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a b s t r a c t 

Data sharing techniques have progressively drawn increasing attention as a means of sig- 

nificantly reducing repetitive work. However, in the process of data sharing, the challenges 

regarding formation of mutual-trust relationships and increasing the level of user partic- 

ipation are yet to be solved. The existing solution is to use a third party as a trust orga- 

nization for data sharing, but there is no dynamic incentive mechanism for data sharing 

with a large number of users. Blockchain 2.0 with smart contract has the natural advan- 

tage of being able to enable trust and automated transactions between a large number 

of users. This paper proposes a data sharing incentive model based on evolutionary game 

theory using blockchain with smart contract. The smart contract mechanism can dynami- 

cally control the excitation parameters and continuously encourages users to participate in 

data sharing. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. 
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1. Introduction 

In the era of big data, digital resources have grown exponentially, and data has become an important strategic resource.

At present, the big data industry faces a dilemma referred to as the problem of “data islands”. An effective solution to this

problem would be to establish a reasonable and effective data sharing model [1] . Today, information disclosure and open

sharing of data have become general trends in scientific, and even national, innovation. Numerous studies have shown that

data sharing and reuse are conducive to accelerating the dissemination of data resources, by improving the efficiency and

quality of work, and enhancing the potential for innovation [2–5] . 

Although data sharing has varying applications, it provides significant convenience in daily life. However, in the process

of data sharing, there are still three problems to be solved: unwillingness to share, fear of sharing, and inability to share [6] .

The unwillingness of users to share data is affected by the formation of mutual-trust relationships and the economic utility
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Fig. 1. Execution of smart contracts in blockchain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of data sharing. However, little research has been conducted on data sharing in the big data era and with the support of

blockchain technology. 

In this paper, we perform an evolutionary game equilibrium analysis of data sharing in the era of big data, and explore

and analyze the evolutionary game process of data sharing. Finally, we obtain four constraints with which to design an

adaptive smart contract mechanism that can be used to motivate more users to participate in data sharing. 

The remainder of this paper is organized as follows. Section 2 gives a brief overview of related research achievements

and explains the research directions explored in related work. It introduces the current state of theory and technology

research, and outlines our specific innovations. Section 3 presents our model and its mathematical derivation and analysis,

from which we form a smart contract mechanism. Section 4 describes a simulation experiment conducted on the model,

and Section 5 presents concluding remarks. 

2. Related work 

2.1. Blockchain based on smart contracts 

Blockchain technology is a distributed, decentralized, and tamper-proof shared ledger technology that allows peer-to-

peer transmission [7,8] . Contract terms are enforced, which extend the functionality of the blockchain. The execution of

smart contracts is shown in Fig. 1 . When a smart contract is called, the nodes in the blockchain run it locally with the

parameters. If the result can be mutually verified, it is accepted and added to the blockchain. 

Blockchain based on smart contracts has been applied in many scenarios, for example in intelligent medical treatment,

and in intelligent devices. The researchers [9] and [10] proposed a multi-layer blockchain architecture based on intelligent

contracts for intelligent medical treatment. 

2.2. Data sharing and blockchain 

Blockchain-based data sharing is also applicable in different scenarios, such as smart medical care, the internet of vehi-

cles, etc.; in these scenarios, blockchain plays different roles. Dong et al. [11] and Yue et al. [12] proposed a framework for

securely sharing sensitive data on big data platforms, and [13] designed the Distributed Earth System Scientific Data Sharing

Platform (ESSDSP) to integrate scientific data resources and provide users with one-stop data sharing services. In [14] , a

blockchain-based model applied to smart medical care is proposed along with blockchain ACTS as a data storage index. In

terms of generating sharing protocols, [15] H. Desai, proposed a framework for generating intelligent contracts and a custom

data sharing protocol generated by this framework. In terms of IoT [16,17] introduced the use of cloud computing in the

Internet of Things for data sharing, and in [18] , Li L proposed a vehicle information sharing architecture (CreditCoin) applied

to the Internet of Vehicles. In terms of artificial intelligence, [19] proposed a framework for identifying false information in

a video. In essence, data sharing can greatly reduce duplication of data collection and processing, thereby reducing costs

and promoting focus on other tasks. 
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Table 1 

User participation in the data sharing evolution game’s payment matrix. 

