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Recently, remarkable types of carbon nanofilaments called carbon nanotubes (CNTs) have raised the interest of many concrete and
cementitious composite researchers due to their significant mechanical, electrical, thermal, kinetic, and chemical properties. These
nanofilaments are considered promising applicants to use in producing high-performance cement-based composite materials. In
this research, the effect of CNT use on the flexural strength, strain capacity, permeability, and microstructure of concrete was
investigated. Concrete batches of 0, 0.03, 0.08, 0.15, and 0.25wt.% CNTs were prepared using a mixing method that consisted of
a 30-minute solution sonication and a 60-minute batch mixing. On the 28" day, the mechanical properties were determined.
The results indicated that concrete prepared using high CNT contents of 0.15 and 0.25 wt.% increased the flexural strength by
more than 100% in comparison with 0% CNT concrete. Furthermore, the results showed that CNTs would increase the ductility
of concrete beams by about 150%. The permeability test results showed the benefits of CNT inclusion in reducing the
permeability of concrete. The permeability coeflicient (kT) decreased by at least 45% when CNTs were added to concrete. A
qualitative microstructural analysis illustrated the uniform dispersion of CNT filaments within the concrete hydration products

in all batches.

1. Introduction

Concrete is the most well-known material used in building
construction. It comprises of water, aggregates, and cement.
These ingredients are usually combined with steel reinforce-
ment to achieve the desired mechanical properties. However,
a major shortcoming in concrete is related to its brittle
nature caused by its cement constituent, which is character-
ized by its poor resistance to crack formation, low tensile
strength, and low strain capacities. In the past decade,
researchers [1-9] started testing unique types of carbon
fibers with nanosized diameters and micron-sized lengths,
called carbon nanotubes (CNTs) and carbon nanofibers
(CNFs). Those types of fibers have extraordinary mechani-
cal, electrical, thermal, kinetic, and chemical properties,
making them promising applicants in producing high-
performance cement-based composite materials. However,

findings reported in the literature were contradictory.
Some results confirmed the benefits of the tested compos-
ites’ mechanical properties [10-15], while others showed
no improvement, and in some other cases, there was a
reduction in the mechanical properties [16-19]. The main
reason for these differences in the obtained results is
attributed to the nanofilaments’ weak dispersion in water
and cement. Few researchers [20, 21] were successful in
obtaining an acceptable dispersion quality in water; however,
when they blended their solutions with cement, poor disper-
sions and agglomerations were observed. Recently, Mohsen
et al. [22] succeeded in improving the dispersion of CNTs
in cement paste by performing an innovative mixing proce-
dure. The authors tested the effect of different mixing dura-
tions of 1.5, 15, 30, and 60 minutes on the flexural strength
of cement and CNT composites. It was shown that increasing
the mixing duration of the paste that contained CNTs would
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result in better dispersion of the constituents and in having
lower void percent at the microstructural scale. This
improvement resulted in a flexural strength increase of
about 100% compared to a plain cement paste. Also, the
researchers conducted a set of experiments that investigated
the effect of several parameters on the dispersion of CNTs
in cement paste, such as CNT weight fractions, diameters,
and lengths [23, 24].

