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At different stages throughout their life cycle, plants often encounter several pathogenic
microbes that challenge plant growth and development. The sophisticated innate plant
immune system prevents the growth of harmful microbes via two interconnected
defense strategies based on pathogen perception. These strategies involve microbe-
associated molecular pattern-triggered immunity and microbial effector-triggered
immunity. Both these immune responses induce several defense mechanisms for
restricting pathogen attack to protect against pathogens and terminate their growth.
Plants often develop immune memory after an exposure to pathogens, leading to
systemic acquired resistance. Unlike that with harmful microbes, plants make friendly
interactions with beneficial microbes for boosting their plant immune system. A spike in
recent publications has further improved our understanding of the immune responses in
plants as triggered by interactions with microbes. The present study reviews our current
understanding of how plant–microbe interactions can activate the sophisticated plant
immune system at the molecular level. We further discuss how plant-microbe interaction
boost the immune system of plants by demonstrating the examples of Mycorrhizal and
Rhizobial association and how these plant-microbe interactions can be exploited to
engineer disease resistance and crop improvement.

Keywords: plant immunity, innate immunity, microbe-associated molecular pattern-triggered immunity, effector-
triggered immunity, mycorrhiza-induced resistance, beneficial microbes

INTRODUCTION

Plants encounter a wide range of microorganisms throughout their lifetime, and their interactions
with these microorganisms can be either beneficial or deleterious, resulting in the establishment
of mutualistic or pathogenic interactions, respectively (Thrall et al., 2007; Rodriguez et al., 2019).
To respond to various beneficial and pathogenic microorganisms, plants can modulate their
innate immune system based on the mechanism induced by the microbes and exhibit appropriate
responses (Pieterse et al., 2014). Plants possess a sophisticated immune response strategy that
can be expressed either constitutively or following a microbial challenge. Once a microorganism
overcomes these protectant barriers, it establishes a consistent interaction with the plant, leading to
either a beneficial association or a disease.

Mutualistic associations can induce immune responses against other microorganisms. In
addition, detrimental microbial associations trigger immune system induction but against
themselves. Although various pathogens exist in the surrounding soil, water, and air, the total loss
of a crop to disease is not common. This reflects the plant’s defense systems and natural biocontrol
processes to control pathogens. Recently, the role of beneficial non-pathogenic microbes in the
defense priming of host plants has been reported (Dey et al., 2014; Martínez-Hidalgo et al., 2015;
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Singh et al., 2016), which suggest that plant immunity is
induced if a successful interaction is achieved via non-
pathogenic microbes. Mycorrhizal and rhizobial associations are
important examples of immune responses induced by beneficial
microbial associations. However, detailed studies are warranted
to understand how the mutualistic plant–microbe association
induces plant immunity to develop new disease control measures
in the field of agriculture. The use of beneficial microbes to
induce plant defense response against pathogenic microbes will
be an ecofriendly alternative to hazardous chemical pesticides in
disease management. This review discusses various types of plant
defense responses modulated by plant interactions with diverse
microbial communities and outlines the possible strategies to
boost plant immunity.

PLANT DEFENSE RESPONSES

Innate Immunity
Plants block a majority of microbes at the front line by a
non-host resistance strategy. It involves physical barriers
such as waxy cuticles, rigid cell walls, and antimicrobial
secondary metabolites. The pathogens that successfully
overcome these barriers have to encounter the efficient
plant immune system terminating the progression of microbial
colonization. Unlike mammals, plants do not have a somatic
adaptive immune system with mobile defender cells. Instead,
they depend on each cell exerting innate immunity, with
systemic signals emerging from the infected cells and the
ability of plant cells to remember previous infections (Reimer-
Michalski and Conrath, 2016). The currently adopted zig-zag
coevolutionary model describes two branches of molecular
defense strategies (Jones and Dangl, 2006). The first branch
utilizes the recognition of the microbe or pathogen or
damage-associated molecular patterns (MAMP/PAMP/DAMP)
through plant cell surface-anchored pattern recognition
receptors (PRRs) to induce a set of responses such as MAMP-
triggered immunity (MTI), PAMP-triggered immunity (PTI),
and DAMP-triggered immunity collectively referred to as
pattern−triggered immunity (PTI; Saijo et al., 2018). The
second branch utilizes the recognition of microbial effectors,
the virulence factors that suppress MTI, through resistance
(R) proteins to initiate effector-triggered immunity (ETI). The
activation of these immune responses triggers a cascade of
complex signaling events, leading to suppression of pathogen
attacks (Figure 1).

MTI
To understand the first branch of immune response, we will
focus on MTI. The plant membrane receptors—PRRs—recognize
MAMPs to induce MTI, thereby resulting in rapid calcium
influx, reactive oxygen species (ROS, also known as the oxidative
burst) accumulation, mitogen-activated protein kinase (MAPK)
phosphorylation cascades, cell wall alterations, and defense gene
expressions (Windram and Denby, 2015; de Lorenzo et al.,
2018). Bacterial flagellin, elongation factor, fungal chitin, and

lipopolysaccharides (LPS) are examples of conserved MAMPs
present in microbes.