User B takes the strategy User A takes the strategy 

Participate Not participate 

Not participate γμln (1 + R ) − τ − C , γμln (1 + R ) − τ − C μln (1 + R ) − τ − C , μln (1 + R ) 

Participate μln (1 + R ) , μln (1 + R ) − τ − C μln (1 + R ) , μln (1 + R ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Evolutionary game theory 

Evolutionary game theory — a mathematical method used to study and predict the evolution of social interactions — con-

siders individuals to be rational and then analyzes individual policy choices and game equilibria [20,21] . In the evolutionary

game, it is important to determine that the concept behind the game equilibrium is the evolutionarily stable strategy (ESS),

which is equivalent to the Nash equilibrium but can also be applied to the evolution of individual policies. When a state

can be maintained under slight disturbances caused by the dynamic system, it is called a steady state. 

In addition to the concept of an evolutionarily stable strategy, evolutionary game theory also considers replicator dynam-

ics (RD). According to conclusions derived from the replication dynamic model, the trend of individual strategy selection in

the population can be better predicted. The mathematical formula for competitive growth dynamics in RD is a differential

equation that simulates the individual participating in the game, so it can better describe the effective rational trend of an

individual’s behavior in the population. 

Some scholars have used the idea of games to conduct research on data sharing. Ali and Maheswaran [22] studied online

data sharing on social networks from a game theory perspective, showing that when blacklisting is introduced as a triggering

strategy, sharing conditions become balanced. Kamhoua et al. [23] used game methods to help online social network (OSN)

users determine the optimal strategy for data sharing. Yassine et al. [24] proposed a game theory mechanism that balances

the benefits of data use and individuals’ privacy in deregulated smart grids. Tosh et al. [25] proposed an evolutionary game

theory framework to investigate network security information sharing to promote the sharing of cyber threat intelligence

between organizations and mitigate the impact of cyber-attacks using a cybersecurity information exchange framework,

called CYBEX. 

3. Model analysis 

The expectation of data sharing is to get more people involved in data sharing. The data sharers can only choose to

participate or not in data sharing. The strategy of these two behaviors depends on the bounded rationality of the user with

limited information acquisition ability, and continuous learning, through trial and error, to gradually adjust their strategy.

Therefore, the game theory of user participation in data sharing can be modeled by evolutionary game theory to find a way

to adjust the user’s participation in sharing expectations according to the current situation. 

3.1. Data sharing based on an evolutionary game incentive (EGI) model 

The EGI model is a symmetric user-involved data sharing evolutionary game composed of a quaternion array G = (P, N,

S, U) where: 

• P represents a population composed of many individuals (users participating in data sharing); 

• N represents a collection of individual users; 

• S represents a policy space available to the user, where S = (S 1 , S 2 ) = (participation, no participation). That is, during

the game, each user can choose whether to participate in data sharing. 

• U: indicates the payment matrix formed by the two users in a game, as shown in Table 1 . 

The various situations in the income matrix are discussed separately below. 

Case 1: Both users choose not to participate. In such a case, users in the data sharing blockchain platform will not share

data. When users are not involved in data sharing, their utility gain only depends on their own investment costs. We use the

logarithmic rate of return to calculate the return, which can be expressed using the logarithmic gain function μln (1 + R ).

According to the realistic rationality requirement, μln (1 + R ) > 0, otherwise the user is not willing to make any investment.

Therefore, when both users of the interaction choose not to participate in the strategy, their returns are μln (1 + R ) and

μln (1 + R ) > 0. 

