rate and show that, at high input SNR, the aver-
age secrecy rate is a linear function of Alice’s transmit
power level (in dB scale). Hence, unlike the case of
no AN injection where the ISR becomes independent
of Alice’s transmit power level and saturates with it,
in our investigated AN-aided scheme, the transmit power
can still increase the ISR. Moreover, for a large number
of data samples per SC-FDMA symbol, the achievable
average secrecy rate is a linear function of the number
of useful AN streams.

o To enhance the system security for the case of par-
tial Alices-Bob channel knowledge at Eve, we pro-
pose a hybrid scheme that integrates temporal AN with
channel-based secret key extraction. In our proposed
scheme, we exploit the channel variations to extract
secret key samples which are used by the Alices to
encrypt an equivalent number of data samples using an
OTP. The encrypted data samples are then multiplexed
with the remaining unencrypted data samples in the time
domain. Finally, temporal-AN signals are added to the
entire SC-FDMA symbol to secure the unencrypted data
samples. The encrypted data samples are information-
theoretically secured and their generation guarantees a
positive total ISR. In addition, they provide an additional
source of interference (in addition to temporal-AN sam-
ples) that degrades Eve’s reception of the unencrypted
data samples.

Notation: Lower- and upper-case bold letters denote vec-

tors and matrices, respectively, while the subscripts, (-)r and
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(-);, refer to frequency-domain and time-domain quantities,
respectively. Iy and Fy denote, respectively, the N x N
identity matrix and the fast Fourier transform (FFT) matrix.
CM>*N and RM*N denote the set of all M x N complex
and real matrices, respectively. ()7 and (-)* denote the trans-
pose and Hermitian (i.e., complex-conjugate transpose) oper-
ations, respectively, and E{-}, denotes statistical expectation.
A® denotes the matrix A associated with user k and [A] i1:N
is the i-th row of the matrix A € CM*N_ 0y denotes
the all-zero matrix with size M x N, and | - | denotes
the absolute value. diag{-} denotes a diagonal matrix whose
diagonal elements are the enclosed entries, while diag{-}; ;
represents the i-th diagonal element of the enclosed matrix.
[[17 = max{0, -} returns the maximum between the argument
and zero, and [A B] represents the horizontal concatenation
of matrices A and B. CA/(0, X) denotes the complex Gaussian
distribution with zero mean and covariance matrix denoted
by X. Throughout this paper, the term, sample, is used to
denote a single quadrature amplitude modulation (QAM)
constellation symbol while the entire SC-FDMA symbol is
denoted as, symbol. A list of the key variables used through-
out the paper are summarized in Table 1.
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FIGURE 1. Eavesdropping multiple-access uplink system model.

Il. SYSTEM MODEL

Consider an SC-FDMA uplink communication system con-
sisting of K legitimate users, called Alices, and a single
common base-station, called Bob. Each user sends confi-
dential information messages to Bob in the presence of a
passive eavesdropper, called Eve, who overhears the ongo-
ing communications as depicted in Fig. 1. Let M denote
the total number of sub-channels of the SC-FDMA symbol
and N < M is the number of sub-channels allocated to
each user. We assume an equal sub-channel allocation to
all users, i.e., N = M/K. All nodes are assumed to be
equipped with a single antenna.! SC-FDMA transmissions
can be considered as FFT-precoded OFDMA transmissions

IWe consider a single antenna to meet the IoT application requirements
where devices have limited processing capabilities. The single antenna
assumption is considered not only at the eavesdropper, but at the intended
receiver as well to guarantee fairness between both receivers. We add a
further constraint to the legitimate system by assuming a single antenna
at the transmitter to meet the limited processing requirements of the IoT
applications. Most of the current PHY security schemes fail in this scenario.
This is the main challenge that we address in this paper.
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TABLE 1. List of key variables.

Symbol Description Symbol Description

M Total number of sub-channels in the SC- | N Number of sub-channels allocated to each
FDMA symbol user (N < M)

K Number of legitimate users Mecp CP length

XEk> c CNx1

Time-domain data samples vector transmit-
ted by k-th Alice

ng) c CNx1

Frequency-domain data

samples
(7 =Fax)

vector

FN G(CNXN

N-point FFT matrix

S(k) c RMxN

The k-th Alice binary sub-channel mapping
matrix

TCP ¢ RM+Mcp) x M

CP insertion matrix

RSP € RMX (M+Mcyp)

CP removal matrix

L

Channel memory of the Ay —B link

L

Channel memory of the Ag —E link

n](gk) c (CN><1

The zero-mean
AWGN vector at Bob

circularly-symmetric

nl(ik) c (CN><1

The Zero-mean
AWGN vector at Eve

circularly-symmetric

(C(]M"!‘Iwcp)x(]\/[“‘Mcp)

of the A —B link

yng) e cVx1 The k-th Alice frequency-domain received yEgk) e cVx1 The k-th Alice frequency-domain received
signal at Bob signal at Eve
Ht(k) Toeplitz time-domain channel matrix of the Gt““) Toeplitz time-domain channel matrix of the

C(M+Mep) x (M+Mep)

of the Ap —E link

Hgk) c (CNXN

Diagonal frequency-domain channel ma-
wix of the Ay —B link (H =
s® "Fy RPHM TPFY S(R)

Gﬁk) c (CNXN

Diagonal frequency-domain channel ma-
wix of the A —E link (GF) =
s® 'FyRepGH TorEY 5(0)

W](3k> € CNxN

Linear equalization matrix filter for the k-th
Alice data at Bob

Wgﬁ € CNxN

Linear equalization matrix filter for the k-th
Alice data at Eve

zik) € CMepx1 Temporal AN vector transmitted by the k-th | a(F) Data power fraction at k-th Alice
Alice to confuse Eve

Q™ Temporal AN null space precoder at k-th | pt Total transmit power at each user

C(M+Mcp)x Mcp Alice

where the samples are precoded using an N-point FFT before
applying an OFDMA modulator at the transmitter side. Let

xEk) denote the N x 1 zero-mean unit-variance data samples
vector transmitted by user k € {1, 2, ..., K}. Following the
3GPP-LTE standard, we assume that each Alice allocates
her transmission power equally across her data samples to
maintain the low PAPR advantage of the SC-FDMA system.
Let p;k) denote the transmission power of the k-th user’s
samples. The data samples vector is first transformed into a
frequency-domain samples vector, denoted by XEk), using an
N-point FFT as x(fk) = Fink).

