
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

RECOGNIZING STEREOTYPED BEHAVIOR IN CHILDREN WITH AUTISM

BY

RANIM HAISAM FARAJ

A Project Submitted to

the College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Computing

June 2020

© 2020 RANIM HAISAM FARAJ. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the Project of

Ranim Haisam Faraj defended on 22/04/2020.

Dr. Tarek Mohamed El-Fouly

Thesis/Dissertation Supervisor

Prof. Amr Mohamed

Committee Member

Dr. Elias Yaacoub

Committee Member

Dr.Tamer Khattab

Committee Member

iii

ABSTRACT

FARAJ, RANIM H., Masters : June : [2020], Masters of Science in Computing

Title: Recognizing Stereotyped Behavior in Children with Autism

Supervisor of Project: Dr. Tarek M. El-Fouly.

 This project works on helping in identifying and recognizing autistic children's

stereotyped behaviors, which can help in diagnosing autism on children. The

recognition accomplished by building a signal processing model that collects data from

a smartwatch equipped with a gyroscope and accelerometer in order to produce a

feature vector of 316 features. This feature vector is used to choose a predictive model

with the highest accuracy, which is Ridge classifier in this project. The results show

that those common stereotype behaviors could be recognized using the Ridge machine

learning algorithm with overall average accuracy ranges between 98.7% to 99.5 %. For

hand flapping, head banging, and running back and forth, the overall precision ranges

between 98% to 100 %, overall recall ranges between 98% to 100 %, overall F1-score

ranges between 98% to 100 % and overall macro, weighted and micro averages is 99

%. This Ridge classifier used to implement a real-time application developed on a

smartphone (iPhone) to detect the stereotyped behaviors for autistic children who are

wearing the smartwatch (Apple watch).

iv

DEDICATION

To my beloved family members for their love, help, and support through the difficult

times

To Dr. Tarek Elfouly who have encouraged me to finish this degree and for guidance

and support

v

TABLE OF CONTENTS

DEDICATION .. iv

LIST OF TABLES .. viii

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS ... xiv

CHAPTER 1: INTRODUCTION .. 1

1.1. Goals and Objectives ... 2

CHAPTER 2: RELATED WORK AND BACKGROUND .. 3

2.1 Related Work.. 3

2.2. Multiclass Classification Algorithms .. 4

2.2.1. Decision Trees .. 4

2.2.2. Support Vector Machine ... 4

2.2.3. Random Forest .. 5

2.2.4. Logistic Regression .. 5

2.2.5. Ridge ... 5

2.2.6. K-Nearest Neighbors .. 5

2.2.7. Hyperparameter Tuning .. 5

CHAPTER 3: METHODOLOGY AND VALIDATION ... 6

3.1. Data Collection .. 6

3.2. Pre-processing ... 8

vi

3.2.1. Data Segmentation .. 8

3.2.2. Feature Engineering .. 8

3.3. Machine Learning ... 12

3.4. Validation .. 13

3.4.1. Best Hyperparameter from Hyperparameter Tuning 13

3.4.2. Average Accuracy .. 14

3.4.3. Precision ... 15

3.4.4. Recall .. 17

3.4.5. F1-score .. 19

3.4.6. Support.. 20

3.4.7. Micro Average .. 22

3.4.8. Macro Average ... 23

3.4.9. Weighted Average .. 25

3.4.10. Computation Time .. 27

3.4.11. Confusion Matrix .. 28

CHAPTER 4: Application ... 30

4.1. System Overview ... 30

4.2. System Limitation .. 31

4.3. System Testing ... 31

4.4. Implementation Attempts ... 34

vii

CHAPTER 5: CONCLUSION AND FUTURE WORK ... 35

5.1. Conclusion .. 35

5.2. Future Work Directions ... 35

REFERENCES .. 37

APPENDIX A: CONFUSION MATRICES.. 43

viii

LIST OF TABLES

Table 1 Number of Samples Recorded for Each Behavior .. 7

Table 2. Hyperparameter and their Values .. 12

Table 3. Best Hyperparameter Yielded from Hyperparameter Tuning for Random

Search ... 13

Table 4. Best Hyperparameter Yielded from Hyperparameter Tuning for Grid Search

.. 14

Table 5. Average Cross Validate Scores of Best Estimator .. 14

Table 6. Average Accuracy for All Behaviors ... 15

Table 7. Precision for Hand-Flapping ... 16

Table 8. Precision for Head-banging .. 16

Table 9. Precision for Running Back and Forth ... 17

Table 10. Recall for Hand-Flapping .. 18

Table 11. Recall for Head-banging .. 18

Table 12. Recall for Running Back and Forth .. 18

Table 13. F1-score for Hand-Flapping ... 19

Table 14. F1-score for Head-banging .. 20

Table 15. F1-score for Running Back and Forth ... 20

Table 16. Support for Hand-Flapping .. 21

Table 17. Support for Head-banging ... 21

Table 18. Support for Running Back and Forth ... 21

Table 19. Micro Average for Precision ... 22

Table 20. Micro Average for Recall .. 22

Table 21. Micro Average for F1-score .. 23

ix

Table 22. Micro Average for Support .. 23

Table 23. Macro Average for Precision ... 24

Table 24. Macro Average for Recall .. 24

Table 25. Macro Average for F1-score .. 24

Table 26. Macro Average for Support ... 25

Table 27. Weighted Average for Precision .. 25

Table 28. Weighted Average for Recall .. 26

Table 29. Weighted Average for F1-score ... 26

Table 30. Weighted Average for Support .. 26

Table 31. Computation Time for Training (Minute: second.mili-second) 27

Table 32. Computation Time for Testing (Minute:second.mili-second) 27

x

LIST OF FIGURES

Figure 1. The process of recognizing the behaviors (hand flapping, head banging and

running back and forth) .. 7

Figure 2. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the ridge algorithm .. 28

Figure 3. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the ridge algorithm ... 29

Figure 4. Recognizing stereotyped behavior in children with autism system overview

.. 31

Figure 5. The watch user interface before recording the sensor data 32

Figure 6. The watch console while recording the sensor data 32

Figure 7. The iPhone console after receiving the sensor data...................................... 32

Figure 8. The server log after predicting the label ... 33

Figure 9. The iPhone console after receiving the label .. 33

Figure 10. The watch console after receiving the label ... 33

Figure 11. The watch user interface after receiving the label 34

Figure 12. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the DT algorithm ... 43

Figure 13. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Linear SVM algorithm .. 43

Figure 14. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the SVM algorithm .. 44

Figure 15. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Random Forest algorithm .. 44

xi

Figure 16. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Logistic Regression algorithm 45

Figure 17. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the KNN algorithm .. 45

Figure 18. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the DT algorithm .. 46

Figure 19. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the Linear SVM algorithm ... 46

Figure 20. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the SVM algorithm .. 47

Figure 21. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the Random Forest algorithm... 47

Figure 22. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the Logistic Regression algorithm 48

Figure 23. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the KNN algorithm .. 48

Figure 24. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the DT algorithm ... 49

Figure 25. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the Linear SVM algorithm .. 49

Figure 26. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the SVM algorithm .. 50

Figure 27. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the Random Forest algorithm .. 50

xii

Figure 28. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the Logistic Regression algorithm 51

Figure 29. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Ridge algorithm ... 51

Figure 30. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the KNN algorithm .. 52

Figure 31. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the DT algorithm .. 52

Figure 32. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the Linear SVM algorithm ... 53

Figure 33. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the SVM algorithm .. 53

Figure 34. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the Random Forest algorithm... 54

Figure 35. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the Logistic Regression algorithm 54

Figure 36. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the Ridge algorithm.. 55

Figure 37. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the KNN algorithm .. 55

Figure 38. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the DT algorithm ... 56

Figure 39. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Linear SVM algorithm .. 56

xiii

Figure 40. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the SVM algorithm .. 57

Figure 41. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Random Forest algorithm .. 57

Figure 42. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Logistic Regression algorithm 58

Figure 43. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Ridge algorithm ... 58

Figure 44. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the KNN algorithm .. 59

Figure 45. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the DT algorithm .. 59

Figure 46. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the Linear SVM algorithm ... 60

Figure 47. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the SVM algorithm .. 60

Figure 48. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the Random Forest algorithm... 61

Figure 49. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the Logistic Regression algorithm 61

Figure 50. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the Ridge algorithm.. 62

Figure 51. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the KNN algorithm .. 62

xiv

LIST OF ABBREVIATIONS

RBF: Radial Basis Function

SVM: Support Vector Machine

KNN: K Nearest Neighbors

DT: Decision Trees

1

CHAPTER 1: INTRODUCTION

Today’s smart devices, such as a smartwatch, come equipped with sensors that

used for data collection for health monitoring applications [1]. The most popular

sensors found in a smartwatch is Gyroscope, Accelerometer, Magnetometer, and Heart

rate monitor [2]. The accelerometer is an electromechanical device that used to measure

the linear acceleration using the vibrations related to movement. The gyroscope is a

sensor that employs the earth's gravity to determine rotational changes and angular

position with keeping orientation [3,4]. The data collected from accelerometer and

gyroscope sensors data can aid in the detection of several human activities. The human

activities that this project is interested in is the one related to children with autism.