This is the steady state. According to the nature of the ESS, the ESS must be satisfied, and then four evolutionary stabi-

lization strategies based on the incentive and participation cost conditions are obtained. 

Case 2: Both users choose to participate in the strategy. In this case, each user shares data and can also receive data

shared by other users to help increase revenue, which reduces the difficulty of solving problems. When users participate

in data sharing, benefits are reaped not only from their own investment, but also from the data shared by other users. We

regard these two kinds of income as γμln (1 + R ), which is the common benefit of investment and sharing. Also based on
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the realistic rationality requirements, the shared benefit must be greater than 1, otherwise the user would have no moti-

vation to share. When sharing data, a user needs to provide the sharing cost τ > 0. Obviously, the data-sharing blockchain

platform can provide incentives for all users, but this may result in saturation of such incentives and may also cause the

inflation of virtual currency within the data sharing platform. Therefore, we provide an incentive parameter C, referred to

as the incentive and participation cost. When both users choose the participation strategy, the benefits of both users is

γμln (1 + R ) − τ − C. 

Case 3: One user chooses to participate, and another user chooses not to. This situation describes the risk of participating

in data sharing. Users who choose to participate in the strategy join the data sharing blockchain platform and share their

own data, but they cannot obtain data from other users, incurring additional costs without additional shared benefits. The

nonparticipating user does not pay any price and does not receive any benefit. Therefore, when one user chooses to partic-

ipate in the strategy and another user chooses not to, the benefit of the user who chooses to participate in the strategy is

μln (1 + R ) − τ − C and the benefit of the user who chooses not to participate in the strategy is μln (1 + R ). 

3.2. ESS and dynamics analysis 

There are only two strategies in the EGI model: participation and nonparticipation. Therefore, in a population consisting

of all users, θ ( t ) can be set as the hybrid strategy of the population at stage t , where θ ( t ) = ( θ1 ( t ), θ2 ( t )). If θ1 ( t ) indicates

the proportion of users who choose to participate in the policy, then θ2 ( t ) = 1 − θ1 ( t ) is the proportion of users who do

not participate in the policy. For simplicity, θ1 ( t ) is denoted as θ in the following. The expected benefit of the user selecting

the participation strategy at this stage is Eq. (1) 

u ( s 1 , θ ( t ) ) = θ [ γμln ( 1 + R ) − τ − C ] + ( 1 − θ ) [ μln ( 1 + R ) − τ − C ] . (1) 

The expected return for choosing not to participate in the strategy is Eq. (2) 

u ( s 2 , θ ( t ) ) = θ ( μ ln ( 1 + R ) ) − ( 1 − θ ) ( μ ln ( 1 + R ) ) . (2) 

The average expected return of population P in a blockchain platform for data sharing is Eq. (3) 

ū ( θ ( t ) , θ ( t ) ) = θu ( s 1 , θ ( t ) ) + ( 1 − θ ) u ( s 2 , θ ( t ) ) . (3) 

The dynamic equation of replication in the evolutionary game of users participating in data sharing is Eq. (4) 

F ( θ ) = 

˙ θ = θ [ u ( s 1 , θ ( t ) ) − ū ( θ ( t ) , θ ( t ) ) ] 

= θ ( 1 − θ ) { u ( s 1 , θ ( t ) ) − u ( s 2 , θ ( t ) ) } (4) 

which can be simplified to Eq. (5) 

F ( θ ) = 

˙ θ = θ ( 1 − θ ) [ θ ( γ − 1 ) μ ln ( 1 + R ) − τ − C ] . (5) 

Let F ( θ ) = 0, Eq. (5) with up to three stable states [25] , which are 

θ ∗
1 = 0 , (6) 

θ ∗
2 = 1 , (7) 

θ ∗
3 = 

τ + C 

( γ − 1 ) μln ( 1 + R ) 
. (8) 

The steady state represented by (8) may be the same as the steady state represented by (6) or (7) . 

