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ABSTRACT 

FARAJ, RANIM H., Masters : June : [2020], Masters of Science in Computing 

Title: Recognizing Stereotyped Behavior in Children with Autism  

Supervisor of Project: Dr. Tarek M. El-Fouly.  

 This project works on helping in identifying and recognizing autistic children's 

stereotyped behaviors, which can help in diagnosing autism on children. The 

recognition accomplished by building a signal processing model that collects data from 

a smartwatch equipped with a gyroscope and accelerometer in order to produce a 

feature vector of 316 features. This feature vector is used to choose a predictive model 

with the highest accuracy, which is Ridge classifier in this project. The results show 

that those common stereotype behaviors could be recognized using the Ridge machine 

learning algorithm with overall average accuracy ranges between 98.7% to 99.5 %. For 

hand flapping, head banging, and running back and forth, the overall precision ranges 

between 98% to 100 %, overall recall ranges between 98% to 100 %, overall F1-score 

ranges between 98% to 100 % and overall macro, weighted and micro averages is 99 

%. This Ridge classifier used to implement a real-time application developed on a 

smartphone (iPhone) to detect the stereotyped behaviors for autistic children who are 

wearing the smartwatch (Apple watch). 
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CHAPTER 1: INTRODUCTION 

Today’s smart devices, such as a smartwatch, come equipped with sensors that 

used for data collection for health monitoring applications [1]. The most popular 

sensors found in a smartwatch is Gyroscope, Accelerometer, Magnetometer, and Heart 

rate monitor [2]. The accelerometer is an electromechanical device that used to measure 

the linear acceleration using the vibrations related to movement. The gyroscope is a 

sensor that employs the earth's gravity to determine rotational changes and angular 

position with keeping orientation [3,4]. The data collected from accelerometer and 

gyroscope sensors data can aid in the detection of several human activities. The human 

activities that this project is interested in is the one related to children with autism. 

Autism spectrum disorder refers to a wide range of conditions, including social skill 

problems, stereotyped behaviors, speech, and nonverbal communication [5]. In 2018, 

according to the Centers for Disease Control and Prevention (CDC), autism affected 

about 1 in every 59 children in the US [6]. Moreover, according to the CDC, there is 

no medical detection for autism [6,7].   

Stereotyped behavior is unusual and socially undesirable, repetitive behaviors, 

and it is considered a crucial diagnostic feature of people with autism [8]. This project 

aims to employ machine learning to recognize three common stereotype behaviors 

found in the children, which are hand flapping, head banging, and running back and 

forth through data collected from a smartwatch. The results show that those common 

stereotype behaviors could be recognized using the Ridge machine learning algorithm 

with overall average accuracy ranges between 98.7% to 99.5 %. For hand flapping, 

head banging, and running back and forth, the overall precision ranges between 98% to 

100 %, recall ranges between 98% to 100 %, overall F1-score ranges between 98% to 

100 %, and overall macro, weighted and micro averages of 99 %. This Ridge classifier 
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used to implement a real-time application developed on a smartphone (iPhone) to detect 

the stereotyped behaviors for autistic children who are wearing the smartwatch (Apple 

watch). 

The remainder of this report is structured as follows: Section 1.1 describes the 

goals and objectives of this project. Chapter 2 presents related work projects related to 

human activity detection and background about the machine learning multiclass 

classification algorithms. Chapter 3 explore the methodology used to implement this 

project in detail with the analysis of the results. Chapter 4 explores the real-time 

application developed to detect the stereotyped behaviors for autistic children.  Chapter 

5 concludes the projects with future work and challenges. 

1.1. Goals and Objectives 

This project aims to develop a model that can help in detecting and recognizing 

autistic children's stereotyped behaviors. This project builds a signal processing model 

that collects data from a wearable sensor (gyroscope and accelerometer) that exists in 

the market (smartwatch). Then the data will be fed to a classification machine learning 

model for training the algorithms to produce the final predictive model with the highest 

accuracy that implemented in an application that helps in the classifying the children 

stereotyped behaviors, which aid in diagnosing the process of autism on children. 
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CHAPTER 2: RELATED WORK AND BACKGROUND 

2.1 Related Work 

Human activity recognition has a vital role in several applications. The authors 

in [11] used SVM, Naïve Bayes, KNN to identify temporals patterns that can aid in 

the activity recognition process. Random Forest algorithm applied for the features 

extracted from time and frequency domain for recognition of a person who is walking, 

and it achieved an accuracy of 96.79% [29]. The researchers in [9] used data from 

accelerometer sensors with various machine learning techniques such as SVM, J48, 

AdaBoost, and Random forest to recognize the activity of walking, jogging, running, 

standing, and sitting and they attained an average accuracy of 98.8283 %. MobiRAR 

application was developed by [10], where sensor data from the mobile device is 

collected to recognize ten daily human activity, and they achieved an average 

accuracy of 93%. The authors in [12] managed to recognize eight daily human 

activities using statistical learning methods, which are Naive Bayes, K-nearest 

neighbor, Logistic regression, Bayesian network, and Multilayer Perceptron, and they 

attained an accuracy of 91.55 % for Bayesian network. Children with development 

disabilities stereotyped movement is detected using the Weka toolkit with a 

recognition accuracy of 91 % [13]. The researchers in [15] used data collected from 

functional magnetic resonance to diagnose autism using SVM RBF kernel, and the 

accuracy was 59.6 %. The authors in [14] used Microsoft sensor Kinect to recognize 

the hand flapping movement of children with autism using Dynamic Time Wrapping 

with a 51% detection rate and a 76% detection rate using the eZ43-Chrono watch. The 

author in [16] collected accelerometer data with 102 feature vector size, and this data 

is fed into a machine learning algorithm DT to detect hand flapping, and they achieved 

an accuracy of 93%. MIT researchers worked on the detection of children with 
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stereotyped autism behavior, and they achieved the highest recognition accuracy of 

82.3% for SVM and 77.5% for DT [44]. The raw inertial signals do not give enough 

knowledge, so we cannot directly feed it to the machine learning algorithms, but we 

can use those data to generate a new feature vector that describes the shape, 

distribution, and nature of the signals. Feature vector produced could be orientation-

invariant such as the work of [27], who extracted features from three-dimensional 

acceleration signals through applying Fourier transform and the work of [28] who 

extracted features from accelerometer and gyroscope for gait biometrics for motion 

recognition.   

2.2. Multiclass Classification Algorithms 

A multiclass classifier also can build based on multiple binary classifiers. In 

order to prevent overfitting of the data, cross-validation applied to train data where 

data divided into several subsets for training and one subset for validation [41].   