Given that MTI is an important immune response in plants,
great attention has been paid to understand the recognition
mechanism of MAMPs by PRRs and the complex network
underlying signaling events. PRRs usually are plasma membrane-
bound proteins such as receptor-like kinases (RLKs) or receptor-
like proteins (RLP) with extracellular domains. FLAGELLIN-
INSENSITIVE 2 (FLS2) and elongation factor-Tu (EFR) are PRRs
that recognize flagellin epitope (flg22) and bacterial elongation
factor-Tu epitope (elf18), respectively (Bauer et al., 2001; Zipfel
et al., 2006). Chitin elicitor receptor kinase 1 (CERK1) is another
example of a PRRs that perceives fungal chitin and bacterial
peptidoglycan (Miya et al., 2007; Willmann et al., 2011).

FLAGELLIN-INSENSITIVE 2, belonging to the RLK family,
is a well-studied PRR in Arabidopsis. FLS2 requires G protein for
innate immune signaling (Liang et al., 2016). Trusov and Botella
(2012) have reported the involvement of G protein in plant
defense, and since then researchers have vested interest toward
G protein. Unlike animal G proteins, plant G proteins are self-
activating and thus independent of G protein-coupled receptors,
they are coupled to receptor kinases, including FLS2 (Urano and
Jones, 2014; Liang et al., 2016). Upon perceiving flg22, FLS2
forms a dynamic complex by recruiting the coreceptor—BRI1-
associated receptor kinase (BAK1), receptor-like cytoplasmic
kinase Botrytis-induced kinase 1(BIK1), and G protein—that
activates defense responses (Liang et al., 2016). Liang et al.
(2018) recently reported that the regulator of G protein signaling
1(RGS1), a GTPase accelerating protein, maintains an inactive
state of G proteins in complex with FLS2. Flg22-induced
activation of FLS2 leads to BIK1-mediated phosphorylation
of RGS1, which in turn results in the dissociation of RGS1
from the FLS2–G protein complex. Upon relieving the RGS1-
mediated repression of G protein, positive regulation of immune
signaling occurs.

Upon MAMP perception, ROS burst occurs rapidly
via RBOHD, an NADPH oxidase. BIK1 directly phosphorylates
RBOHD to prime flg22- induced ROS (Li L. et al., 2014).
RBOHD produces membrane-impermeable superoxide (O−2 ),
and superoxide dismutase (SOD) converts this O−2 into H2O2 in
apoplasts (Podgórska et al., 2017). H2O2 enters into the cytosol
and induces cytosolic Ca2+ elevation (Yuan et al., 2017).

Influx of extracellular Ca2+ in the cytosol (also known as
Ca2+ burst that is positively regulated by BIK1) is an earliest
response to MAMP perception (Jeworutzki et al., 2010). Ca2+

activates phospholipase C that releases a downstream secondary
messenger that leads to further Ca2+ release (Li L. et al., 2014).
Ca2+ binds to a sensor molecule (calmodulin or Ca2+-dependent
protein kinases). The activated sensor molecule phosphorylates
the protein kinase, leading to either the expression of the defense
gene or activation of the enzyme for metabolite production.
Ca2+ influx activates the H+/K+ ion fluxes and also Cl−, K+,
and NO−3 efflux which leads to extracellular alkanization and
depolarization of the plasma membrane (Jeworutzki et al., 2010).
Even though Ca2+ induced immune signaling response has been
studied, the underlying mechanisms of PRR induced Ca2+ entry
remained unclear until the recent study by Tian et al. (2019).
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FIGURE 1 | Schematic representation of microbial resistance in plants MAMP (e.g., bacterial flagellin flg22 and fungal chitin) recognition by receptor-like kinases
(RLK; a PRR) triggers mitogen-activated protein kinase (MAPK) cascades, eventually resulting in MAMP-triggered immunity (MTI). Another PRR, receptor-like protein
(RLP, e.g., RLP23), perceives MAMP or pattern-associated molecular patterns (PAMP), and induces pattern-triggered immunity (PTI). Necrosis and
ethylene–inducing peptide 1 (NEP1)–like proteins (NLPs) are examples of PAMP, which are recognized by RLP23. To counteract plant defense responses, pathogen
release effectors into plant cells. Bacteria secrete and deliver effector proteins into plant cells via type III secretion system (T3SS), whereas fungi and oomycetes
secrete effectors via haustoria. Once plant resistance protein coiled–coil (CC) NLR (known as CNL) and Toll-interleukin-1 receptor (TIR) NLR (known as TNL)
recognize the effector activity inside the cell, effector-triggered immune responses (ETI) will be induced. The extracellular LRR protein—polygalacturonase-inhibiting
protein (PGIP)—interacts with microbial polygalacturonase (PG), which slow down the plant pectin degradation and results in the formation of oligogalacturonides
(OG), a damage-associated molecular pattern (DAMP). DAMP perception by PRR triggers DAMP-triggered immune responses (DPI).