According to the nature of the ESS, a steady state must be stable to small disturbances in the dynamic system. In fact,

this situation can satisfy the necessary conditions for the stability theorem in the differential equation to be established.

Let θ ∗ be the steady state; then, it must satisfy F ′ ( θ ∗) < 0. Four ESSs based on incentive and participation cost conditions

C were obtained. 

Condition 1: If 0 < C < ( γ − 1) μln (1 + R ) and ( τ + C) < ( γ − 1) μln (1 + R ), then θ ∗
1 

and θ ∗
2 

are ESSs for users to

participate in data sharing evolutionary games and θ ∗
3 

is not an ESS. 

Condition 1 shows that if the proportion of the population initially choosing to participate in the strategy is less than

θ thres , then the ESS tends to be non-participation, because the gain from the system is sufficient to force the entire group to

move to the sharing strategy. 

Condition 2: If 0 < C < ( γ − 1) μln (1 + R ) and ( τ + C) ≥ ( γ − 1) μln (1 + R ), then θ ∗
1 is the only ESS for users

participating in the data sharing evolutionary game and θ ∗
3 does not hold. 

Condition 2 indicates that users will not participate in data sharing regardless of the initial participating strategy group. 

Condition 3: If C > 0 and C ≥ ( γ − 1) μln (1 + R ), then θ ∗
1 

is the only ESS for users to participate in the data sharing

evolutionary game and θ ∗
3 does not hold. 

Condition 3 indicates that, owing to the high cost of data sharing, the evolutionary strategy of populations will be to

adopt a non-participation strategy. 
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Fig. 2. ESS trend of the EGI model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Condition 4: If C < 0 and ( τ + C) ≤ 0, then θ ∗
2 is the only ESS for users to participate in the data sharing evolutionary

game. θ ∗
3 

is not established. 

Condition 4 indicates that regardless of the initial scale value, the ESS of the population will be the participation strategy.

ESS is not unique to users participating in the data sharing evolutionary game. Both participation and nonparticipation

strategies have the potential for evolutionary stability, depending on which of the above conditions is met. To clearly il-

lustrate that users participate in the data sharing evolutionary game with two potential ESSs that depend on the above

conditions, Fig. 2 summarizes the ESS trends based on Conditions 1–4. We can see that both the participation and nonpar-

ticipation strategies may be ESSs, depending on the initial proportion of users who choose to participate in the strategy.

These ESSs can be used as triggers for appropriate data sharing incentives and costs. 

The above discussion illustrates the changing trend of the evolutionary stable structure based on blockchain data shar-

ing. The factors affecting the trend change are the incentive/participation cost and the proportion of the population that

initially chooses to participate in the strategy. Therefore, modeling the incentive/participation costs based on the above four

conditions is critical to establishing and maintaining an effective blockchain platform for data sharing. These conditions not

only indicate that ESS is achievable, but also show how incentive/participation costs promote user participation in data shar-

ing; they additionally indicate that incentive/participation costs are an important factor in improving users’ revenue through

sharing. 

Therefore, to allow the blockchain platform for data sharing to coexist with users, the user can take advantage of data

sharing, and enable the blockchain platform for data sharing to advantageously manage users participating in data sharing.

This establishes a dynamic incentive mechanism based on the EGI model, which can encourage more users to participate in

data sharing, as shown in Fig. 3 . At the beginning of the game k, the initial number of users participating in data sharing

is very small. According to the analysis, using conditions 4, incentives can be given instead of charging participation costs

to encourage and motivate more users to move toward the participation strategy. Once the proportion of users participating

in data sharing exceeds a certain threshold θthre s k 
, then using condition 1, the blockchain platform for data sharing can

now be implemented without any external incentives. Moreover, at this time, the blockchain platform for data sharing can

impose a specific cost on the user. The same process is repeated to iteratively apply a set of participation costs until a

set of participation costs is successfully charged or until the maximum phase of the game phase is reached. Therefore, the

dynamic incentive/participation cost mechanism can maximize user participation, enabling more users to participate in data

sharing, and experience the benefits of data sharing. 