Most studies performed in this field investigated the effect
of CNTs or CNFs usage on cement paste properties. At this
stage, the reasons for investigating the effect of such materials
on cement paste only is the simplicity of capturing or track-
ing the nanofilaments’ dispersion within the matrix com-
pared to mortars and concrete, and the large costs of
preparing concrete using the nanofilaments. Few studies
investigated the effect of adding carbon nanofilament on
the properties of mortar [15, 25-27]. Several mixing proce-
dures and mix proportions were proposed. However, the
challenges known with the cement paste studies such as dis-
persion quality, strength discrepancies, and optimum mix
proportions were still observed. The effect of CNT addition
on the properties of concrete was recently investigated. Few
studies focused on studying the effect of CNTs on the
mechanical and physical properties of lightweight foam
concrete prepared using small-scale samples, while others
investigated the effect of CNTs on the properties of ordinary
concrete. Kramer et al. [28] studied the effect of using CNT-
to-cement weight fractions of 0.05 and 0.075% with samples
of foamed concrete. On the 28" day, their results showed
an improvement in the flexural and compressive strengths
of about 40 and 7.5%, respectively. In another study, Kramer
et al. [29] combined ultra-high-performance concrete
(UHPC) and three-phase-foams to create mixes that included
both carbon nanotubes (CNTs) and titanium oxide nanopar-
ticles (Ti0O,). Their results demonstrated a strength improve-
ment compared with the control batches. Luo et al. [30]
investigated the effect of using CNT-to-cement weight frac-
tions of 0.05 to 0.1% on several properties of foam concrete.
They showed the ability of CNTs to decrease the average pore
diameter and to increase the compressive strength by about
30% in comparison with the control batch. Similarly, Wang
et al. [31] investigated the effect of MWCNTSs on the com-
pressive strength, chloride penetration, and freeze-thaw resis-
tance of ordinary concrete cylinders comprising different
water-to-cement ratios. Their results showed an improve-
ment of 108% in the compressive strength of concrete having
sodium polyacrylate-treated CNTs. Qissab and Abbas [32]
investigated the behavior of reinforced concrete beams with
short and long MWCNTSs under monotonic loading. CNT-
to-cement weight fractions of 0.03, 0.045, and 0.06% were
used. Their results showed an improvement in the compres-
sive, splitting tensile and flexural strength of all batches com-
pared to the control mix. The batch containing 0.045% long
CNTs achieved the highest mechanical properties among all
other batches. Hawreen et al. [33] analyzed the durability of
concrete reinforced by different types and weight fractions
of CNTs. The results showed that a compressive strength
improvement of about 20% could be achieved using a CNT-
to-cement weight fraction of 0.1%.
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Up to date, the results obtained from studies that
investigated the effect of long CNT weight fractions
higher than 0.2% on ordinary concrete mechanical, phys-
ical, and microstructural properties were not positive. The
proposed research will combine CNT reinforcement in
concrete using a prolonged mixing technique to investi-
gate their effect on the concrete mechanical and physical
properties.

2. Testing Methodology

2.1. Testing Matrix. In this research, concrete batches con-
taining CNTs of weight fractions ranging between 0.03 and
0.25wt.% were prepared. Table 1 presents the experimental
design matrix of the batches” compositions. The testing meth-
odology started with the preparation of the batches and the
casting of the specimens (100 x 100 x 500 mm), followed by
measurements of their flexural strength, deflection, and per-
meability. Their microstructures were then analyzed using a
scanning electron microscope (SEM).

2.2. Materials and Equipment. The cement used in this
research was a Portland cement, CEM I, Class 42.5 R, com-
plying with EN 197-1. It was bought from Qatar National
Cement Company (QNCC). The mixing water used was tap
water attached to a filter. The point-of-use filter fixed on a
faucet helps in removing chlorine, lead, and bacterial
contaminants. The fine and coarse aggregates used in prepar-
ing the concrete samples were bought from Qatar Primary
Materials Company (QPMC). The properties of the materials
met the requirements of ASTM C-33, Standard Specification
for Concrete Aggregates. The fine aggregates consisted of
natural sand, while the coarse aggregates consisted of gabbro
stones. The used CNTs were multiwalled carbon nanotubes
(MWCNTs) produced using the catalytic chemical vapor
deposition (CVD) process and provided by US Research
Nanomaterials. The physical properties of the nanofilaments
are shown in Table 2. Commercial polycarboxylate water-
reducing admixture, named ADVA Cast 575, provided by
GRACE Products was used as a surfactant to help improve
the dispersion of the nanofilaments within the aqueous solu-
tion. The equipment used in the experiments included an
ultrasonic wave mixer, VCX 750 Model connected to a probe
to measure the solution temperature, supplied by Sonics and
Materials Inc.; an 85-liter site concrete mixer supplied by
Humboldt; a strength testing machine attached to a high-
precision linear variable differential transformer (LVDT)
device of 2 mm travel provided by Controls Inc; a concrete
vibrator; 100 x 100 x 500 mm steel molds; a permeability tes-
ter supplied by Proceq SA; and a scanning electron micro-
scope (SEM), Nova NanoSEM Model, supplied by FEL

2.3. Mixing Procedure. The mixing procedure was divided
into two parts. The first part comprised of CNT dispersion
in water, while the second part comprised of mixing the dis-
persed solution with cement, coarse, and fine aggregate in the
concrete mixer. The dispersion was done in nine repetitions
consisting of 1.1 liters each. The reasons for performing the
sonication in repetitions were related to the capacity of the
sonicator available and to ensure having similar sonication
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TasLE 1: Composite concrete test batches.