2.2.1. Decision Trees 

It is a tree traversal algorithm that splits the examples into decisions in the form 

of nodes [18, 19]. In each node, we create a test, and if the test passes, it will be 

processed to the left branch and the right branch otherwise [30]. This method is 

inherently supporting multiclass classification [17].  

2.2.2. Support Vector Machine 

It is an efficient method that uses a group of mathematical functions (kernels), 

and it is highly effective in high dimensional spaces [31, 32]. Examples of SVM kernels 

are RBF, polynomial, sigmoid, and Linear SVC. RBF kernel is the most used type of 

kernel because there is no need for prior knowledge about the data [32]. SVM kernels 

support multiclass classification as One-Vs-One; however, the Linear SVM method 

supports multiclass classification as One-Vs-The-Rest [17]. 
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2.2.3. Random Forest 

  It has based on decision trees [33]. Moreover, this method is inherently 

supporting multiclass classification [17].  

2.2.4. Logistic Regression 

 It is a simple and computationally efficient probabilistic method through 

binomial outcomes [18]. This method supports the multiclass classification as One-Vs-

The-Rest [17]. 

2.2.5. Ridge 

 This method converts the target into values between -1 and 1, and then it 

handles the problem as a regression problem [34]. This method is inherently supporting 

multiclass classification [17]. 

2.2.6. K-Nearest Neighbors 

 It is classified based on its closest neighbor, and it requires distance 

computation of k-nearest neighbors [18,33]. This method is inherently supporting 

multiclass classification [17] 

2.2.7. Hyperparameter Tuning 

Hyperparameters are values set by the programmer, which often can help in 

estimating the parameters, and it can affect the final model prediction [35]. In order 

to choose the appropriate hyperparameter, hyperparameter tuning algorithms 

developed, such as Grid Search and Random Search.   
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CHAPTER 3: METHODOLOGY AND VALIDATION 

3.1. Data Collection 

As seen in Figure 1, during each experiment three acceleration accelerometer 

signals (X-Y-Z) with the unit of g (gravity of earth=9.8 m/s^2) and three gyroscope 

angular velocity signals (X-Y-Z) with the unit of rad/s were captured using Apple’s 

Smartwatch Series 5 worn by the children. When the smartwatch is attached to the 

body, the activity's motion of this body will affect the watch acceleration and angular 

velocity. After the smartwatch finished collecting the data for an activity (behavior), 

the data are transferred to an iPhone 7 and then transferred to a MacBook laptop for 

offline machine learning model selection. The data from the watch are collected using 

the SensorLog application developed by Bernd Thomas [20]. The sensor's signals are 

measured every 0.05 seconds (sampling frequency of 20 Hz). The sampling frequency 

must be selected fast enough to capture the necessary signals needed for processing, 

but at the same time, it should be slow enough to avoid exposure to noise [21].  

Moreover, the sampling frequency should be greater or equal twice the highest 

sampled frequency to avoid aliasing [22]. For the human body measurements, 98% of 

the spectral power is below 10 Hz [23]. So, the sampling frequency of 20 Hz is 

selected.   
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Figure 1. The process of recognizing the behaviors (hand flapping, head banging and 

running back and forth) 

 

 

The training collected data from 3 autistic children in Qatar performing three 

behaviors (hand flapping – head banging- running back and forth) while wearing the 

Apple watch on their right hand. The data collected yields nine datasets that will be 

processed to produce one dataset that fed to the machine learning algorithms. The 

labels were manually added to the datasets, so a supervised learning algorithm used 

to generate the predictive model. The number of samples recorded for each behavior 

and every child found in Table 1.  

 

Table 1 Number of Samples Recorded for Each Behavior  

Child Hand Flapping Head Banging Running Back and forth 

1 8448 12109 11310   

2 11141 3264 12959 

3 3307 4954 7560 
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The choice of detecting the behavior using a smartwatch instead of a recording 

of a video for the kid's movement came because of the sensitive nature of children 

with autism that makes it better not to put them in constant surveillance. Also, this can 

protect the identity of the kids who had to diagnose. Moreover, the smartwatch is easy 

to use and looks like a regular watch. So, it blinds with their body, unlike putting a 

sensor on their head or their waist.  

3.2. Pre-processing 

3.2.1. Data Segmentation 

The pre-processing computed using Python 3 language with a math library, and 

briefly explained in Figure 1. If the features computed for all data for each column in 

the original dataset, the final dataset that we will feed to the machine learning will 

have only three values for each feature (one for each behavior). For sure, this yields 

a small number of examples that are not suitable to train a machine learning 

algorithm. Moreover, it is not useful to compute the feature vector for each sample in 

the initial dataset. So, the solution will be to divide the data into small windows of 

fixed time before extracting the features. The method of windowing used is a Fixed 

size overlapping sliding window. In order the accommodate the data at the edge of 

the window, we used overlapping windows of 50% overlap. The data were divided 

into windows of size 1 seconds (1/sampling frequency = 20 sample/window), 2 

seconds (2/sampling frequency = 40 sample /window) and 3 seconds (3/sampling 

frequency = 60 sample /window).   

3.2.2. Feature Engineering 

The feature engineering computed using Python 3 language with scipy, math, 

and statsmodels libraries, and briefly explained in Figure 1.  For each window, we 
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will compute information that describes the signal, such as statistical features in time 

and frequency domain.  For each example, the orientation independent jerk signal 

(rate of change) [25] calculated. Then the magnitude of the three signals (Z, Y, Z) for 

both sensors and its jerk signals is calculated using Vector L2 Norm (Euclidean norm) 

method [24], which found in  Equation 1.  

 

Magnitude(X, Y, Z) =  √X2 + Y2 + Z2   Equation 1 

 

 Several statistical methods applied to the sensor data, their magnitude, and jerk 

signals, a feature vector with a total number of features equal to 316 features 

produced. The statistical methods used are mean,  standard deviation, median 

deviation, maximum, minimum, interquartile range, entropy, correlation, signal 

magnitude area, energy, Skew, and Kurtosis.  

 For both time and frequency domains, we calculate the mean. The mean can 

help in describing the distribution of a signal, and it is affected by outliers [26]. The 

total number of mean features are (3 accelerometer signals + 3 gyroscope signal + 2 

magnitudes) * 2 domain * 2 jerk signals =32 feature. 

 For both time and frequency domains, we calculate the standard deviation. 