In plant cell, calmodulin blocks CNGC2-CNGC4 Ca2+ channels
and remains closed in the resting state. Upon pathogen attack,
BIK1 phosphorylates C-terminal cytosolic domain of CNGC4
and activates the channel, which results in the increased cytosolic
calcium concentration (Tian et al., 2019).

Mitogen-activated protein kinase activation occurs in a few
minutes (2–3 min after flg22 perception) within the same
time frame as the Ca2+ burst. MAPK activation leads to
phosphorylation of ethylene (ET)-dependent transcription factor
(TF), activation of ET responsive genes, and synthesis of ET
(Jagodzik et al., 2018). Bigeard et al. (2015) have extensively
reviewed MAPK-triggered immunity in plants. MAPK activation
leads to phosphorylation of several TFs that regulates several
genes such as those involved in salicylic acid (SA), jasmonic
acid (JA), and ET signaling as well as antimicrobial compound
production. Finally, this complex signaling network results
in plant-induced defenses. FLS2 receptor complex-induced
signaling mechanism is illustrated in Figure 2. For clarity,
Arabidopsis thaliana FLS2 has been considered as a model.

ETI
To counteract MTI, pathogen releases effector protein into
the host cell that leads to effector-triggered susceptibility.
Intracellular immune receptors, namely nucleotide binding (NB)
leucine rich -rich repeat (LRR) receptor (NLR) proteins, encoded

by resistant genes recognize these effectors or their activity
and induce ETI (Dangl and Jones, 2001). NLR proteins belong
to signal transduction adenosine triphosphatases (ATPases)
with numerous domains (STANDs) including a conserved
tripartite domain structure that contains a conserved central
NB and oligomerization domain, a C-terminal LRR domain,
and a non-conserved N-terminal domain. The central NB
and oligomerization domain can be further divided into
a helical domain (HD1), a winged-helix domain (WHD),
and an NB domain (NBD). NLR proteins are divided into
two groups based on their N-terminal domain: coiled coil
(CC)–NLRs and Toll-interleukin-1 receptor (TIR)–NLRs. CC-
containing NLR are called as CNLs and TIR domain containing
NLRs known as TNLs.

The activation of plant NLRs cease pathogen proliferation by
inducing different immune responses including Ca2+ signaling,
nitric oxide and ROS production, alteration in membrane
trafficking, transcriptional reprogram of defense genes, and
program cell death called hypersensitive response (Grant et al.,
2000; Gao et al., 2013; Caplan et al., 2015). JA and SA
accumulation, antimicrobial molecule and hydrolytic enzyme
production, and callose deposition at the site of infection are also
detected as a result of effector perception.

Plant NLRs function as molecular switch with ADP-bound
autoinhibited “off” state and ATP-bound activated “on” state
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FIGURE 2 | Schematic representation of MAMP-PRR-induced signaling events. Upon flg22 (MAMP) perception by FLS2 (PRR), an immune response complex is
rapidly formed. The receptor complex (FLS2, BIK1, BAK1, and G protein) perceives flg22 and induces active FLS2–BAK1 receptor complex formation and
BIK1-dependent phosphorylation of RGS1, which results in dissociation of RGS1 from G proteins and FLS2. The release of RGS1 from G protein leads to the
spontaneous conversion of GαGDP into GαGTP. Ca2+ influx occurs as an earliest response of MAMP perception. Ca2+ influx activates H+/K+ exchange. Ca2+

activates phospholipase C that releases a downstream secondary messenger, leading to further release of Ca2+. The activation of phospholipase C (PLC) either by
G protein or Ca2+ leads to the breakdown of phosphatidyl-4, 5-bisphosphate into diglyceride (DAG) and inositol 3-phosphate, eventually causing structural
instability. BIK1 phosphorylates the NADPH oxidase (RBOHD), leading to reactive oxygen species burst. The activated sensor molecule phosphorylates the protein
kinase that leads either to expression of the defense gene or activation of the enzyme for metabolite production. MAPK cascade leads to phosphorylation of
transcription factor (TF) and activation of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) signaling. Mitogen-activated protein kinase (MAPK) cascade also
result in production and secretion of antimicrobial compounds.

(Hu et al., 2013). Intracellular interaction between CC or TIR
and LRR keep the NLR protein in an inactive state. Direct
or indirect recognition of effector triggers opening of NLR
protein, alters intramolecular interaction, relieves inhibition,
and causes exchange of ADP for ATP, followed by activation of
NLR protein which triggers downstream signaling (Zhang et al.,
2017; Kourelis and van der Hoorn, 2018). NLR mutation and
swap experiments support the key role of variable C-terminal
LRR domain in the effector recognition (Krasileva et al., 2010;
Ravensdale et al., 2012).

NLR induce ETI either by directly recognizing effectors or
indirectly recognizing host proteins that have been modified by
effector activity (Dodds et al., 2006; Ade et al., 2007; Wang
et al., 2019a,b). In indirect recognition model, NLR protein
either recognize effector modified host target protein known
as guardee, that is bound to and monitored by NLR protein,
or recognize effectors modified plant decoy protein that mimic
host target protein (Chung et al., 2014; Li M. et al., 2014;
Ntoukakis et al., 2014). Many identified guardee have key
immune related function such as signaling whereas decoy protein
has no measurable resistant function.