. Remaining

Fine Coarse Total Superplasticizer superplasticizer used in
Batch  Batch  Cement Water CNTs CNTs/cement .. used in the .

agg.  agg. superplasticizer L CNT solution and
# name (kg) (kg) (g (%) sonication ..

(kg) (kg) (g) concrete mixing process

process (g)
()

1 0 19.2 9.6 44 48 0 0 240 0 240
2 0.03CNT 19.2 9.6 44 48 5.8 0.03 240 23 217
3 0.08CNT 19.2 9.6 44 48 154 0.08 240 61.4 178.6
4 0.15CNT 19.2 9.6 44 48 28.8 0.15 240 115.2 124.8
5 0.25CNT 19.2 9.6 44 48 48 0.25 240 192 48

TasLE 2: CNT physical properties (https://www.us-nano.com).
CNT  Aspect  Purity Outside Inside Length  SSA Color Youngs Tensile Density
type ratio (wt.%) diameter (nm) diameter (nm)  (um)  (m*/g) modulus (GPa) strength (GPa)  (g/cm’)
f}?iig_ 1,333 >95 10-20 5-10 1030 >200 Black 1200 150 2.6

parameters such as energy, temperature, and amplitude in
similar studies performed using smaller-scale mortar and
cement paste samples. The surfactant/superplasticizer con-
centration used in the dispersion process was fixed at 4: 1 of
the selected CNT weight fraction. This amount was sub-
tracted from the overall batch surfactant/superplasticizer
amount that was constant in all batches. The nanofilaments
were mixed with water and surfactant in the first mixing
phase at the specified percentages (Table 1). Sonication of
CNTs was done using an ultrasonic wave mixer for 30
minutes at an amplitude of 20% delivering a total applied
energy of about 70k]J. During sonication, the temperature of
the solution was kept less than 45°C by setting the sonicator
to stop whenever the temperature of the solution exceeds
45°C. It is worthwhile mentioning that the CNT weight
fraction used at the start of the sonication process should
not be considered the effective weight fraction in the com-
posite matrix as the original amount might have some
impurities and bundles that remain after the sonication
process. After completing the sonication of all solutions,
they were combined in two large beakers of a 5-liter
capacity (Figure 1(a)). After that, the concrete mixing
phase started. The mixing duration was selected to be a
total of 60 minutes to provide better CNT dispersion in
the concrete matrix. This was based on the previous findings
of the authors where it was observed that a long mixing dura-
tion of 60 minutes could improve the CNT dispersion within
the cement paste matrix and reduce the voids percent in the
overall composite beams, which in return resulted in an
incremental increase of about 100% in the flexural strength
compared to the control plain cement batch [22]. The mixing
procedure started by first placing the coarse aggregate in the
mixer. Then, the CN'T/water solution was added to the coarse
aggregates while the mixer was on. Mixing was continued for
about 5 minutes. After that, fine aggregates were added
followed by cement. After adding the sand and cement,

which was completed in 10 minutes, the mixing then contin-
ued for 45 minutes (Figure 1(b)). The mixture was then
placed in the molds and compacted using a concrete vibrator
(Figure 2(a)). Finally, the specimens were cured in a water
tank for 28 days in preparation for testing (Figure 2(b)).

2.4. Flexural Strength and Load-Deflection Measurements.
The flexural strength testing of concrete CNT samples was
conducted according to ASTM C78/C78M-16, which is the
standard test method for flexural strength of concrete using
a simple beam with a third-point loading [34]. Depending
on the fracture’s location, the flexural strength was calculated
using the following equations:

(1) If the fracture initiates in the tension surface within
the middle third of the span length, the flexural
strength was calculated follows:

PL

R ek (1)
where R is the flexural strength (MPa), P is the max-
imum applied load indicated by the testing machine
(N), L is the span length (mm), b is the average width
of the specimen at fracture (mm), and d is the average
depth of specimen at fracture (mm).

