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Abstract: The purpose of this paper is to prove some fixed point results using JS-G-contraction on G-metric
spaces, also to prove some fixed point results on G,-complete metric space for a new contraction. Our results
extend and improve some results in the literature. Moreover, some examples are presented to illustrate the
validity of our results.
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1 Introduction

Mustafa and Sims [1] introduced the notion of G-metric spaces as a generalization of classical metric spaces
and obtained some fixed point theorems for mappings satisfying different generalized contractive conditions.
Thereafter, the concept of G-metric space has been studied and used to obtain various fixed point theorems
by several mathematicians (see ([2-24]).

Definition 1.1. [1] Let X be a non empty and G : X x X x X — [0, oo) be a function satisfying the following
properties

(G1)G(a,b,c)=0ifa=>b =c,
(G2)0 < G(a,a,b)foralla,b € Xwitha # b,
(G3)G(a,a,b)<G(a,b,c)foralla, b,c € Xwith b # c,
(G4) G(a, b,c)=G(a,c,b)=G(b,c,a)=---(symmetry in all three variables),
(G5)G(a,b,c)<G(a,w,w)+G(w, b, c)forall a, b, ¢, a € X (rectangle inequality).

Then the function G is called a generalized metric, or, a G-metric on X and the pair (X, G) is called a
G-metric space. Throughout this paper we mean by N the set of all Natural Numbers.
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Definition 1.2. [1] Let (X, G) be a G-metric space, and let (an) be a sequence of points of X. Then we say that
(an)is G-convergent to a € X if limn,m—G (a, an, am) = 0, that is, for any € > 0, there exists N € N such that
G (a, an, am) < € forall, n,m = N. We call a the limit of the sequence and write an — x or limn—ean = a.

Proposition 1.3. [1] Let (X, G) be a G-metric space. The following statements are equivalent:

(1) (an) is G—convergent to a.

(2) G(an,an,a) — 0asn — +oo.

(3) G(an,a,a) — 0asn — +oo.

(4) G(an, am, a) — 0asn, m — +oo.

Definition 1.4. [1] Let (X, G) be a G-metric space. A sequence (an) is called a G-Cauchy sequence if for any
€ > 0, thereis N € Nsuchthat G (an, am, a;) < eforalln, m, 1= N, thatis G (an, am, a;) - 0asn, m,l — +oo.

Definition 1.5. [1] A G-metric space (X, G) is called G-complete if every G-Cauchy sequence is G-convergent
in (X, G).

Corollary 1.6. [1] Let (X, d) be a metric space, then (X, d) is complete metric space iff (X, Gm) is complete
G-metric space where
Gm(a, b, ¢) = max{d(a, b), d(b, c), d(a, )}

Corollary 1.7. [1] A G-metric space (X, G) is continuous on its three variables.

Very recently, Jleli and Samet [25] introduced a new type of contraction which involves the following set of
all functions ¥ : (0, =) — (1, o) satisfying the conditions:

(1) Y is nondecreasing;

(1) for each sequence {tn} C (0, 00), limy— o0 P (tn) = 1 if and only if limp—ye0 tn = 0;

(13) there exist r € (0, 1) and L € (0, o] such that lim_,o- '1’(2‘1 =1L.

To be consistent with Jleli and Samet [25], we denote by £ the set of all functions ¥ : (0, o) — (1, o0)
satisfying the conditions (1 — 13).

Also, they established the following result as a generalization of Banach Contraction Principle.

Theorem 1.8. [25, Corollary 2.1] Let (X, d) be a complete metric space and f : X — X be a mapping. Suppose
that there exist Y € W and k € (0, 1) such that

X,y e X, d(fx,fy)#0 =¥ (d{fx ) <[ dx ).

Then f has a unique fixed point.

In 2015, Hussain et al. [26] customized the above family of functions and proved a fixed point theorem as a
generalization of [25]. They customized the family of functions i : [0, o) — [1, o) to be as follows:

(1) Y is nondecreasing and  (t) = 1 ifand only if ¢ = 0;

(1,) for each sequence {tn} C (0, o0), limp— oo P (tn) = 1 if and only if limy—,e0 ty = 0;

(13) there exist r € (0, 1) and L € (0, oo] such that lim;_, - ’/’(?'1 =L;

W) Yyu+v)<yp @ (v)forallu,v > 0.

To be consistent with Hussain et al. [26], we denote by ¥ the set of all functions ¥ : [0, e0) — [1, o0)
satisfying the conditions (); — ;). For more details in this direction, we refer the reader to [27-30].

In this paper, we introduce a new contraction called JS-G-contraction and we prove some fixed point
results of such contraction in the setting of G-metric spaces, also we prove some fixed point results on G-
complete metric space for a new contraction.




192 —— Mohammed M.M. Jaradat et al. DE GRUYTER OPEN

2 Fixed Point Results on G- Metric Space

We start this section by introducing the following definition.

Definition 2.1. Let (X, G) be a G-metric space, and let g : X — X be a self mapping. Then g is said to be
a JS-G-contraction whenever there exist a function € ¥ and positive real numbers rq, 2, 13, r4 With 0 <
ri1 +3ry +r3 + 2r4 < 1 such that

Y (G(ga,gb,gc) < [P (G(a,b,N" [Y(G(a,ga,g0)]"” [{ (G (b, gh,gc)]”
x[ (G (a, gb, gb) + G (b, ga, ga))]™ , 21

forall a, b, c € X.

Theorem 2.2. Let (X, G) be a complete G-metric space and g : X — X be a JS-G-contraction. Then g has a
unique fixed point.

Proof. Let ag € X be arbitrary. For ap € X, we define the sequence {an} by an = g"ao = gan-1. If there exist
no € Nsuch that an, = an,+1, then an, is a fixed point of g, and we have nothing to prove. Thus, we suppose
that an # anp+1,i.e., G(8an-1, 8an, gan) > O forall n € N. Now, we will prove that limp—co G (an, n+1, An+1) =
0.