We follow the LTE uplink localized FDMA sub-channel
mapping strategy [23] where each user is assigned an adjacent
set of sub-channels. Let S® denote the M x N binary sub-
channel mapping matrix which assigns N out of the total M
sub-channels to user k and is given by

[S(k)]i,j -

Next, an M-point IFFT is used to transform the sig-
nal back to the time domain. Prior to transmission, a CP
sequence of size M, is inserted at the beginning of each
SC-FDMA data symbol using a CP insertion matrix, denoted

T
[Ediyn In] € RO yith B =
[OMCPX(M*MCP) IMcp]’

Let Ay, B, and E, denote the k-th Alice, Bob, and Eve,

respectively. Let Ll(gk) and L](Ek) denote the channel memories
(i.e. channel impulse response duration in samples) of the

1, sub-channel i is assigned to user k
and mapped to element j N
0, Otherwise

by T® =
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Ay —B and Ay —E links, respectively. The CP is designed to be
longer than the channel memories of all links to eliminate the
inter-symbol interference. We assume a block-fading channel
model where a codeword experiences many fading realiza-
tions and the coherence time of a single fading realization
is sufficiently longer than the SC-FDMA symbol time. Let
Ht(k) e CM+Mep)x(M+Mep) and Gt(k) € CMAMep)x(M+Mp)
denote the Toeplitz time-domain channel matrices of the
Ay — B and Ay — E links, respectively. For example, Hgk)
has the following form

NO) 0 0 0 7
Oy rR©0) 0 ... 0
o
ey .0
: - 0
L0 o P 150) |

@)

where h®)(i) denotes the i-th tap for the Ay — B channel
impulse response (CIR). Each CIR tap of the Ay — B and
Ay — E links has an average gain of ai(ﬁg and oi(fé s
respectively.

At the receiver side, the CP is first removed using a
CP removal matrix, denoted by RP =[O, Iv] €
RMx(M+Mep) - After that, an M-point FFT operation and
a sub-channel de-mapping operation, denoted by S(k)T,
are applied to extract the k-th user’s data samples in the
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FIGURE 2. SC-FDMA system model with temporal AN.

frequency-domain as follows

yng) — S(k)TFMRCPHik)TCPF* S(k)FN (k) (k) + ll(k)

_ (k H(k)xgk) + ng) 3)
el = 8O TFyRPGOTPF; SO Ry pPx® 4 n®
k k) (k k
pg )G( )Xg ) +n§£) )

where ng‘ )~ CN(, «p) and ng )~ CN(0, kg) denote
the complex N x 1 zero-mean circularly-symmetric addi-
tive white Gaussian noise (AWGN) vectors at Bob and
Eve, respectively, kg = Af B and kg = Af PBg
denote the noise power at Bob and Eve, respectively, Af
denotes the per-sub-channel bandwidth, g and Bg denote the
AWGN variances at Bob and Eve, respectively. The matrices
HY — s®TFyRPHOTPF;S® ¢ CVN and GF =
S(k)TFMRCPGik) TPF;,S® e CV*N denote the diagonal
frequency-domain channel matrices of the Ay —B and Ay —E
links, respectively.

In the post-processing stage, channel equalization is car-
ried out in the frequency domain. Then, an N-point IFFT
operation is performed to recover the time-domain data sam-
ples. The k-th Alice’s N x 1 time-domain linearly equalized
received vectors at Bob and Eve are given by

5% = Fy WOHOEpOx® 4 Fywhn® (5

yEEk) — FNW(k)G(k)F /p;k) (k)+F* W(k) (k) (©6)

where Wg ) and Wg‘ ) ¢ CN*N are the linear equaliza-
tion matrix filters for the k-th Alice data at Bob and Eve,
respectively. We will investigate different design choices for

Wg() and Wg) in addition to non-linear equalization at Eve
in later sections. The SC-FDMA system symbol diagram is
depicted in Fig. 2.

Ill. TEMPORAL AN DESIGN IN SC-FDMA
To confuse Eve, Alice sacrifices a portion of her transmit
power to inject an AN signal in the time domain to exploit
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the temporal degrees of freedom provided by the CP. A pre-
coding matrix, denoted by Q¥ € CM+Mep)xMep ' projects
the AN vector to span the null space of the channel matrix
between the k-th Alice and Bob by satisfying the following
condition

RPH QY =0 )

Given that Q(k) has M., orthonormal basis vectors, the k-th
Alice can transmit a maximum of M, AN streams without
harming Bob. Let zgk) ~ €N, =) denote the Mep x 1
AN samples transmitted by the k-th Alice to confuse Eve.
To cover all possible eavesdropping directions and maximize
the AN randomness at Eve, each Alice sends uncorrelated AN
samples. Hence, the AN covariance matrix, Zék), is diagonal
with diagonal entries equal to the AN power for each AN
stream. Let p; denote the total transmit power available at
each user. We assume that the k-th Alice divides her power
such that a fraction a® < 1 of her total transmit power
is allocated to data, i.e. p( ) = oc(k)p t. and the remaining
fraction, (1 — a(k)), is allocated to AN Assuming that the
k-th Alice knows her instantaneous CSI with Bob, she injects
the AN signal in the null space of her channel matrix with Bob
and, hence, the received signal at Bob in (5) will not change
for all users. In contrast, the k-th Alice signal vector received
at Eve in (6) is impaired with AN signals produced by all K
Alices as follows

k k k [ (k) (k k

K
+ SO FRPGQZ | ()

j=1
We emphasize here that this AN design does not assume
knowledge of the Alices-Eve channels at the legitimate nodes.
This is the best-case scenario for Eve where she remains pas-
sive and does not transmit to hide her CSI from the legitimate
nodes. Furthermore, we assume that Eve has full knowledge
of her own channel with all users as well as full knowledge
of the Alices-Bob channels. For the considered block-fading
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channel environment, Bloch and Barros [30] showed that
with main channel knowledge and no eavesdropper channel
knowledge, wiretap codes that achieve the average secrecy
rate exist. Therefore, in the next sections, we derive the ISR
and then take the average over many coherence intervals to
obtain the average secrecy rate.

IV. LINEAR SC-FDMA DATA DETECTION

WITH TEMPORAL AN

In this section, we investigate two linear-detection strategies
for SC-FDMA and derive the ISR for each strategy.

A. ZERO-FORCING (ZF) DETECTOR

A simple detection strategy at Bob and Eve is the zero-

forcing (ZF) detector which completely eliminates the chan-

nel distortion by inverting the diagonal frequency domain
o (k) (k=1 (k) (O

channel matrices, i.e., WB = Hf and WE = Gf

at Bob and Eve, respectively. Hence, the frequency-domain

ZF-equalized received signals at Bob and Eve can be

expressed, respectively, as

k k) (k 0~ (k
vai = pOx” + By HY ) ©)
K
—1 T N
YE Ek)_\/pg(k)xgk)—i—F}(, Gl(ck) ngc)—i—S(k) E O(’)z?)
j=1
(10)

where the term S® T Q0 zg’ 4 represents the interference signal
affecting the k-th user data at Eve’s receiver due to the AN
transmission from User j, and the term OY is given by
0" = FyRPGPQY. At Bob, ZF equalization correlates
the AWGN samples resulting in a noise covariance matrix
ofE(F;KVH?C)*]ng‘)ng”*H?‘)*l*FN) = kpFyHO “F
At Eve, ZF equalization does not only correlate the AWGN,
but it also ignores the AN which can severely impact ZF
performance.