If the fracture occurs in the tension surface outside of
the middle third of the span length by less than 5% of
the span length, the flexural strength was calculated
as follows:

(2)

3Pa

bd*’ @)

where a is the average distance between the line of
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FIGURE 2: (a) Specimen compaction using a vibrator. (b) Specimen after 28 days of curing.

FIGURE 3: (a) LVDT fixing using a magnetic holder. (b) LVDT vertical alignment at midspan.
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FIGURE 4: (a) Setting the permeability tester. (b) Measurements of the permeability coefficient on the concrete sample surface.
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F1GuRre 5: Samples’ flexural strength results.

fracture and the nearest support measured on the ten-
sion surface of the beam (mm).

(3) If the fracture occurs on the tension surface outside of
the middle third of the span length by more than 5%
of the span length, the results of the test were
discarded.

The load-deflection curves were determined using an
LVDT that was tightly attached to a magnetic holder
(Figure 3(a)) and fixed vertically at the sample’s bottom mid-
span (Figure 3(b)). The performed test was a displacement
control one with a speed of 2 ym/sec.

2.5. Permeability Measurements. The permeability test is a
nondestructive method used to evaluate the durability of con-
crete. The proposed method complies with the European
standard, SN, EN 206-1 [35]. The test methodology com-
prises of determining the air permeability coefficient (kT) as

a function of the variation of pressure with time using a per-
meability tester (Figure 4(a)). First, the test chamber is placed
on the concrete surface and the air is then evacuated using the
vacuum pump. The rise of the air pressure with time is
recorded. Three measurements were done for each tested sur-
face of the concrete sample (Figure 4(b)).

2.6. Microstructural Analysis. Microstructural analysis of the
broken samples was performed using a scanning electron
microscope (SEM), model Nova NanoSEM. A secondary
electron mode of imaging was used to capture the images
with two types of scales. The first scale was a large scale
between 0.5 and 1 mm used to examine the void percent,
whereas the second scale was a small scale between 1 and 3
micrometers used to investigate the dispersion of the CNT's
at the nanolevel. The voltage used was about 5kV, whereas
the working distance varied from 4.5 to 8.5 mm. The prepara-
tion procedure consisted of first drying the samples using a
vacuum chamber, followed by coating them with a gold-
palladium to dissipate any excess charges. The thickness of
the gold sputtering coating was 10 nanometers every 40
seconds. After that, the samples were mounted rigidly on a
specimen holder using a conductive adhesive and the scan-
ning process was then commenced. The microstructure anal-
ysis of the SEM images was done using only qualitative
techniques to understand the effect of the tested parameters
on the strengths obtained for the strongest and weakest spec-
imens. A total of fifteen images were taken for every batch. It
was shown, via the analysis, that samples taken from every
selected batch were monolithic.

3. Results and Discussions

3.1. Flexural Strength Testing. Figure 5 depicts the flexural
strength results of CNT concrete batches, including the stan-
dard deviation obtained for each batch. The results are the
average strengths of six samples prepared for each batch.
Low standard deviations in the strength results were observed
for the control, 0.03 and 0.08 wt.% CNT batches. On the
other hand, high standard deviations were observed for
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FIGURE 6: Load-deflection curves for (a) plain concrete (control) samples and (b) 0.03 wt.% CNT concrete samples.
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FIGURE 7: Load-deflection curves for (a) 0.08 wt.% CNT concrete samples and (b) 0.15 wt.% CNT concrete samples.
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F1GURE 8: Load-deflection curves for (a) 0.25wt.% CNT concrete samples and (b) strongest sample in each batch.
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FIGURE 9: Permeability test results.

batches with 0.15 and 0.25 wt.% CNTs. This may be related to
the nonuniform dispersion of these batches with the high
CNT content. In terms of strength, the results indicated that
there was an increase in the flexural strength due to an
increase in CNT content. Batches prepared using 0.03 and
0.08 wt.% CNTs exhibited a strength increase of about 40%
compared with the control concrete batch. With the increase
in the nanofilaments’ weight fraction, the flexural strength
continued to increase. Increments of 109% and 123% were
obtained in batches prepared using higher CNT contents of
0.15 and 0.25wt.%, respectively, compared with control
concrete.