Standard deviation can help to describe the distribution of a signal. It measures the 

spread of the distribution about the mean, and it is affected by outliers [26]. The total 

number of standard deviation features are (3 accelerometer signals + 3 gyroscope 

signal + 2 magnitudes) * 2 domain * 2 jerk signals =32 feature. 

 For both time and frequency domains, we calculate the median deviation. The 

median deviation can help in describing the distribution of a signal, and it is not 

sensitive to outlier [36]. The total number of standard deviation features are (3 
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accelerometer signals + 3 gyroscope signal + 2 magnitudes) * 2 domain * 2 jerk 

signals =32 feature. 

 For both time and frequency domains, we calculate the maximum value. The 

total number of maximum features are (3 accelerometer signals + 3 gyroscope signal 

+ 2 magnitudes) * 2 domain * 2 jerk signals =32 feature. 

 For both time and frequency domains, we calculate the minimum value. The 

total number of minimum features are (3 accelerometer signals + 3 gyroscope signal 

+ 2 magnitudes) * 2 domain * 2 jerk signals =32 feature. 

 For both time and frequency domains, we calculate the interquartile range. It is 

a measure of statistical dispersion but is much more robust against outliers. It is where 

the middle fifty of our data in a dataset where most of the data lie. In other words, the 

interquartile range equal to the difference between the 75th data point and the 25th data 

point of our data [37].  The total number of interquartile Range features are (3 

accelerometer signals + 3 gyroscope signal + 2 magnitudes) * 2 domain * 2 jerk signals 

=32 feature.  

For both time and frequency domains, we calculate the entropy. It measures of 

disorder, using probabilistic parameters [38]. The total number of entropy features are 

(3 accelerometer signals + 3 gyroscope signal + 2 magnitudes) * 2 domain * 2 jerk 

signals =32 feature.  

 For time-domain only, we calculate the correlation. In this project, the 

correlation is between two axial combinations of the signals X, Y, Z. The total number 

of correlation features are (3 accelerometer signals + 3 gyroscope signal) * 1 domain 

* 2 jerk signals= 12 features. 

 For both time and frequency domains, we calculate the signal magnitude area. 

In this project, the sum of areas under each signal [39, 42]. Signal magnitude area 
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used for measuring a child's level of activity (distinguish between activity and 

inactivity) [40]. The total number of signal magnitude area features is (1 sum of 

accelerometer signals + 1 sum of gyroscope signal + 2 magnitudes) * 2 domain * 2 

jerk signals =16 feature. 

 For both time and frequency domains, we calculate energy. Energy is Sum 

squared of each column for X, Y, Z [43]. The total number of energy features are (3 

accelerometer signals + 3 gyroscope signal + 2 magnitudes) * 2 domain * 2 jerk 

signals =32 feature. 

For frequency domain only, we calculate the skew. Skew measures of the lack 

of symmetry.  In a histogram of data, the value of skew decides where the distribution 

is directed and by how much. In other words, it shows how much the data departed 

from the horizontal symmetry. The skew is computed in Equation 2 [45]. The total 

number of skew features are (3 accelerometer signals + 3 gyroscope signal + 2 

magnitudes) * 1 domain * 2 jerk signals=16 feature. 

 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑔1) =  
∑

(𝑥−𝑥̅)3

𝑛

(∑
(𝑥−𝑥̅)2

𝑛
)

3
2⁄
 Equation 2 

   Where x̅ is the mean of the data set, and n is the sample size. 

 

For frequency domain only, we calculate the kurtosis. Kurtosis measures the 

sharpness of the data peaks when graphed as a histogram. As the Kurtosis value 

increases, the histogram will have a sharper peak. The skew is computed in Equation 

3 [45].  The total number of kurtosis features are (3 accelerometer signals + 3 

gyroscope signal + 2 magnitudes) * 1 domain * 2 jerk signals=16 feature. 
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Kurtosis(𝑎4) =  
∑

(𝑥−𝑥̅)4

𝑛

(∑
(𝑥−𝑥̅)2

𝑛
)2

 Equation 3 

Where x̅ is the mean of the data set, and n is the sample size. 

 

3.3. Machine Learning 

The machine learning computed using Python 3 language with Scikit-learn, and 

briefly explained in Figure 1.  The final dataset was shuffled and randomly split into 

training data (70%) and testing data (30%). Then hyperparameter tuning techniques 

Random and Grid search were used with Stratified K Fold cross-validation for DT, 

Linear SVM, SVM, Random Forest, Logistic Regression, Ridge and KNN algorithms. 

The initial hyperparameter fed to the hyperparameter tuning techniques found in Table 

2. Leave on out cross-validation method, and the Gradient Boosted Decision Trees 

machine learning algorithm was tested, but it took a half-day with no output, so it was 

terminated, and another methods are chosen.  

 

Table 2. Hyperparameter and their Values 

Algorithm Hyperparameter  Values 

DT Maximum Depth 3 to 10 with steps 2 

Linear SVM  C 0.125, 0.5, 1, 2, 8, 16 

SVM  Kernel Polynomial, RBF, Sigmoid 

SVM Gamma 0.0078125, 0.125, 2 

SVM C 100, 10, 1.0, 0.1, 0.001 

Random Forest N estimators 10 to 1000 with steps 100 

Random Forest  Maximum Depth 3 to 15 with steps 2 

Logistic Regression Penalty l2 and l1  

Logistic Regression C 0.01, 0.1, 1, 10, 100 

Ridge Alpha 0.1 to 1.0 with steps 0.1 

KNN Weights Uniform, Distance 

KNN N neighbors 1 to 21 with steps 2 
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3.4. Validation 

3.4.1. Best Hyperparameter from Hyperparameter Tuning 

After feeding the initial hyperparameter found in table 2 to the hyperparameter 

tuning techniques,  the best hyperparameter value chosen which gave the best results 

on the hold out data by the techniques found in Table 3  for Random Search and  Table 

4  for Grid Search. The Table 4 shows the quality of the best hyperparameters chosen. 

The bigger value of the average Cross Validate Scores of Best Estimator, the better.   