3.3. Smart contract mechanism based on the EGI model 

To allow the data-sharing blockchain platform to coexist with users, we establish a dynamic incentive and participation

cost mechanism based on the EGI model to encourage more users to participate in data sharing. At the beginning of the

game, the initial number of users participating in data sharing is very small. Using Condition 4, incentives can be given to

motivate more users to move toward the participation strategy. Once the proportion of users participating in data sharing

exceeds a threshold, using Condition 1, it is possible to ensure that the blockchain platform for data sharing is self-sustaining

in terms of participation strategies, and no external incentives are required. Moreover, at this time, the blockchain platform

for data sharing can impose a specific cost on the user. The same process is repeated to iteratively apply a set of participation

costs until a set of participation costs is successfully charged or until the maximum phase of the game phase is reached.
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Fig. 3. Dynamic incentive/participation cost mechanism. 

Fig. 4. Template mechanism for smart contracts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, the dynamic incentive and participation cost mechanism can maximize user participation, enabling more users to

participate in and experience the benefits of data sharing. To this end, we provide a smart contract template mechanism

based on the EGI model in the form of a UML class diagram, as shown in Fig. 4 . 

Because the EGI model considers all participating users to be essentially the same, the parameters of all participants are

the same. The deployment of smart contracts requires the initialization of the basic parameter com and the ordered incentive

and participation cost set costs []. The parameter com contains four basic parameters: investCost, sharingCost, sharingIncome,

and zoom , which are the investment cost parameter R , shared cost parameter τ , shared benefit parameter γ , and scaling

parameter μ in the EGI model. The cost set costs [] contains an incentive parameter cost [0] with a set of participating cost

parameters costs [ i ] ( i > 0), costs [0] for excitation parameters, and costs [ i ] for participation cost parameters. According to

the EGI model, excitation parameter cost [0] satisfies costs [0] < 0 and costs [0] + sharingCost < 0; the participation cost

parameter costs [ i ] satisfies sharingCost < cost [ i ] < ( sharingIncome − 1) ∗ Zoom 

∗ log (1 + sharingCost ). The global variables

that need to be dynamically maintained are: 

• Users : Number of registered users 

• participants : The number of participating users in the current game phase 

• curIndex : Index of the participation cost set used in the current phase 

• stage : The stage of the current game 

The method EGI_GetTage() is used to obtain the current game stage, which is convenient for users to query and can be

called at any time. The method EGI_Registe() is called when the user registers, and the user is incremented to update the

variable. 

The method EGI_GetCost() is called when the user participates in data sharing, and is used to dynamically adjust the

incentive and participation cost parameter and return the incentive and participation cost parameter that should be applied

to the current user. Its pseudocode is shown in Algorithm 1 , where GETP(n) represents the threshold for calculating the

current game phase. 

Assuming that the smart contract for data sharing is ShCon , when the user participates in data sharing, ShCon calls the

EGI _ Get Cost () method of the EGIContract smart contract. It first calculates the current user participation ratio and determines



S. Xuan, L. Zheng and I. Chung et al. / Computers and Electrical Engineering 83 (2020) 106587 7 

Algorithm 1 EGI_GetCost(). 

input: null 

output: Incentive and participation cost parameters that should be applied to the current user 

1. function EGI_GetCost() 

2. curP ← participants / Users; 

3. if curIndex > maxK then 

4. costIndex = curIndex; 

5. return cost[costIndex]; 

6. end if 

7. if curP > 0.95 then // default setting, user saturation participation ratio 

8. tage ++ ; 

9. curIndex ++ ; 

10. participants ← 0; 

11. curP ← 0; 

12. end if 

13. thresP ← GETP(curIndex); 

14. participants ++ ; 

15. if curP > thresP then 

16. return costs[curIndex]; 

17. else 

18. return cost[0]; 

19. end if 

20. end function 

Table 2 

Parameter settings. 