3.2. Load-Deflection Curves. Figures 6-8 show the load-
deflection curves for all prepared mixes. Each graph shows
the results obtained for the six samples prepared for each
batch. In general, it was observed that all batches containing
CNTs showed more of an erratic load-deflection behavior
compared with the plain concrete batch (Figure 6(a)). As
discussed in earlier sections, this maybe related to the non-
uniform dispersion of CNTs throughout the batch, where a
high strain capacity was developed in the locations that con-
tained CNTs and impacted the ability of the composite
sample to carry the load and to absorb the energy when it
began to fail.

However, to confirm this hypothesis, a microstructural
analysis should be performed to investigate CNT dispersion
within the concrete constituents. The maximum attained
load and deflection for the 0.03 wt.% CNT batch specimens
(Figure 6(b)) were 10.4kN and 2.074 mm, respectively. These
values were higher than the corresponding highest load and
deflection measurements of the control concrete batches,
which were 6.9kN and 1.571 mm, respectively. The load
behavior of the 0.08 wt.% CNT batch (Figure 7(a)) was simi-
lar to the 0.03wt.% CNT batch where larger displacements
were recorded after the peak load. The maximum attained
load and deflection were 10.7 kN and 4.038 mm, respectively.
For batches of high CNT contents of 0.15 and 0.25wt.%
(Figures 7(b) and 8(a)), the load-deflection behaviors were
more erratic and showed a high variability in the results
obtained for the six samples of the same batch. Again, this

may be attributed to the less CNT dispersion within these
samples, which resulted in a nonuniform stress distribution
in the beams. The maximum attained load and deflection in
the 0.15wt.% CNT batch specimens were 16.7kN and
3.558 mm, respectively. On the other hand, the maximum
attained load and deflection in the 0.25 wt.% CNT batch spec-
imens were 16.8 kN and 2.265 mm, respectively. Figure 8(b)
shows the results with the highest strength obtained for each
batch. For all batches prepared, the sample with 0.25wt.%
CNTs had the highest loading capacity. Regarding ductility,
all CNT-reinforced samples exhibited larger loading and
strain capacity compared with plain concrete (more brittle
behavior). These findings concur with several earlier studies
investigating the effect of CNTs on the ductility of cement
paste.

Wang et al. [7] obtained a strain increase of 125% in
deflection at the peak load for a batch of 0.08 wt.% CNT
weight fraction compared with the control cement paste.
They also obtained a strain increase of about 50% in a batch
of 0.1wt.% CNTs compared with the control cement paste
batch. However, for the remaining batches of 0.05, 0.12,
and 0.15wt.% CNTs, there was a small or no improvement
in the ductility results. Similarly, Xu et al. [13] obtained strain
increases at the peak load for some CNT cementitious
composites compared with control cement paste. However,
such strain increases occurred in the batches of the highest
CNT contents of 0.1 and 0.2wt.%, as opposed to those
batches, prepared using lower CNT contents of 0.025 and
0.05wt.%. These findings highlight the need to further inves-
tigate the optimum CNT weight fraction that would provide
the highest flexural strength and strain properties of CNT
cementitious composites. Furthermore, there is a need to fur-
ther investigate the erratic behavior and nonuniform results
obtained during load-deflection-based tests.

3.3. Permeability Test. Figure 9 shows the permeability factor
results of control concrete and CNT composite batches,
including the standard deviation obtained for each batch.
The obtained permeability coeflicient values are the average
values of 18 readings taken for every batch (3 readings
multiplied by six samples). A high standard deviation in
permeability was observed in control concrete in comparison
with the CNT composite batches. In general, the results
showed a reduction in the concrete permeability when CNT's
were added. The permeability coefficient (kT) decreased 78,
72, 45, and 64%, for the batches prepared using 0.03, 0.08,
0.15, and 0.25wt.%, respectively, when compared to the
control concrete batch. The results also showed that the
decrease in the permeability is not correlated with the CNT
weight fraction in the batches. The permeability coeflicient
decreased for the 0.03wt.% CNT batch and then increased
up to a CNT weight fraction of 0.15wt.%. Again, kT
decreased in the 0.25wt.% CNT batch.