 

Table 3. Best Hyperparameter Yielded from Hyperparameter Tuning for Random 

Search  

Algorithm Hyperparameter  1 sec 2 sec 3 sec 

DT Maximum Depth 9 7 7 

Linear SVM  C 0.125 0.5 1 

SVM  Kernel Polynomial Polynomial Polynomial 

SVM Gamma 2 0.0078125 0.125 

SVM C 10 0.001 0.001 

Random Forest N estimators 910 110 410 

Random Forest  Maximum Depth 11 13 13 

Logistic Regression Penalty I1 I1 I2 

Logistic Regression C 1 100 10 

Ridge Alpha 0.7 0.2 0.1 

KNN Weights Distance Distance  Uniform 

KNN N neighbors 7 3 3 
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Table 4.  Best Hyperparameter Yielded from Hyperparameter Tuning for Grid Search  

 

Table 5.  Average Cross Validate Scores of Best Estimator 

 

3.4.2. Average Accuracy 

Average accuracy shows the effectiveness of the used machine learning 

classifier by showing the degree of closeness to the true values of the labels. It 

computed using Equation 4 and the results for all classifiers through two 

hyperparameter tuning algorithm (Random and Grid search) for the three window 

sizes of data (1 second, 2 seconds, 3 seconds)  shown in table 6.  

 

 

Algorithm Hyperparameter  1 sec 2 sec 3 sec 

DT Maximum Depth 7 7 5 

Linear SVM  C 16 1 16 

SVM  Kernel Polynomial Polynomial Polynomial 

SVM Gamma 0.0078125 0.0078125 0.0078125 

SVM C 100 100 100 

Random Forest N estimators 110 110 210 

Random Forest  Maximum Depth 13 13 11 

Logistic Regression Penalty I2 I1 I2 

Logistic Regression C 100 10 10 

Ridge Alpha 0.2 0.6 0.3 

KNN Weights Distance Distance Distance 

KNN N neighbors 5 3 7 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.96 0.97 0.97 0.96 0.96 

Linear SVM 0.91 0.91 0.90 0.92 0.86 0.91 

SVM 0.95 0.95 0.95 0.96 0.95 0.96 

Random Forest 0.98 0.98 0.98 0.99 0.99 0.98 

Logistic Regression 0.98 0.99 0.94 0.92 0.99 0.94 

Ridge 0.99 0.99 0.99 0.99 0.99 0.99 

KNN 0.90 0.91 0.92 0.91 0.92 0.92 
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Average Accuracy (model)  =
∑

𝑡𝑝𝑖+𝑡𝑛𝑖
𝑡𝑝𝑖+𝑡𝑛𝑖+𝑓𝑝𝑖+𝑓𝑛𝑖

𝑘
𝑖=1  

k
        Equation 4 

For k=total number of classes (3 classes), tp= true positive, tn= true negative, fp=false 

positive, fn=false negative. 

 

Table 6. Average Accuracy for All Behaviors  

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.974 0.975 0.972 0.972 0.975 0.972 

Linear SVM 0.935 0.798 0.755 0.825 0.942 0.797 

SVM 0.961 0.952 0.961 0.963 0.964 0.942 

Random Forest 0.988 0.985 0.991 0.985 0.986 0.981 

Logistic Regression 0.992 0.997 0.945 0.913 0.992 0.948 

Ridge 0.991 0.988 0.992 0.987 0.995 0.992 

KNN 0.910 0.927 0.909 0.904 0.919 0.937 

  

 The results show that those common stereotype behaviors could be recognized 

using the Ridge machine learning algorithm with overall average accuracy ranges 

between 98.7% to 99.5 %.  So Ridge classifier is the most recommended model to 

classify those stereotype behaviors.  The accuracy of DT is not profoundly affected by 

changing the window size and the hyperparameter tuning method.  For Linear SVM 

low accuracies, it is either the data that does not work well with this classifier or the 

hyperparameter tuning method was not successful in finding the best hyperparameter. 

For SVM, the Polynomial kernel to use on the data and the accuracy of DT is not 

profoundly affected by changing the window size and the hyperparameter tuning 

method. The accuracy of KNN is lowest compared to the other classifiers. 

3.4.3. Precision 

 Precision is the capability of the classifier not to label a negative example as 
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positive. It computed using Equation 5 and the results for all classifiers through two 

hyperparameter tuning algorithm (Random and Grid search) for the three window sizes 

of data (1 second, 2 seconds, 3 seconds)  shown in Table 7, Table 8 and Table 9 for the 

three stereotyped behavior for children with autism.  

 

Precision (model)  =
∑ 𝑡𝑝𝑖

𝑘−1
𝑖=1

∑ (𝑡𝑝𝑖+𝑓𝑝𝑖) 𝑘−1
𝑖=1

 Equation 5 

For k=total number of classes (3 classes), tp= true positive, fp=false positive. 

 

Table 7.  Precision for Hand-Flapping  

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.98 0.95 0.97 0.97 0.97 0.97 

Linear SVM 0.91 0.62 0.89 0.70 0.91 0.97 

SVM 0.94 0.93 0.94 0.94 0.94 0.91 

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98 

Logistic Regression 0.99 0.98 0.92 0.89 0.99 0.92 

Ridge 1.00 0.98 0.99 0.99 0.99 1.00 

KNN 0.88 0.90 0.86 0.87 0.91 0.90 

 

Table 8.  Precision for Head-banging  

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.98 0.98 0.97 0.99 0.97 0.97 

Linear SVM 0.91 0.93 0.59 0.84 0.95 0.73 

SVM 0.95 0.95 0.97 0.97 0.94 0.92 

Random Forest 0.99 0.99 1.00 1.00 0.99 0.97 

Logistic Regression 0.99 0.98 0.92 0.88 0.99 0.92 

Ridge 0.98 0.98 1.00 0.99 0.99 0.98 

KNN 0.93 0.94 0.96 0.93 0.92 0.97 
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Table 9.  Precision for Running Back and Forth  

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.99 0.97 0.96 0.98 0.97 

Linear SVM 0.97 0.99 0.97 0.99 0.96 0.81 

SVM 0.98 0.97 0.97 0.98 0.99 0.98 

Random Forest 0.98 0.98 0.98 0.98 0.98 0.99 

Logistic Regression 0.99 0.99 0.98 0.96 1.00 0.98 

Ridge 0.99 1.00 0.99 0.98 1.00 0.99 

KNN 0.92 0.94 0.91 0.92 0.93 0.95 

 

The results show that those common stereotype behaviors could be recognized 

with the highest precision using the Ridge algorithm. The overall precision ranges 

between 98% to 100 % for hand flapping, head banging, and running back and forth.   

3.4.4. Recall 

 The recall is the ability of the classifier to find all the positive samples. It 

computed using Equation 6 and the results for all classifiers through two 

hyperparameter tuning algorithm (Random and Grid search) for the three window sizes 

of data (1 second, 2 seconds, 3 seconds) shown Table 10, Table 11, Table 12 for the 

three stereotyped behavior for children with autism. 

