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A B S T R A C T   

Rapid development and drastic population increase in Qatar have led to increasing awareness about food se
curity. Microalgae are considered one of the most promising feedstocks owing to their ability to produce nu
trients, including lipids, carbohydrates, and proteins, in addition to antioxidants, vitamins, and minerals. In this 
study, 30 isolates of local freshwater microalgae were screened first based on their growth rate to select the most 
suitable strains for feed production. Based on the normality test, 15 fast-growing microalgae isolates were se
lected and subjected to further investigation of their metabolites content. The hierarchical Cluster Analysis 
conducted on lipids, proteins and carbohydrates contents subdivided these strains selected into 4 clusters, among 
them, the cluster one was grouping three Chlorella and two Mychonastes isolates with high nutritional values due 
to their high amounts of lipid and protein. The survey of metabolite production was performed every three days 
during growth in a volume of 3 L. We observed that the maximum amount of proteins and lipids was produced at 
day 6 and 14, respectively. The assessment of the Trolox equivalent antioxidant capacity of the top 5 strains 
proved that Mychonastes homosphaera isolate QUCCCM70 showed the highest antioxidant capacity. Moreover, 
results revealed the presence of essential amino acids and omega3 fatty acids. The screening evidenced a 
Mychonastes homosphaera strain QUCCCM70 with high nutritional value that can be considered as a promising 
alternative to produce a well-balanced animal feed supplement for a high quality of poultry and livestock 
products.   

1. Introduction 

Recently, microalgae-based feed supplement has emerged in the 
food industry [1]. Microalgae are composed of 11–71% proteins, 
6–28% lipids, and 4–37% carbohydrates [2] In addition, microalgae 
produce multiple pigments, which are widely used as natural food 
colorants [3]. As such, the addition of microalgal biomass to food 
products results in a well-balanced nutritional biochemical composition 
with increased nutritional value [4,5]. Microalgae are considered as a 
very promising source of proteins that can improve the quality of food 
products due to the presence of essential amino acids [6]. The protein 
content is closely related to the nature of the microalgae and cultivation 
conditions. High protein content has also been reported for Chlorella 
vulgaris [7]. Batista et al., [7] demonstrated a correlation between 
pigmentation and protein production. These researchers reported that 
protein production was influenced by the type of pigmentation 

produced by the microalgae. 
In addition to the polar lipids used for the membrane structure, 

microalgae can produce neutral lipids, especially triglycerides. These 
lipids are produced during the stationary phase and then accumulate in 
the vacuoles as storage [8]. Fatty acids are considered one of the most 
nutritionally valuable products to be obtained from algae. Furthermore, 
some of the polyunsaturated fatty acids (PUFAs) are considered es
sential, since they are crucial for physiological and health functions but 
cannot be synthesised by humans [9]. The microalgae PUFAs include 
omega 3, 6, 7, and 9 fatty acids. The most important PUFAs are eico
sapentaenoic acid (EPA, 20:5ω3) and docosahexaenoic acid (DHA, 
22:6ω3), which are also alternatives to fish oil [7,10,11]. 

Carbohydrates are one of the major components of microalgae that 
have been well studied. Indeed, they represent 10–23% of the dry 
biomass [12–14]. Batista et al., [7] recorded higher concentrations of 
carbohydrates, reaching 34% for H. pluvialis, which is comparable to 
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that of the algae commercialized by the American micro-algae produ
cing Company “Cyanotech”. Microalgae polysaccharides are mainly 
composed of glucose (21–87%) [15]. 

In the Algal Technologies Program, Centre for Sustainable 
Development, Qatar University, a Culture Collection of Cyanobacteria 
and Microalgae (QUCCCM) has been built and maintained in liquid 
nitrogen [16,17]. In the current study, an investigation of the nutri
tional potential of 30 fresh QUCCCM isolates was performed to select 
the most suitable strains that can be used as feedstock for producing 
poultry and livestock feed supplement with high quality. For this pur
pose, screening of the selected microalgae for growth rate and meta
bolites (proteins, lipids, and carbohydrates) was performed. Fatty acid 
methyl ester (FAME) and amino acid profiling were also carried out for 
the selected strains. 

2. Material and methods 

2.1. Algae cultivation and growth rate analysis 

Thirty freshwater microalgal strains locally isolated from Qatar and 
belonging to QUCCCM [17], were screened for growth rate and meta
bolite production (Table 1). The microalgae were cultivated using BG11 
growth medium [18]. The strains, maintained in an illuminated growth 
chamber (Sanyo Japan), were cultivated in 10 mL growth medium and 
incubated for 7 days in an illuminated shaker (Innova 44R, New 
Brunswick Scientific, USA) under an agitation of 150 rpm, an illumi
nation of 100 μmol s−1 m−1 with a light-dark cycle of 12:12 h and a 
temperature of 30 °C, corresponding to the annual average temperature 
in Qatar. 