3.4. SEM Microstructural Analysis. Microstructural analysis
of the fractured surfaces showed a few observations related
to the behavior of the nanofilaments within the concrete
hydration products. In terms of dispersion, it was observed
that the quality of CNT dispersion in concrete products is
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F1GURE 12: (a) 0.03% CNT batch. (b) 0.08% CNT batch (scale: 0.5-1 mm).

good in the batches of low CNT content of 0.03 and 0.08%.
However, few agglomerations were seen in the batches with
higher CNT content of 0.15 and 0.25%. At small scales
images of 1-3 um, batches of a low CNT content of 0.03%
showed individual fibers at various locations (Figure 10(a)).

However, it was seen that these batches contain a number
of empty locations that were not occupied by any filaments
(Figure 10(b)). On the other hand, batches of higher CNT
contents of 0.15 and 0.25% were relatively denser and the
nanoscale voids were filled with CNTs (Figures 11(a) and
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FiGure 13: (a) 0.15% CNT batch. (b) 0.25% CNT batch (scale: 0.5-1 mm).

11(b)). Atlarge-scale images of 0.5-1 mm (Figures 12 and 13),
it was seen that the amount of micron-scale voids is high in
the batches of 0.08% (Figure 12(b)) and 0.15%
(Figure 13(a)) CNT content. This may be related to the effect
of the surfactant amount used to disperse the nanofilaments
within the solution. Previous research by the authors on the
effect of the mixing duration on the properties of cement
paste showed that the largest amount of voids occurred in
batches containing 0.08% CNT cement weight fraction [22].
By using qualitative and quantitative microstructural analy-
sis, it was concluded that the larger voids’ content is occur-
ring due to the higher surfactant content remaining in the
solution after the sonication process.

To correlate strength results with SEM analysis, it was
shown that the effect of higher CNT content on the cohesive-
ness of the samples may be the main reason for the incremen-
tal increase in the flexural strength of the samples containing
CNTs compared to plain concrete. Higher CNT contents
mean denser composites that occupied nanovoids, and
hence, this will result in higher flexural strengths and strain
capacities. To correlate with permeability measurements, it
was not possible to understand the decrease and increase of
the CNT samples’ permeability via using microstructural
analysis. Even though the samples of higher CNT contents
of 0.15 and 0.25% were denser, the permeability values of
those samples prepared using lower CNT contents of 0.03
and 0.08% were lower.

4. Conclusions

This study illustrated a few conclusions related to the effect of
CNTs’ addition on the flexural strength, ductility, and perme-
ability of concrete. The results indicated that high CNT con-
tents of 0.15 and 0.25 wt.% CNT's would increase the flexural
strength of concrete by more than 100%. Furthermore, the
results also showed that CNTs would increase the ductility
of concrete by about 150%. The permeability test results
showed the benefits of CNT addition in reducing the perme-
ability of concrete. The permeability coefficient (kT)
decreased by at least 45% when CNTs were added to con-
crete. The relationship between concrete’s mechanical and

physical property improvements and the CNT weight frac-
tion was primarily explained. The addition of CNTs to
concrete resulted in a denser composite with higher flexural
strengths and strain capacity and lower permeability when
compared to plain concrete. The findings of this study could
be considered one of the few studies that incorporated CNT
addition to concrete to produce composite members of
enhanced performance.

5. Limitations and Future Work

5.1. Limitations. The limitations observed during this work
include the following:

(1) Dispersion of CNTs within the water solution was a
time-consuming process due to the need to sonicate
limited quantities of a maximum of 1 liter in the
repetition

(2) The reduced amount of water in the concrete batches
compared to cement paste batches resulted in the
nonuniform dispersion of CNT's

5.2. Future Work

(1) The elemental compositions of concrete hydration
phases must be investigated using energy-dispersive
X-ray analysis to understand the effect of CNTs on
these phases

(2) There is also a need to further investigate the erratic
behavior and nonuniform results obtained during
the load-deflection-based tests
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