Conditions Parameters 

γ μ R τ C 

Condition 1 3 5 4 1 4 

Condition 2 3 5 4 6 14 

Condition 3 3 5 4 6 18 

Condition 4 3 5 4 1 −3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

whether the current participation cost is the largest, then returns the maximum participation cost. Otherwise, the algorithm

determines whether the user participation ratio in the current game stage tends to be saturated (i.e. greater than 95%). If

saturated, it enters the next stage of the game, resets the number of user participants and level of user participation, and

selects a small participating cost that is not used in the participating cost set. Then, the threshold of the current stage is

recalculated and compared with the user participation ratio. If the user participation ratio is less than the threshold, the

incentive parameter is returned; otherwise, the current participation cost is returned. 

This system includes a blockchain network, and when users want to enter the blockchain network for data sharing, EGI

functions— EGI_Regist on the blockchain will be invoked, as shown in Fig. 5 . When the user wants to share the data, the

function EGI_Cost is called to request the excitation cost.And through function EGI_Cost, it returns the incentive cost to the

user. 

4. Experimental evaluation 

In this section, by setting different values of γ , μ, R , τ and C, “we verify the role of user participation in the ESS as well

as verify the incentive mechanism in the data sharing evolutionary game. The experiment is divided into two groups: the

values of the game parameters set in the first set of experiments satisfy Conditions 1 to 4, respectively, and then changes

in the data sharing are observed for users participating in the evolution curve; the second group changes C under different

initial user ratios, demonstrating the role of the incentive mechanism in the evolution of data sharing participation during

the game. 

The experimental environment is an Intel (R) Core (TM) i5-3470 CPU @ 3.20 GHz, 4Gb RAM, 64-bit win7 operating

system, and the software used is MATLAB 6.5.0.180913a Release 13. 

For the first set of experiments, to satisfy Conditions 1 to 4, respectively, shared benefit γ = 3, scaling parameter μ = 5,

investment amount R = 4, sharing cost τ and participation cost C all change. The settings for each condition are shown in

Table 2 . 

For the second group of experiments, to explain the role of the incentive mechanism and how it promotes the data shar-

ing user’s choice of participation strategy, we set the following parameters to the following values: shared benefit γ = 3,

scaling parameter μ = 5, investment amount R = 8, , and sharing cost τ = 2. In Condition 1, 0 < C < 9.89 and in Condition

4, C < −2. Thus, for Conditions 1 and 4, we give the participation evolution curve against the ratio of different initial se-

lections of data sharing participation strategies and the participation evolution curves under different excitation parameters
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Fig. 5. The system diagram of Smart contract mechanism based on the EGI model. 

Table 3 

Verification Condition 1 incentive mechanism program pa- 

rameters. 

Test items Parameters Test items Parameters 

C θ C θ

Test 1 0 0.05 Test 9 5 0.05 

Test 2 0 0.45 Test 10 5 0.45 

Test 3 0 0.75 Test 11 5 0.75 

Test 4 0 0.95 Test 12 5 0.95 

Test 5 2 0.05 Test 13 8 0.05 

Test 6 2 0.45 Test 14 8 0.45 

Test 7 2 0.75 Test 15 8 0.75 

Test 8 2 0.95 Test 16 8 0.95 

 

 

 

 

of the same initial selection of participation strategy. The parameters of the verification incentive mechanism for Conditions

1 and 4 are shown in Tables 3 and 4 below. 

The value of the game parameters in Fig. 6 satisfies Condition 1 and the user proportion threshold of the initial selection

participation strategy θ thres = ( τ + C)/(( γ − 1) μln (1 + R )) ≈ 0.31. As can be seen from Fig. 6 (a), when the initial participa-

tion ratio is 35%, the users participating in the interaction constantly adjust their strategies through learning and imitation.
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Table 4 

Verification Condition 4 incentive mechanism program pa- 

rameters. 