Autism spectrum disorder refers to a wide range of conditions, including social skill

problems, stereotyped behaviors, speech, and nonverbal communication [5]. In 2018,

according to the Centers for Disease Control and Prevention (CDC), autism affected

about 1 in every 59 children in the US [6]. Moreover, according to the CDC, there is

no medical detection for autism [6,7].

Stereotyped behavior is unusual and socially undesirable, repetitive behaviors,

and it is considered a crucial diagnostic feature of people with autism [8]. This project

aims to employ machine learning to recognize three common stereotype behaviors

found in the children, which are hand flapping, head banging, and running back and

forth through data collected from a smartwatch. The results show that those common

stereotype behaviors could be recognized using the Ridge machine learning algorithm

with overall average accuracy ranges between 98.7% to 99.5 %. For hand flapping,

head banging, and running back and forth, the overall precision ranges between 98% to

100 %, recall ranges between 98% to 100 %, overall F1-score ranges between 98% to

100 %, and overall macro, weighted and micro averages of 99 %. This Ridge classifier

2

used to implement a real-time application developed on a smartphone (iPhone) to detect

the stereotyped behaviors for autistic children who are wearing the smartwatch (Apple

watch).

The remainder of this report is structured as follows: Section 1.1 describes the

goals and objectives of this project. Chapter 2 presents related work projects related to

human activity detection and background about the machine learning multiclass

classification algorithms. Chapter 3 explore the methodology used to implement this

project in detail with the analysis of the results. Chapter 4 explores the real-time

application developed to detect the stereotyped behaviors for autistic children. Chapter

5 concludes the projects with future work and challenges.

1.1. Goals and Objectives

This project aims to develop a model that can help in detecting and recognizing

autistic children's stereotyped behaviors. This project builds a signal processing model

that collects data from a wearable sensor (gyroscope and accelerometer) that exists in

the market (smartwatch). Then the data will be fed to a classification machine learning

model for training the algorithms to produce the final predictive model with the highest

accuracy that implemented in an application that helps in the classifying the children

stereotyped behaviors, which aid in diagnosing the process of autism on children.

3

CHAPTER 2: RELATED WORK AND BACKGROUND

2.1 Related Work

Human activity recognition has a vital role in several applications. The authors

in [11] used SVM, Naïve Bayes, KNN to identify temporals patterns that can aid in

the activity recognition process. Random Forest algorithm applied for the features

extracted from time and frequency domain for recognition of a person who is walking,

and it achieved an accuracy of 96.79% [29]. The researchers in [9] used data from

accelerometer sensors with various machine learning techniques such as SVM, J48,

AdaBoost, and Random forest to recognize the activity of walking, jogging, running,

standing, and sitting and they attained an average accuracy of 98.8283 %. MobiRAR

application was developed by [10], where sensor data from the mobile device is

collected to recognize ten daily human activity, and they achieved an average

accuracy of 93%. The authors in [12] managed to recognize eight daily human

activities using statistical learning methods, which are Naive Bayes, K-nearest

neighbor, Logistic regression, Bayesian network, and Multilayer Perceptron, and they

attained an accuracy of 91.55 % for Bayesian network. Children with development

disabilities stereotyped movement is detected using the Weka toolkit with a

recognition accuracy of 91 % [13]. The researchers in [15] used data collected from

functional magnetic resonance to diagnose autism using SVM RBF kernel, and the

accuracy was 59.6 %. The authors in [14] used Microsoft sensor Kinect to recognize

the hand flapping movement of children with autism using Dynamic Time Wrapping

with a 51% detection rate and a 76% detection rate using the eZ43-Chrono watch. The

author in [16] collected accelerometer data with 102 feature vector size, and this data

is fed into a machine learning algorithm DT to detect hand flapping, and they achieved

an accuracy of 93%. MIT researchers worked on the detection of children with

4

stereotyped autism behavior, and they achieved the highest recognition accuracy of

82.3% for SVM and 77.5% for DT [44]. The raw inertial signals do not give enough

knowledge, so we cannot directly feed it to the machine learning algorithms, but we

can use those data to generate a new feature vector that describes the shape,

distribution, and nature of the signals. Feature vector produced could be orientation-

invariant such as the work of [27], who extracted features from three-dimensional

acceleration signals through applying Fourier transform and the work of [28] who

extracted features from accelerometer and gyroscope for gait biometrics for motion

recognition.

2.2. Multiclass Classification Algorithms

A multiclass classifier also can build based on multiple binary classifiers. In

order to prevent overfitting of the data, cross-validation applied to train data where

data divided into several subsets for training and one subset for validation [41].

2.2.1. Decision Trees

It is a tree traversal algorithm that splits the examples into decisions in the form

of nodes [18, 19]. In each node, we create a test, and if the test passes, it will be

processed to the left branch and the right branch otherwise [30]. This method is

inherently supporting multiclass classification [17].

2.2.2. Support Vector Machine

It is an efficient method that uses a group of mathematical functions (kernels),

and it is highly effective in high dimensional spaces [31, 32]. Examples of SVM kernels

are RBF, polynomial, sigmoid, and Linear SVC. RBF kernel is the most used type of

kernel because there is no need for prior knowledge about the data [32]. SVM kernels

support multiclass classification as One-Vs-One; however, the Linear SVM method

supports multiclass classification as One-Vs-The-Rest [17].

5

2.2.3. Random Forest

 It has based on decision trees [33]. Moreover, this method is inherently

supporting multiclass classification [17].

2.2.4. Logistic Regression

 It is a simple and computationally efficient probabilistic method through

binomial outcomes [18]. This method supports the multiclass classification as One-Vs-

The-Rest [17].

2.2.5. Ridge

 This method converts the target into values between -1 and 1, and then it

handles the problem as a regression problem [34]. This method is inherently supporting

multiclass classification [17].

2.2.6. K-Nearest Neighbors

 It is classified based on its closest neighbor, and it requires distance

computation of k-nearest neighbors [18,33]. This method is inherently supporting

multiclass classification [17]

2.2.7. Hyperparameter Tuning

Hyperparameters are values set by the programmer, which often can help in

estimating the parameters, and it can affect the final model prediction [35]. In order

to choose the appropriate hyperparameter, hyperparameter tuning algorithms

developed, such as Grid Search and Random Search.

6

CHAPTER 3: METHODOLOGY AND VALIDATION

3.1. Data Collection

As seen in Figure 1, during each experiment three acceleration accelerometer

signals (X-Y-Z) with the unit of g (gravity of earth=9.8 m/s^2) and three gyroscope

angular velocity signals (X-Y-Z) with the unit of rad/s were captured using Apple’s

Smartwatch Series 5 worn by the children. When the smartwatch is attached to the

body, the activity's motion of this body will affect the watch acceleration and angular

velocity. After the smartwatch finished collecting the data for an activity (behavior),

the data are transferred to an iPhone 7 and then transferred to a MacBook laptop for

offline machine learning model selection. The data from the watch are collected using

the SensorLog application developed by Bernd Thomas [20]. The sensor's signals are

measured every 0.05 seconds (sampling frequency of 20 Hz). The sampling frequency

must be selected fast enough to capture the necessary signals needed for processing,

but at the same time, it should be slow enough to avoid exposure to noise [21].