Even though plant NLRs induce program cell death similar to
animal NLR, the signaling mediator such as caspases have not
been identified in plants. However, it was not known whether
plant NLR oligomerize upon activation. The recent report of
Arabidopsis coiled-coil (CC)–NLR protein HOPZ-ACTIVATED
RESISTANCE 1 (ZAR1) forming oligomeric state or the
“resistosome” provided the insight of plant NLR function (Wang
et al., 2019a,b). ZAR1 indirectly recognizes the bacterial effector
proteins through an association with pseudokinase known
as resistance-related kinase 1 (RKS1). ZAR1-RKS1 complex
indirectly recognizes Xanthomonas campestris pv. campestris
effector AvrAC (uridylyl transferase). AvrAC first uridylylates
PBS1-like protein 2 (PBL2), a receptor-like cytoplasmic kinases
(RLCK), it is a decoy protein. Uridylylated PBL2 (referred as
PBL2UMP) binds to the ZAR1-RKS1 complex which triggers
conformational change in NB domain and enables ADP to release
from inactive ZAR1 which results in nucleotide depleted ZAR1
(ZAR1- RKS1-PBL2UMP complex). The ZAR1- RKS1-PBL2UMP

complex is still in inactive state; hence, a second signal is required
for its activation. ATP or dATP activates ZAR1- RKS1-PBL2UMP

complex and acts as a best candidate molecule to trigger the
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FIGURE 3 | Schematic representation of transition of ZAR1 (a CC-NLR) from inactive to active oligomeric state. ZAR1 maintain inactive state in cells through the
contact of pseudokinase RKS1 and ADP molecule. AvrAC effector from the bacteria uridylate PBL2 (a decoy protein) to PBL2UMP. Uridylation enable binding of
PBL2UMP to RKS1, which cause conformational change, NBD rotate outward, and consequently ADP release from ZAR1. Then ATP or dATP bind to ZAR1-
RKS1-PBL2UMP complex, which further results in second conformational change, fold switching of CC domain. Oligomerization of this complex form pentameric
ZAR1- RKS1-PBL2UMP. As a consequent of structural change, amphipathic α helix release from very N-terminal of ZAR1 and form funnel shaped structure. This
structure may promote ZAR1 association with plasma membrane and result in cell death by affecting plasma membrane integrity.

second signaling step that leads to the oligomerization of the NLR
protein. ATP or dATP binding induces second conformational
change which results in NBD rearrangement and restructuring
of CC domain. Then the complex forms a wheel-like pentameric
active “resistosome.” A funnel-shaped structure formed from
the α helices of oligomeric CC domains is essential for plasma
membrane association activities and immune signaling. Plasma
membrane associated resistosome can affect integrity of plasma
membrane or ionic homeostasis (Wang et al., 2019a,b; Figure 3).

SYSTEMIC ACQUIRED RESISTANCE
(SAR)

Previously challenged (primed) plants exhibit a greater resistance
against subsequent challenges via a phenomenon known as
systemic acquired resistance (SAR). Encountering with the

pathogen for the second time in the SAR state activates an
effective immune response (Conrath, 2006) and possibly provides
long-lasting protection ranging from weeks to a month and
sometimes throughout an entire season. Tissue necrosis caused
by the plant pathogen induces SAR either as a part of HR or as a
symptom of a disease. One of the characteristic features of SAR
is the spread of increased resistance to the distal uninoculated
plant organs on the challenged plant (Adam et al., 2018). Another
feature of SAR is its activity against a wide and distinctive range
of pathogens, including bacteria, fungi, oomycetes, and viruses.
SAR is evidence for the existence of plant memory.

Metabolites such as SA and pipecolic acid (Pip) are vital for
SAR, with each one activating different sets of defense-related
genes (Bernsdorff et al., 2016). Recent research demonstrates
that pathogen induced L-lys catabolic pathway, which generates
the N-hydroxypipecolic acid (NHP) from Pip, is central of
plant SAR, and flavin-dependent-monooxygenase1 (FMO1) is
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a key regulator in the pathway (Chen et al., 2018; Hartmann
et al., 2018). NHP is found systemically accumulated upon
microbial attack. Exogenous application of NHP in Arabidopsis
is also found inducing resistance against bacteria and oomycetes.
Hence metabolic engineering of pipecolic acid pathway in plants
can be a promising strategy for enhanced disease resistance
(Chen et al., 2018).