 

Recall (model)  =
∑ 𝑡𝑝𝑖

𝑘−1
𝑖=1

∑ (𝑡𝑝𝑖+𝑓𝑛𝑖) 𝑘−1
𝑖=1

Equation 6 

For k=total number of classes (3 classes), tp= true positive, fn=false negative. 
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Table 10.  Recall for  Hand-Flapping 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.96 0.97 0.96 0.96 0.96 0.95 

Linear SVM 0.88 0.95 0.80 0.93 0.92 0.35 

SVM 0.95 0.94 0.95 0.97 0.94 0.91 

Random Forest 0.98 0.99 0.99 0.98 0.98 0.96 

Logistic Regression 0.99 0.99 0.91 0.85 0.99 0.90 

Ridge 0.98 0.99 1.00 0.98 0.99 0.98 

KNN 0.83 0.89 0.85 0.84 0.85 0.91 

 

Table 11. Recall for Head-banging 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.98 0.97 0.97 0.96 0.98 0.97 

Linear SVM 0.97 0.91 0.96 0.95 0.93 0.98 

SVM 0.96 0.94 0.95 0.95 0.96 0.96 

Random Forest 0.98 0.97 0.99 0.97 0.98 0.99 

Logistic Regression 0.99 0.97 0.94 0.91 0.99 0.96 

Ridge 0.99 0.98 0.99 0.98 0.99 1.00 

KNN 0.92 0.91 0.90 0.90 0.92 0.90 

 

Table 12.  Recall for Running Back and Forth  

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.98 0.98 0.98 0.98 0.98 0.99 

Linear SVM 0.95 0.61 0.57 0.67 0.96 0.98 

SVM 0.97 0.97 0.98 0.96 0.98 0.96 

Random Forest 1.00 0.99 0.99 0.99 1.00 0.99 

Logistic Regression 0.99 0.99 0.97 0.96 0.99 0.97 

Ridge 1.00 1.00 0.99 0.99 1.00 1.00 

KNN 0.96 0.97 0.96 0.96 0.97 0.98 
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The results show that those common stereotype behaviors could be recognized 

with the highest recall using the Ridge algorithm. The overall recall ranges between 

98% to 100 % for hand flapping, head banging, and running back and forth.   

3.4.5. F1-score 

F1-score is the harmonic mean of precision and recall. Using Equation 7 and 

the results for all classifiers through two hyperparameter tuning algorithm (Random 

and Grid search) for the three window sizes of data (1 second, 2 seconds, 3 seconds) 

shown in Table 13, Table 14, Table 15 for the three stereotyped behavior for children 

with autism.  

 

F1 − score (model) =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
   Equation 7 

 

Table 13. F1-score for Hand-Flapping 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.96 0.96 0.97 0.97 0.96 

Linear SVM 0.90 0.75 0.84 0.80 0.92 0.51 

SVM 0.94 0.93 0.94 0.95 0.94 0.91 

Random Forest 0.98 0.98 0.99 0.98 0.98 0.97 

Logistic Regression 0.99 0.99 0.92 0.87 0.99 0.91 

Ridge 0.99 0.99 0.99 0.99 0.99 0.99 

KNN 0.86 0.89 0.85 0.85 0.88 0.90 
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Table 14. F1-score for Head-banging 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.98 0.97 0.97 0.98 0.97 0.97 

Linear SVM 0.94 0.92 0.73 0.89 0.94 0.84 

SVM 0.96 0.94 0.96 0.96 0.95 0.94 

Random Forest 0.99 0.98 0.99 0.98 0.98 0.98 

Logistic Regression 0.99 0.98 0.93 0.89 0.99 0.94 

Ridge 0.99 0.98 0.99 0.98 0.99 0.99 

KNN 0.92 0.92 0.93 0.91 0.92 0.93 

 

Table 15. F1-score for Running Back and Forth  

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.98 0.98 0.98 0.97 0.98 0.98 

Linear SVM 0.96 0.75 0.72 0.80 0.96 0.89 

SVM 0.97 0.97 0.97 0.97 0.99 0.97 

Random Forest 0.99 0.99 0.99 0.99 0.99 0.99 

Logistic Regression 0.99 0.99 0.98 0.96 0.99 0.98 

Ridge 0.99 1.00 0.99 0.99 1.00 1.00 

KNN 0.94 0.95 0.93 0.93 0.95 0.96 

 

The results show that those common stereotype behaviors could be recognized 

with the highest F1-score using the Ridge algorithm. The overall F1-score ranges 

between 98% to 100 % for hand flapping, head banging, and running back and forth.   

3.4.6. Support 

Support is the number of samples of the true label that lie in that class. It is 

computed for all classifiers through two hyperparameter tuning algorithms (Random 

and Grid search) for the three window sizes of data (1 second, 2 seconds, 3 seconds) is 

shown in Table 16, Table 17 and Table 18 for the three stereotyped behavior for 

children with autism. 
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Table 16. Support for Hand-Flapping 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 688 351 207 685 344 216 

Linear SVM 688 351 207 685 344 216 

SVM 688 351 207 685 344 216 

Random Forest 688 351 207 685 344 216 

Logistic Regression 688 351 207 685 344 216 

Ridge 688 351 207 685 344 216 

KNN 688 351 207 685 344 216 

 

Table 17. Support for Head-banging 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 598 305 231 603 289 218 

Linear SVM 598 305 231 603 289 218 

SVM 598 305 231 603 289 218 

Random Forest 598 305 231 603 289 218 

Logistic Regression 598 305 231 603 289 218 

Ridge 598 305 231 603 289 218 

KNN 598 305 231 603 289 218 

 

Table 18. Support for Running Back and Forth  

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 961 466 309 959 489 313 

Linear SVM 961 466 309 959 489 313 

SVM 961 466 309 959 489 313 

Random Forest 961 466 309 959 489 313 

Logistic Regression 961 466 309 959 489 313 

Ridge 961 466 309 959 489 313 

KNN 961 466 309 959 489 313 
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3.4.7. Micro Average 

 Micro Average aggregates the contributions of all classes to compute the 

average metric. It counts the total true positives, false negatives, and false positives.  

It is computed for all classifiers through two hyperparameter tuning algorithm 

(Random and Grid search) for the three window sizes of data (1 second, 2 second, 3 

seconds) is shown in Table 19, Table 20, Table 21 and Table 22 for the precision, 

recall, F1-score, and support.  