After ZF equalization, each data sample is decoded inde-
pendently. Hence, the data rates of the Ay — B and Ay — E
links are, respectively, given by

")
k Px;
RY = § log, <1+ ;‘(k)) (11)

Bn,
k) P)(ck)
Ry = Zlog2 14+ —— z(k)+ 0 (12)
Ez,

where yé(];i) and 7’152(:]1? represent the AWGN powers across
the i-th sample at Bob and Eve, respectively, which are
given by

i 12
yg(’;f_dlag{mﬂ;") |FN}”KB (13)
i,i
20 _ giag Lt | GO ¥ 14
YE,n; = diag Fy |G; | Fy ~KE (14)
i,i
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2(k)

where yg " represents the AN power affecting the i-th data

sample at Eve’s receiver which is given by

K
2 . —1 T NP
Vé’fz)i = diag F}'{,Gg() s® E 000"
=1

—1x%
xSOGH ™ Fy (15)
ii
Using the achievable rates of the Ay — B and Ay — E links,
the ISR of user k (in bits/sec/Hz) is given by

1 k 01"
RY = (&~ R (16)

s _M+Mcp

The sum ISR of all users is thus given by

K
Ry=Y R (17)

Remark 1: From (10) and (12), we observe that all M
data samples at Eve are perturbed by the AN interference
from every Alice even though each Alice transmits only
My <K M AN streams. This suggests that the AN interfer-
ence is highly correlated across the M data samples within
the same SC-FDMA data symbol. The ZF strategy detects
each sample independently and does not account for this AN
correlation. In the next subsections, we show that Eve can
exploit the AN correlation to reduce its effects by adopting
either an MMSE or an ML detection strategy. In particular,
the MMSE detector jointly filters all samples within an
SC-FDMA symbol simultaneously but detects each sample
separately using a hard-decision device (slicer). The ML
detector enables Eve to further exploit the AN correlation and
minimize the interference by jointly filtering and detecting all
samples within an SC-FDMA symbol in the time domain.

B. LINEAR BLOCK MINIMUM MEAN-SQUARE

ERROR (MMSE) DETECTOR

The MMSE detector [31] tackles the well-known noise
enhancement problem of the ZF detector. The price paid
is the need to estimate the noise covariance matrix. In this
subsection, we investigate the achieved ISR when Bob and
Eve use the block linear MMSE detection strategy which
balances between minimizing inter-symbol interference (ISI)
and noise enhancement. For the MMSE detector, the receive
matrix filter, denoted by W, can be expressed as follows

W =RyR,/ (18)

where Ry, is the cross-covariance matrix between
the frequency-domain transmitted data vector, Xy, and the
frequency-domain received signal vector, yr, and Ryy is the
received signal covariance matrix in the frequency-domain.

Hence, the error-covariance matrix is given by
Ree = R — RyRy /Ry, (19)
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where Ry is the covariance matrix of the frequency-domain
transmitted data vector. Since Bob experiences AWGN noise
along with the ISI, his linear MMSE detection filter for the
k-th user’s data samples is given by

k k) * K gp(6)* -
W = pPHE” (pPHPHY 4 aly)  @0)

Since Hﬁk) is a diagonal matrix, Bob can filter each sub-
channel independently where the i-th sub-channel filter is
then given by

*
]
W) = ~ i 1)
B; k
lHE )l t|2 + (k)
Bob’s estimation error covariance matrix is given by
-1
(k) (k)*gy(k)

R s = (I + H H; ) (22)

where [H( ) _is the i-th diagonal entry of H( ). The inverse

in (22) is easy to compute since the inverted matrix is diago-
nal. Therefore, the i-th sub-channel estimation error variance
is given by

[R(k)B] S 23)

.. @)
i,i Dx k) 2
1+ 2ol

The unbiased decision point SINR for sample i can be
expressed as

B — m - (24)

Hence, the rate of the k-th Alice-Bob link is given by

N
R = Z log, (1+ SINRY)

(k)| (k) |2
f i,i
_ 2 :logz (1 + ) (25)

In addition to ISI and AWGN, Eve’s received signal is
perturbed by the temporal AN interference transmitted by all
K users. Let ﬁg ) denote the N x 1 equivalent noise vector
which includes both the AN and the AWGN, i.e.,

K
il = nl + 507y 004 (26)

j=1
We consider the worst-case security scenario where Eve has
perfect knowledge of the CSI of the Alice-Bob link. Hence,
she knows the null space precoder and can exploit the AN cor-
relation across the data samples within the same SC-FDMA
symbol in her MMSE filter design to mitigate the AN effect.
The cross-covariance matrix between the frequency- domaln

received and the transmitted data vectors, denoted by RyX B>
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as well as the received signal covariance matrix at Eve’s
. &) . .
receiver, denoted by Ryy - are given, respectively, by

*) [G®
RY) = G! Q27

k k k * k

where R(~~) is the AN-plus-AWGN covariance matrix at
Eve’s recelver which is given by

K
RY . —iely +5©7 [ 3005007 | s® (29
j=1

From (19) and (28), the MMSE filter matrix and the error-
covariance matrix at Eve’s receiver are given, respectively, by

—1
Wl = Vp61" (p6P61" + RY ) (30)

* * —1 k
— 1y — pG® (p§k>G§k)G§k> +R® ) G

(k)
R fif, E
€29)

ee,E T

The decision-point SINR at the i-th sub-channel can be
obtained from (31) and (24) as follows

1

(k)
[Ree,E] ..
i,i

Hence, the data rate of the k-th Alice-Eve link is given by

SINRg‘i) - (32)

RY = Zlog2 (1 —i—SINR(k)) (33)
i=1

The ISR and the sum ISR are computed, respectively, from
(16) and (17). We emphasize that, from (21) and (23), Bob’s
block MMSE detector simplifies to per-sub-channel filtering.
In contrast, from (30) and (31), Eve’s block MMSE detector
is much more complicated since it requires matrix inversion
and joint filtering of all the received samples within the
SC-FDMA symbol.

In the following two sections, we derive the achieved ISR
when even more complicated detectors are implemented at
Eve while Bob is still constrained to the simple per-sub-
channel detectors of Section I'V.

V. SINGLE-USER (SU) MAXIMUM LIKELIHOOD (ML)
DETECTOR AT EVE

With equally-likely input symbols, the minimum error rate
single-user (SU) detection strategy is the joint ML detection
of all of the user’s data symbols. This can be realized by
performing exhaustive search over all of the k-th user’s data
symbols within the codeword which requires very high com-
putational complexity and can not be implemented using a
linear filter. Using ML detection, Eve can further exploit the
AN correlation across the k-th user’s data samples and reduce

14813



IEEE Access

M. F. Marzban et al.: Security-Enhanced SC-FDMA Transmissions

the AN effects. In this case, the data rate of the k-th Alice-Eve
link is given by

RY = log, det (Iy + pG6{Y"
T - i j o
x Y xely +8©°7 | 3 00=P00" | s®
j=1
(34)

Similar to the linear detection methods, the ISR and the sum
ISR under SU ML detection can be derived, respectively,
using (16) and (17). Even though ML is the optimal detector
in the sense that it minimizes the error rate for equally-likely
data samples, its complexity increases exponentially with the
number of users’ samples per symbol.