Several metabolites that are involved in long-distance
signaling have been identified. Methyl esters of SA (MeSA),
dicarboxylic acid, azelaic acid (AzA), and abietane diterpenoid
dehydroabietinal (DA) are some examples of such types of
metabolites. It is known that SA is needed to establish systemic
resistance in distal tissues, and MeSA and DA promote SA
accumulation in distal leaves. AzA and Pip primes the faster
and stronger accumulation of SA (Shah and Zeier, 2013). The
first convincing evidence for the indispensable role of SA in
SAR came from studies on transgenic tobacco and Arabidopsis
plants that constitutively express bacterial SA hydroxylases.
These plants were unable to accumulate elevated concentrations
of SA and consequently could not secure systemic resistance
following challenge with necrotizing pathogens (Gaffney et al.,
1993; Delaney et al., 1994) possibly because of the destruction
of the SA signal. Pathogen-induced SA signal travels across plant
cells and activates signal transduction, eventually activating SAR-
inducing gene expression and increasing resistance to subsequent
infection (Gruner et al., 2013).

HOST IMMUNITY FAILURE LEADING TO
PLANT DISEASES

Because each plant species has the natural ability to recognize and
react to pathogen attacks and to resist most potential pathogens
(León and Montesano, 2013), plant diseases are not common
in natural ecosystems, particularly in the agroecosystem. Then,
what causes host immunity failure to precipitate disease? Once
a pathogen overcomes the host plant’s defenses, it can harness
the plant’s primary production and reproduce, and in most cases,
this leads to striking disease symptoms (Jones and Takemoto,
2004). Conversely, when the plant resistance framework restricts
the growth of pathogens, no disease symptoms occur. Immune
system failure permits further entrance into the host plants by
the attacking pathogens. Pathogens have evolved to develop
effector proteins and other small molecules to stifle the MAMP-
activated defenses (Jones and Dangl, 2006; Zheng et al., 2012)
so that the pathogen establishes effector-triggered susceptibility
by suppressing MTI (Pel and Pieterse, 2013). Effectors can
also manipulate host target proteins to disable the plant
immune system. Such examples include an effector from
phytoplasma bacteria that binds to host Teosinte branched
1/Cincinnata/proliferating cell factor (TCP)/TFs to inhibit JA
synthesis (Sugio et al., 2011). Effectors secreted from oomycetes
inhibit host extracellular defense enzymes and suppress host
defense by interfering with plant processes inside the host cell,
with the AVR3a effector from Phytophthora infestans stabilizing
ubiquitin ligase to prevent hypersensitive-like host cell death,
allowing further cell ingress by the pathogen (Stassen and Van

den Ackerveken, 2011). Transcriptional reprogram of host plants
by pathogen effector molecules to suppress immunity has also
been reported, with transcription activator-like (TAL) effectors
from Xanthomonas oryzae pv. oryzae binding specifically to
promoter sequences called TAL effector binding elements in rice
Xa5 genes to activate transcription of susceptibility genes such as
OsSWEET11 and OsSWEET14 (Mak et al., 2013).

In addition to host immunity failure, processes such as
attraction to and attachment of the pathogen to the host plant,
allowance of room for infection structures in the plant cell, and
provision of food for the pathogen can contribute to increased
plant susceptibility to pathogen (Lapin and Van den Aclerverken,
2013). Plant signals promote pathogen development, and this
has been widely studied in different plants. Gene expression
studies on germinating spores of Colletotrichum higginsianum, a
hemibiotrophic fungus, revealed the effects of host plant signals
on early pathogen development. Transcription of more than
1,700 genes was induced upon C. higginsianum spore attachment
onto the host plant surface compared with that upon attachment
onto an artificial polystyrene surface (O’Connell et al., 2012).
Some plant-derived chemicals such as alcohols, aldehydes, fatty
acids, and flavonoids attract plant pathogens, promote their
attachment, and finally induce the formation of penetration
structures known as appressoria (Lapin and Van den Aclerverken,
2013). The release of flavonoids from the plant roots attracts
soil-borne pathogens such as Phytophthora spp. (Morris and
Ward, 1992). Plant hormones such as ET from ripening fruits
can induce spore germination and appressorium formation in
C. gloeosporioides (Kolattukudy et al., 1995). Thus, the plant
signal-motivated attraction of pathogenic microbes to the plant
provides a favorable environment for pathogens to cause diseases.

Some pathogens manipulate the host cellular machinery
by producing toxic substances such as HC toxin that is a
histone deacetylase inhibitor produced by the phytopathogenic
fungus Cochliobolus carbonum, which reprograms the host
transcriptional response to pathogen challenge in maize, causing
ineffective immune defense response (Walley et al., 2018). Before
practicing the transfer of beneficial microorganisms to the field,
extensive studies must be conducted to ensure that beneficial
microorganisms do not acquire such a toxin gene from a
pathogen by horizontal gene transfer.

MUTUALISTIC PLANT–MICROBIAL
ASSOCIATION AND INDUCED PLANT
IMMUNE RESPONSE

In addition to innate immunity and SAR, plants develop
another type of induced immune response via mutualistic
association with friendly microbes. This response is achieved by
providing a shelter for friendly beneficial microbes within the
plant body, thus gaining resistance against harmful microbes.
The beneficial microbes synthesize toxins against invading
harmful microbes and protect the plant from pathogenic
diseases. This type of plant–microbe interaction is often called a
symbiotic association. Associations with mycorrhiza, rhizobium,
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and endophytic microbes are some examples of mutualistic
plant–microbe interactions and induce plant immune response.