 

Table 19.  Micro Average for Precision 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.98 - - 0.98 - 

Linear SVM 0.93 0.80 - - 0.94 - 

SVM 0.96 0.95 - - 0.96 - 

Random Forest 0.99 0.98 - - 0.99 - 

Logistic Regression 0.99 0.99 - - 0.99 - 

Ridge 0.99 0.99 - - 0.99 - 

KNN 0.91 0.93 - - 0.92 - 

 

Table 20. Micro Average for Recall 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.98 - - 0.98 - 

Linear SVM 0.93 0.80 - - 0.94 - 

SVM 0.96 0.95 - - 0.96 - 

Random Forest 0.99 0.98 - - 0.99 - 

Logistic Regression 0.99 0.99 - - 0.99 - 

Ridge 0.99 0.99 - - 0.99 - 

KNN 0.91 0.93 - - 0.92 - 
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Table 21. Micro Average for F1-score 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.98 0.97 0.97 0.98 0.97 

Linear SVM 0.93 0.80 0.76 0.83 0.94 0.80 

SVM 0.96 0.95 0.96 0.96 0.96 0.94 

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98 

Logistic Regression 0.99 0.99 0.95 0.91 0.99 0.95 

Ridge 0.99 0.99 0.99 0.99 0.99 0.99 

KNN 0.91 0.93 0.91 0.90 0.92 0.94 

 

Table 22. Micro Average for Support 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 2247 1122 747 2247 1122 747 

Linear SVM 2247 1122 747 2247 1122 747 

SVM 2247 1122 747 2247 1122 747 

Random Forest 2247 1122 747 2247 1122 747 

Logistic Regression 2247 1122 747 2247 1122 747 

Ridge 2247 1122 747 2247 1122 747 

KNN 2247 1122 747 2247 1122 747 

 

The results show that those common stereotype behaviors recognized with the 

highest micro average using the Ridge algorithm. The overall macro average is 99 % 

for hand flapping, head banging, and running back and forth.   

3.4.8. Macro Average 

 The macro average calculates metrics independently for each class and finds 

the unweighted mean. For all classifiers through two hyperparameter tuning algorithm 

(Random and Grid search) for the three window sizes of data (1 second, 2 second, 3 

seconds) is shown in Table 23, Table 24, Table 25 and Table 26  for the precision, 

recall, F1-score, and support. 
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Table 23. Macro Average for Precision 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.97 0.97 0.97 0.97 0.97 

Linear SVM 0.93 0.85 0.81 0.84 0.94 0.84 

SVM 0.96 0.95 0.96 0.96 0.96 0.94 

Random Forest 0.99 0.99 0.99 0.99 0.99 0.98 

Logistic Regression 0.99 0.99 0.94 0.91 0.99 0.94 

Ridge 0.99 0.99 0.99 0.99 0.99 0.99 

KNN 0.91 0.93 0.91 0.90 0.92 0.94 

 

Table 24. Macro Average for Recall 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.97 0.97 0.97 0.97 0.97 

Linear SVM 0.93 0.82 0.78 0.85 0.94 0.77 

SVM 0.96 0.95 0.96 0.96 0.96 0.94 

Random Forest 0.99 0.98 0.99 0.98 0.98 0.98 

Logistic Regression 0.99 0.99 0.94 0.91 0.99 0.94 

Ridge 0.99 0.99 0.99 0.99 0.99 0.99 

KNN 0.90 0.92 0.90 0.90 0.91 0.93 

 

Table 25. Macro Average for F1-score 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.97 0.97 0.97 0.97 0.97 

Linear SVM 0.93 0.81 0.76 0.83 0.94 0.75 

SVM 0.96 0.95 0.96 0.96 0.96 0.94 

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98 

Logistic Regression 0.99 0.99 0.94 0.91 0.99 0.94 

Ridge 0.99 0.99 0.99 0.99 0.99 0.99 

KNN 0.91 0.92 0.90 0.90 0.91 0.93 

 



  

25 

 

Table 26. Macro Average for Support 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 2247 1122 747 2247 1122 747 

Linear SVM 2247 1122 747 2247 1122 747 

SVM 2247 1122 747 2247 1122 747 

Random Forest 2247 1122 747 2247 1122 747 

Logistic Regression 2247 1122 747 2247 1122 747 

Ridge 2247 1122 747 2247 1122 747 

KNN 2247 1122 747 2247 1122 747 

 

The results show that those common stereotype behaviors recognized with the 

highest macro average using the Ridge machine learning algorithm. The overall macro 

average is 99 % for hand flapping, head banging, and running back and forth.   

3.4.9. Weighted Average 

 Weighted average calculates the metrics for each label, and find the average 

weighted by support.  For all classifiers through two hyperparameter tuning algorithm 

(Random and Grid search) for the three window sizes of data (1 second, 2 second, 3 

seconds) is shown in Table 27, Table 28, Table 29 and Table 30  for the precision, 

recall, F1-score, and support. 

 

Table 27. Weighted Average for Precision 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.98 0.97 0.97 0.98 0.97 

Linear SVM 0.94 0.86 0.83 0.86 0.94 0.83 

SVM 0.96 0.95 0.96 0.96 0.96 0.94 

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98 

Logistic Regression 0.99 0.99 0.95 0.91 0.99 0.95 

Ridge 0.99 0.99 0.99 0.99 0.99 0.99 

KNN 0.91 0.93 0.91 0.90 0.92 0.94 
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Table 28. Weighted Average for Recall 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.98 0.97 0.97 0.98 0.97 

Linear SVM 0.93 0.80 0.76 0.83 0.94 0.80 

SVM 0.96 0.95 0.96 0.96 0.96 0.94 

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98 

Logistic Regression 0.99 0.99 0.95 0.91 0.99 0.95 

Ridge 0.99 0.99 0.99 0.99 0.99 0.99 

KNN 0.91 0.93 0.91 0.90 0.92 0.94 

 

Table 29. Weighted Average for F1-score 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 0.97 0.98 0.97 0.97 0.98 0.97 

Linear SVM 0.93 0.80 0.76 0.82 0.94 0.76 

SVM 0.96 0.95 0.96 0.96 0.96 0.94 

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98 

Logistic Regression 0.99 0.99 0.95 0.91 0.99 0.95 

Ridge 0.99 0.99 0.99 0.99 0.99 0.99 

KNN 0.91 0.93 0.91 0.90 0.92 0.94 

 

Table 30. Weighted Average for Support 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 2247 1122 747 2247 1122 747 

Linear SVM 2247 1122 747 2247 1122 747 

SVM 2247 1122 747 2247 1122 747 

Random Forest 2247 1122 747 2247 1122 747 

Logistic Regression 2247 1122 747 2247 1122 747 

Ridge 2247 1122 747 2247 1122 747 

KNN 2247 1122 747 2247 1122 747 
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The results show that those common stereotype behaviors recognized with the 

highest weighted average using the Ridge algorithm. The overall weighted average is 

99 % for hand flapping, head banging, and running back and forth.   