Proposition 1: Let Ll(lk) denote the maximum of the channel
memories of the k-th Alice-Bob and k-th Alice-Eve links
(ie., Ll(lk) = max(Lék),L](Ek)). There are (Mcp — Ll(lk)) use-
less AN directions that project the AN signals in the null
space of the equivalent channel matrix of the k-th Alice-Eve
link, and ngk) useful AN directions that can degrade Eve’s
instantaneous rate. The useful AN streams can be extracted
by designing the null space precoder as in (56).

Proof: See Appendix A. O

This proposition suggests that although the k-th Alice can
transmit a maximum of M., AN streams in Bob’s null space,
only Ll(lk) < M, of them are useful in the sense that they hurt
Eve. Hence, increasing M¢p without changing the channel
memories of the Alices-Bob and Alices-Eve links will not
increase the ISR.

Proposition 2: Assuming SU ML detection at Eve, at very
high input SNR levels, the average secrecy rate (in
bits/sec/Hz) is approximated as follows

*)
1 + L
E{[Rg)—R;f)] }g maxy {Ly }log2< Pt )
M+ Mq, M+ M, Nks

(35)

Proof: See Appendix B. |
This is a very promising result since it shows that using
our proposed temporal AN design, increasing the input power
level, denoted by p, can increase the average secrecy rate
unlike the no-AN case. Moreover, the average secrecy rate
is always positive and increases linearly with the number of
useful AN streams, Ll(,k). In Fig. 3, we compare the simulated
average secrecy rate with the derived theoretical approxi-
mation. Fig. 3 verifies the tightness of the approximation
especially at high input SNR levels. The Alices design the
rates of the wiretap codes based on the average secrecy rate.
However the average secrecy rate depends on the detection
strategies at both Bob and Eve. Since the Alices do not know
which detection strategy Eve is using, the Alices design the
wiretap codes assuming the worst-case scenario where Eve
employs an ML detector. Wiretap codes are also designed
assuming a conventional per-sub-channel detector at Bob to
reduce his detector’s complexity. In Appendix C, we discuss
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FIGURE 3. Simulated average secrecy sum-rate and the derived
theoretical approximation versus SNR.

the Wiretap codes design based on the average secrecy rate
without the knowledge of the Ay —E channels at the legitimate
nodes.

VI. MULTI-USER (MU) DETECTION AT EVE

In the previous sections, the SU detectors at Bob and Eve
separated each user’s data using the sub-channel de-mapping
matrix, S )T, prior to data detection. However, in MU detec-
tion, multiple users’ data samples are detected simultane-
ously. From a performance perspective, MU detection is
equivalent to SU detection when the data streams of the
different users do not interfere with each other. This is the
case at Bob’s receiver since there is no AN. However, at Eve’s
receiver, each temporal AN sample interferes with all users’
data samples within the size-M SC-FDMA symbol. This sug-
gests that the AN is correlated across all users’ samples within
the SC-FDMA symbol as discussed in Remark 1. Hence, MU
detection can enhance the detection performance at Eve at
the expense of increased complexity. In the following sub-
sections, we will assume that Eve can perform MU detection
and we will evaluate the achieved sum ISR.

A. MULTI-USER (MU) MMSE DETECTOR
To perform MU detection, Eve re-arranges all users’
frequency-domain data samples into a single M x 1 vec-

2
[yg)f, y(z) yg()f] , which is

tor denoted by, ygr = E

expressed as follows

) -
¥er = GfPx X+ hg (36)

The M x M diagonal matrix Gt represents the equivalent
channel matrix at Eve for all users in which the k-th data
symbol matrix is Gl(fk), xf denotes the M x 1 frequency-
domain transmitted data vector of all users which is given
by [x?), xl(cz), ..
alent AWGN-plus-AN vector at Eve, which is given by
(A A RM M

1" o .
) Xp ] . In addition, ng denotes the equiv-

~K)]" . .
ng ] , and the diagonal matrix Py €
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represents the data transmit power matrix which contains
the transmit power levels for all users’ data samples and is
given by

1 1) 1) (2) (2)

Py =diag|py’.px s - Px s Dy s ev- Dy svves
N terms N terms
PP 6
——_——
N terms

Similar to (29), (30) and (31), the M x M noise covariance
matrix, the size-M MMSE filter matrix, and the estimation
error covariance matrix can be expressed, respectively, as

K
eIy + Gi! ZOWZS)OW G
j=1

1 -1
Wg = Py sz* (GfPXGf* + R<~k~) )

nn,E

Riq e

12« n® Y\ ap?
Reer = Iy — Py Gy (GfPXGf +Rﬁﬁ,E) GP,~ (38)

We emphasize here that, in contrast to SU MMSE detec-
tion, the MU MMSE detector at Eve exploits the temporal AN
correlation across all M-sub-channels of all users to mitigate
the AN effects. However, this requires a much higher compu-
tational complexity at Eve since the N x N matrix inversion
in the SU detection is now an M x M matrix inversion as
shown in (38). The decision-point SINR for the i-th sample
is given by

1
SINRg, = ———— — 1 (39)
[Ree,E]i,i
Hence, the rate of the k-th Alice-Eve link is given by
R = > log, (1 + SINRE,) (40)

iev®

where v(®) is the set of samples assigned to user k. Similarly,
the ISR and the sum ISR can be computed as in (16) and (17),
respectively.

B. MULTI-USER (MU) ML DETECTOR

Similar to the MMSE case, Eve can jointly decode all
users data simultaneously using an ML detector. This is
the optimal detection strategy for Eve in terms of mini-
mizing the error rate assuming equally-likely data symbols.
However, it requires very high computation complexity.
At Eve’s receiver, the data samples are first re-arranged as
in (36). Then, Eve performs exhaustive search across the M
data samples of all users within the SC-FDMA symbol. In this
case, Eve’s sum-rate is given by

Y RY = log, det (IM + GP:G*
k

K —1
x (KEIM +3° 0(/')2?0@*) ) (41)
j=1
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Therefore, the sum ISR is given by
) +
(k) (k)
Ry=—— Ry’ — R 42
i [T e

VII. HYBRID TEMPORAL AN SECRET KEY SCHEME

In the propsed temporal AN scheme, the k-th Alice and
Bob exchange control and training sequences to estimate
their links’ channels. Bob designs the AN precoding matri-
ces using Eqn. (7) based on the channel estimates and only
feedbacks the designed AN precoder to the k-th Alice. In this
section, for more practical considerations, we relax the global
channel knowledge assumption at Eve. We assume that Eve
exploits the shared training sequences to estimate her own
channel with all Alices and Bob (A; —E and B — E channels)
perfectly. In addition, she overhears the shared AN precod-
ing matrices but does not know the exact channel matrices
between the Alices and Bob (A; — B channels). In this case,
we propose enhancing the system security using a hybrid
temporal-AN/secret-key (TAN-SK) scheme.