The cultures were scaled up to a volume 100 mL then incubated for 
7 days under the previously cited condition prior to being used to in
oculate 1 L of cultivation volume using vertical tubular photo
bioreactors. These cultures were incubated for 12 days under a light 
intensity of 400 μmol s− 1 m− 1 with a light-dark cycle of 12:12 h and 
air bubbling. The strain cultivation was performed in duplicate with 
tow flasks per run, resulting in four OD750nm values per time interval for 
each strain. An aliquot of 2 mL was collected daily for optical density 
(OD) measurements at 750 nm in order to determine the growth rates 
[19]. 

Growth rate μ = lnX2 - lnX1/t2-t1, where X1 and X2 are ODs at 
times t1 and t2. 

The doubling time was calculated using the following equation: 
dt = 0.6931/μ. 

Based on this screen, biomass of the 15 fast-growing microalgae 
strains were selected and subjected to an assessment of their protein 
and lipid contents. Then, the top five strains were subjected to a survey 
of their metabolites production in order to determine the production 
peak time of proteins and lipids. For this purpose, these microalgae 
were scaled up from 10 mLto 3 L as described previously. These cultures 
were performed under a photon flux density of 100 μmol photons 
m−2 s−1 and a 12:12 h dark: light cycle and air bubbling using a 3 L 
vertical tubular photobioreactor. Next, 100 mL aliquots of the culture 
were collected at days 3, 6, 9, 11, and 14 then centrifuged. Biomass 
collected was freeze-dried prior to being subjected for extraction of 
total proteins and total lipids. 

2.2. Total protein extraction and determination 

Microalgal biomass collected after 12 days of cultivation at scale of 
1 L and form different time intervals of cultivation at 3 L volume was 
subjected to protein extraction using a Plant Total Protein Extraction 
Kit (Sigma # PE0230-1KT, USA). The concentration of the proteins was 
determined using Bradford reagent and synergy H4 hybrid multi-mode 
microplate reader (Bio-Tek # H4MLFPTAD, USA). Bovine Serum 
Albumin was used for the standard [20]. 

2.3. Total carbohydrate extraction and quantification 

The total carbohydrates was extracted as it was described by 
Saadaoui et al., [20]. Dry biomass of known weight was treated with 
glacial acetic acid for 30 min in a water bath at 80 °C. This mixture was 
further treated with acetone, vortexed at a high speed, and centrifuged 
for 10 min. The supernatant was discarded carefully without disturbing 
the pellet. The left-over biomass was treated with 4 M HCl and boiled in 
a water bath for 2 h. An equal volume of water was added to the acid 
mixture. After centrifugation of the above mixture, the supernatant was 
mixed with phenol and sulfuric acid, and then boiled for 20 min. The 
carbohydrate concentration was determined via spectrophotometry at 
490 nm using glucose standards. 

2.4. Total lipid extraction and quantification 

Total lipids were extracted from freeze-dried algal biomass using the 
method of Folch, Lees & Stanley [21] with some modifications as de
scribed by Saadaoui et al., [17]. A gravimetrical determination of the 
total lipid was performed, and the lipid content (%) and lipid pro
ductivity were determined using the following equations as described 
by Arora et al., [22]. 

= ×Lipid content (%) Total lipids (g)/Dry biomass (g) 100

Lipid Productivity (mg L day )
: (Lipid content/100) Biomass productivity

1 1

Table 1 
Growth rate analysis of QUCCCM isolates. 

Growth rate was determined from culture of 1 L volume using vertical tubular 
photobioreactors under controlled condition. The microalgae isolates were 
identified as previously described by Saadaoui et al., [17]      

Strain Molecular taxonomic 
identification 

μ (day−1) Doubling time 
(day)  