Moreover, the sampling frequency should be greater or equal twice the highest

sampled frequency to avoid aliasing [22]. For the human body measurements, 98% of

the spectral power is below 10 Hz [23]. So, the sampling frequency of 20 Hz is

selected.

7

Figure 1. The process of recognizing the behaviors (hand flapping, head banging and

running back and forth)

The training collected data from 3 autistic children in Qatar performing three

behaviors (hand flapping – head banging- running back and forth) while wearing the

Apple watch on their right hand. The data collected yields nine datasets that will be

processed to produce one dataset that fed to the machine learning algorithms. The

labels were manually added to the datasets, so a supervised learning algorithm used

to generate the predictive model. The number of samples recorded for each behavior

and every child found in Table 1.

Table 1 Number of Samples Recorded for Each Behavior

Child Hand Flapping Head Banging Running Back and forth

1 8448 12109 11310

2 11141 3264 12959

3 3307 4954 7560

8

The choice of detecting the behavior using a smartwatch instead of a recording

of a video for the kid's movement came because of the sensitive nature of children

with autism that makes it better not to put them in constant surveillance. Also, this can

protect the identity of the kids who had to diagnose. Moreover, the smartwatch is easy

to use and looks like a regular watch. So, it blinds with their body, unlike putting a

sensor on their head or their waist.

3.2. Pre-processing

3.2.1. Data Segmentation

The pre-processing computed using Python 3 language with a math library, and

briefly explained in Figure 1. If the features computed for all data for each column in

the original dataset, the final dataset that we will feed to the machine learning will

have only three values for each feature (one for each behavior). For sure, this yields

a small number of examples that are not suitable to train a machine learning

algorithm. Moreover, it is not useful to compute the feature vector for each sample in

the initial dataset. So, the solution will be to divide the data into small windows of

fixed time before extracting the features. The method of windowing used is a Fixed

size overlapping sliding window. In order the accommodate the data at the edge of

the window, we used overlapping windows of 50% overlap. The data were divided

into windows of size 1 seconds (1/sampling frequency = 20 sample/window), 2

seconds (2/sampling frequency = 40 sample /window) and 3 seconds (3/sampling

frequency = 60 sample /window).

3.2.2. Feature Engineering

The feature engineering computed using Python 3 language with scipy, math,

and statsmodels libraries, and briefly explained in Figure 1. For each window, we

9

will compute information that describes the signal, such as statistical features in time

and frequency domain. For each example, the orientation independent jerk signal

(rate of change) [25] calculated. Then the magnitude of the three signals (Z, Y, Z) for

both sensors and its jerk signals is calculated using Vector L2 Norm (Euclidean norm)

method [24], which found in Equation 1.

Magnitude(X, Y, Z) = √X2 + Y2 + Z2 Equation 1

 Several statistical methods applied to the sensor data, their magnitude, and jerk

signals, a feature vector with a total number of features equal to 316 features

produced. The statistical methods used are mean, standard deviation, median

deviation, maximum, minimum, interquartile range, entropy, correlation, signal

magnitude area, energy, Skew, and Kurtosis.

 For both time and frequency domains, we calculate the mean. The mean can

help in describing the distribution of a signal, and it is affected by outliers [26]. The

total number of mean features are (3 accelerometer signals + 3 gyroscope signal + 2

magnitudes) * 2 domain * 2 jerk signals =32 feature.

 For both time and frequency domains, we calculate the standard deviation.

Standard deviation can help to describe the distribution of a signal. It measures the

spread of the distribution about the mean, and it is affected by outliers [26]. The total

number of standard deviation features are (3 accelerometer signals + 3 gyroscope

signal + 2 magnitudes) * 2 domain * 2 jerk signals =32 feature.

 For both time and frequency domains, we calculate the median deviation. The

median deviation can help in describing the distribution of a signal, and it is not

sensitive to outlier [36]. The total number of standard deviation features are (3

10

accelerometer signals + 3 gyroscope signal + 2 magnitudes) * 2 domain * 2 jerk

signals =32 feature.

 For both time and frequency domains, we calculate the maximum value. The

total number of maximum features are (3 accelerometer signals + 3 gyroscope signal

+ 2 magnitudes) * 2 domain * 2 jerk signals =32 feature.

 For both time and frequency domains, we calculate the minimum value. The

total number of minimum features are (3 accelerometer signals + 3 gyroscope signal

+ 2 magnitudes) * 2 domain * 2 jerk signals =32 feature.

 For both time and frequency domains, we calculate the interquartile range. It is

a measure of statistical dispersion but is much more robust against outliers. It is where

the middle fifty of our data in a dataset where most of the data lie. In other words, the

interquartile range equal to the difference between the 75th data point and the 25th data

point of our data [37]. The total number of interquartile Range features are (3

accelerometer signals + 3 gyroscope signal + 2 magnitudes) * 2 domain * 2 jerk signals

=32 feature.

For both time and frequency domains, we calculate the entropy. It measures of

disorder, using probabilistic parameters [38]. The total number of entropy features are

(3 accelerometer signals + 3 gyroscope signal + 2 magnitudes) * 2 domain * 2 jerk

signals =32 feature.

 For time-domain only, we calculate the correlation. In this project, the

correlation is between two axial combinations of the signals X, Y, Z. The total number

of correlation features are (3 accelerometer signals + 3 gyroscope signal) * 1 domain

* 2 jerk signals= 12 features.

 For both time and frequency domains, we calculate the signal magnitude area.

In this project, the sum of areas under each signal [39, 42]. Signal magnitude area

11

used for measuring a child's level of activity (distinguish between activity and

inactivity) [40]. The total number of signal magnitude area features is (1 sum of

accelerometer signals + 1 sum of gyroscope signal + 2 magnitudes) * 2 domain * 2

jerk signals =16 feature.

 For both time and frequency domains, we calculate energy. Energy is Sum

squared of each column for X, Y, Z [43]. The total number of energy features are (3

accelerometer signals + 3 gyroscope signal + 2 magnitudes) * 2 domain * 2 jerk

signals =32 feature.

For frequency domain only, we calculate the skew. Skew measures of the lack

of symmetry. In a histogram of data, the value of skew decides where the distribution

is directed and by how much. In other words, it shows how much the data departed

from the horizontal symmetry. The skew is computed in Equation 2 [45]. The total

number of skew features are (3 accelerometer signals + 3 gyroscope signal + 2

magnitudes) * 1 domain * 2 jerk signals=16 feature.

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑔1) =
∑

(𝑥−𝑥̅)3

𝑛

(∑
(𝑥−𝑥̅)2

𝑛
)

3
2⁄
 Equation 2

 Where x̅ is the mean of the data set, and n is the sample size.

For frequency domain only, we calculate the kurtosis. Kurtosis measures the

sharpness of the data peaks when graphed as a histogram. As the Kurtosis value

increases, the histogram will have a sharper peak. The skew is computed in Equation

3 [45]. The total number of kurtosis features are (3 accelerometer signals + 3

gyroscope signal + 2 magnitudes) * 1 domain * 2 jerk signals=16 feature.

12

Kurtosis(𝑎4) =
∑

(𝑥−𝑥̅)4

𝑛

(∑
(𝑥−𝑥̅)2

𝑛
)2

 Equation 3

Where x̅ is the mean of the data set, and n is the sample size.

3.3. Machine Learning

The machine learning computed using Python 3 language with Scikit-learn, and

briefly explained in Figure 1. The final dataset was shuffled and randomly split into

training data (70%) and testing data (30%). Then hyperparameter tuning techniques

Random and Grid search were used with Stratified K Fold cross-validation for DT,

Linear SVM, SVM, Random Forest, Logistic Regression, Ridge and KNN algorithms.

The initial hyperparameter fed to the hyperparameter tuning techniques found in Table

2. Leave on out cross-validation method, and the Gradient Boosted Decision Trees

machine learning algorithm was tested, but it took a half-day with no output, so it was

terminated, and another methods are chosen.