Next, we describe our proposed hybrid scheme. The k-th
Alice (Ag) selects her data samples from a set of constel-
lation points, denoted by S, that is approximated to follow
a Gaussian probability distribution [32]. Then, Ay and Bob
start exchanging training and control signals to estimate the
CSI of their links. Based on the channel reciprocity prop-
erty, Ay and Bob exploit their channel estimates to generate
identical secret key samples using any of the approaches in,
e.g., [10], [14], and the references therein.2 Let r®) denote
the generated common secret key of size N'x’ where r&) =

[rl(k), rék), ce, r](\f&)] with ri(k) € S. Eve is assumed to be suf-

ficiently distant from all Alices and Bob such that the channel
responses of her links Ay — E and B — E are independent
from those of Ay — B links and, hence, she can not generate
the same secret key samples. Upon agreeing on secret key
samples, Ay uses the generated secret key samples to encrypt
an equivalent number of the data samples through an OTP
encryption scheme. The OTP encryption scheme provides a
one-to-one mapgci)ng between the time-domain unencrypted

data sample, x; ’, and its encrypted version, xt(];)nl given

knowledge of the secret key, rl.(k). The security is unbreakable
since each secret key sample, rl.(k), is uniformly distributed
over S. Hence, no information is leaked to any eavesdropping

node that intercepts the encrypted data samples [32].

2The channel-based secret key extraction process is beyond the scope of
this paper. Secret key extraction algorithms for fading channels are given
in [10] and [14], where Alice and Bob 1) exchange known control and
training sequences and estimate their channels. Then, they perform error cor-
rection algorithms to reconcile errors between the measurements/generated
secret keys at both Alice and Bob. 3) use one-way hash functions for
privacy amplification [33] to ensure that Eve does not know the final secret
key. We emphasize that due to the nature of the block-fading channel,
the coherence time is much longer than the SC-FDMA symbol duration.
Bi-directional channel estimation, reconciliation and privacy amplification
typically take few SC-FDMA symbols which is negligible compared to the
channel coherence time. Hence, their effect on the average secrecy rate can be
neglected.
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FIGURE 4. k-th Alice’s transmitter architecture to employ the hybrid
TAN-SK scheme.

In general, the key generation rates are lower than the
achievable data rates. Only a fraction of the data samples
(i.e., SC-FDMA sub-channels) can be encrypted using the
extracted secret keys. Let xg{u)n denote the remaining unen-
crypted data samples of size Néﬁ) with ngﬁ) + Néﬁ) = N.
The k-th Alice then multiplexes the encrypted data samples,

xgke)n, with nggn, in the time domain to form the compos-

ite data signal, x;( (k) . Temporal AN samples, z( ), are then
added to the entire time-domain SC-FDMA data symbol to
secure the unencrypted data samples. The proposed modified
SC-FDMA transmitter employing the TAN-SK scheme is
illustrated in Figure 4.

A. SINGLE-USER (SU) ML DETECTION WITH SECRET KEYS
Using linear detectors to detect the data samples at Eve
can significantly degrade her performance since her received
signal is perturbed by temporal AN interference and encryp-
tion from secret keys. Therefore, we focus in this section
on the worst-case eavesdropping scenario where Eve applies
the SU-ML and multi-user (MU) ML detectors. We assume
that both Bob and Eve know the indices of the encrypted
and the unencrypted samples in every SC-FDMA symbol.
Since the encrypted samples are perfectly secure due to the
OTP encryption with secret keys, Eve can only select the
sub-channels containing the unencrypted data samples and
jointly decode them. The time-domain received signal at Eve
is given by

vl = VPG OxE 50 TEy, ZO(’) +nd) @3

*G(k)FN is the equivalent circulant chan-
(k) e CNx1i

where G =

nel matrix of the Ak —Elink, x; is the data samples

(k)
t,un

of length Néﬁ), in addition to the encrypted data samples xg{e)n

vector which is comprised of unencrypted data samples x

of length Ne(ﬁ), which is given by

ngc) — A(k) (k) +A(k) (k) (44)

un Xt un en Xt en

where the N x Néﬁ) matrix Aé’;) and the N x N,gﬁ) matrix,
Afﬁl) denote the binary matrices that map the encrypted and
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unencrypted data samples, respectively, to the composite data
samples vector. For example, Aff;) is given by

[t =
l’j

While extracting the unencrypted samples, Eve’s received
signal is perturbed by interference from temporal AN in
addition to noise due to coupling with the encrypted samples.
Therefore, the achievable rate of the Alice-Eve link using the
SU ML detection strategy is given by

1, unencrypted symbol j is mapped to
data symbol i 45)
0, Otherwise

RY = logy det | Iy + pPGPALAR G0

x 1 kely + pPGEOALAL" Ge®”

T K i -
+Fys® [ 3 050" | sOFy (46)
j=1
From (25), the achievable rate of the k-th Alice-Bob link

using the MMSE detection strategy can be divided into two
terms for unencrypted and encrypted samples as follows

(k) k) 2
R(k) E log, ( #

K
ie€ B

(k) jgy) 2
+>_log, (1 + w) 47
ield KB

where £ (U) denotes the set of encrypted (unencrypted) sub-
channels. The expression in (47) consists of two terms. The
first term is perfectly secured due to encryption using the
secret keys while the second term is unsecured and its security
should be measured using the secrecy rate. Hence, the ISR of
the legitimate system is given by

<k>| (k) P
RY = log, | 1
s M + M, +Mcp {Z 082 < * )

POHE. P2 +
|:Zlog2 <1+ Hi i )_R@} (48)

ield

We emphasize here that in our proPosid hybrid TAN-SK
o 2
| in Eqn. (48)

scheme, the term ), _clog, [ 1+ #

guarantees a positive ISR in contrast to the conventional PHY
security schemes. Then, the sum ISR can be obtained as
in Eqn. (17).

B. MULTI-USER (MU) ML DETECTION WITH SECRET KEYS
To perform MU ML detection over the unencrypted data
samples, Eve re-arranges the received signals as discussed in
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Section V1. In this case, the instantaneous sum-rate at Eve is
given by

>

= log, det (IM + GuanunGzn
—1

K
x kg + GenPyenG. > 0"sP 00"
=1

(49)

N© N
where Gy, € cM (Z" ) and G, € (CMX(Z" )
denote the equivalent channel matrices of all-users’ unen-
crypted and encrypted data samples, respectively, with

block diagonal matrices ng)Aflk) nd G(k)Agfl), respectively.
N
The matrices Py € R(Zk ) (Zk ) and Py, €

k
R(Z" ) (Z" ()) denote the diagonal transmit power
matrices whose diagonal entries are the data power of all-
users’ unencrypted and encrypted data samples, respectively,
and are given by

Py, = diag pg(l),pf‘l), .. pf(l),pf), .. pf), ey

(2)

Nén terms Nun' terms

PO, p®) (50)
—/_/
N&f) terms
Pxen = dlag Pg(l)’l’;l)f s pg(])

Ne(,]l) terms

P PP,

Né?,) terms

P, p (51)
\q/_./
Ne(f) terms

The sum ISR is given by

(k)l 1(°k) |2
R lo 1 &
: M+MLP{ZZ g2< + )

k ie€

PO H ;k) 12 +
[ZZlogz (l—i- i ) —ZR%C):|

k icld k
(52)

Remark 2: The Alices-Eve’s rate expressions in
(46) and (49) are based on the assumption that Eve knows
the AN precoding matrices QX Vk. Given that the null
space of a matrix can be obtained from the singular value
decomposition (SVD) of that matrix (i.e., by selecting the
right singular vectors corresponding to zero singular values),
knowledge of the AN precoding matrix, Q®, may imply that
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Eve knows some information about the Alices-Bob channel
matrices. This, in turn, might sacrifice the key’s security
which is based on the CIR of the Alices-Bob links. However,
as shown in [32, Lemma 1], the right singular vectors of a
random matrix do not reveal any information about the matrix
itself. Hence, even when Eve knows the AN precoding matrix,
she does not know the matrix itself and this information
does not reveal additional correlated information about the
CSI of the Alices-Bob links. Therefore, we can assume that
Eve has full knowledge of the null space matrices without
compromising the information-theoretic security.