QUCCCM2 Chlamydomonas sp. 0.17  ±  0.04  4.07 
QUCCCM3 Chlorella sp. 0.30  ±  0.07  2.23 
QUCCCM4 Chlorella sp. 0.51  ±  0.08  0.95 
QUCCCM5 Chlorella sp. 0.36  ±  0.02  1.92 
QUCCCM6 Mychonastes sp. 0.43  ±  0.01  1.61 
QUCCCM9 Mychonastes sp. 0.15  ±  0.01  4.62 
QUCCCM10 Chlorella sp. 0.2  ±  0  3.46 
QUCCCM13 Chlorella sp. 0.39  ±  0.04  1.77 
QUCCCM27 Chlorococcum sp. 0.33  ±  0.11  1.47 
QUCCCM28 Neochloris sp. 0.30  ±  0.12  1.77 
QUCCCM32 Chlorella sp. 0.5  ±  0.06  1.38 
QUCCCM37 Desmodesmus sp. 0.3  ±  0.05  2.31 
QUCCCM38 Chlorella sp. 0.42  ±  0.06  1.65 
QUCCCM40 Scnenedesmus sp. 0.28  ±  0.04  2.47 
QUCCCM41 Chlorophyta 0.19  ±  0.06  3.64 
QUCCCM43 Mychonastes sp. 0.45  ±  0.17  1.54 
QUCCCM62 Chlorella sp. 0.64  ±  0  1.08 
QUCCCM63 Scenedesmus sp. 0.13  ±  0.09  5.33 
QUCCCM65 Desmodesmus sp. 0.35  ±  0  1.98 
QUCCCM66 Dictyosphaerium sp. 0.3  ±  0.04  2.31 
QUCCCM68 Coelastrella sp. 0.12  ±  0  5.77 
QUCCCM70 Mychonastes homosphaera 0.6  ±  0.27  1.15 
QUCCCM72 Chlamydomonas sp. 0.89  ±  0.27  0.77 
QUCCCM73 Chlorophyta 0.34  ±  0.05  2.03 
QUCCCM74 Chlorophyta 0.14  ±  0.08  4.95 
QUCCCM75 Protosiphon sp. 0.17  ±  0.03  4.07 
QUCCCM118 ND 0.23  ±  0.03  3.03 
QUCCCM119 ND 0.28  ±  0.01  3.01 
QUCCCM120 Scenedesmus sp. 0.7  ±  0.01  0.99 
QUCCCM122 ND 0.65  ±  0.01  1.066 
QUCCCM123 ND 0.104  ±  0.01  6.6 

All measurements were recorded in triplicate (n = 3). 
ND, Not determined.  
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2.5. Polyunsaturated fatty acids extraction and profiling 

The extraction was performed using a one-step trans-esterification 
method as described by Saadaoui et al., [17], and the analysis was 
conducted using a gas chromatography–flame ionization detector. The 
selected strain was cultured for 14 days in BG11 growth medium. Next, 
10 mg of dried biomass was placed into a 20 mL crimp cap vial. Then, 
4 mL of a solution consisting of 95% sulfuric acid and methanol solution 
(H2SO4: CH3OH, 1:10) was added to the biomass. After 10 min of so
nication, the extract was placed in an oven at 80 °C for 2 h. This mixture 
was then transferred into a centrifuge tube containing 1 mL of distilled 
water and 3 mL of hexane: chloroform (4:1) mixture. The tube was 
mixed and then centrifuged at 5000 rpm for 5 min. Finally, the top 
layer with the FAME was collected and filtered into a 2 mL vial for GC- 
FID analysis. 

2.6. Amino acid profiling 

Amino acids were quantified using pre-column derivatization with 
O-phtalaldehyde (OPA) and 9-fluorenylmethyl chloroformate (FMOC) 
after methods described by Blankenship et al. [23]. Pre-weighed algal 
biomass (approx. 2 mg) was hydrolysed in 100 μL 6 N HCl at 120 °C for 
24 h [24]. Analysis was performed in replicate, dried, and resuspended 
in 100 μL 0.1 N HCl. A reaction blank (no biomass) and a known protein 
standard (bovine serum albuminc; Sigma# 1076192) was performed. 
The HPLC system (Agilent 1260) included a programmable autosampler 
for fully automated sample handling, derivatization, and sample in
jection (30 μL). Amino acid derivatives were separated by reverse-phase 
high-performance liquid chromatography (RP-HPLC) using a 5-μm 
Hypersil amino acid-octadecyl silane column (AA-ODS; 2.1 × 200 mm) 
using the solvent system and gradient described by Zheng et al. [25]. 
Amino acids derivatives were detected using a variable wavelength UV 
detector and an in-line fluorescence detector. Sample was quantified 
against a 5-point calibration curve from dilutions prepared from a 
standardized mixture of L-amino acids (Sigma# P0834). Sixteen amino 
acids were reported; due to deamination, asparagine and glutamine 
were reported with aspartate and glutamate, resp., as ASX and GLX. 
Note that tryptophan cannot be not determined by this method. The 
system operations and data analysis were performed on Chemstation. 
The assay was capable of detecting amino acid derivatives between 1 
and 100 nmol 

2.7. Trolox equivalent antioxidant activity (TEAC) assay 

The antioxidant assay consists of the formation of a ferryl myo
globin radical from metmyoglobin and hydrogen peroxide, which oxi
dizes the 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) 
to produce the radical cation ABTS+, which is a soluble chromogen 
that is green in colour and can be determined spectrophotometrically at 
405 nm [26]. The TEAC assay was performed using an antioxidant 
assay kit (CS0790, Sigma, USA). The decrease in absorbance due to the 
compounds being tested, measured after 20 min of incubation at room 
temperature and in the dark, reflected the ABTS+ radical-scavenging 
capacity [27]. Trolox and ascorbic acid were used as positive controls 
[28]. All measurements were performed in triplicate (n = 3). 