Mycorrhizal Association and Its Role in
Plant Immune Response
Plant–mycorrhizal association is one of the examples of
mutualistic association that plays an important role in
stimulating plants immune response against soil-borne
diseases and pests (Sanchez-Bel et al., 2016). In response
to colonization by arbuscular mycorrhizal fungi (AMF),
plants develop an enhanced defensive strategy known as
mycorrhiza-induced resistance (MIR; Cameron et al., 2013).
AMF suppresses plant diseases and pests through induced
systemic resistance (ISR; Jung et al., 2012; Song et al., 2015). MIR
shares features of pathogen-induced SAR and non-pathogenic
rhizobacterium- ISR.

From the plant’s perspective, the mycorrhizal fungus is an alien
“non-self ” organism, and plants may recognize it as a pathogen
and exhibit an immune response, which the fungus then has
to overcome to establish a successful interaction. Given that
AMF lives within the plant, the colonization process is similar to
infection by a biotrophic pathogen and hence the initial defense
responses induced against these two classes of microorganisms
are similar (Pieterse et al., 2012). Increases in SA production
occur in the root following AMF colonization, along with
accumulation of defensive products such as hydrolytic enzymes
and ROS as well as activation of the phenylpropanoid pathway,
albeit at a lower level than that during the plant–pathogen
interaction (Fester and Hause, 2005; Scheler et al., 2013).

Compared with the plant–pathogen interaction, the
mutualistic response generated during AMF colonization is
spatiotemporally limited, suggesting that control operates over
the immune response and the establishment of mutualism
(Garcia-Garrido and Ocampo, 2002). Nevertheless, increases
in SA concentration have been reported to have a negative
effect on AMF colonization (de Roman et al., 2011). Therefore,
for successful establishment of an AMF association, inhibition
of some SA-regulated responses is essential, as described for
other mutualistic associations (Dumas-Gaudot et al., 2000).
In this manner, the secretory effector proteins from AMF
interfere with the host plant immune system by suppressing
SA-dependent defense reactions (Kloppholz et al., 2011). The
upregulation of other phytohormones, such as JAs, also plays a
central role in the establishment and maintenance of the AMF
mutualistic association (Hause et al., 2007). Once a successful
association is established between the AMF and the plant, the
induced JA plays an important role in MIR (Yogendra et al.,
2015). AMF-colonized plants are more resistant to necrotrophic
pathogens (Pozo et al., 2009) and more susceptible to biotrophic
pathogens, and these observations can be explained by the role
of JA in defense against necrotrophs and of SA in defense against
biotrophs (Robert-Seilaniantz et al., 2011). In AMF associations,
SA-dependent responses are suppressed, whereas JA-dependent
responses are activated.

After establishing a successful association with a plant, AMF
recruit root-associated bacteria such as plant growth-promoting

rhizobacteria to upregulate immune responses against pathogens.
Cameron et al. (2013) proposed a four-phase spatiotemporal
model to describe the overall mechanism involved in the
mycorrhizal association and MIR. The first phase is the release
of plant root exudates such as sugars, amino acids, phenolic
compounds, and other secondary metabolites, which attract soil
microorganisms to the roots. More importantly, root exudates
comprising strigolactones have the ability to recruit AMF to plant
roots (Akiyama et al., 2005). In the second phase, the plant exerts
an immune response against AMF. This immunity induction is
based on the recognition of the AMF’s MAMPs using the plant’s
PRRs, thereby enhancing SA accumulation and triggering the
immune response (Zhang and Zhou, 2010).

The next phase is the suppression of plant immunity by
mycorrhizae and the recruitment of mycorrhizosphere bacteria.
Immunity suppression by AMF is similar to that in the process of
plant–pathogenic fungus association, wherein pathogenic fungi
suppress plant immunity by secreting specific effectors and
subsequently establishing a successful infection (de Jonge et al.,
2011). Furthermore, AMF exerts immune suppression through
calcium/calmodulin kinase DMI3, which represses early-acting
defense genes (Siciliano et al., 2007). AMF reportedly induces the
production of the plant hormone abscisic acid (ABA) to boost
its own colonization of the host root system via suppressing the
SA-dependent defense response (Ton et al., 2009). Although SA
induction is suppressed during successful AMF colonization, the
fact that the initial SA response can lead to production of long-
distance SAR signals could be the basis of SA-based defense (Heil
and Ton, 2008; Conrath, 2011).

The last phase of the four-phase spatiotemporal mycorrhizal
model is mycorrhizosphere development and ISR. The
successful mycorrhizal association enhances the transport of
photosynthates to the roots and influences the sugar-dependent
signaling pathways (Smith and Smith, 2011). Taken together,
this activity and improved phosphate uptake by mycorrhizae
change the composition of root exudates. These changes enhance
rhizobacterial recruitment and subsequently mycorrhizosphere
development (Jung et al., 2012). Similar to that with AMF,
rhizobacteria comprise MAMPs that activates MAMP-induced
immune responses (Berendsen et al., 2012). Thus, MIR is the
result of a direct plant response against arbuscular mycorrhizal
colonization and an indirect response against rhizobacteria,
which inhabit the mycorrhizosphere (Cameron et al., 2013),
indicating the involvement of ISR induced by bacteria in MIR.
Systemic priming of both ET- and JA-inducible defenses has
frequently been reported in both ISR and MIR (Van der Ent
et al., 2009). Cameron et al. (2013) proposed that JA-dependent
defense priming during MIR is the result of ISR elicited by
rhizobacteria. A schematic representation of mycorrhization and
MIR is presented in Figure 4.