Remark 3: For the temporal AN only scheme in a multiple
non-colluding eavesdroppers scenario, under a generalized
detection setting, we assume a total of J eavesdroppers using
different detection strategies. In this case, k-th Alice’s ISR is
given by

R _ 1

+
(k) (k)
R max Rg; 53
s M—i-Mcp[ j=1,2,..,0 Ej } (53)

where RgC ) is calculated using Eqn. (25) for linear MMSE
detector at Bob while the k™ Alice—j™ Eve’s instantaneous
link rate, REJ(-k), is calculated from Egn. (12), (33) or (34)
depending on the l-th Eve’s detection strategy. For the
TAN-SK scheme, the ISR in a multiple non-colluding eaves-

droppers scenario is given by
(k) "
J Re; }

(54)

1 k k
o1 [pt RO
S M +Mcp B un + B en j:l,Z,).(..

where Rgf )un and Rgc )en are the A —B instantaneous rate over

the unencrypted and encrypted sub-channels, respectively
which are calculated from the two terms of Eqn. (47) for the
linear MMSE detector at Bob. The k'™ Alice—j™ Eve’s instan-
taneous link rate, RE , can be calculated from Eqn. (46) for
the SU ML detector al Eve

VIil. SIMULATION RESULTS

In this section, we evaluate the average secrecy rate per-
formance of the temporal-AN scheme in SC-FDMA sys-
tems under the investigated detection strategies. Due to the
space limitations, we plot the average secrecy sum-rate using
the same parameters for all users. The per-user average
secrecy rate can therefore be obtained by dividing the average
secrecy sum-rate over the number of users due to the sym-
metry in parameters. Unless stated explicitly, we consider an
SC-FDMA system with K = 8 users, M = 512, N = 64,
Mo = 64, Ly = LY = 64V k, Lg = LY = 64V k, and
p = NPK‘B = N’;E 30 dB. Each CIR tap has an average
power of ;% = 1/(LY + 1) and o5 %), = 1/(LE + 1) Vi,
(i.e., unlform power delay profile). We assume o = a® =
0.7 V k, which means that 70% of the total transmit power is
assigned to data signals and the remaining 30% is assigned
to AN signals. The data power is divided equally across the
data samples and the AN power is divided equally across the
AN samples.
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FIGURE 5. Average secrecy sum-rate versus SNR for different detection
strategies.

Fig. 5 depicts the achieved average secrecy sum-rate using
the temporal-AN scheme versus the input SNR when Eve
uses different detection strategies (SU ZF, SU MMSE, MU
MMSE, SU ML, and MU ML) while Bob is constrained to
simple linear detection strategies (SU ZF and SU MMSE).
As Bob and Eve increase their detector complexity from ZF
to MMSE, both of them achieve gains in their link rates. That
is why the SU ZF and the SU MMSE detectors achieve close
secrecy rate performance. As Eve adopts the ML detection
strategy, she exploits the correlation properties of the tem-
poral AN to minimize its effect as explained in Remark 1.
As a result, Eve achieves gains in her link rate and the
average secrecy rate decreases. Fig. 5 also reveals that the
average secrecy rate gains that Eve achieves by adopting
MU detection strategies (MMSE or ML) result in a slight
degradation in the achieved secrecy rate. This demonstrates
the robustness of the proposed temporal AN scheme to high-
complexity detectors at Eve. Even when Eve has very high
computational capabilities while Bob maintains simple per-
sub-channel detection schemes (SU ZF and SU MMSE),
a high average secrecy rate is achieved.

In Fig. 6, we show the achieved average secrecy rate ver-
sus the transmit power fraction parameter, «, for different
detection strategies at Bob and Eve. The case of « = 1 corre-
sponds to the benchmark case of no-AN injection. Therefore,
Fig. 6 quantifies the average secrecy rate gain of our pro-
posed temporal-AN scheme compared to the no-AN injection
scenario.

Figs 7 and 8 depict the achieved average secrecy rates for
different detection strategies as L and Lg increase, respec-
tively. As discussed in Proposition 1, the number of useful AN
streams depends on the channel memories of the Alices-Bob
and Alices-Eve links. Dispersive channels can accommodate
more useful AN streams. Increasing the number of useful AN
streams introduces diversity in interference and reduces the
AN correlation at Eve. Therefore, the Alices-Eve link rates
experience more degradation and the secrecy rate is boosted.
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FIGURE 8. Average secrecy sum-rate versus Alices-Eve’s channel
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Fig 9 depicts the average secrecy rate performance for
different detection strategies versus the number of users, K.
We fix M and M., while N = M /K varies as we vary K.
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FIGURE 9. Average secrecy sum-rate versus the number of users, K.
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FIGURE 10. Average secrecy sum-rate of the hybrid TAN-SK scheme
versus the number of encrypted samples, Nen.

Each user transmits a temporal AN signal that not only inter-
feres with Eve’s reception of the user’s own data signal, but
it interferes with Eve’s reception of the other users’ signals
as well. This, in turn, increases the achieved average secrecy
rate even when Eve adopts the MU ML detection strategy.
This confirms the robustness of our proposed temporal-AN
scheme in highly-dense user deployments.

Fig 10 depicts the average secrecy sum-rate performance of
the hybrid TAN-SK scheme versus the number of encrypted
samples, Nen = Ne(r]f) Vk, for the cases of SU and MU
ML detectors at Eve. As the number of encrypted sam-
ples increases, the gain of the perfectly secured term in
(48) and (52) increases and the secrecy rate is boosted.
To highlight the secrecy rate gains, the performance is com-
pared with the temporal-AN-only scheme and the bench-
mark case with no secret keys generation or temporal AN.
In Fig. 11, we show the average secrecy sum-rate of the
hybrid TAN-SK scheme versus «. The figure quantifies
the performance gains of the hybrid TAN-SK scheme and
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FIGURE 12. Average secrecy sum-rate under multiple eavesdroppers
scenario.

illustrates the gains introduced by the temporal-AN only and
secret keys only schemes for No, = 10 encrypted data
samples. The performance is compared with the benchmark
case of no injected temporal-AN or secret keys generation.

Finally, Fig. 12 depicts the average secrecy sum-rate
performance under multiple non-colluding eavesdroppers
scenario. The figure quantifies the average secrecy rate per-
formance when Eve applies SU ML or linear MMSE detec-
tors while Bob is constrained to the per-sub-channel linear
MMSE detector. We observe only a slight degradation in the
average secrecy sum-rate for both the TAN-only scheme and
the TAN-SK scheme as the number of Eves increases which
verifies the robustness of the proposed schemes.