2.8. Statistical analysis 

The results from the experiments were expressed as mean of two 
independent parallel experiments and represented as means ± standard 
deviation (SD). Statistical analysis was carried out by using IBM SPSS 
software (Version 26). Normality of variable distribution was checked 
by the Kolmogorov-Smirnov test to aid in sample screening [29]. Two- 
step cluster analysis was performed to group samples based on their 
level of lipids, carbohydrates and proteins. Such analysis will allow us 
to select the best microalgae isolate showing high nutritional balance 

[30]. Later, the optical density, metabolites content and antioxidant 
activity were tested statistically using one-way analysis of variance 
(ANOVA) and post-hoc Turkey's honestly significant difference (HSD) 
test. The significant level was set at P  <  .05. 

3. Results 

3.1. Growth rate analysis of the local microalgae isolates 

Thirty local microalgae strains isolated from the Qatar desert en
vironment, which represented the major genera of the QUCCCM [17], 
were selected randomly for growth rate and metabolite composition in 
order to select the most suitable strain for feed-supplement production 
(Table 1). Growth characteristics are present in the Table 1. The five 
fastest strains are as follows: Mychonastes homosphaera (M. homo
sphaera) QUCCCM70, Chlorella sp. QUCCCM62, a Chlorophyte 
QUCCCM122, Scenedesmus sp., QUCCCM120 and Chlamydomonas sp. 
QUCCCM72. These strains had growth rates between 0.6 and 
0.89 day−1. Normality test proved that growth rate followed normal 
distribution with significance for Kolmogorov-Simirnov test higher than 
0.05 (α = 0.2). Hence, the strains presenting a growth rate above the 
average (μ = 0.326 day−1) were selected for further investigation of 
their metabolites content. Accordingly, 15 microalgae isolates were 
selected such as Chlorella sp. QUCCCM4, Chlorella sp. QUCCCM5, My
chonastes sp. QUCCCM6, Chlorella sp. QUCCCM13, Chlorococcum sp. 
QUCCCM27, Chlorella sp. QUCCCM32, Chlorella sp. QUCCCM38, My
chonastes sp. QUCCCM43, Chlorella sp. QUCCCM62, Desmodesmus sp. 
QUCCCM65, M. homosphaera QUCCCM70, Chlamydomonas sp. 
QUCCCM72, Chlorophyta QUCCCM73, Scenedesmus sp. QUCCCM120, 
and QUCCCM122. 

3.2. Metabolic characterization of the selected microalgae isolates 

The 15 fastest growing strains were selected for further investiga
tion of their potential to produce primary metabolites such as lipids, 
proteins, and carbohydrates. The protein content ranged between 23 
and 41% g dry weight−1. The highest protein content was observed 
with the Chlorella sp. isolates: Chlorella sp. strains QUCCCM4, 
QUCCCM13 with ~41% g dry weight−1, followed by Mychonastes sp. 
QUCCCM6 and Chlorella sp. QUCCCM38 (Fig. 1). 

The highest lipid content was obtained for Mychonastes homosphaera 
QUCCCM70 (40.7% g dry weight−1) (Fig. 1). Nine other strains of 
microalgae present relatively high lipid content ranging between 30.8 
and 37% g dry weight−1. These strains correspond successively to 
Scenedesmus sp. QUCCCM120 (33.1% g dry weight−1); Chlamydomonas 
sp. QUCCCM72 (36.5% g dry weight −1); Chlorella sp. strains such as 
QUCCCM4, QUCCCM13, and QUCCCM38 with a lipid content of ~37% 
g dry weight−1 and QUCCCM122 (37% g dry weight−1). The com
parative analysis of the carbohydrate content showed that it varies from 
12 to 30% g dry weight−1. The highest content was observed with the 
Chlorococcum sp. strain QUCCCM27 (30  ±  0.009%). 