Rhizobial Associations and the Role of
Rhizobacteria in Plant Immune Response
Plants recognize beneficial rhizobial microbes, including
symbiotic and non-symbiotic microbes, as alien just as they
may recognize mycorrhizae as pathogens. Unless these microbes
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FIGURE 4 | Schematic representation of mycorrhization and mycorrhiza-induced resistance. Strigolactone in plant root exudates recruits arbuscular mycorrhizal fungi
(AMF) to the plant. Upon recognition of mycorrhizal microbe-associated molecular patterns (MAMPs), pattern recognition receptors (PRR) induce MAMP-triggered
immunity (MTI) and systemic priming of salicylic acid (SA)-dependent defenses. Mycorrhizal effector-induced ABA represses SA priming and suppresses MTI.
MAMP-triggered calcium spiking results in the activation of Ca2+/calmodulin kinase DMI3, which represses early defense gene expression and promotes
mycorrhization. The successful mycorrhizal association results in chemical alteration of exudates, rhizobacterial recruitment, and mycorrhizosphere development.
Mycorrhiza-induced systemic resistance is the result of ethylene (ET)- and jasmonic acid (JA)-dependent defenses exerted by mycorrhizosphere bacteria.

actively interfere with the plant immune system, they cannot
establish successful associations with the host plant. Bacterial
flagellin (MAMP) induces a defense response during the
Rhizobium-legume mutualism that does not persist for more
than 24 h due to a strong suppressive mechanism exerted by the
bacteria. In mutualistic rhizobial associations, rhizobia induce
MTI, which is found to be suppressed during the later stages
of root nodule formation and the underlying mechanism for
which has not yet been clearly defined. The suppression of
plant immunity during the initial phase of mutualism has been
recently reported (Zamioudis and Pieterse, 2012). Succinoglycan,
an exopolysaccharide (EPS) produced by bacteria, is proposed
to suppress plant immune defense during the initial phase
of mutualism (Jones et al., 2008). EPS suppresses MTI by
chelating calcium (Aslam et al., 2008), an important signal
molecule in MTI.

Root nodule is the result of the interaction between the
flavonoid excreted from the host plant and NodD, a rhizobial

TF that induces the rhizobial nod gene (nodule gene). This
nod gene is required for lipochitooligosaccharide (Nod factor,
NF) synthesis. NF induces root nodule formation; NFs and
their host receptors (Nod factor receptors, NFRs or Nod factor
perception, NFPs) are required for nodule organogenesis and
root hair infection (Kouchi et al., 2010). Rhizobium bacterium
infects the legume through root hair and infection threads;
furthermore, NF helps root hair to re-enter the cell cycle and
enhance the spread of rhizobia in the cortex. After infection, root
nodule harbors a striking number of rhizobia in root nodules
(Oldroyd et al., 2011). Beyond organogenesis, the nodulation
(nod) factor (NF) plays a crucial role in immune suppression,
thereby partly suppressing MTI (Liang et al., 2013). NF may affect
the strength of local induction of the SA-signaling pathway via
hormonal cross talk, given that the presence of NF increases the
levels of cytokinins and auxins in cortical cells (Oldroyd and
Downie, 2008; Pieterse et al., 2009). Besides NFs, rhizobia use
the type 3 secretion system (T3SS) to suppress MTI by secreting
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FIGURE 5 | Schematic representation of rhizobial mutualism and plant immunity modulation. Root exudates recruit Rhizobium to the plant root. Flavonoids activate
the nod gene transcription factor NodD and enhance nod factor (NF) production and ttsI expression. TtsI expression results in effector molecule production that
suppresses the host defense signals. Some effector molecules cause effector-triggered immunity (ETI) in the host. Intracellular receptor for NLR recognizes the
effector and activates ETI. NF induces root nodule formation and successful Rhizobium–plant association after interacting with their host receptors (Nod factor
receptors, NFRs or Nod factor perception, NFPs). Upon recognition of rhizobial flagellin [microbe-associated molecular patterns (MAMPs)], pattern recognition
receptors (PRR) induce microbe-associated molecular pattern-triggered immunity (MTI); however, NF partially suppresses microbe-associated molecular
pattern-triggered immunity (MTI) by affecting salicylic acid (SA) production via hormonal cross talk. The plant recognizes Rhizobium as a pathogen and induces MTI,
which results in ethylene (ET)-, and jasmonic acid (JA)-dependent defenses. Bacteria secrete 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme to
target the precursor of ET and suppress ET production, thereby affecting ethylene-induced defense. Rhizobium association does not affect the JA-dependent
signaling pathway, indicating its major role in induced systemic resistance (ISR) and conferring immunity in distal as well as local cells.

type III effectors; the same system is employed by pathogenic
bacteria for functioning in terms of virulence (Zamioudis and
Pieterse, 2012). The interaction between flavonoid and NodD
was found to activate ttsI expression, a type III secretion gene
transcriptional activator, and this results in production of effector
molecules [nociception receptor (Nop) proteins] that suppress
host immunity (Okazaki et al., 2013; Gourion et al., 2015).
A schematic representation of rhizobial mutualism and plant
immunity modulation is presented in Figure 5.