Table 2. Hyperparameter and their Values

Algorithm Hyperparameter Values

DT Maximum Depth 3 to 10 with steps 2

Linear SVM C 0.125, 0.5, 1, 2, 8, 16

SVM Kernel Polynomial, RBF, Sigmoid

SVM Gamma 0.0078125, 0.125, 2

SVM C 100, 10, 1.0, 0.1, 0.001

Random Forest N estimators 10 to 1000 with steps 100

Random Forest Maximum Depth 3 to 15 with steps 2

Logistic Regression Penalty l2 and l1

Logistic Regression C 0.01, 0.1, 1, 10, 100

Ridge Alpha 0.1 to 1.0 with steps 0.1

KNN Weights Uniform, Distance

KNN N neighbors 1 to 21 with steps 2

13

3.4. Validation

3.4.1. Best Hyperparameter from Hyperparameter Tuning

After feeding the initial hyperparameter found in table 2 to the hyperparameter

tuning techniques, the best hyperparameter value chosen which gave the best results

on the hold out data by the techniques found in Table 3 for Random Search and Table

4 for Grid Search. The Table 4 shows the quality of the best hyperparameters chosen.

The bigger value of the average Cross Validate Scores of Best Estimator, the better.

Table 3. Best Hyperparameter Yielded from Hyperparameter Tuning for Random

Search

Algorithm Hyperparameter 1 sec 2 sec 3 sec

DT Maximum Depth 9 7 7

Linear SVM C 0.125 0.5 1

SVM Kernel Polynomial Polynomial Polynomial

SVM Gamma 2 0.0078125 0.125

SVM C 10 0.001 0.001

Random Forest N estimators 910 110 410

Random Forest Maximum Depth 11 13 13

Logistic Regression Penalty I1 I1 I2

Logistic Regression C 1 100 10

Ridge Alpha 0.7 0.2 0.1

KNN Weights Distance Distance Uniform

KNN N neighbors 7 3 3

14

Table 4. Best Hyperparameter Yielded from Hyperparameter Tuning for Grid Search

Table 5. Average Cross Validate Scores of Best Estimator

3.4.2. Average Accuracy

Average accuracy shows the effectiveness of the used machine learning

classifier by showing the degree of closeness to the true values of the labels. It

computed using Equation 4 and the results for all classifiers through two

hyperparameter tuning algorithm (Random and Grid search) for the three window

sizes of data (1 second, 2 seconds, 3 seconds) shown in table 6.

Algorithm Hyperparameter 1 sec 2 sec 3 sec

DT Maximum Depth 7 7 5

Linear SVM C 16 1 16

SVM Kernel Polynomial Polynomial Polynomial

SVM Gamma 0.0078125 0.0078125 0.0078125

SVM C 100 100 100

Random Forest N estimators 110 110 210

Random Forest Maximum Depth 13 13 11

Logistic Regression Penalty I2 I1 I2

Logistic Regression C 100 10 10

Ridge Alpha 0.2 0.6 0.3

KNN Weights Distance Distance Distance

KNN N neighbors 5 3 7

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.96 0.97 0.97 0.96 0.96

Linear SVM 0.91 0.91 0.90 0.92 0.86 0.91

SVM 0.95 0.95 0.95 0.96 0.95 0.96

Random Forest 0.98 0.98 0.98 0.99 0.99 0.98

Logistic Regression 0.98 0.99 0.94 0.92 0.99 0.94

Ridge 0.99 0.99 0.99 0.99 0.99 0.99

KNN 0.90 0.91 0.92 0.91 0.92 0.92

15

Average Accuracy (model) =
∑

𝑡𝑝𝑖+𝑡𝑛𝑖
𝑡𝑝𝑖+𝑡𝑛𝑖+𝑓𝑝𝑖+𝑓𝑛𝑖

𝑘
𝑖=1

k
 Equation 4

For k=total number of classes (3 classes), tp= true positive, tn= true negative, fp=false

positive, fn=false negative.

Table 6. Average Accuracy for All Behaviors

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.974 0.975 0.972 0.972 0.975 0.972

Linear SVM 0.935 0.798 0.755 0.825 0.942 0.797

SVM 0.961 0.952 0.961 0.963 0.964 0.942

Random Forest 0.988 0.985 0.991 0.985 0.986 0.981

Logistic Regression 0.992 0.997 0.945 0.913 0.992 0.948

Ridge 0.991 0.988 0.992 0.987 0.995 0.992

KNN 0.910 0.927 0.909 0.904 0.919 0.937

 The results show that those common stereotype behaviors could be recognized

using the Ridge machine learning algorithm with overall average accuracy ranges

between 98.7% to 99.5 %. So Ridge classifier is the most recommended model to

classify those stereotype behaviors. The accuracy of DT is not profoundly affected by

changing the window size and the hyperparameter tuning method. For Linear SVM

low accuracies, it is either the data that does not work well with this classifier or the

hyperparameter tuning method was not successful in finding the best hyperparameter.

For SVM, the Polynomial kernel to use on the data and the accuracy of DT is not

profoundly affected by changing the window size and the hyperparameter tuning

method. The accuracy of KNN is lowest compared to the other classifiers.

3.4.3. Precision

 Precision is the capability of the classifier not to label a negative example as

16

positive. It computed using Equation 5 and the results for all classifiers through two

hyperparameter tuning algorithm (Random and Grid search) for the three window sizes

of data (1 second, 2 seconds, 3 seconds) shown in Table 7, Table 8 and Table 9 for the

three stereotyped behavior for children with autism.

Precision (model) =
∑ 𝑡𝑝𝑖

𝑘−1
𝑖=1

∑ (𝑡𝑝𝑖+𝑓𝑝𝑖) 𝑘−1
𝑖=1

 Equation 5

For k=total number of classes (3 classes), tp= true positive, fp=false positive.

Table 7. Precision for Hand-Flapping

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.98 0.95 0.97 0.97 0.97 0.97

Linear SVM 0.91 0.62 0.89 0.70 0.91 0.97

SVM 0.94 0.93 0.94 0.94 0.94 0.91

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98

Logistic Regression 0.99 0.98 0.92 0.89 0.99 0.92

Ridge 1.00 0.98 0.99 0.99 0.99 1.00

KNN 0.88 0.90 0.86 0.87 0.91 0.90

Table 8. Precision for Head-banging

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.98 0.98 0.97 0.99 0.97 0.97

Linear SVM 0.91 0.93 0.59 0.84 0.95 0.73

SVM 0.95 0.95 0.97 0.97 0.94 0.92

Random Forest 0.99 0.99 1.00 1.00 0.99 0.97

Logistic Regression 0.99 0.98 0.92 0.88 0.99 0.92

Ridge 0.98 0.98 1.00 0.99 0.99 0.98

KNN 0.93 0.94 0.96 0.93 0.92 0.97

17

Table 9. Precision for Running Back and Forth

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.99 0.97 0.96 0.98 0.97

Linear SVM 0.97 0.99 0.97 0.99 0.96 0.81

SVM 0.98 0.97 0.97 0.98 0.99 0.98

Random Forest 0.98 0.98 0.98 0.98 0.98 0.99

Logistic Regression 0.99 0.99 0.98 0.96 1.00 0.98

Ridge 0.99 1.00 0.99 0.98 1.00 0.99

KNN 0.92 0.94 0.91 0.92 0.93 0.95

The results show that those common stereotype behaviors could be recognized

with the highest precision using the Ridge algorithm. The overall precision ranges

between 98% to 100 % for hand flapping, head banging, and running back and forth.

3.4.4. Recall

 The recall is the ability of the classifier to find all the positive samples. It

computed using Equation 6 and the results for all classifiers through two

hyperparameter tuning algorithm (Random and Grid search) for the three window sizes

of data (1 second, 2 seconds, 3 seconds) shown Table 10, Table 11, Table 12 for the

three stereotyped behavior for children with autism.

Recall (model) =
∑ 𝑡𝑝𝑖

𝑘−1
𝑖=1

∑ (𝑡𝑝𝑖+𝑓𝑛𝑖) 𝑘−1
𝑖=1

Equation 6

For k=total number of classes (3 classes), tp= true positive, fn=false negative.