3.3. Metabolites-based clustering analysis 

First, hierarchical clustering analysis (HCA) was performed to de
termine the metabolomic proximity between strains and select the 
strain showing the highest metabolite content. ANOVA test showed 
significant difference between analysed samples with (p  <  0.05) Then, 
K means cluster analysis was performed to distribute the microalgae 
isolates into the four clusters. The averages of metabolites content of all 
clusters are present in the Table 2. A dendrogram with 2 main branches 
was obtained (Fig. 2A). One branch for only Chlorococcum sp. 
QUCCCM27 presenting a particular metabolites profile with broadly 
similar protein, carbohydrate, and lipid content. The other branch 
groups three clusters among them appears the cluster I, composed of 
Chlorella sp QUCCCM4, Mychonastes sp. QUCCCM6, Chlorella sp. 
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QUCCCM13, Chlorella sp. QUCCCM38 and M. homosphaera. 
QUCCCM70. These strains present high nutritional values due to their 
high amounts of lipid and protein contents (Fig. 2B). These strains were 
subjected to survey of lipids and proteins content during the growth in 
order to identify the peak time of their production. This will ultimately 
help in harvesting biomass enriched with proteins and lipids to be used 
for feed production. 

3.4. Determination of the optimal metabolite production time for the 
selected microalgae isolates 

To identify the most suitable time for harvesting the algal culture to 
collect biomass enriched with metabolites of interest, a survey of lipid 
and protein contents during their growth was conducted for the 5 mi
croalgal strains showing fast growth and high metabolite content. These 
algae were in cluster one showing higher protein and lipid content. 

Growth analysis demonstrated that M. homosphaera QUCCCM70 
and Chlorella sp. QUCCCM13 presented a considerable biomass pro
ductivity of 20  ±  0.4 mg L−1 day −1 and 27  ±  0.5 mg L−1 day −1, 
respectively. However, the remaining strains Chlorella sp. QUCCCM4, 
Mychonastes sp. QUCCCM6, and Chlorella sp. QUCCCM38 maintained 
relative fast growth. These five strains were considered as scalable and 

thus they were surveyed for their protein and lipid production cap
ability during growth in a volume of 3 L. 

The protein accumulation increased from day3 to day6 for the five 
selected isolates. However, three different patterns were observed from 
day6 to day14. Indeed, Chlorella sp. strains QUCCCM4, QUCCCM38 and 
Mychonastes sp. QUCCCM6 and showed a gradual decrease of their 
protein content, while Chlorella sp. QUCCCM13 maintained a stable 
protein content up to day11 and M. homosphaera QUCCCM70 showed 
increase up to day9 after which it decreased (Fig. 3). M. homosphaera 
QUCCCM70 showed the highest protein content (39.1% g dry 
weight−1) and a protein productivity of 5.34  ±  0.4 mg L−1 day −1 

after 6 to 9 days of cultivation (end of exponential phase), followed by 
QUCCCM38 with a protein content of 38.75% g dry weight−1 and a 
protein productivity of 6.81  ±  0.53 mg L−1 day −1 after 6 days of 
cultivation (exponential phase). 

The lipid content of all the strains increased during the cultivation 
time, and the maximum was observed at day14 for the five strains in
vestigated (Fig. 4). The highest amount measured was for Chlorella sp. 
QUCCCM13 reaching 56.21% g dry weight−1 with a lipid productivity 
of 18.67  ±  0.53 mg L−1 day −1, followed by QUCCCM4, 6, and 70 
showing similar lipid amount between 48.2% - 49.32% and a lipid 
productivity between 9.6  ±  1.6 and 11.19  ±  2.6 mg L−1 day −1. No 
significant difference was seen between the five strains (α > 0.05). 
Therefore, further investigation of the antioxidant capacity was per
formed to select the most promising for feed production. 

3.5. Evaluation of the antioxidant capacity of the selected microalgae 
isolates 

The highest and lowest TEAC radical scavenging activities in this 
study was detected in strain M. homosphaera QUCCCM70 (127.73 μmol 
TE g dry weight−1) and Chlorella sp. QUCCCM13 (62 μmol TE g dry 
weight−1), respectively (Fig. 5). Significant difference between the 

Fig. 1. Metabolite content of the 15 fast growing microalgae strains. Results are presented in terms of % metabolites g dry weight −1. All measurements were 
recorded in triplicate (n = 3). 

Table 2 
Means of lipids, proteins and carbohydrates content of the four clusters gen
erated by K means cluster analysis. of the microalgae isolates. K-means cluster 
analysis was performed to distribute the microalgae isolates into the four 
clusters.       