Since g is a JS-G-contraction, by using condition (2.1), we get that

1 < Y (G(an, ans1, ane1)) = Y (G (8an-1, 8an, gan))

[¥ (G (an-1, an, an))I" [ (G (an-1, §an-1, gan))” [Y (G (an, gan, gan))]"”

x [t (G (an-1,8an, gan) + G (an, §an-1, §an-1))1"

= [Y(G(an-1,an, an))]" [ (G (an-1, an, @nr1))]"” [P (G (@n, ns1, @ne1))]” [P (G (@n-1, Ansr, @nen))]™ -

IN

Using (G5) and (i,), we get

l/)(G(an—l, an, An+1))

IN

Y(G(ay-1, an, an) + G(an, an, an:1))

Y(G(an-1, an, an) + 2G(an, an+1, an+1))

Y(G(an-1, an, an))P(2G(an, ans1, ans1))

= Y(Glan-1, an, an))P(G(an, ans1, ns1) + Gan, ans1, ans1))
PY(G(an-1, an, an))[P(G(an, ans1, ans1)))’,

IN

IN

IN

and

N

w(G(an—lf An+1,s an+1)) = l,b(G(an—ly Aan, an) + G(an, An+1s an+1))
l/J(G(an—l, an, an))l/)(G(an, An+1s Ane1))-

IN

Therefore,

1 < Y (G(an, an+1, an+1))
< [Y(G(an-1, an, an))]r1 [lp(G(an—l, An, an))] ” [l/’(G(an, an+1, an+1))} i
%[ (G (an, an1s ane1))]” [Y(G(@n-1, an, an))]™ [Y(Glan, ans1, ani1))]™ .
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So, by reordering the product terms of the above inequality, then using the induction, we get that

ri+r9+14

1< (G(an, ani1, ans1)) < [P (G (an-1, an, an))] 2757

' ( ri+rp+14 )"
< [!I) (G (ao, ay, al))] 1-2ry=r31y (2.2)
Taking limit as n — oo, and noting that % <1, we get
lim 3 (G (an, ans1, ana)) = 1, (2.3)
which implies by (i,) that
lim G (an, an+1, ans1) = 0. (2.4)

n—oo

From the condition (y3), there exist 0 < r < 1 and L € (0, oo] such that

lim Y (G (ans1, an, an)) - 1 _

L.
n—eo [G (an, ans1, an+1)]r

Suppose that L < oo. In this case, let B; = % > 0. From the definition of the limit, there exists no € N such
that

| Y (G(an, ans1, ans1)) - 1

-L| <B4,
G (an, ans1, an+1)]r | !
for all n > ng. This implies that
')b (G (an+1, an, a”)) -1 L
>L-B; == =B,
[G (arl; An+1, an+1)]r = ! 2 !

forall n > ng. Then
n(G (an, ans1, ane1))’ < Ainly (G (an, ans1, ani)) - 11,

where A; = Bil.

Now for L = oo, let B, > 0 be an arbitrary number. From the definition of the limit there exist n; € Nsuch
that

Y (G (an, ans1, ans1)) - 1

> By,
[G (an, an+1, ans1)l” g

for all n > ny. Then
n(G (an, ans1, Ane1)) < Aol (G (an, anir, Aner)) - 11,

where A, = B—lz. Thus, in both cases, there exist A = max{A;, A} > 0 and n+ = max{ng, n;} € N such that
n(G (an, ans1, Ane1))” < An[y (G (an, ans1, Ane1)) — 1] foralln > n..
Now, using (2.2) we get

n(G (an, ane1, ansn))’ < An [ (G (ao, az, @)l - 1],
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where, a = % But,
v (1 (G (@0, a1, a1 - 1]
lim n [[$ (G (a0, ar, @) ~1] = lim T
@ In(@) I3 (G (ao, a1, a1))) [ (G (@0, ar, an)]" |
- nli—>ngo -1/n2

= lim -n*a" In(a) In( (G (ao, a1, a1))) [[l,b (G (ao, as, al))]“"}

-n?In(a) In(y (G (ao, a1, a,))) {[ll’ (G (ao, ay, al))]a"}

= lim

DE GRUYTER OPEN

n—oo an
= lim ‘a x lim 1n(a)1n(¢(c(a0,a1,a1)))[zp(G(ao,al,al))]“"]
1

= 0xIn(a)In(¥ (G (ao, a1, a1)))
= 0 (where a1 =1/a),

which implies that limp—eo n(G (an, an+1, ans1))” = O, thus there exists n, € N such that

1
G (an, ans1, Ans1) < nirr’

for all n > n,. Now, for m > n > n,, we have

S

|~

1
G (an, am, am) < ZG(al,am,am) ZTS

i=n i=n i=1

w\
<=

i

Since0 < r < 1, then Z}’Zl il is convergent and hence G (an, am, am) — 0as m, n — oo. Thus, we proved
1r

that {a,} is a G-Cauchy sequence. Completeness of (X, G) ensures that there exists a” € X such that an — a”

asn — oo,

Now we shall show that a” is a fixed point of g. Using (G5) we get that

and

N

Gla',a',ga") < Gla',a",an1)+Glans1, ans1,8a°)

Gla',a’, ani1) + G(gan, gan, ga’)

G (an, aml,ga*) < (G (an, Anits a*)) + (G (a*, a*,ga*)) .

Hence, by the properties of 1) we get that

Thus,

(G, a’,ga") < Y(Gla', a’, ans1)P(G(gan, gan, ga’))

P(G (an, an+1,ga*)) <P(G (an, Ani1s a*))lﬁ(G (a*, a*,ga*)).

[IP(G (a"’ a"”’ga*))} e [lp(G (“n» ans1, a*))} o [‘P(G (a*, a*,ga*))} A

(2.5)

(2.6)

.7

(2.8)

(2.9)
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However, by using (2.1), (i4) and (2.9) we have
Y (G (an+1: An+1, ga*)) Y (G (gan, gan,ga*))

9 (6 o))" 9 (6 om o))
<[5 (6 on o))

x [ (G (an, Ans1, Ane1) + G (an, ans1, an+1))]r4

= [w(6(anana))]" [v (6 (an aniga’))]""

% [P (G (an, Ans1, ane1))]™

) e

IN

IN

[v,b(G (a*, a*,ga*))} r2+r3 [ (G (an, ans1, ansa))*™ .
(2.10)
Now, substituting (2.10) in (2.7) we get that
PGl a'ga) s PG, a, an)) [$G (an ana )] [$(G (an, anr,a )]
[z/)(G (a*, a*,ga*))} = [ (G (@n, Ans1, ns1)))>"™
(2.11)
Hence,
1< [p6ta gD < P6@,at,ana) [8 (6 (an ana’))]”
[IIJ(G (a"’ an+1s a*))} o [l/) (G (Cln, An+1, an+l))]2“ .
(2.12)

By taking the limit as n — oo and using (2.4), ('), Proposition 1.3 and the convergence of an to a” in the
above equation we get that

(G, a’,ga)) =1 2.13)

which implies by (1) that G(a", a”, ga”) = 0 and so ga” = a". Thus, a” is a fixed point of g.
Finally to show the uniqueness, assume that there exist a’ # a” such that a’ = ga/. By (G»),

Gld',d',a")=Glgd',ga',ga’) > 0.