IX. CONCLUSIONS

We proposed a temporal-AN-aided scheme to secure
SC-FDMA communications from eavesdropping. We ana-
lyzed the achieved data rates of the Alices-Bob links
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(legitimate links) and the Alices-Eve links (eavesdropping
links) under low-complexity detectors at Bob and high-
complexity detectors with global channel knowledge at Eve.
In addition, we showed that, as Eve increases her SU detec-
tor complexity (from ZF to MMSE and to ML) to exploit
the correlation properties of the temporal AN signal, she
can reduce the AN effect on her data rate. As Eve adopts
the high-complexity multi-user detection strategies, she can
only introduce slight degradation in the achieved secrecy
rate which validates the robustness of our proposed scheme.
In addition, we investigated the performance of the temporal-
AN scheme under different transmit power allocation frac-
tions for the data and AN signals. Furthermore, we proved
that the number of useful AN streams that can be injected
to degrade Eve’s SNR is equal to the maximum of the
k-th Alice-Bob and the k-th Alice-Eve channel memories.
We derived a closed-form expression for an approximation of
the average secrecy rate at high input SNR levels. The derived
expression showed that, in the worst-case secrecy scenario
for the legitimate system when Eve uses the ML detector,
the average secrecy rate is always positive and increases
linearly with the number of useful AN streams. We showed
that increasing the number of users increases the achievable
secrecy rate due to the ability of those users to transmit AN
signals that degrade Eve’s receiver only. Moreover, for the
case of partial Alices-Bob channel knowledge at Eve, we pro-
posed a hybrid TAN-SK scheme to exploit Eve’s unaware-
ness of the Alices-Bob channel in enhancing the secrecy
rate. Our proposed TAN-SK scheme guarantees a positive
instantaneous secrecy rate even when Eve adopts the high-
complexity (SU or MU) ML detector. Simulations results
demonstrated that for the case of global channel knowledge
at Eve, adopting the proposed temporal-AN injection scheme
is critical to achieve higher secrecy rates compared to the
benchmark case with no-AN injection. For the case of partial
Alices-Bob channels knowledge at Eve, additional secrecy
rate gains are achievable through our proposed TAN-SK
scheme.

APPENDIX A

PROOF OF PROPOSITION 1

The k-th Alice superimposes the temporal-AN signal on the
data signal after CP insertion. The composite (data + AN)
signal is received at Bob after it passes through the time-
domain Ay — B channel matrix given by

) _ 1K)
RTH ™ = |:0MX(MCp_L](3k))HM><(M+L1(3k)):| 43

where H® ¢ CMXMHE) o the Toeplitz upper-
triangular Ay — B channel matrix after CP removal with
H®O©0), kO, .. Payo, ..., 0] as its first row.
The AN signal is precoded using a precoding matrix
Q® which is designed to ensure that the temporal AN is

eliminated at Bob by spanning the null-space of RCPHgk)
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as follows

QY = Null (RerRm®)

k
— Null <|:0M><(Mcp—Ll(3k)) H/(A,,)x(M+LI(3k)>:|> (56)

We notice that RePHIMe® pag (Mcp —L1(3k)) all-zero

T
columns. Let W = [I(Mcp_L](gk)) 0(M+L](3"))x(Mcp—L](3k))j|

denote the orthonormal b%sis matrix that extracts the all-zero
columns out of RCPH“me( ) as follows

Ry — o (57)

Mx (Mep—Ly")

The null space precoder, Q). can therefore be expressed as

*) _ 1(k)
QY = I:W(M+MCP)X(MCP—LB) Q MMy x LY

] (58)

where Q'®) = Null (H’ (k>) denotes the orthonormal basis

matrix that spans the null space of H' ® At Eve, the k-th
Alice AN signal vector interfering with the /-th Alice N data
sub-channels is given by

i) =80 FyRPGVQVZY (59)

The equivalent Ay — E time-domain channel matrix after CP
removal is similarly given by

RPGim = [0 (60)

" G/(k)

MxMep—L) ™ Mxm+1)
®

where G’ e CM*M+Lg) g the Toeplitz upper-triangular

Ar — E channel matrix. The AN vector across the data

SC-FDMA sub-channels of Eve can therefore be expressed as

K QT (k)

iy =87 Fu [OMx<Mcp—LS‘>) GMX(M+L$>>}
r(k) (k)

x [W<M+Mcp)x<Mcp—Lé")> Q (M+Mcp)xLl(3k):| X Mepx1

1(k) (k)
Uuseful (NxLﬁk)):| 4 Mepx1 (61)

= |:0N x (Mcp —Lf,k’)

where Ll(lk) = max (L](sk), L](Ek)> and U'M)

Lseful 18 given by

7 (k) _ onT 7(k)
Ueras = 87 Fu [O(MX(MCp_Lg))) G MX(M+L](3k))i|
:| . From Eqn. (61), we

/(k)
|:W(M +Mep)x (L -1 Q (M+Mep)x L)

notice that the first { M., — Ll(lk)) AN streams of ng) Mepx 1

are projected into all-zero columns. In other words, those AN
streams lie in the null space of the A; — E channel and cause
no harm to Eve. The matrix (RCPGEk)Q(k)) has a rank of L.

Therefore, there are only Ll(lk) useful AN directions in the
sense that they can degrade Eve’s SINR.

We conclude that the number of useful AN streams
depends on the maximum of the Ay — B and Ay — E channels
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memories. As L]gk) increases, the number of orthonormal basis
vectors of the Ay — B channel matrix null space increases
which, in turn, increases the number of AN streams. As L](Ek)
increases, the Ay — E channel spreads each AN stream across
more of its data sub-channels.

APPENDIX B

PROOF OF PROPOSITION 2

Assuming ML detection, the instantaneous rate expression of
the Ay — E link is given by

R(k) (k)G(k)G(k)*

log, det | Iy + py

—1
K
x [ ety + [ D s® 00 P00 s®
j=1
(62)

By dividing the data power equally across the N data samples,

Q)
each sample will have a power of p(k) = Z N”‘

Similarly,
by performing equal power allocation across the Ll(lk) AN

samples, each sample will have a power of pg) = (1—aV) %

(k)
IQE

Iy +o

~ log, det PG G

-1

x| kBIy + Z(l a2 s<’<)T0<1>0<1)*s<’<>
(63)
Since the matrix (S(k)TOU)OV)*S(k)

definite, the term (Zf:] pg)S(k)TOV)OU)*S(")) can be fac-

) is positive semi-

tored as (ZJKzl pg’)S(k)TO(/')O(")*S(k)> = Q(g where Q in
an N x N matrix which represents the combined AN term at
Eve. By performing the SVD on Q, we get, Q = U,A, V],
where A, is an N x N diagonal matrix with at least L™ =
maxy {Ll(lk)} non-zero singular values. The instantaneous data
rate of the Ay — E link is given by

x (kely + UZAZA*U*)_l)

= log, det (IN + p(k)G(k)G(k)

x U, (kgly + AZA*)* U*)