Metabolites content Cluster I Cluster II Cluster III Cluster IV  

Total lipids  36.86  27.38  28.00  34.17 
Total protein  38.92  32.17  32.00  26.26 
Total carbohydrates  13.7  15.76  30.00  17.80 
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antioxidant activities of the five strains was observed (α < 0.5). Sub
sequently, Post-hoc multiple comparisons were carried out to compare 
their TEAC. This test proved that Chlorella sp. QUCCCM4, Chlorella sp. 
QUCCCM13, and Mychonastes sp. QUCCCM6 are similar (α  >  0.05). 
However, Chlorella sp. QUCCCM38 and M. homosphaera QUCCCM70 
are different than the other strains (mean higher than 111 μmol TE g 
dry weight−1) with the latter exhibiting higher value (α = 0.011). 

Among the microalgae strains investigated, the strain M. homo
sphaera. QUCCCM70 is a very good source of both proteins and lipids. 

Indeed, it produced the highest amount of proteins from day 6 to day 9 
and high amounts of lipids at day 14. In addition, this strain had con
siderable antioxidant capacity, and a high growth rate. Accordingly, M. 
homosphaera QUCCCM70 can be considered a very promising alter
native for feed supplement production. The harvest of M. homosphaera 
QUCCCM70 at different time intervals of 6 and 14 days from the same 
batch is recommended to collect nutritionally balanced biomass en
riched with proteins and lipids, respectively. 

A

B

Fig. 2. Hierarchical Cluster analysis of the selected microalgae isolates 2A: Dendrogram representing the outcome of a Hierarchical Cluster Analysis conducted on 
metabolites content grouping three variables such as lipid, protein and carbohydrates of 15 differential microalgae isolates grown under standard cultivation 
condition. 2B: Cluster plot based on the Hierarchical Cluster Analysis. 
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3.6. Amino acids and fatty acids profiling of M. homosphaera QUCCCM70 

The amino acid profile of M. homosphaera QUCCCM70 revealed the 
presence of 9 essential amino acids (tryptophan (Trp), isoleucine (Ile), 
leucine (Leu), valine (Val), methionine (Met), threonine (Thr), histidine 
(His), phenylalanine (Phe), and lysine (Lys)) with different frequencies 
(Fig. 6). Additionally, the FAME profiling evidenced the presence of 
essential fatty acids such as omega 3, 6, 7, and 9 (Table 3). 

4. Discussion 

The screening of freshwater microalgae isolates revealed large 
variations in all screening criteria. Among the 30 freshwater microalgae 

strains subjected to the comparative growth rate analysis, 15 fast- 
growing microalgae isolates with appropriate metabolite contents were 
selected. Among them, Scenedesmus (0.7 day−1) presented a growth 
rate significantly higher than the average described for Scenedesmus 
isolates (0.2 day−1) [31]. 

As per our findings, the strains classified as protein-rich belong to 
three main genera of microalgae: Chlorella sp., Mychonastes sp., and 
Scenedesmus sp. The strains Chlorella sp. QUCCCM4, QUCCCM13, 
QUCCCM38, and QUCCCM62, which are locally isolated Chlorella sp., 
were considered as protein-rich isolates since they exhibited protein 
contents 31–42% w/w higher than that previously described by 
Guccione et al., [32]. Accordingly, these isolates were considered as 
suitable candidates for the production of protein-rich feed supplement. 

Fig. 3. Survey of the Protein production during the microalgae growth. The culture was performed using 3 L vertical tubular photobioreactors. The arrows indicate 
the trend observed during the culture time. All measurements were recorded in triplicate (n = 3). 

Fig. 4. Survey of the Lipid production during the microalgae growth. The cultures were performed using 3 L vertical tubular photobioreactors. The arrows indicate 
the trend observed during the culture time. All measurements were recorded in triplicate (n = 3). 
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Additionally, M. homosphaera. QUCCCM70 showed a rich protein con
tent of 38%, higher than that of the Mychonastes timauensis, as reported 
by Duong et al., [1]. 

Moreover, M. homosphaera was observed to have the highest 
amount of lipids of up to 40% in the scale of 1 L volume and this 
amount increased after cultivation using 3 L vertical tubular bioreactor 
to reach 48.32% (Figs. 1 and 4, respectively). This was in accordance 
with a screening program carried out by Yuan et al., [33] and de
monstrated the presence of a lipid-rich Mychonastes afer isolate that was 
considered as a potential new feedstock for biodiesel production. 