Thus, by (2.1) we get
’or / ’ * VAN L ’ ’ *y 72
Y6, a\a) = P(Ggd,ga',ga) < [W6(@,d,a)]" [W(G(@,gd’, ga"))]
x [l/J(G(a’, gad', ga*))} " [y (G, gd’, ga') + G(d', gd’, ga))]"™,
= ['IJ(G(a’,a’,a*))} 1 [IIJ(G(a’,a’, a*))} ’ [!/J(G(a’,a’,a*))} ’
<[y (Gd,d,d)+Gd, a, a))]",
;o e Tt
= [v,b(G(a ,a,a ))} ,
which leads to a contradiction because ry + r, + r3 < 1. Therefore, g has a unique fixed point. O

The following result is a direct consequence of Theorem 2.2 by taking i (¢) = eVtin (2.1).
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Corollary 2.3. Let (X, G) be a complete G-metric space and g : X — X be a mapping. Suppose that there exist
positive real numbers r1, 15, r3, r4 With 0 < rq + 31, + r3 + 2r4 < 1 such that

VG (ga,gb,gc) < r1\/G(a,b,c)+1,\/G(a,ga,gc)+r3\/G(b,gh, gc)
+14\/G (a, gb, gb) + G (b, ga, ga) (2.14)

foralla, b, c € X. Then g has a unique fixed point.
Remark 2.4. Note that condition (2.14) is equivalent to

G(ga,gh,gc) < riG(a,b,c)+riG(a,ga,gc)+ 135G (b, gh, gc)
+14[G (a, gb, gb) + G (b, ga, ga)]
+2r17121/G (a, b, ¢) G(a, ga, gc) + 2r1r3\/G (a, b, ¢) G (b, gb, gc)
+2r174\/G (a, b, ¢)[G (a, gb, gb) + G (b, ga, ga)]
+2r,131/G (a, ga, gc) G (b, gb, gc)
+2r5741/G (a, 84, 80)[G (a, gb, gb) + G (b, ga, ga)]
+2r3741/G (b, gb, gc)[G (a, gb, gb) + G (b, ga, ga)].

Next, in view of Remark 2.4 and by taking r, = r3 = r4 = 0 in Corollary 2.3, we obtain the following corollary.

Corollary 2.5. Let (X, G) be a complete G-metric space and g : X — X be a mapping. Suppose that there exist
positive real numbers O < ry < 1, such that

G(ga,gb,gc)<riG(a, b, ) (2.15)
foralla, b, c € X. Then g has a unique fixed point.
Finally, by taking ¢ (t) = e Vtin (2.1), we get the following corollary.

Corollary 2.6. Let (X, G) be a complete G-metric space and g : X — X be a mapping. Suppose that there exist
positive real numbers r1, 15,13, r4 With0 < rq + 31, + 13 + 2r4 < 1, such that

v/G(ga,gh,g8c) < n \”/G (a,b,c)+r1; \"/G (a,ga,gc)+rs (/G (b, gb, g0)
+143/G (a, gb, gb) + G (b, ga, ga)

foralla, b, c € X. Then g has a unique fixed point.

Remark 2.7. By specifying r; = 0 for some i € {1, 2, 3, 4} in Remark 2.4 and Corollary 2.6 we can get several
results.

Example 2.8. Let X = [0, o) and the G-metric Gm(a, b, ¢) = max{|a-b|, |b-c|, |a-c|}. Defineg : X — X by
g(x) = § and Y(¢) = eVt Then clearly all conditions of Theorem 2.2 are satisfied with r; = %; i=1,2,3,4,
and x = 0 is a unique fixed point of g.

3 Fixed Point Results on G,-Metric Spaces

In this section, using the concepts of G;,-metric space which was introduced by Aghajani et al. [31] we establish
some new fixed point results in this setting.

Definition 3.1. [31] Let X be a nonempty set and s > 1 be a given real number. Suppose that G, : X x X x X —
[0, =) be a function satisfying the following properties
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(Gp1) Gy (u,v,w)=0ifu=v=w,
(Gp2) 0< Gy (u,u,v)forallu,v e Xwithu #v,
(Gp3) Gp(u,u,v)<Gyu,v,w)forallu,v,w e Xwithv #w,
(Gp4) Gy (u,v,w) = Gy, (p{u, v, w}), where p is a permutation of u, v, w (symmetry),
(Gp5) Gy (u,v,w) <s(Gy (u, c, c)+ Gy (c,v,w)) forall u, v, w, ¢ € X (rectangle inequality).
Then the function G, is called a generalized b-metric, or a Gj-metric on X, and the pair (X, G) is called a G-
metric space.
It is clear that the class of G;-metric spaces is effectively larger than that of G-metric spaces given in [1].
Indeed, each G-metric space is a G,-metric space with s = 1.

Definition 3.2. [31] A G,-metric space is said to be symmetric if Gy, (u, v, v) = G, (v, u, u) forall u, v € X.
Proposition 3.3. [31] Let X be a Gy,-metric space. Then for each u, v, w, ¢ € X it follows that:

W IfGy(u,v,w)=0thenu=v=w,

(2) Gy (u, v, w) <s(Gp (u, u, v) + Gy, (u, u, w)),
(3) Gy (u, v, v) < 2sGy, (v, u, u),

(4) Gy (u,v,w) =5 (Gp (u, c, w) + Gy (c, v, w)).

Definition 3.4. [31] Let (X, G}) be a G,-metric space, and (an) be a sequence in X. Then we say that (a,) is
Gp-convergent to a € X if limn,m—o Gy, (@, an, am) = 0, that is, for any € > 0, there exists N € N such that
Gy (a, an, am) < €, for all, n, m = N. We call x the limit of the sequence and write an, — a or limp—an = a.

Proposition 3.5. [31] Let (X, G}) be a Gy,-metric space. The following statements are equivalent:

(1) (an) is G,—convergent to a.

(2) Gy (an, an, a) - 0asn — +oo.

(3) Gy (an,a,a) —» 0asn — +oo.

(4) Gy (an, am,a) - 0asn, m — +oo.

Definition 3.6. [31] Let X be a G, -metric space. A sequence (an) is called a G,-Cauchy sequence if for any € >
0, there is N € N such that Gy, (an, am, a;) < eforalln, m, l = N, thatis Gy, (an, am, a;) - Oasn, m,l — +co.