= log, det (IN L OUGRG Y,

X (KEIN + AZA;)_I) (64)

The last equality holds due to Sylvester’s identity. Notice that
the diagonal matrix A,A} represents the AN power at Eve.
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Define the AN-plus-AWGN covariance matrix, denoted by
V = (kgly + A,A,*), then the k-th Alice-Eve’s instanta-
neous data rate is given by

R = log, det (Iy + pU;G{6{V U,V )

— log, det (V n p<">U*G§">G§">*UZ) ~ log, det (V)
(65)

The matrix V + p(k)U*G1(,~k)(}](ck)*UZ is Hermitian, hence,
we can apply the Hadamard inequality to derive an upper
bound on the data rate of the Alice-Eve link as follows

*
R <3 g, (V1 + P10 G6{ U1,
i=1
—log, det (V)  (66)

Defining the i-th row of U} as w; = [u; 1,42, ,u;N],
*
the i-th diagonal element of (U;ng)G(fk) UZ) is thus given
by [U;GGE Ui = XN iy PG 12 with G denot-
ing the j-th frequency-domain channel coefficient of the k-th
Alice-Eve link. Applying Jensen’s inequality to the con-
%

cave function Zl | log, ([V]l i+ p(k)[U;‘Gﬁk)Gl(ck) Uz]i,i>,
the achieved average rate of the k-th Alice-Eve link can be
upper-bounded as follows

E(RY) < Z E {tog, ([V1is +p

x Eg {[U;Gl(ck)chk) Uz]i,i})}
— E {log, det (V)}

—Z]E log, det [V]”—i-p(k)
i=1

N

121~k 2

x Egw E |uij171G;
=1

— E {log, det (V)} (67)

where we averaged only over the channel GJ(.k) (and not over
the other random variables) to obtain a tight bound. In other
words, the outside expectation is over all random variables
except G(.k) Due to the channel independence from one link
(k) |2

to another the random variable |G is independent from

|u;, 1|2 Hence, we have

M=

N
2 k)2
Ego 1 > luijPIGOP =

J=1

k
|ui,j|2EGj(k){|G](' 12

~.
Il
<N

K 2,k
|u1]|201(\)E (LI(5)+1)

Il
AMZ

1

J
(68)
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(k) 2

k k

where B (|G} ) = E(X.5 lsP) = oy @ +1)

with g(7) denotmg the i-th tap of the Alice-Eve link CIR.
Accordingly,

N
B(RE) < Y Ejlog, [ [Vl +p;k)a‘§‘k)E P +1
i=1

—E {log, det (V)}  (69)

N

2

X Z |ui jl
j=1

Let Ul.z denote the i-th diagonal entry of the diagonal matrix
V. Considering the worst-case scenario where Q has only
L™ non-zero singular values, the i-th diagonal entry is
given by

2 : max
KE + 62,1" i<Lj

. 70
KE, otherwise (70)

of =[Vl];; = {
where §,; denotes the i-th diagonal entry of A, and 82
represents the AN power at Eve which can be expressed as
a fraction of the total transmit power. Hence, 6 ;= Bi K pr
where 0 < B; < 1 Vi. On the other hand det (V) =
[T,V = [T, o7 Since U, is unitary, Zjvzl |u; ;1> =
ngzl |u; j|*> = 1. Hence,

N k) k) 2 %
o L.  +1
ERY) = 3 E {log, (142 A’Eai ) | Qe

i=1 i

The average secrecy rate is thus lower bounded by

H (k) |2 (k)
f i
KB

e (k) 2 k)
+
~> E{log, |1+ 2 (LE ) (72)

Ui

E(RY)

N
> ZE ilog2 (1
i=1

— E{RY)

Splitting each summation into two sums from 1 to L"** and
from L™ + 1 to N, we get

k k
E(RY} — E{RY))
Llrlnax | (fk) |2 (k)
>E log, [ 1 B il Px
5| S 1+ )
N | 1(Ck) |2 (k)
1 1 +
+ > ogz( + o )
i=LMmax 4]
Lax K k) 2,k
oL @ + 1)
—Zlogz 1+ 3
. O
i=1 i
N k) _(k) 2 ;b
o Ly’ +1)
- ) log, | 42X %Ak = (73)
=L 4] i
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At very high input SNR levels o ~ &7, Vi < L™,
the average secrecy rate is thus given by

E(RY} — E(RY)
Lmax

(k) k) 2
o“p Hg |
) Z 10g2 ( [ SN )
(k) k) |2
ope H;
+ Z 10g2 ( f i )

l Lmax+1

max
Lll

a(k) Lig2 (g +1
- ZIng 1+ Aptet D
i—1 Bi K p;

N ), -2
o o Lg+1
_ Z log2< PioA-p (L )) (74)

. Nkg
i=Lmax ]

Using the logarithmic function properties, we get

k k
E(RY} — E{RY)
Lm('IX
> E Zlo br
N =1 =N kB
Lmax

k
—i—Zlog <H§)112>

N HY 2
+ Z log, ﬁ
=L oa-g Lg+D
KE
L™ 1+ M“)ﬂ—w
- Z ‘g2 ® (75)

where N is the input SNR level per data sample, which is
assumed to be very high. Since the first term in (75) is very
large and monotonically increasing with p; and all the other
terms are very small, we can further ignore all terms except
the first term. Therefore, the lower bound on the average
secrecy rate (in bits/sec/Hz) is given by

1 + Lmax
e B[R - R ) 2 e (1)
M + M M + Mg Nkg

(76)

APPENDIX C

WIRETAP CODING

Let k-th Alice transmit a source message W in n®) channel
uses. The k-th Alice first generates all sequences in the mes-
sage set WO e (1,2, ..., 2" R}, having length n®ORY

1 e ’ B

where RY = E(RY)) — ¢ and RY = E{RY) — ¢,
for some small €. k-th Alice then divides these sequences
randomly and uniformly into 2"(k)Rik) bins. This guarantees
that any of the sequences is equally probable to be inside
any of the bins. Each secret message, w&) € W®)_is then
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assigned a bin V® W), Let m denotes the number of coher-
ence intervals used to transmit W), To encode a particu-
lar message, the stochastic encoder at k-th Alice, randomly
selects a sequence v¥) from the corresponding bin V (wk)),
according to a uniform distribution. The sequence, v*) con-
sisting of n®R®) bits is then subdivided into m dependent
blocks v® (1), ... v®(m), where the block v¥) (i) is transmit-
ted in the i-th coherence interval. For arbitrarily large m, we
have

n/m

: "~ 1 { <k)}
n}l)mOOZRB (i) = mE Ry

i=1

(77)

where Rg()(i) is the k-th Alice-Bob link rate at the i-th
coherence interval. After that, k-th Alice generates m i.i.d.
Gaussian codebooks, each having a length of 7> symbols and

. , 2 (R ()-e) .
is comprised of 2" \"'® codewords. In the i-th coherence

interval, the k-th Alice encodes the sub-block v(k)(i), and
transmits it over the wireless fading channel. Hence, even
with the lack of the eavesdropper’s instantaneous channel,
the k-th Alice-Bob achievable link rate becomes the average
secrecy rate [30], [34].
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