The isolate with the second highest lipid content was found in the 
Chlorella species. The values were consistent with that published pre
viously [34,35], but were higher than that previously reported for the 
same species by Lim et al., [36]. Regarding Scenedesmus sp. isolate 
QUCCCM120, results by Xin, Hong-ying & Yu-ping [37] showed that at 
30 °C, the lipid content per microalgal biomass was only 22% (w/w), 
whereas it was 33% in our study. Chlamydomonas, which is currently 
the best model organism for microalgal lipid research, had a lipid 
content of 36.5%. This amount was 1.5-fold higher than the normal 
amounts found by Sajjadi et al., [38] in other Chlamydomonas isolates 

that were screened. The results obtained from our study highlighted the 
existence of local potential strains with high nutritional value. 

Since the metabolites production depends on the state of the cells 
[39], we conducted a survey for the peak lipids and protein production 
during the microalgae growth phase to determine the best time for 
harvesting. For that reason, we scaled up the culture from 1 L to 3 L 
using a vertical tubular photobioreactor to be able to collect culture 
samples suitable for metabolite extraction and quantification. However, 
we noticed a decrease in the growth rate of the microalgae isolates 
compared to the corresponding growth rates in a volume of 1 L. This 
might have been due to the decrease of light distributed in the photo
bioreactor since the 3 L vertical tubular photobioreactor has a thicker 
membrane, longer diameter, and higher depth [40,41]. In addition, a 
reduction in light intensity inside the photobioreactor is considered as a 
stress condition that can also affect metabolite production [42]. 

We noticed a significant increase in lipid content with the micro
algae growth for all strains that were investigated. This result was 
consistent with the findings of Xia et al., [41]. Our strains showed al
most the same ~2-fold increase between exponential and stationary 
phases; however, the final lipid content registered is much higher than 

Fig. 5. Assessment of the Trolox Equivalent Antioxidant Capacity (TEAC) of the selected strains. TEAC was determined for the methanolic extract of the selected 
strains harvested after 14 days of cultivation. Values were recorded in triplicate (n = 3). 
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Fig. 6. Amino acid profile of M. homosphaera QUCCCM70 
as determined by reverse-phased liquid chromatography 
with UV detection at 254 nm. All measurements were re
corded in triplicate (n = 3). Asx: Asparagine/Aspartate; 
Glx (Glutamine/glutamate); Ser: Serine; His: Histidine; Gly: 
Glycine; Thr: threonine; Ala: Alanine; Arg: Arginine; Tyr: 
Tyrosine; Val: Valine; Met: Methionine; Phe: 
Phenylalanine; ILE: Isoleucine; Leu: Leucine; Lys: Lysine; 
Pro: Proline. 
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the content described (34%) by Hu et al., [5]. Indeed, the lipid content 
of our local Chlorella reached 56.21% in the case of Chlorella sp. 
QUCCCM38. 

Cultivation at a volume of 1 L as the first step of screening was 
performed for 9 days, thus allowing for an accurate determination of 
growth rate. However, to perform the survey on metabolite production, 
we extended the time of cultivation to 14 days corresponding to the end 
of stationary phase to maximize the chance of identifying peak times of 
both lipid and protein production. Therefore, lipids were stored at the 
end of the stationary phase as an energy source [5,43]. 

The comparative analysis of lipid content between cultures in 1 and 
3 L cylindrical photobioreactors at day 9 revealed a decrease for all of 
the strains that were investigated, and this might be related to the re
duced light quantity in the 3 L cylindrical photobioreactor. However, 
the lipid content after 14 days was very high compared to that in 1 L, 
which exceeded 47% for the five strains selected. Hence, we can con
sider that day 14 was the best timepoint to harvest lipid-rich biomass. 
In addition, these five strains can also be considered as very promising 
feedstock for biofuel production [5]. In addition, the lipid content ob
served using the 3 L vertical tubular photobioreactor was higher than 
that previously reported (Fig. 4). Indeed, Chlorella sp. QUCCCM38 had 
a lipid content of 56.21% g dry weight−1, which was significantly 
higher than that of other Chlorella strains cultivated under normal and 
nitrogen depletion conditions, showing a lipid content of ~21% and 
36%, respectively [44]. The strain M. homosphaera QUCCCM70 also 
presented a lipid content of 48.32%, similar to that of Mychonaster afer 
(53.9%), which has been considered as a very promising strain for 
biodiesel production [33]. 

Microalgae proteins can be considered as very good alternative for 
feed supplement production since it has protein levels similar to con
ventional sources of proteins used for feed such as soya bean [45]. As 
per the previously described results, 6 days of cultivation represent the 
peak time for protein production of the microalgae isolates. Results 
converges with the recent results of Blifernez-Klassen et al. [46]. The 
strain M. homosphaera QUCCCM70 presented the highest protein con
tent observed during peak metabolite production. Such protein content 
of 44.5% was much higher than the protein content of the microalgae 
strain selected recently in Australia (33%) to produce cattle feed sup
plement [1]. Therefore, for an accurate screening of the microalgae 

isolates in terms of metabolite production, the correct time leading to 
the maximum metabolite production is needed to identify strains with 
high nutritional potential. 