Proposition 3.7. [31] Let (X, G},) be a Gy,-metric space. The following statements are equivalent:
(1) (an) is G,-Cauchy sequence. (2) Gy, (an, am, am) — 0as n, m — +oo,

Definition 3.8. [31] A G,-metric space X is called G,-complete if every G,-Cauchy sequence is G,-convergent
in X.

Lemma 3.9. Let X be a G,-metric space with s = 1. If a sequence (an) C X is Gp-convergent, then it has a
unique limit point.

Very recently, Ahmad et al. [27] studied ]S-contraction and considered a new set of real functions, say Q.
They replaced condition ()3) by another condition called (05).

Applying this condition we can have a new range of functions. Thus, consistent with Ahmad et al. [27] we
denote by Q the set of all functions 0 : [0, o) — [1, oo) satisfying the following conditions:

(O©1): 8 is nondecreasing and O (t) = 1 ifand only if t = O;

(©5): for each sequence {tn} C (0, o), limp— o O (tn) = 1 if and only if limp—eo tn = 0;

(65): O is continuous.

Example 3.10. [27] Let 0,(t) = e\ﬁ, 0,(t) = e*/g, 05(t) = ef, 04 (t) = cosht and 05 (t) = 1 + In (1 + ¢) for all
t > 0. Then 91, 92, 93, 94, 95 €.
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Remark 3.11. [27] Note that the conditions ()3) and (65) are independent of each other. Indeed, for p > 1,
o) = et’ satisfies the conditions (11) and (¥,) but it does not satisfy (13), while it satisfies the condition
(©3). Therefore (Y C ¥. Again, fora > 1, m € (0, %), 0(t) = 1+ t™(1 + [t]), where [t] denotes the integral part
of t, satisfies the conditions (1) and (,) but it does not satisfy (03), while it satisfies the condition (i3) for
anyr ¢ (%, 1). Therefore ¥/ C Q. Also, if we take 6(t) = eV then 6 ¢ ¥ and 0 € Q. Therefore ¥ N =0.

Definition 3.12. [4]Letg : X — Xand a : XxXxX — [0, o0). Then gis called a-admissibleifforallu, v,w € X
with a(u, v, w) = 1 implies a(gu, gv, gw) = 1.

Definition 3.13. Letg: X — Xand a : X x X x X — [0, oo). Then g is called rectangular-a-admissible if
1. gis a-admissible,
2. a(u,c,c)21andalc,v,w) > 1implies that a(u, v, w) > 1

where u, v, w, c € X.

Lemma3.14. Let g ba a rectangular a-admissible mapping. Suppose that there exist ap € X such that
a(ag, gao, gap) = 1. Define the sequence an = g"ag. Then

alam, an,an) 21, forallm,n € Nwithm<n

Proof. Let an = g"ag and assume that n = m + k for some integer k > 1. Since a(ag, gap, gap) = 1 and g is
a-admissible, then

alai, az, ay) = alay, gay, ga,) = a(gao, g°ao, g ao) = 1.

Continuing this process we get that a(am, am:+1, @ms1) 2 1. Similarly we have

a(am+1» Am+2, am+2) 2 1.

Hence, by rectangular a—admissible we have a(am, am+2, dm+2) = 1, now repeating the same process we get
that a(am, an, an) = a(@m, A mixs Amei) = 1. O

Now, we are ready to state our main theorem in this section.

Theorem 3.15. Let (X, G;,) be a G,-complete metric space withs > 1. Let a : X x X x X — (0, o0) and g be a
rectangular a-admissible mapping. Suppose that there exist € Q and r € (0, 1) such that
<556y (4, 80, 81) < Gy (4, v, W) = @ (v, W) 6 (576, (gu, g, gw)) < [OM(w v, W) G)

forallu, v, w € X with at least two of gu, gv and gw being not equal, where

Gp(u,8u,8u)Gp(u,8v,gw)+Gp(v,8v,8W) Gy (v,8u,gU)
Gp (u, v, w), T+5[Gp(u,8u,8W)+G (v,8v,gW)] ’

M (u, v, w) = max

Gp(u,8u,gu)Gp(u,8v,gW)+Gp(v,gv,gw)Gp(v,8U,gU)
1+Gp(u,8v,8w)+Gp(v,8u,8W)

Also, suppose that the following assertions hold:

(i) There exists ag € X such that a (ap, gap, gap) = 1.

(ii) For any convergence sequence {an } to a with & (an, an+1, an+1) = 1 foralln € NU{0}, we have a (an, a, a) =
1foralln € NU {0}.

Then g has a fixed point.

(iii) Moreover, if for all u, v € Fix(g) implies a(u, v, v) = 1, then the fixed point is unique where Fix(g) = {u :
gu =uj}.

Proof. Let ap € X be such that a (ao, gao, gap) = 1. Define a sequence {an} by an = g"ap foralln € N.
Since g is an a-admissible mapping and a (ag, ai, a;) = a(ap, gap, gap) = 1, we deduce that a (a4, a3, a;) =
a(gaop, 8ai, gap) = 1. Continuing this process, we get that a (an, an+1, ans+1) = 1 foralln € Nu {0}. Without
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loss of generality, we assume that an # a,; for alln € N U {0}. We shall proceed in proving the theorem
using the following two steps.

Step 1: We shall show that limn—eo Gy (@n+15 @n, an) = 0.

Now,

Gb (an 1, Aan, an)
Gb(an-1,84n-1,8an-1)Gp(An-1,80n,8an)+Gp(An,8n,80n)Gp(An,8aAn-1,8An- 1)

M(an-1,an,an) = max 1+SBGb(an 1,80n-1,8n)+Gp(an,8an,8an)]
Gp(an-1,80n-1,8an-1)Gp(an- 1,gan,gan)+Gb(an,gan,gan)Gb(an,ganfl,ganfl)
1+Gp(an-1,80an,8an)+Gp(an,8an-1,80n)
Gb (an 1, An, an)
— max Gp(An-1,an,an)Gp(an- lyan+1;an+1)+Gb(an,an+l,an+l)Gb(an;an;an)

1+5[Gy(an- 1,an,an+1)+Gb(an,an+1,am)]
Gp(an-1,an,an)Gp(An-1,an+1,an:1)+G b(an;arHl;an+1)Gb(an:an;an)
1+Gb(an719an+1yan+1)+Gb(anyan;an+1)

Gy (an-1, an, an),
_ Gp(An-1,an+1,an:1)
= maxy Gy (an-1, ans @) 1576, (@, 1 a,,an00+ Colananranl]”
b(An-1,0n+1,0n+1
Gb (an_l’ dn, an) 1+Gp(an-1,dn+1,aAn+1)+Gp(An,an,Ans+1)

(3.2
But, from (G 3), we have Gy, (dn-1, An+1s Ans1) < Gp (@n-1, an, ans+1), and so

Gp (an-1, ns1, Ans1)

<1
1+s [Gb (an—l, an, an+1) + Gb (an, An+1, an+1)]

also
Gp (An-1, An+1, Ane1)

1+ Gp (an-1, An+1, Ane1) + Gp (an, an, Ans1)
Therefore, M (an-1, an, an) = Gy, (@n-1, an, an).
Since & (an, ans+1, ans+1) 2 1foreachn € NU {0} and 55 Gy (n-1, 8@n-1, §an-1) < Gp (An-1, an, an) , asa
result by (3.1) we have

<1.