3.4.10. Computation Time 

The computing time for all classifiers through two hyperparameter tuning 

algorithms (Random and Grid search) for the three window sizes of data (1 second, 2 

seconds, 3 seconds) is shown in Table 31 for training and Table 32 for testing.  

 

Table 31. Computation Time for Training (Minute: second.mili-second) 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 18.31 7.081 09.576 13.340 6.55598 14.956 

Linear SVM 01:47.1 31.698 32.883 02:27.1 31.9804 41.775 

SVM 54:12.5 07:10.3 01:35.0 3:35:04 15:36.39 00.004 

Random Forest 04:31.7 55.849 01:01.6 33:36.6 08:57.35 12:08 

Logistic Regression 01:06.1 27.235 06.936 17.308 29.33735 09.154 

Ridge 01.642 00.739 01.156 03.171 00.87426 01.531 

KNN 16.195 05.524 03.843 30.227 11.23441 09.841 

 

Table 32. Computation Time for Testing (Minute:second.mili-second) 

 Random Search Grid Search 

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

DT 00.018 00.004 0.0001 00.016 00.00416 00.016 

Linear SVM 00.014 00.003 0.0001 0.0001 00.00224 00.004 

SVM 00.262 00.066 00.031 00.359 00.06559 00.059 

Random Forest 00.358 00.029 00.062 00.031 00.02232 00.109 

Logistic Regression 00.009 00.003 00.016 00.078 00.00280 0.0001 

Ridge 00.005 00.002 0.0001 00.016 00.00267 0.0001 

KNN 00.491 00.148 00.094 00.437 00.15917 00.125 
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Ridge seems to complete the training and testing in a reasonable short time. 

Random Forest seems to be a computationally exhaustive for this type of data.  

3.4.11. Confusion Matrix 

The confusion matrix is a table that allows us the visualize and reports the 

number of false positives, false negatives, true positives, and true negatives. Figure 2 

and Figure 3 show that Ridge classifier managed to match the predicated label and 

true label with a range between 98% to 100% for the three stereotyped behavior for 

children with autism. The best confusion matrix chosen is for Ridge classifier, which 

managed mostly to match the predicated label, and the true label is the one for grid 

search hyperparameter tuning for a 2-second window of data. The value of alpha, 

according to Table 4, is 0.6. The rest of the confusion matrices found in the Appendix: 

confusion matrices section. 

 

 

Figure 2. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the ridge algorithm 
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Figure 3. Confusion matrix for random search hyperparameter tuning for a window of 

2-second data computed in the ridge algorithm 
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CHAPTER 4: APPLICATION 

4.1.  System Overview 

Figure 4 shows a real-time application developed on a smartphone (iPhone) to 

detect the stereotyped behaviors for children who are wearing the smartwatch (Apple 

watch). The application uses the Swift Core Motion framework and 

CMMotionManager, the watch we can collect the accelerometer and gyroscope data. 

The application uses the Swift WatchConnectivity framework to send 160 samples of 

data to the iPhone from the watch. The iPhone is running a Python Flask webserver 

hosted by pythonanywhere, which it has the trained classification model and the 

prediction code. Pythonanywhere website allows a python code to hosted on it with 

the ability to install the needed libraries or packages.  The iPhone receives the data 

from the watch. Then the iPhone sends the data to the server in the form of an HTTP 

post. The Flask server receives the data from the iPhone and imports a pickled model 

(classification trained model) and deserializes it to predict the classification label. It 

chooses the most frequent label of all predications. Then the label sent from the server 

as an HTTP response to the iPhone. The iPhone sends the label to the watch, and it 

displayed on the watch. The pickle operation used to serialize our trained machine 

learning algorithms and save the serialized format to a model utilized by the prediction 

code. This operation can eliminate the time spent in retraining the classification 

model. The classification model chosen is Ridge classifier with a window of 2 seconds 

and alpha 0.6. 
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Figure 4. Recognizing stereotyped behavior in children with autism system overview 

 

4.2.  System Limitation 

The application is limited to be developed as an IOS application since the 

smartwatch can only communicate with an iPhone. Also, this application is limited to 

the watch's framework sensors and methods. Also, the watch must be near the iPhone 

so it can send the data to the iPhone. Moreover, hosting on pythonanywhere as Free 

service limited the application by service CPU allowance is 100 seconds, 512MB 

storage, and low bandwidth. Also, since we are using a web server, an internet 

connection is needed for this application to work. 

4.3.  System Testing 

The user press on the "Start Recording" button on the watch, as shown in Figure 

5. The watch collects the sensor data, which printed on the watch console in Figure 6. 

The watch sends the sensors data to the iPhone, which printed on the iPhone console 

in Figure 7. The iPhone sends the data as an HTTP post to the Flask server, which 

uses the data to predict the label. The sensor data received by the server, and the 

predicted label shown in the server log in Figure 8.  The label 2 indicates the second 

behavior, which is Head Banging. This label sent as an HTTP response to the iPhone, 

which displayed in Figure 9. The iPhone sends this label to the watch, which printed 

on the watch console in Figure 10. The watch displays the label "Head Banging" in 
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Figure 11. The system tested on a child who was not part of the training of the data 

for the three behaviuors. The demonstration video of the system's test found in [46]. 