18

Table 10. Recall for Hand-Flapping

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.96 0.97 0.96 0.96 0.96 0.95

Linear SVM 0.88 0.95 0.80 0.93 0.92 0.35

SVM 0.95 0.94 0.95 0.97 0.94 0.91

Random Forest 0.98 0.99 0.99 0.98 0.98 0.96

Logistic Regression 0.99 0.99 0.91 0.85 0.99 0.90

Ridge 0.98 0.99 1.00 0.98 0.99 0.98

KNN 0.83 0.89 0.85 0.84 0.85 0.91

Table 11. Recall for Head-banging

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.98 0.97 0.97 0.96 0.98 0.97

Linear SVM 0.97 0.91 0.96 0.95 0.93 0.98

SVM 0.96 0.94 0.95 0.95 0.96 0.96

Random Forest 0.98 0.97 0.99 0.97 0.98 0.99

Logistic Regression 0.99 0.97 0.94 0.91 0.99 0.96

Ridge 0.99 0.98 0.99 0.98 0.99 1.00

KNN 0.92 0.91 0.90 0.90 0.92 0.90

Table 12. Recall for Running Back and Forth

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.98 0.98 0.98 0.98 0.98 0.99

Linear SVM 0.95 0.61 0.57 0.67 0.96 0.98

SVM 0.97 0.97 0.98 0.96 0.98 0.96

Random Forest 1.00 0.99 0.99 0.99 1.00 0.99

Logistic Regression 0.99 0.99 0.97 0.96 0.99 0.97

Ridge 1.00 1.00 0.99 0.99 1.00 1.00

KNN 0.96 0.97 0.96 0.96 0.97 0.98

19

The results show that those common stereotype behaviors could be recognized

with the highest recall using the Ridge algorithm. The overall recall ranges between

98% to 100 % for hand flapping, head banging, and running back and forth.

3.4.5. F1-score

F1-score is the harmonic mean of precision and recall. Using Equation 7 and

the results for all classifiers through two hyperparameter tuning algorithm (Random

and Grid search) for the three window sizes of data (1 second, 2 seconds, 3 seconds)

shown in Table 13, Table 14, Table 15 for the three stereotyped behavior for children

with autism.

F1 − score (model) =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 Equation 7

Table 13. F1-score for Hand-Flapping

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.96 0.96 0.97 0.97 0.96

Linear SVM 0.90 0.75 0.84 0.80 0.92 0.51

SVM 0.94 0.93 0.94 0.95 0.94 0.91

Random Forest 0.98 0.98 0.99 0.98 0.98 0.97

Logistic Regression 0.99 0.99 0.92 0.87 0.99 0.91

Ridge 0.99 0.99 0.99 0.99 0.99 0.99

KNN 0.86 0.89 0.85 0.85 0.88 0.90

20

Table 14. F1-score for Head-banging

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.98 0.97 0.97 0.98 0.97 0.97

Linear SVM 0.94 0.92 0.73 0.89 0.94 0.84

SVM 0.96 0.94 0.96 0.96 0.95 0.94

Random Forest 0.99 0.98 0.99 0.98 0.98 0.98

Logistic Regression 0.99 0.98 0.93 0.89 0.99 0.94

Ridge 0.99 0.98 0.99 0.98 0.99 0.99

KNN 0.92 0.92 0.93 0.91 0.92 0.93

Table 15. F1-score for Running Back and Forth

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.98 0.98 0.98 0.97 0.98 0.98

Linear SVM 0.96 0.75 0.72 0.80 0.96 0.89

SVM 0.97 0.97 0.97 0.97 0.99 0.97

Random Forest 0.99 0.99 0.99 0.99 0.99 0.99

Logistic Regression 0.99 0.99 0.98 0.96 0.99 0.98

Ridge 0.99 1.00 0.99 0.99 1.00 1.00

KNN 0.94 0.95 0.93 0.93 0.95 0.96

The results show that those common stereotype behaviors could be recognized

with the highest F1-score using the Ridge algorithm. The overall F1-score ranges

between 98% to 100 % for hand flapping, head banging, and running back and forth.

3.4.6. Support

Support is the number of samples of the true label that lie in that class. It is

computed for all classifiers through two hyperparameter tuning algorithms (Random

and Grid search) for the three window sizes of data (1 second, 2 seconds, 3 seconds) is

shown in Table 16, Table 17 and Table 18 for the three stereotyped behavior for

children with autism.

21

Table 16. Support for Hand-Flapping

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 688 351 207 685 344 216

Linear SVM 688 351 207 685 344 216

SVM 688 351 207 685 344 216

Random Forest 688 351 207 685 344 216

Logistic Regression 688 351 207 685 344 216

Ridge 688 351 207 685 344 216

KNN 688 351 207 685 344 216

Table 17. Support for Head-banging

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 598 305 231 603 289 218

Linear SVM 598 305 231 603 289 218

SVM 598 305 231 603 289 218

Random Forest 598 305 231 603 289 218

Logistic Regression 598 305 231 603 289 218

Ridge 598 305 231 603 289 218

KNN 598 305 231 603 289 218

Table 18. Support for Running Back and Forth

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 961 466 309 959 489 313

Linear SVM 961 466 309 959 489 313

SVM 961 466 309 959 489 313

Random Forest 961 466 309 959 489 313

Logistic Regression 961 466 309 959 489 313

Ridge 961 466 309 959 489 313

KNN 961 466 309 959 489 313

22

3.4.7. Micro Average

 Micro Average aggregates the contributions of all classes to compute the

average metric. It counts the total true positives, false negatives, and false positives.

It is computed for all classifiers through two hyperparameter tuning algorithm

(Random and Grid search) for the three window sizes of data (1 second, 2 second, 3

seconds) is shown in Table 19, Table 20, Table 21 and Table 22 for the precision,

recall, F1-score, and support.

Table 19. Micro Average for Precision

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.98 - - 0.98 -

Linear SVM 0.93 0.80 - - 0.94 -

SVM 0.96 0.95 - - 0.96 -

Random Forest 0.99 0.98 - - 0.99 -

Logistic Regression 0.99 0.99 - - 0.99 -

Ridge 0.99 0.99 - - 0.99 -

KNN 0.91 0.93 - - 0.92 -

Table 20. Micro Average for Recall

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.98 - - 0.98 -

Linear SVM 0.93 0.80 - - 0.94 -

SVM 0.96 0.95 - - 0.96 -

Random Forest 0.99 0.98 - - 0.99 -

Logistic Regression 0.99 0.99 - - 0.99 -

Ridge 0.99 0.99 - - 0.99 -

KNN 0.91 0.93 - - 0.92 -

23

Table 21. Micro Average for F1-score

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.98 0.97 0.97 0.98 0.97

Linear SVM 0.93 0.80 0.76 0.83 0.94 0.80

SVM 0.96 0.95 0.96 0.96 0.96 0.94

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98

Logistic Regression 0.99 0.99 0.95 0.91 0.99 0.95

Ridge 0.99 0.99 0.99 0.99 0.99 0.99

KNN 0.91 0.93 0.91 0.90 0.92 0.94

Table 22. Micro Average for Support

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 2247 1122 747 2247 1122 747

Linear SVM 2247 1122 747 2247 1122 747

SVM 2247 1122 747 2247 1122 747

Random Forest 2247 1122 747 2247 1122 747

Logistic Regression 2247 1122 747 2247 1122 747

Ridge 2247 1122 747 2247 1122 747

KNN 2247 1122 747 2247 1122 747

The results show that those common stereotype behaviors recognized with the

highest micro average using the Ridge algorithm. The overall macro average is 99 %

for hand flapping, head banging, and running back and forth.

3.4.8. Macro Average

 The macro average calculates metrics independently for each class and finds

the unweighted mean. For all classifiers through two hyperparameter tuning algorithm

(Random and Grid search) for the three window sizes of data (1 second, 2 second, 3

seconds) is shown in Table 23, Table 24, Table 25 and Table 26 for the precision,

recall, F1-score, and support.