6 (Gp (8an-1,8an, gan)) ,

a(ap-1,an, an) 0 (sz Gy (8an-1, 8an, gan)> ,

[9 (M (an—l, an, an))]r )

= [0(Gp (an-1,an, an))l’

< 0(Gp(an-1, an, an)). 3.3)

0 (Gyp (an, an+1, ans1))

IN

IN

Therefore, we have
1< 0(Gp (@n, Ans1, Ans1)) < [0 (Gp (@n-1, an, an))]” < --- < [0(Gy (ao, ai, al))]r"

Taking limit as n — oo, we get
nli—{Eo 0 (Gp (an, an+1, an+1)) = 1.

This gives us, by (6,),
HILIT.}O Gy (an, Ans1, Ans1) = 0. (34)

But Gy, (@n+1, an, an) < 2sGy, (an, an+1, an+1), therefore
lim Gy, (dns1, an, an) = 0. (3.5)
n—oo

Step 2: We shall prove that the sequence {a,} is a G,—Cauchy sequence. Suppose on the contrary that
{an} is not a G,—Cauchy sequence. Then there exists € > 0 for which we can find two subsequences {am; }
and {an, } of {an} such that n; is the smallest index for which

n; >m; > iand Gy (am;, an;, an;) = €. (3.6)
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This means that
Gp (@m;» Ani-1, An;-1) < €. (B7)

By using (3.6) and (G, 5), we get
€ < Gp (am;, an;, an;) < SGp (Amys Am+15 Am+1) + SGp (Amye1, Ang, Any) «

Taking the upper limit as i — oo and using (3.5) we get

= < lim sup Gy, (@m+1, an;» Any) - (3.8)
1—o0
Notice that from (3.3) and (61), we get
Gy (an, Ans1, ans1) < Gy (Ap-1, an, ay) foralln € N, (3.9)

Suppose that there exists iy € N such that

1
352 Gb (amioagamioagamio) > Gb (aMiO s anio—la anio—l)
and
1
ng Ay +15 8Am;y+1> 8Ami +1 ) > Gp ( Amy+15 Anyy-15 Any-1) -

Then from (G,5), (3.9) we have

Gy (am,-0 > Ani-15 an,-o—l) + Gy (anio—ly Am;,+1> am,-0+1>

IN
7]

Gp (amio > Amig+15 am,-0+1)

< s { Gy (amio, An -1, ani0_1> +25Gy (amioﬂ, an -1 anio—l) }
s S [ 387 Gy (amlo,gamlo,gam,o) 352 > Gp (am,0+1,gaml +1s gam10+1) }
= 3*6 Amig > Am+15 Am;+1 ) + 39 Am;+15> Amig+25> Amyg +2
1
s (38 + )Gb am;, aml +1s am,0+1
< Gy (amio, Ay +15 am,-0+1) , (since s > 1), (3.10)

which is a contradiction. Hence, either

352 Gy (am;, 8am;, gam;) < Gp (am;, An;-1,an;-1)

or

1
352 Gp (Ami+1> 8Ami+1> 8Am;+1) < Gp (Amy+1,> Anj—1,an;-1) »
holds for all i € N. First suppose that

352 Gb (amx’ gamx’ gaml) < Gb (aml, a”x 1, anx 1) (3'11)

From the definition of M (u, v, w) and using (3.5) and (3.7) we have

lim sup M (am;, an,-1,an,-1)
1—roo
Gb (ami, anﬁl,anﬁl) ’
. Gy (@m;,8am; ,§am;)Gp(am;,8an;-1,80n;-1)+Gp(an;-1,8n;-1,8an;-1) Gp (An;-1,80m; ,8Am;)
= IILIEO sup max 1+5[Gp(am; »8am;»8n;-1)+Gp (An;-1,8an;-1,8an;-1)] ’
Gy (am;»8am;,8am; )Gy (am;,8an;-1,8an; 1)+Gb(an 1,80n;1,80n;-1)Gp(aAn;-1,8m ,gam)
1+[Gp(am;8an;-1,80n;-1)+Gp (an;-1,80m;,8an;-1)]

Gb (ami ’ ani—l,ani—l) ’
. Gb(ami9ami+l ,ami+1)Gb(ami:aniyani)"’Gb(anrl yaniyani)Gb(anrl ’ami*l’ami*l)
= .hm Sup max 1+S[Gb(am1 Am;+1,0n; )‘*‘Gb(anx 15n;>an; )] ’ s €.
i—o0
Gb(am sAm;+1,Am; +1)Gb(am sn; > An; )*Gb(an -1,an; »qn; )Gb(an -1,am;+15am; +1)
1+[Gb(am sAn;»An; )"’Gb(anx 15Am;+1,An; )]
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Note that, m; # n; — 1, as otherwise Gy, (am;, @n,-1,an,-1) = 0 and so, by (3.11)
Gy (am;, Amgs1,ami+1) = Gp (am;, 8am;,8am;) = O

which contradicts our assumption that an # an.1 foralln € N. Hence, a (am;, an,-1,an,-1) = 1. Based on the
assumption (3.11), (61), @ (am;, An,-1,an,-1) = 1, (3.8), (3.1) and the above inequality, we obtain that

o(s2)

IN

2 .
a(am;, An;-1,an,-1) 0 <s . lim sup G, (am;+1, an,.,an,.))
1—oo

a(am;, Ap;-1,dp;-1) 0 (sz- ili)m sup Gy (8am;, 8an;-1, gam—l))

IN

y

[e (,lim sup M (am;, ani-l,an,._l))] UGS
1—oo

which implies that 0 (s€) < [0 (€)]', a contradiction. Now suppose that

1
FGb (Am;+15 8Am;+15 8Amy+1) < Gy (ami+1) Ap;-1,An;-1) (312

holds for all i € N. Further, from (3.6) and using (G,5), we get

€= Gb (ami’ ani,ani) < SGb (ami’ Am;+25 ami+2) + SGb (ami+2, Qn;, ani) .