Several publications stated that Mychonastes is very suitable for 
biodiesel production, however we confirmed for the first time in the 
present research work and based on its metabolites profiling and 
growth characteristics that this species is also very promising for high 
quality poultry and livestock products. Furthermore, such strain is 
naturally adapted to the desert climate since its optimal temperature of 
Mychonastes is 30 °C which corresponds to the annual average tem
perature in Qatar. Accordingly, this local microalga strain can be con
sidered as good alternative to supplement the conventional feed and 
support achieving food security in arid climate regions where all animal 
feeds are imported and this is associated with a high cost, huge logistic 
efforts to store and maintain its nutritional value. 

Recently, there has been a considerable increase in the number of 
studies on microalgae antioxidants because of an increasing interest to 
identify novel natural and safe sources of antioxidants [47–49]. Sub
sequently, several screening programs of microalgae based on their 
antioxidant activities have been carried out. Compared to previously 
described results, the antioxidant capacity of the our local strains were 
higher than that by Goiris et al., [50]. These researchers described the 
antioxidant capacities using the TEAC assay, and reported values of 
0–69 μmol Trolox equivalent g dry weight−1 after screening 32 mi
croalgae isolates. Strains with high TEAC are expected to be enriched 
with phenolic compounds and carotenoids since they have been de
scribed as major contributors to the high antioxidant activity [50,51], 
and further investigation of such interesting molecules have been en
visaged. Recent studies have proven that the production of these high 
value compounds with antioxidant potential from algae can be en
hanced by various physico-chemical stresses [52–54]. As the Qatar 
climate poses quite a number of stress factors, such as high light in
tensities, temperatures, and salinities, this could explain the high an
tioxidant capacity of our microalgae isolates since these strains have 
naturally adapted to harsh environmental conditions of the Qatar desert 
climate. 

Finally, the presence of essential fatty acids (omega 3, omega 6 and 
omega 9) with multiple health benefits and essential aminoacids in the 
M. homoeospharea QUCCCM70 biomass proved its high nutritional 
value as feedstock for animal feed production. 

5. Conclusion 

The overall procedure adopted ultimately led to the identification of 
five microalgae isolates, belonging to the genera Chlorella and 
Mychonastes, with high nutritional potential. Among them, a fast- 
growing M. homosphaera isolate QUCCCM70 presented considerable 
lipid and protein contents and has an interesting antioxidant capacity. 
Additionally, this strain exhibited essential amino acids and omega 3 
fatty acids which increase its nutritional value. Finally, the survey of 
metabolites production during the growth proved that the harvest of M. 
homosphaera QUCCCM70 at different time points (days 6 and 14) led to 
a very well-balanced biomass suitable for the production of high-quality 
animal feed supplement. 
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Table 3 
Relative percentage of the FAME of the M. homosphaera QUCCCM 70. 

All measurements were recorded in triplicate (n = 3).    

FAME Relative percentage of the FAME 
(%)  

Myristic acid (C14: 0) 1.37  ±  0.89 
Myristoleic acid (C14: 1) 0.23  ±  0.09 
Palmitic acid (C16: 0) 20.07  ±  1.38 
Palmitoleic acid (C16: 1) 3.53  ±  1.75 
Margaric acid (C17:00) 0.11  ±  0.014 
Stearic acid (C18: 0) 1.12  ±  0.1 
Elaidic acid C18: 1 (n-9) omega 9 4.76  ±  0.32 
Vaccenic acid18:1(n-7) omega 7 1  ±  0.5 
Linoleic acid (C18: 2n6) omega 6 13.84  ±  2.2 
Gamma-linolenic acid 18:3(n-6) GLA 

omega 6 
0.61  ±  0.48 

Linolenic acid (C18: 3n6); ALA omega 3 24.4  ±  3.37 
Stearidonic acid 18:4(n-3) 1.36  ±  0.19 
Arachidic acid (C20: 0) 0.18  ±  0.110 
22:00 0.05  ±  0.06 
Erucic acid 22:1 0.12  ±  0.03 
21:05 0.25  ±  0.07 
24:00 0.75  ±  0.07 
Docosahexaenoic acid 22:6(n-3) DHA 

omega 3 
0.1  ±  0.04 

Nervonic acid 24:1 (n9) omega 9 0.17  ±  0.04 
PUFA 47.74  ±  1.3 
Total 73.3  ±  2.41    
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