24

Table 23. Macro Average for Precision

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.97 0.97 0.97 0.97 0.97

Linear SVM 0.93 0.85 0.81 0.84 0.94 0.84

SVM 0.96 0.95 0.96 0.96 0.96 0.94

Random Forest 0.99 0.99 0.99 0.99 0.99 0.98

Logistic Regression 0.99 0.99 0.94 0.91 0.99 0.94

Ridge 0.99 0.99 0.99 0.99 0.99 0.99

KNN 0.91 0.93 0.91 0.90 0.92 0.94

Table 24. Macro Average for Recall

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.97 0.97 0.97 0.97 0.97

Linear SVM 0.93 0.82 0.78 0.85 0.94 0.77

SVM 0.96 0.95 0.96 0.96 0.96 0.94

Random Forest 0.99 0.98 0.99 0.98 0.98 0.98

Logistic Regression 0.99 0.99 0.94 0.91 0.99 0.94

Ridge 0.99 0.99 0.99 0.99 0.99 0.99

KNN 0.90 0.92 0.90 0.90 0.91 0.93

Table 25. Macro Average for F1-score

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.97 0.97 0.97 0.97 0.97

Linear SVM 0.93 0.81 0.76 0.83 0.94 0.75

SVM 0.96 0.95 0.96 0.96 0.96 0.94

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98

Logistic Regression 0.99 0.99 0.94 0.91 0.99 0.94

Ridge 0.99 0.99 0.99 0.99 0.99 0.99

KNN 0.91 0.92 0.90 0.90 0.91 0.93

25

Table 26. Macro Average for Support

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 2247 1122 747 2247 1122 747

Linear SVM 2247 1122 747 2247 1122 747

SVM 2247 1122 747 2247 1122 747

Random Forest 2247 1122 747 2247 1122 747

Logistic Regression 2247 1122 747 2247 1122 747

Ridge 2247 1122 747 2247 1122 747

KNN 2247 1122 747 2247 1122 747

The results show that those common stereotype behaviors recognized with the

highest macro average using the Ridge machine learning algorithm. The overall macro

average is 99 % for hand flapping, head banging, and running back and forth.

3.4.9. Weighted Average

 Weighted average calculates the metrics for each label, and find the average

weighted by support. For all classifiers through two hyperparameter tuning algorithm

(Random and Grid search) for the three window sizes of data (1 second, 2 second, 3

seconds) is shown in Table 27, Table 28, Table 29 and Table 30 for the precision,

recall, F1-score, and support.

Table 27. Weighted Average for Precision

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.98 0.97 0.97 0.98 0.97

Linear SVM 0.94 0.86 0.83 0.86 0.94 0.83

SVM 0.96 0.95 0.96 0.96 0.96 0.94

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98

Logistic Regression 0.99 0.99 0.95 0.91 0.99 0.95

Ridge 0.99 0.99 0.99 0.99 0.99 0.99

KNN 0.91 0.93 0.91 0.90 0.92 0.94

26

Table 28. Weighted Average for Recall

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.98 0.97 0.97 0.98 0.97

Linear SVM 0.93 0.80 0.76 0.83 0.94 0.80

SVM 0.96 0.95 0.96 0.96 0.96 0.94

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98

Logistic Regression 0.99 0.99 0.95 0.91 0.99 0.95

Ridge 0.99 0.99 0.99 0.99 0.99 0.99

KNN 0.91 0.93 0.91 0.90 0.92 0.94

Table 29. Weighted Average for F1-score

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 0.97 0.98 0.97 0.97 0.98 0.97

Linear SVM 0.93 0.80 0.76 0.82 0.94 0.76

SVM 0.96 0.95 0.96 0.96 0.96 0.94

Random Forest 0.99 0.98 0.99 0.98 0.99 0.98

Logistic Regression 0.99 0.99 0.95 0.91 0.99 0.95

Ridge 0.99 0.99 0.99 0.99 0.99 0.99

KNN 0.91 0.93 0.91 0.90 0.92 0.94

Table 30. Weighted Average for Support

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 2247 1122 747 2247 1122 747

Linear SVM 2247 1122 747 2247 1122 747

SVM 2247 1122 747 2247 1122 747

Random Forest 2247 1122 747 2247 1122 747

Logistic Regression 2247 1122 747 2247 1122 747

Ridge 2247 1122 747 2247 1122 747

KNN 2247 1122 747 2247 1122 747

27

The results show that those common stereotype behaviors recognized with the

highest weighted average using the Ridge algorithm. The overall weighted average is

99 % for hand flapping, head banging, and running back and forth.

3.4.10. Computation Time

The computing time for all classifiers through two hyperparameter tuning

algorithms (Random and Grid search) for the three window sizes of data (1 second, 2

seconds, 3 seconds) is shown in Table 31 for training and Table 32 for testing.

Table 31. Computation Time for Training (Minute: second.mili-second)

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 18.31 7.081 09.576 13.340 6.55598 14.956

Linear SVM 01:47.1 31.698 32.883 02:27.1 31.9804 41.775

SVM 54:12.5 07:10.3 01:35.0 3:35:04 15:36.39 00.004

Random Forest 04:31.7 55.849 01:01.6 33:36.6 08:57.35 12:08

Logistic Regression 01:06.1 27.235 06.936 17.308 29.33735 09.154

Ridge 01.642 00.739 01.156 03.171 00.87426 01.531

KNN 16.195 05.524 03.843 30.227 11.23441 09.841

Table 32. Computation Time for Testing (Minute:second.mili-second)

 Random Search Grid Search

Algorithm 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec

DT 00.018 00.004 0.0001 00.016 00.00416 00.016

Linear SVM 00.014 00.003 0.0001 0.0001 00.00224 00.004

SVM 00.262 00.066 00.031 00.359 00.06559 00.059

Random Forest 00.358 00.029 00.062 00.031 00.02232 00.109

Logistic Regression 00.009 00.003 00.016 00.078 00.00280 0.0001

Ridge 00.005 00.002 0.0001 00.016 00.00267 0.0001

KNN 00.491 00.148 00.094 00.437 00.15917 00.125

28

Ridge seems to complete the training and testing in a reasonable short time.

Random Forest seems to be a computationally exhaustive for this type of data.

3.4.11. Confusion Matrix

The confusion matrix is a table that allows us the visualize and reports the

number of false positives, false negatives, true positives, and true negatives. Figure 2

and Figure 3 show that Ridge classifier managed to match the predicated label and

true label with a range between 98% to 100% for the three stereotyped behavior for

children with autism. The best confusion matrix chosen is for Ridge classifier, which

managed mostly to match the predicated label, and the true label is the one for grid

search hyperparameter tuning for a 2-second window of data. The value of alpha,

according to Table 4, is 0.6. The rest of the confusion matrices found in the Appendix:

confusion matrices section.

Figure 2. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the ridge algorithm

T
ru

e
L

ab
el

29

Figure 3. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the ridge algorithm

T
ru

e
L

ab
el

30

CHAPTER 4: APPLICATION

4.1. System Overview

Figure 4 shows a real-time application developed on a smartphone (iPhone) to

detect the stereotyped behaviors for children who are wearing the smartwatch (Apple

watch). The application uses the Swift Core Motion framework and

CMMotionManager, the watch we can collect the accelerometer and gyroscope data.

The application uses the Swift WatchConnectivity framework to send 160 samples of

data to the iPhone from the watch. The iPhone is running a Python Flask webserver

hosted by pythonanywhere, which it has the trained classification model and the

prediction code. Pythonanywhere website allows a python code to hosted on it with

the ability to install the needed libraries or packages. The iPhone receives the data

from the watch. Then the iPhone sends the data to the server in the form of an HTTP

post. The Flask server receives the data from the iPhone and imports a pickled model

(classification trained model) and deserializes it to predict the classification label. It

chooses the most frequent label of all predications. Then the label sent from the server

as an HTTP response to the iPhone. The iPhone sends the label to the watch, and it

displayed on the watch. The pickle operation used to serialize our trained machine

learning algorithms and save the serialized format to a model utilized by the prediction

code. This operation can eliminate the time spent in retraining the classification

model. The classification model chosen is Ridge classifier with a window of 2 seconds

and alpha 0.6.

31

Figure 4. Recognizing stereotyped behavior in children with autism system overview

4.2. System Limitation

The application is limited to be developed as an IOS application since the

smartwatch can only communicate with an iPhone. Also, this application is limited to

the watch's framework sensors and methods. Also, the watch must be near the iPhone

so it can send the data to the iPhone. Moreover, hosting on pythonanywhere as Free

service limited the application by service CPU allowance is 100 seconds, 512MB

storage, and low bandwidth. Also, since we are using a web server, an internet

connection is needed for this application to work.