IN

2 2
S°Gy (am;, Amps1s Ami1) + S Gp (Amye1s Ami+2> Amy2)

+  SGp (am+2, an;, an;) -
Taking the upper limit as i — oo, and using (3.5) we get
£ <im sup Gy, (@my+2, An;» Any) - (3.13)
Also, from (G}5), we get
Gy (Amyr15 Ani-1,an;-1) < SGp (Amys1, Anys An;) + SGp (An;, Any—1,An;-1) -
Taking the upper limit as i — oo, and using (3.5) and (3.7) we get

lim sup Gy, (am;+1, An;-1, An;-1) < SE. (3.14)
1—roc0

From the definition of M (u, v, w) and using (3.5) and (3.14), we have
lim;_, o SUP M (@m;+15 An-1,0n,-1) =

Gy (am +1, An;—1,p;- 1),
. Gb(am +1,m;+2,0m; +2)Gb(am +1,dn;,An; )‘*’Gb(anX 15dn; > An; )Gb(anl 150m;+2,Am; +2)
lim sup max 1+5[Gb(am 1o mgr2@n; )+ (@n 1,8 an)] < Se.
e Gb(am +1,Am;+2,0m; +2)Gb(am +1,dn; »An; )+Gb(an -1,0n;,An; )Gb(an -1,dm;+2,0m; +2)
1+[Gb(am +1,dn; »An; )*Gb(anl 150m;+2,An; )]

Note that, m; + 1 # n; — 1, as otherwise

Gb (ami+1; ani—l,anﬁl) =0

and so, by (3.12) Gy, (Am;+1> Amy+2,am;+2) = Gp (Am;+1> 8Am;+1,8Am;+1) = 0, which contradicts our assumption
that an # a1 foralln € N. Hence, a (am;+1, an;-1,an;-1) = 1.
Based on the assumption (3.12), (61), a (@m;+1, n;-1,an,-1) = 1, (3.13), (3.1) and the above inequality we

obtain that
o(2.5)

IN

2 .
a(Am;+1, Any-1,an;,-1) 0 (s . lim sup G, (am+2, ani,ani))
1—o0

2 4.
& (Am+15 Ani-1,0n,-1) 6 (s 'l_lgn sup Gy, (gam,-+1,gani_1,gan,-_1))

IN

,
|:6 (_lim sup M (am+1, ani—l,ani—l))] <[0(se)’,
i—oo
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a contradiction. Therefore, in all cases {an} is a G,-Cauchy sequence, thus by G;-completeness of X yields
that {an} is G,-convergent to a point a” € X. By an argument similar to that in (3.10), we get either

1 * *
ﬁGh (an, gan, gan) < Gy, (an,x ,a )
or

1 * *
@Gb (an+1, 8ans1, 8ani1) < Gy (an+1, a,a )

holds for all n € N. First, suppose that

1 * *
3?Gb (an, gan, gan) < Gy, (an, a,a ) .

Now,

Gy (a a a*) Gy(an,8an,gan)Gy(an.ga’,ga")+Gy(a',.ga",ga")Gy(a' ,gan,gan)
L, b \%n> & ’ 1+5[Gp(an,gan,ga’)+Gy(a",ga",ga")] ’
M(an,a ,a ) = max
Gp(an,8an,gan)Gy(an.ga’,ga")+Gy(a',ga",ga")Gy(a' ,gan,gan)

1+[Gp(an,ga",ga")+Gp(a",gan,ga’)]

So, limp 0o M (an, a, a*) = 0. Hence from (3.1) and assertion (ii) of the theorem, we have

N

1<6 (Gb (gan,ga*,ga*)> < 6 (Ssz (gan,ga*, ga*))

alan, a",a")o (ssz (gan, ga’, ga*))

[0 (M (an,a’,a"))]

for all n € N. Taking the limit as n — oo, in the above inequality we get that

IN

IN

lim 6 (Gb (gan,ga*,ga*)) =1.

n—oo

This implies by (61) that
lim G (gan,ga*,ga*) =0.
n—oo

Hence, ga” = limp_e0 gan = liMpn_se0 ans1 = a’. Thus, we deduce that ga” = a”.

Now if 1
@Gb (an+1, 8an+1, 8an+1) < Gy (aml, a*, a*) ,
holds, then by repeating the same process as above we can get ga” = a’. Therefore, we proved that a” is a
fixed point of g.

Now to prove uniqueness, suppose there exist u,v € Fix(g) with u # v, thatisu = guand v = gv.
Therefore by (iii), a(u, v, v) = 1 and so, by (3.1) and (G},) we have

1
0= QG(u,gu,gu) <G(u,v,v)
and

a(u, v, v)0(s>G,(gu, gv, gv))
< [0Mu,v,v)]"

[6(Gp(u, v, )]

0(Gp(u, v, v)).

0(Gy(u,v,v))

IN

N

N

Thus the contradiction implies that the fixed point is unique. O
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Theorem 3.16. Let (X, G},) be a G,-complete metric space withs > 1. Leta : X x X x X — (0, 00) and g be a
rectangular a-admissible mapping. Suppose that there exist 6 € Q and r € (0, 1) such that

3%Gb (u, gu, gu) < G, (U, v,w) = a(u,v,w)o (ssz (gu, gv, gw)) < [0 M u, v, w)] (3.15)

forallx,y, z € X with at least two of gx, gy and gz being not equal, where

_ Gb (u’ su, gu) Gb (V’ 8gv, gW) Gb (u’ su, gu) Gb (V: 8gv, gW)
M (u, v, w) = max {Gb (u,v,w), 1+ Gy (, v, W) , 1+ G, (au, 8V, gW) .

Also, suppose that the following assertions hold:

(i) There exists ag € X such that a (ag, gap, gap) = 1.

(ii) For any convergent sequence {an } to a with a (an, an+1, @n+1) = 1 foralln € NU{0}, we have a (an, a,a) = 1
foralln e NU{0}.

Then g has a fixed point.

(iii) Moreover, if for all u,v € Fix(g) implies a(u,v,v) = 1, then the fixed point is unique
where Fix(g) = {u; gu = u}.