 

 

Figure 5. The watch user interface before recording the sensor data  

 

 

Figure 6. The watch console while recording the sensor data 

 

 

Figure 7. The iPhone console after receiving the sensor data  
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Figure 8. The server log after predicting the label 

 

 

Figure 9. The iPhone console after receiving the label 

 

  

Figure 10. The watch console after receiving the label 
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Figure 11. The watch user interface after receiving the label  

 

4.4.  Implementation Attempts 

Several implementation trails tried out before the implementation discussed in 

sections 4.1, 4.2, and 4.3. The first implementation we tried is to use Apple’s Core 

ML tools to convert our Python classifier into a classifier that could be understood by 

the Swift language. This implementation did not work because of the feature 

engineering process, where the number of features increased from 6 inputted features 

(sensor data) to 316 features.  The principle of custom scikit-learn pipelines used to 

produce the feature and finding the label inside a pipeline, and it worked in producing 

the label, but Core ML conversion tools did not support it. The second implementation 

method is using Kivy-IOS in which everything in Python, and it converts it into a 

format that the IOS understands it.  However, when the code is exported and tested 

on IOS, it showed that Kivy-IOS does not support needed python packages such as 

Pandas and Scipy. The third implementation method is using the BeeWare project, 

which had a similar issue to the Kivy-IOS. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1.  Conclusion 

This project works on helping in recognizing autistic children's stereotyped 

behaviors. The recognition achieved by building a signal processing model that 

collects data from a smartwatch equipped with a gyroscope and accelerometer. Then 

those data were processed and a feature vector of 316 features produced. Then a new 

feature vector with its labels was fed to a classification machine learning models for 

training the algorithms to produce the final predictive model. The best predictive 

model is the Ridge classifier. The results show that those common stereotype 

behaviors could be recognized using the Ridge machine learning algorithm with 

overall average accuracy ranges between 98.7% to 99.5 %. For hand flapping, head 

banging, and running back and forth, the overall precision ranges between 98% to 

100 %, recall ranges between 98% to 100 %, overall F1-score ranges between 98% 

to 100 %, and overall macro, weighted and micro averages of 99 %. This Ridge 

classifier used to implement a real-time application developed on a smartphone 

(iPhone) to detect the stereotyped behaviors for autistic children who are wearing the 

smartwatch (Apple watch). This application used to build an application to aid in 

diagnosing the process of autism on children. 

5.2. Future Work Directions 

The data were collected from accelerometer and gyroscope sensors only, so it 

possible to combine another type of sensors. Also, collecting data for more 

stereotyped behaviors of autistic children could be added to this project. Another 

possible future work for this project would be to collect more data from more 

volunteers and apply neural networks. Also, it is possible to use feature ranking 

methods such as information gain and dimension reduction methods such as principal 
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component analysis.  These methods help in choosing which features are essential to 

the machine learning process and which features discarded. 

5.3. Challenges 

   When we started with this project, there was no obvious way to relate 

the data collected from the sensor and the feature extracted from them to a specific 

body movement. So, feature engineering was a challenging task, and it took many 

papers readings and experimentation in order to produce a proper dataset that can 

apply machine learning algorithms on it. Acquiring an adequate number of 

participants in this experiment was challenging, and it took more time than expected 

because many parents refused to allow their children to participate. Even though it is 

safe to use the smartwatch and their instructor supervises the process of collecting the 

data. Also, we had to wait until all the children performed the three stereotyped 

behavior to start producing the final dataset after preprocessing the data.  
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APPENDIX A: CONFUSION MATRICES 

Figure 12. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the DT algorithm 

 

 

Figure 13. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Linear SVM algorithm 

 

T
ru

e 
L

ab
el

 
T

ru
e 

L
ab

el
 



  

44 

 

 

Figure 14. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the SVM algorithm 

 

Figure 15. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Random Forest algorithm 
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Figure 16. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Logistic Regression algorithm 

 

Figure 17. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the KNN algorithm 
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Figure 18. Confusion matrix for random search hyperparameter tuning for a window of 

1-second data computed in the DT algorithm 

 

Figure 19. Confusion matrix for random search hyperparameter tuning for a window of 

1-second data computed in the Linear SVM algorithm 
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Figure 20. Confusion matrix for random search hyperparameter tuning for a window of 

1-second data computed in the SVM algorithm 

 

Figure 21. Confusion matrix for random search hyperparameter tuning for a window of 

1-second data computed in the Random Forest algorithm 
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Figure 22. Confusion matrix for random search hyperparameter tuning for a window of 

1-second data computed in the Logistic Regression algorithm 

 

 

Figure 23. Confusion matrix for random search hyperparameter tuning for a window of 

1-second data computed in the KNN algorithm 
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Figure 24. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the DT algorithm 

 

Figure 25. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the Linear SVM algorithm 
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Figure 26. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the SVM algorithm 

 

Figure 27. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the Random Forest algorithm 

T
ru

e 
L

ab
el

 
T

ru
e 

L
ab

el
 



  

51 

 

 

Figure 28. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the Logistic Regression algorithm 

  

Figure 29. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Ridge algorithm 
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Figure 30. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the KNN algorithm 

 

Figure 31. Confusion matrix for random search hyperparameter tuning for a window of 

2-second data computed in the DT algorithm 
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Figure 32. Confusion matrix for random search hyperparameter tuning for a window of 

2-second data computed in the Linear SVM algorithm 

 

Figure 33. Confusion matrix for random search hyperparameter tuning for a window of 

2-second data computed in the SVM algorithm 
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Figure 34. Confusion matrix for random search hyperparameter tuning for a window of 

2-second data computed in the Random Forest algorithm 

 

Figure 35. Confusion matrix for random search hyperparameter tuning for a window of 

2-second data computed in the Logistic Regression algorithm 
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Figure 36. Confusion matrix for random search hyperparameter tuning for a window of 

2-second data computed in the Ridge algorithm 

 

Figure 37. Confusion matrix for random search hyperparameter tuning for a window of 

2-second data computed in the KNN algorithm 
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Figure 38. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the DT algorithm 

 

Figure 39. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Linear SVM algorithm 

T
ru

e 
L

ab
el

 
T

ru
e 

L
ab

el
 



  

57 

 

 

Figure 40. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the SVM algorithm 

 

Figure 41. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Random Forest algorithm 
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Figure 42. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Logistic Regression algorithm 

 

Figure 43. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Ridge algorithm 
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Figure 44. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the KNN algorithm 

 

Figure 45. Confusion matrix for random search hyperparameter tuning for a window of 

3-second data computed in the DT algorithm 
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Figure 46. Confusion matrix for random search hyperparameter tuning for a window of 

3-second data computed in the Linear SVM algorithm 

 

Figure 47. Confusion matrix for random search hyperparameter tuning for a window of 

3-second data computed in the SVM algorithm 
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Figure 48. Confusion matrix for random search hyperparameter tuning for a window of 

3-second data computed in the Random Forest algorithm 

 

Figure 49. Confusion matrix for random search hyperparameter tuning for a window of 

3-second data computed in the Logistic Regression algorithm 
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Figure 50. Confusion matrix for random search hyperparameter tuning for a window of 

3-second data computed in the Ridge algorithm 

 

Figure 51. Confusion matrix for random search hyperparameter tuning for a window of 

3-second data computed in the KNN algorithm 
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