4.3. System Testing

The user press on the "Start Recording" button on the watch, as shown in Figure

5. The watch collects the sensor data, which printed on the watch console in Figure 6.

The watch sends the sensors data to the iPhone, which printed on the iPhone console

in Figure 7. The iPhone sends the data as an HTTP post to the Flask server, which

uses the data to predict the label. The sensor data received by the server, and the

predicted label shown in the server log in Figure 8. The label 2 indicates the second

behavior, which is Head Banging. This label sent as an HTTP response to the iPhone,

which displayed in Figure 9. The iPhone sends this label to the watch, which printed

on the watch console in Figure 10. The watch displays the label "Head Banging" in

32

Figure 11. The system tested on a child who was not part of the training of the data

for the three behaviuors. The demonstration video of the system's test found in [46].

Figure 5. The watch user interface before recording the sensor data

Figure 6. The watch console while recording the sensor data

Figure 7. The iPhone console after receiving the sensor data

33

Figure 8. The server log after predicting the label

Figure 9. The iPhone console after receiving the label

Figure 10. The watch console after receiving the label

34

Figure 11. The watch user interface after receiving the label

4.4. Implementation Attempts

Several implementation trails tried out before the implementation discussed in

sections 4.1, 4.2, and 4.3. The first implementation we tried is to use Apple’s Core

ML tools to convert our Python classifier into a classifier that could be understood by

the Swift language. This implementation did not work because of the feature

engineering process, where the number of features increased from 6 inputted features

(sensor data) to 316 features. The principle of custom scikit-learn pipelines used to

produce the feature and finding the label inside a pipeline, and it worked in producing

the label, but Core ML conversion tools did not support it. The second implementation

method is using Kivy-IOS in which everything in Python, and it converts it into a

format that the IOS understands it. However, when the code is exported and tested

on IOS, it showed that Kivy-IOS does not support needed python packages such as

Pandas and Scipy. The third implementation method is using the BeeWare project,

which had a similar issue to the Kivy-IOS.

35

CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1. Conclusion

This project works on helping in recognizing autistic children's stereotyped

behaviors. The recognition achieved by building a signal processing model that

collects data from a smartwatch equipped with a gyroscope and accelerometer. Then

those data were processed and a feature vector of 316 features produced. Then a new

feature vector with its labels was fed to a classification machine learning models for

training the algorithms to produce the final predictive model. The best predictive

model is the Ridge classifier. The results show that those common stereotype

behaviors could be recognized using the Ridge machine learning algorithm with

overall average accuracy ranges between 98.7% to 99.5 %. For hand flapping, head

banging, and running back and forth, the overall precision ranges between 98% to

100 %, recall ranges between 98% to 100 %, overall F1-score ranges between 98%

to 100 %, and overall macro, weighted and micro averages of 99 %. This Ridge

classifier used to implement a real-time application developed on a smartphone

(iPhone) to detect the stereotyped behaviors for autistic children who are wearing the

smartwatch (Apple watch). This application used to build an application to aid in

diagnosing the process of autism on children.

5.2. Future Work Directions

The data were collected from accelerometer and gyroscope sensors only, so it

possible to combine another type of sensors. Also, collecting data for more

stereotyped behaviors of autistic children could be added to this project. Another

possible future work for this project would be to collect more data from more

volunteers and apply neural networks. Also, it is possible to use feature ranking

methods such as information gain and dimension reduction methods such as principal

36

component analysis. These methods help in choosing which features are essential to

the machine learning process and which features discarded.

5.3. Challenges

 When we started with this project, there was no obvious way to relate

the data collected from the sensor and the feature extracted from them to a specific

body movement. So, feature engineering was a challenging task, and it took many

papers readings and experimentation in order to produce a proper dataset that can

apply machine learning algorithms on it. Acquiring an adequate number of

participants in this experiment was challenging, and it took more time than expected

because many parents refused to allow their children to participate. Even though it is

safe to use the smartwatch and their instructor supervises the process of collecting the

data. Also, we had to wait until all the children performed the three stereotyped

behavior to start producing the final dataset after preprocessing the data.

37

REFERENCES

[1] Masoud, M., Jaradat, Y., Manasrah, A. and Jannoud, I.

Sensors of Smart Devices in the Internet of Everything (IoE) Era: Big Opportunities

and Massive Doubts

[2] Saha, J. (2019). Do Smartwatches Have Built-In Sensors? [Complete Guide 2019].

Retrieved 11 March 2020, from https://smartwatchzone.in/do-smartwatches-have-

built-in-sensors/

[3] Accelerometer vs Gyroscope sensor, and IMU, how to pick one?. (2020).

Retrieved 11 March 2020, from https://www.seeedstudio.com/blog/2019/12/24/what-

is-accelerometer-gyroscope-and-how-to-pick-one/

[4] Goodrich, R. (2020). Accelerometer vs. Gyroscope: What's the Difference?.

Retrieved 11 March 2020, from https://www.livescience.com/40103-accelerometer-

vs-gyroscope.html

[5] What Is Autism? | Autism Speaks. (2020). Retrieved 11 March 2020, from

https://www.autismspeaks.org/what-autism

[6] Autism Statistics and Facts | Autism Speaks. (2020). Retrieved 11 March 2020,

from https://www.autismspeaks.org/autism-facts-and-figures

[7] Hospital, M. (2020). 30 Facts to Know about Autism Spectrum Disorder.

Retrieved 5 March 2020, from https://www.massgeneral.org/children/autism/lurie-

center/30-facts-to-know-about-autism-spectrum-disorder

[8] Rojahn, J., & Sisson, L. (1990). Stereotyped Behavior. In J. Rojahn & L. Sisson,

Handbook of Behavior Modification with the Mentally Retarde (pp. 181-182). Boston,

MA: Springer, Boston, MA.

[9] Gupta, S., & Kumar, A. (2015). Human Activity Recognition through

38

Smartphone’s Tri-Axial Accelerometer using Time Domain Wave Analysis and

Machine Learning. International Journal Of Computer Applications, 127(18), 22-26.

doi: 10.5120/ijca2015906733

[10] Pham, C. (2015). MobiRAR: Real-Time Human Activity Recognition Using

Mobile Devices. 2015 Seventh International Conference On Knowledge And Systems

Engineering (KSE). doi: 10.1109/kse.2015.43

[11] Liu, Y., Nie, L., Liu, L., & Rosenblum, D. (2016). From action to activity:

Sensor-based activity recognition. Neurocomputing, 181, 108-115. doi:

10.1016/j.neucom.2015.08.096

[12] Balli, S., & Sağbas, E. (2017). The Usage of Statistical Learning Methods on

Wearable Devices and a Case Study: Activity Recognition on Smartwatches.

Advances In Statistical Methodologies And Their Application To Real Problems. doi:

10.5772/66213

[13] Lee, Y., & Song, M. (2017). Using a Smartwatch to Detect Stereotyped

Movements in Children With Developmental Disabilities. IEEE Access, 5, 5506-

5514. doi: 10.1109/access.2017.2689067

[14] Goncalves, N., Rodrigues, J., Costa, S., & Soares, F. (2012). Automatic detection

of stereotyped hand flapping movements: Two different approaches. 2012 IEEE RO-

MAN: The 21St IEEE International Symposium On Robot And Human Interactive

Communication. doi: 10.1109/roman.2012.6343784

[15] Ghiassian, S., Greiner, R., Jin, P., & Brown, M. (2016). Using Functional or

Structural Magnetic Resonance Images and Personal Characteristic Data to Identify

ADHD and Autism. PLOS ONE, 11(12), e0166934. doi:

10.1371/journal.pone.0166934

[16] Amiri, A., Peltier, N., Goldberg, C., Sun, Y., Nathan, A., Hiremath, S., &

39

Mankodiya, K. (2017). WearSense: Detecting Autism Stereotypic Behaviors through

Smartwatches. Healthcare, 5(1), 11. doi: 10.3390/healthcare5010011

[17] 1.12. Multiclass and multilabel algorithms — scikit-learn 0.22.2 documentation.