Proof. Let ap € X be such that a (ag, gaop, gaop) = 1. Define a sequence {an} by an = g"ap foralln € N.
Since g is an a-admissible mapping and a (ap, a1, a1) = a (ap, gaop, gap) = 1, we deduce that a (a;, a,, a;) =
a(gao, 8ai, gai) = 1. Continuing this process, we get that a (an, an+1, an+1) = 1 foralln € Nu {0}. Without
loss of generality, assume that a, # a1 foralln € NU{0}. We shall show that limn—cc G}, (@n+1, an, an) = 0.
Now,

Gp(an-1,80n-1,80n-1)Gp(an,8an,8an)
Gy (an-1, an, an) , ~2==2
M(an-1,an,an) = max{ P ’ 1+Gp(@n-1,an,an) ’

Gp(an-1,80n-1,8an-1)Gp(An,80n,8an)
1+Gp(gan-1,8an,gan)

Gp(an-1,0n,an)Gp(dn;An+1,an+1)

- max { Gb (an—la dan, an) s 1+Gp(an1,dn,dn) , } (316)

Gp(An-1,an,an)Gp(An,An+1,an+1
1+Gp(an,an+1,an+1)

i Gp(an-1,an,an) Gp(an,An+1,dn+1)
Since, 6, sanan < 1309 T, ann < 1+ Therefore,

M (an-1, an, an) = max{Gy (an-1, n, an) , Gp (an, An+1, An+1)}-

If max{Gy (an-1, an, an) , Gp (an, An+1, An+1)} = Gp (an, An+1, an+1), then since a (ap-1, an, an) = 1 for each
neN, 3%6;, (an-1,8an-1,8an-1) < Gy, (an-1, an, an) and so by (3.15) we have
6 (Gp (an, ane1, ana1)) = 0(Gp(8an-1,8an, gan)),
< a(anp-1,an,an)0 (ssz (gan-1, gan,gan)> ,
< [0(M(an-1, an, an))]’,
= [0(Gp(an, Gns+1, ans1))]’
< 0(Gp(an, an+1, Ane1)) 3.17)

which is a contradiction since r € (0, 1). Thus, M (a,-1, an, an) = Gy (an-1, an, an).
The rest of the proof is the same as the proof of Theorem 3.15.

Analogously, we can prove the following theorem.

Theorem 3.17. Let (X, G) be a complete G;— metric space withs > 1. Leta : X x X x X — (0, o0) and g be a
rectangular a-admissible mapping. Suppose that there exist 0 € Q and r € (0, 1) such that

1 ,
557 6o, 8U, 81 = Gy (u, v, W) = & (u, v, W) 6 (ssz (gu, gv, gw)) <[0(M(u, v, w))]
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forallu,v,w € X with at least two of gu, gv and gw are not equal, where

> 1+5[Gy (u,v,W)+Gy(v,8u,gu)+Gp(u,8v,8v)]°
Gp(u,8v,8v)Gp(u,v,w)
1+5Gp(u,gu,gu)+s2[Gp(v,8v,8v)+Gy(v,gu,gu)]

{ Gy (U, v, w) Gp(u,8u,8u)Gp(v,8v,8W) }

M (u, v, w) = max .

Also, suppose that the following assertions hold:

(i) There exists ag € X such that a (ap, gap, gap) = 1;

(ii) For any convergent sequence {an} to a with a (an, an+1, an+1) = 1 foralln € NU{0}, wehave a (an, a,a) = 1
foralln e NU{0}.

Then g has a fixed point.

(iii) Moreover, if for all u,v € Fix(g) implies a(u,v,v) = 1, then the fixed point is unique
where Fix(g) = {u; gu = u}.

Now, we give an example to support Theorem 3.1

Example 3.18. Let X = [0,00) and G}, : X x X x X — R be a G,-metric space defined by G,(u,v,w) =
(ju—-v|+|v-w|+|u-wl|)?. Clearly (X, G,) is a complete G,,-metric space with s = 2. Also let r = % and define
g: X—X,a:XxXxX—+Rand6:[0,c0) — [1, c0) by

M
_J 5 ifx € [0, 1]
800 { x2, otherwise,

1, ifu,v,we|0,1]
alu,v,w) = .
0, otherwise,

and
0(t) = e’.

Assume that leGb(u,gu, gu) < Gp(u,v,w). If one of u,v,w ¢ [0, 1], then a(u, v,w) = 0 and so, the
conclusion of (3.1) is satisfied. If u, v, w € [0, 1], then gu, gv, gw € [0, 1] and a(u, v, w) > 1 with gu # gv #
gw. Hence,

4(1(\u—v\+|v—w\+\u—w\))2

a(u, v, w)0(4Gy(gu, gv, gw))

_ ezs(|” v|+v-w|+|u-w|)?

B/ (u=v]+|v-w|+[u- -wl)?
- (e

eGb(u v, w))

2
(Ju=v|+|v-w]|+|u- w|)2)

= (6(Gh(u, v, w))® .
Thus all conditions of Theorem 3.15 are satisfied and x = O is the unique fixed point of g.

Corollary 3.19. Let (X, Gp) be a complete G- metric space withs > 1. Leta : X x X x X — (0, o) and g be a
rectangular a-admissible mapping. Suppose that there exist 0 € Q andr, 8, 8,y € (0, 1) with 6 + B+~ < 1 such
that
1 2
ﬁGb (u, gu, gu) < Gy (u,v,w) = a(u,v,w)o (s Gy (gu, gv, gw))

. Gp (u, gu, gu) Gy (v, 8v, W) Gy (U, 8U, 8u) Gy (v, 8V, 8W) '
h {6 (6Gb (u, v, w)+ B 1+ Gy (u,v,w) i 1+ Gy, (gu, gv, gw)

forallu, v, w € X with at least two of gu, gv and gw being not equal. Also, suppose that the following assertions
hold:
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(1) There exists ag € X such that a (ag, gao, gao) = 1;

(ii) For any convergent sequence {an } to a with a (an, an+1, an+1) = 1, foralln € Nu{0}, wehave a (an, a, a) =
1foralln € Nu{0}.

Then g has a fixed point.

(iii) Moreover, if for all u, v € Fix(g) implies a(u, v,v) = 1, then the fixed point is unique where Fix(g) =
{u; gu = u}.