Test items Parameters Test items Parameters 

C θ C θ

Test 1 −5 0.3 Test 4 −10 0.3 

Test 2 −5 0.6 Test 5 −10 0.6 

Test 3 −5 0.9 Test 6 −10 0.9 

Fig. 6. EGI excitation model evolution curve (Condition 1). 

Fig. 7. EGI excitation model evolution curve (Condition 2 and 3). 

 

 

 

 

 

 

 

 

 

After multiple games, they finally choose to participate. The proportion of users of this strategy is stable at θ ∗
2 

= 1 . As can

be seen from Fig. 6 (b), when the initial participation ratio is 0.25, after multiple games, the proportion of users who finally

choose to participate is stable at θ ∗
1 

= 0 . Therefore, when the proportion of users who initially choose to participate in

strategy θ ∗ is below the threshold, most other users tend not to participate; however, when the proportion is above the

threshold, users tend to participate. The values here of 25% and 35% are less than 50%, indicating that the number of people

participating in data sharing is small. More than 50% means that the number of people sharing data is large, and close to

saturation. 

The values of the game parameters in Fig. 7 (a) and (b) satisfy Conditions 2 and 3, respectively. It can be seen from the

results of these two experiments that regardless of whether the initial proportion of users participating in data sharing is

75% or 25%, after multiple game stages, users eventually tend not to participate. Therefore, for Conditions 2 and 3, regardless

of the initial participation ratio, there is a tendency to not participate in the strategy. 
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Fig. 8. EGI excitation model evolution curve (Condition 4). 

Fig. 9. EGI excitation model evolution curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The values of the game parameters in Fig. 8 satisfy Condition 4. It can be seen from the experimental results that when

the initial proportion of users participating in data sharing is 85%, after multiple game stages, users eventually tend to

participate in the strategy. Even if the initial proportion of users participating in data sharing is 15%, users will eventually

tend to participate in the strategy. Therefore, regardless of the initial participation ratio, there is a tendency to participate. 

The value of the game parameters in Fig. 9 (a) satisfy Condition 1. Note that the curves intersecting the y-axis at different

points (representing the initial proportion of the data sharing participants) have different colors. According to Condition

1, different participation costs C result in different user participation proportional thresholds θ . When C = 0, θ ≈ 0.18;

when C = 2, θ ≈ 0.36; when C = 5, θ ≈ 0.64; and when C = 8, θ ≈ 0.91. As can be seen in Fig. 9 (a), different incentive

and participation costs affect the user’s choice of ESS. At the same time, for the evolution curve of the selected participation

strategy, the initial proportions of users are compared, and the higher the initial proportion of users, the faster the remaining

users will choose to participate in the strategy. Therefore, within the controllable range of incentive and participation cost

C (i.e. Condition 1 being satisfied), the participation cost can be gradually increased to encourage more users to participate

in data sharing. 

The value of the game parameters in Fig. 9 (b) satisfy Condition 4. As can be seen from (a), regardless of incentive and

participation cost C (as long as Condition 4 is met) and the initial proportion of users, the end user’s ESS tends to be

participation in the strategy. Therefore, for Condition 4, the incentive and participation cost provided is reasonable. 

The EGI incentive model dynamically adjusts the incentive/participation cost to facilitate user participation in data shar-

ing. When the number of users participating in data sharing begins to decrease, if there is no incentive adjustment mech-

anism, users will likely continue to decrease, eventually leading to the failure of the data sharing network. The incentive

adjustment mechanism increases the participation of users by increasing incentives, and maintains the scale and activity of
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users sharing networks, thus ensuring that a balance is achieved between the user participation level of the data sharing

network and the network maintenance cost. 

5. Conclusion 

In summary, this paper proposed a smart contract-based incentive method to maintain the level of user participation, by

dynamically adjusting incentives and participation costs, which should encourage users to actively share data. A high level

of user participation is very important to a data sharing system, and future research should also consider how user-shared

data size and data quality can impact to the incentive adjustment required. 
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