(2020). Retrieved 1 March 2020, from https://scikit-

learn.org/stable/modules/multiclass.html

[18] Ray, S. (2019). A Quick Review of Machine Learning Algorithms. 2019

International Conference On Machine Learning, Big Data, Cloud And Parallel

Computing (Comitcon). doi: 10.1109/comitcon.2019.8862451

[19] Gupta, P. (2017). Decision Trees in Machine Learning. Retrieved 4 March 2020,

from https://towardsdatascience.com/decision-trees-in-machine-learning-

641b9c4e8052

[20] Thomas, B. SensorLog. Retrieved 11 March 2020, from

https://apps.apple.com/us/app/sensorlog/id388014573

[21] Irvine, T. (2012). AN INTRODUCTION TO THE SHOCK RESPONSE

SPECTRUM [Ebook]. Retrieved from

http://www.vibrationdata.com/tutorials2/srs_intr.pdf

[22] Texas Instruments. (2004). AN-236 An Introduction to the Sampling Theorem

[Ebook]. Retrieved from http://www.ti.com/lit/an/snaa079c/snaa079c.pdf

[23] Jagos, H., Oberzaucher, J., Reichel, M., Zagler, W., & Hlauschek, W. (2010). A

multimodal approach for insole motion measurement and analysis. Procedia

Engineering, 2(2), 3103-3108. doi: 10.1016/j.proeng.2010.04.118

[24] Brownlee, J. (2018). Gentle Introduction to Vector Norms in Machine Learning.

Retrieved 6 March 2020, from https://machinelearningmastery.com/vector-norms-

machine-learning/

[25] Hamalainen, W., Jarvinen, M., Martiskainen, P., & Mononen, J. (2011). Jerk-

40

based feature extraction for robust activity recognition from acceleration data. 2011

11Th International Conference On Intelligent Systems Design And Applications. doi:

10.1109/isda.2011.6121760

[26] The Effects of Outliers. Retrieved 3 March 2020, from

http://www.statisticslectures.com/topics/outliereffects/

[27] Kobayashi, T., Hasida, K., & Otsu, N. (2011). Rotation invariant feature

extraction from 3-D acceleration signals. 2011 IEEE International Conference On

Acoustics, Speech And Signal Processing (ICASSP). doi:

10.1109/icassp.2011.5947150

[28] Zhong, Y., & Deng, Y. (2014). Sensor orientation invariant mobile gait

biometrics. IEEE International Joint Conference On Biometrics. doi:

10.1109/btas.2014.6996246

[29] Singha, T.B., Nath, R.K., & Narsimhadhan, A.V. (2017). Person Recognition

using Smartphones' Accelerometer Data. ArXiv, abs/1711.04689.

[30] Quinian, R. (1993). C4.5 programs for machine learning. [Place of publication

not identified]: Morgan Kaufmann.

[31] S 1.4. Support Vector Machines — scikit-learn 0.22.2 documentation. Retrieved

2 March 2020, from https://scikit-learn.org/stable/modules/svm.html

[32] Team, D. Kernel Functions-Introduction to SVM Kernel & Examples - DataFlair.

Retrieved 6 March 2020, from https://data-flair.training/blogs/svm-kernel-functions/

[33] Stamp, M. (2018). A Survey of Machine Learning Algorithms and Their

Application in Information Security. Computer Communications And Networks, 33-

55. doi: 10.1007/978-3-319-92624-7_2

[34] 1.1. Linear Models — scikit-learn 0.22.2 documentation. Retrieved 2 March

2020, from https://scikit-learn.org/stable/modules/linear_model.html#ridge-

41

regression-and-classification

[35] Brownlee, J. (2017). What is the Difference Between a Parameter and a

Hyperparameter?. Retrieved 5 March 2020, from

https://machinelearningmastery.com/difference-between-a-parameter-and-a-

hyperparameter/

[36] Statistical Language - Measures of Central Tendency. Retrieved 27 February

2020, from

https://www.abs.gov.au/websitedbs/a3121120.nsf/home/statistical+language+-

+measures+of+central+tendency

[37] Interquartile Range: Definition. Retrieved 27 February 2020, from

https://stattrek.com/statistics/dictionary.aspx?definition=interquartile%20range

[38] Entropy in machine learning - From physics to data analytics. (2019). Retrieved

22 February 2020, from https://amethix.com/entropy-in-machine-learning/

[39] Calculate Signal Magnitude Area of an accelerometer in Matlab - MATLAB

Answers - MATLAB Central. (2014). Retrieved 23 February 2020, from

https://www.mathworks.com/matlabcentral/answers/142765-calculate-signal-

magnitude-area-of-an-accelerometer-in-matlab

[40] Khusainov, R., Azzi, D., Achumba, I., & Bersch, S. (2013). Real-Time Human

Ambulation, Activity, and Physiological Monitoring: Taxonomy of Issues,

Techniques, Applications, Challenges and Limitations. Sensors, 13(10), 12852-

12902. doi: 10.3390/s131012852

[41] Bronshtein, A. (2017). Train/Test Split and Cross Validation in Python. Retrieved

25 February 2020, from https://towardsdatascience.com/train-test-split-and-cross-

validation-in-python-80b61beca4b6

[42] Farkas, I.I., & Doran, E. (2011). ACTIVITY RECOGNITION FROM

42

ACCELERATION DATA COLLECTED WITH A TRI-AXIAL

ACCELEROMETER.

[43] Cheng, L., Leung, A., & Ozawa, S. (2018). Neural information processing (p.

309). Springer.

[44] Goodwin, M., Haghighi, M., Tang, Q., Akcakaya, M., Erdogmus, D., & Intille,

S. (2014). Moving towards a real-time system for automatically recognizing

stereotypical motor movements in individuals on the autism spectrum using wireless

accelerometry. Proceedings Of The 2014 ACM International Joint Conference On

Pervasive And Ubiquitous Computing - Ubicomp '14 Adjunct. doi:

10.1145/2632048.2632096

[45] Brown, S. (2016). Measures of Shape: Skewness and Kurtosis. Retrieved 13

March 2020, from https://brownmath.com/stat/shape.htm

[46] https://www.youtube.com/watch?v=4fzF5SkyQro&feature=youtu.be

43

APPENDIX A: CONFUSION MATRICES

Figure 12. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the DT algorithm

Figure 13. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Linear SVM algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

44

Figure 14. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the SVM algorithm

Figure 15. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Random Forest algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

45

Figure 16. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Logistic Regression algorithm

Figure 17. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the KNN algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

46

Figure 18. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the DT algorithm

Figure 19. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the Linear SVM algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

47

Figure 20. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the SVM algorithm

Figure 21. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the Random Forest algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

48

Figure 22. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the Logistic Regression algorithm

Figure 23. Confusion matrix for random search hyperparameter tuning for a window of

1-second data computed in the KNN algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

49

Figure 24. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the DT algorithm

Figure 25. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the Linear SVM algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

50

Figure 26. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the SVM algorithm

Figure 27. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the Random Forest algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

51

Figure 28. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the Logistic Regression algorithm

Figure 29. Confusion matrix for grid search hyperparameter tuning for a window of 1-

second data computed in the Ridge algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

52

Figure 30. Confusion matrix for grid search hyperparameter tuning for a window of 2-

second data computed in the KNN algorithm

Figure 31. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the DT algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

53

Figure 32. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the Linear SVM algorithm

Figure 33. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the SVM algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

54

Figure 34. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the Random Forest algorithm

Figure 35. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the Logistic Regression algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

55

Figure 36. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the Ridge algorithm

Figure 37. Confusion matrix for random search hyperparameter tuning for a window of

2-second data computed in the KNN algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

56

Figure 38. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the DT algorithm

Figure 39. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Linear SVM algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

57

Figure 40. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the SVM algorithm

Figure 41. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Random Forest algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

58

Figure 42. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Logistic Regression algorithm

Figure 43. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the Ridge algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

59

Figure 44. Confusion matrix for grid search hyperparameter tuning for a window of 3-

second data computed in the KNN algorithm

Figure 45. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the DT algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

60

Figure 46. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the Linear SVM algorithm

Figure 47. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the SVM algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

61

Figure 48. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the Random Forest algorithm

Figure 49. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the Logistic Regression algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

62

Figure 50. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the Ridge algorithm

Figure 51. Confusion matrix for random search hyperparameter tuning for a window of

3-second data computed in the KNN algorithm

T
ru

e
L

ab
el

T

ru
e

L
ab

el