Corollary 3.20. Let (X, Gp) be a complete G,-metric space withs > 1. Leta : X x X x X — (0, o0) and g be a
rectangular a-admissible mapping. Suppose that there exist 0 € Q andr, 6, 8,y € (0, 1) with 6 + f+~ < 1 such
that

Gp (u,g8u,gu) < Gpu,v,w)=a(u,v, W)G(Ssz (gu,gv,gw))
{ ( 8Gy (U, v, w) + /;Gb(u,gu,gu)Gb(u,gv,gW)+Gb(v,gv,gW)Gb(v,gu,gu) )}’
+

32

1+s[Gp (u,gu,gw)+Gp(v,8v,8w)]
Gp(u,gu,gu)Gp(u,8v,gw)+Gy(v,8v,8w)Gp(v,8U,8U)
1+Gp(u,gv,gw)+Gy(v,8u,gw)

IN

forallu,v,w € X with at least two of gu, gv and gw being not equal. Also, suppose that the following assertions
hold:

(i) There exists ag € X such that a (ag, gag, gap) = 1;

(ii) for any convergent sequence {an} to a with a (an, an+1, an+1) = 1, foralln € NU{0}, we have a (an, a, a) =
1foralln e NU{0}.

Then g has a fixed point.

(iii) Moreover, if for allu, v € Fix(g) implies a(u, v, v) = 1, then the fixed point is unique where Fix(g) = {u; gu =

u}.

Corollary 3.21. Let (X, Gp) be a complete G- metric space withs > 1. Let a : X x X x X — (0, o) and g be a
rectangular a-admissible mapping. Suppose that there exist 0 € Q andr, 6, 8,y € (0, 1) with 6+ f+~ < 1 such
that

%Gb (u,gu,gu) < Gb(u,v,W)=>a(u,v,W)9(ssz (gu,gv,gW))

3s
G (u,8U,gU)Gp(v,8V,8W) r
|:9 < SGb (u v, W) + ﬁ 155}6;,(11 11; yv)ﬁlél,g(,:x g;l)/ ;515:& gu,gu)] >:|
b

IN

u,gv gv)Gb(u v,W
bl 1+5Gp(u,gu,gu)+s%[Gp(v,gu,gu)+Gy(v,gv,8v))

forallu,v,w € X with at least two of gu, gv and gw being not equal. Also, suppose that the following assertions
hold:

(i) There exists ap € X such that a (ao, 8ao, gao) = 1;

(ii) For any convergent sequence {an } to a with a (an, an+1, @n+1) = 1 foralln € NU{0}, we have a (an, a,a) = 1
foralln e Nu {0}.

Then g has a fixed point.

(iii) Moreover, if for allu, v € Fix(g) implies a(u, v, v) = 1, then the fixed point is unique where Fix(g) = {u; gu =
u}.

Taking 6 (t) = e’ for all t > 0, in the above corollaries we get the following new results.

Corollary 3.22. Let (X, Gy) be a complete G- metric space withs > 1. Leta : X x X x X — (0, o) and g be a
rectangular a-admissible mapping. Suppose that there exist 0 € Q andr, 6, 8,y € (0, 1) with 6+ f+~ < 1 such
that

B%Gb (u,8u,8u) < Gp(u,v,w)=Ina(u,v,w)+s>Gy(gu, gv, gw)

N

Gp (u, gu, gu) Gy (v, v, W) Gy (U, 84, gu) Gy (v, 8V, 8W)
= 7|86, w)+p 1+ Gy (u, v,w) it 1+ Gy (gu, gv, gw)

forallu,v,w € X with at least two of gu, gv and gw being not equal. Also, suppose that the following assertions
hold:
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(i) There exists ag € X such that a (ap, gap, gap) = 1;

(ii) For any Convergent sequence {an} to a with a (an, @n+1, Gn+1) 2 1 foralln € NU{0}, we have a (an, a, a) =
1foralln € NU{0}.

Then g has a fixed point.

(iii) Moreover, if for allu, v € Fix(g) implies a(u, v, v) = 1, then the fixed point is unique where Fix(g) = {u; gu =

uj.

Corollary 3.23. Let (X, G;,) be a complete G- metric space (with parameter s > 1). Let a : Xx X x X — (0, o0)
and g be a rectangular a-admissible mapping. Suppose that there exist 0 € Q, and r,§,,v € (0, 1) with
8+ B+~ < 1such that

IN

%Gb (u, gu, gu) Gy (u,v,w)=Ina(u,v,w)+ ssz (su, gv, gw)

Gp(u,8u,8u)Gp(u,8v,gw)+Gp(v,8v,8W)Gp(v,8uU,8U)
,| 00p v, W+ 145[G, (U, gW)* Gy (V,8V,8W)]
4y G (U, 8U,8U) Gy (u,8V,8W)+Gp (vV,8V,8W) G (V,8U,8U)
v 1+Gp(u,gv,gw)+Gp(v,gu,gw)

IN

forallu, v, w € X with at least two of gu, gv and gw being not equal. Also, suppose that the following assertions
hold:

(i) There exists ag € X such that a (ao, gao, gao) = 1;

(ii) For any Convergent sequence {an} to a with a (an, @n+1, an+1) = 1 foralln € NU{0}, we have a (an, a, a) =
1foralln € NU{0}.

Then g has a fixed point.

(iii) Moreover, if for allu, v € Fix(g) implies a(u, v, v) = 1, then the fixed point is unique where Fix(g) = {u; gu =

u}.

Corollary 3.24. Let (X, Gp,) be a complete G,-complete metric space withs > 1. Let a : XxXxX — (0, o) and
g be arectangular a-admissible mapping. Suppose that there exist 8 € Q, andr, 6, 8, v € (0, 1) with §++~v < 1
such that

%sz (u,gu,gu) < Gp(u,v,w)=Inau,v,w)+s’Gy(gu, gv, gw)
Gp(u,gu,gu)Gp(v,8v,gw)
< 6Gp (u,v,w)+p 1+sEGb(u,$,w +G,,(u,gi,gvﬁGb(v,gu,gu)]
= Gp(u,8v,8v)Gp(U,v,w)

Y 105G, (w81, 8u)+57[Gy (v,81, )+ G (v, 8V, 8V)]

forallu, v, w € X with at least two of gu, gv and gw being not equal. Also, suppose that the following assertions
hold:

(i) There exists ag € X such that a (ap, gap, gap) = 1;

(ii) For any convergent sequence {an} to a with & (an, an+1, an+1) = 1 foralln € NU {0}, such that an — x as
n — oo, we have & (an, a,a) = 1 foralln € NuU {0}.

Then g has a fixed point.

(iit) Moreover, if for all u,v < Fix(g) implies a(u,v,v) = 1, then the fixed point is unique where Fix(g) =
{u; gu = u}.
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