MAMP-triggered immunity elicited against non-symbiotic
beneficial microbes was found to be suppressed during the
early stage of colonization with the help of MAMPs such
as LPS and effector molecules such as EPS (Zamioudis and

Pieterse, 2012). Given that ET signaling is an important factor
in MTI, some bacteria target ET-dependent defense mechanisms
by secreting the 1-aminocyclopropane-1-carboxylate (ACC)
deaminase enzyme that targets ACC, the precursor of ET, to
suppress ET production in plants (Glick et al., 2007; Millet
et al., 2010). The other mechanism employed by non-mutualistic
microorganisms is the elevated production of phytohormones;
this mechanism has been reported to negatively cross talk with
the prime SA-signaling pathway and affect the immune response
(Verhage et al., 2010).

The induced JA/ET signaling pathway plays an important
role in ISR induced by beneficial microorganisms, whereas
the SA-induced pathway plays a similar major role in SAR
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induced by pathogens. However, some questions, such as how the
plant permits rhizobial growth to generate an immune defense
response, still need to be resolved. Rhizobial colonization shares
few similarities with pathogen infection. Rhizobia use the T3SS
to modify their host range, and the same process is identified
with pathogenic bacteria in terms of virulence function. As
observed in the case of the mycorrhizal association, the induced
resistance in rhizobial association may be the after effect of
induced MTI, wherein rhizobial microbes utilize some negative
responses against elevated SA and ET production to establish the
association. Simultaneously, they do not exert any adverse effect
on the JA-dependent signaling pathway, indicating that JA plays
a major role in ISR as well as in imparting systemic immunity
in distal cells (Zamioudis and Pieterse, 2012; Singh et al., 2016).
Several rhizobacteria have been reported to induce ISR against
insect herbivores in plants (Zebelo et al., 2016).

PERSPECTIVE

During the course of their lifetime, plants are exposed to
pathogenic microbes such as fungi, oomycetes, bacteria,
phytoplasmas, nematodes, and viruses. Regardless of these
continuous hostilities with pathogenic microbes, effective
colonization is the exception rather than the rule in the
natural world owing to the strength of plant immune systems
(Piasecka et al., 2015). Plants are also continuously interacting
with beneficial microbes, which also make an important
contribution to plant defense activity. Plants are the ultimate
energy source for most organisms; therefore, they have evolved
highly efficient survival strategies with a strong immune system
that is activated constitutively or after pathogen induction
(Panstruga et al., 2009).

Although chemical control agents like fungicides and
pesticides can efficiently fight against plant pathogens, they
constitute severe environmental hazards. Therefore, the
ecofriendly biocontrol strategies are becoming widely accepted
promising alternatives to promote plants to fight pathogens.
The plant-associated microbe dependent biocontrol strategies
efficiently suppress pathogen by either directly antagonizing
pathogens or enhancing plant resistance. Encouraging the
colonization of antagonistic microorganisms in the premises of
the plant can inhibit pathogen attack by producing antimicrobial
compounds or by niche exclusion.

Application of beneficial microbes can induce rapid and
strong immune responses in plants without triggering responses

against themselves. These immune responses include induction
of defense related metabolites in plants, which suppress plant
pathogen. However, detailed studies are warranted to understand
the mechanism underlying beneficial microbe-induced plant
immunity and pathogen-induced immunity for the development
of suitable biocontrol agents.

Exploitation of natural plant defense mechanisms provides
novel methods for achieving better disease management.
Enhanced production of PRRs and integration of R proteins
in plants via engineering can boost microbe recognition ability
of plants. Multiple disease resistant plant varieties can be
generated by joining the integrated proteins from various
NLRs, which recognize different effectors, into a single NLR.
Overexpression of polygalacturonase inhibitor proteins (PGIT)
or xylanase inhibitor proteins (XIP) in plants can induce
resistance by acting against the pathogen producing virulence
factors such as polygalacturonase or xylanase, respectively (Sun
et al., 2018; Zhu et al., 2019). Overexpression of intermediate
components of defense signaling pathways is another method
for enhancing plant immunity. Overexpressions of hydrolytic
enzymes in plants, which target microbial cell wall, and secondary
metabolites, which act as antimicrobial components, are other
widely accepted strategies.

Application of plant-based antimicrobial secondary
metabolites is another promising strategy for pathogen control.
Metabolite production and extraction is more convenient in
suspension culture than the whole living plant. Hence large-scale
production of secondary metabolites in plant suspension culture
by manipulating biochemical pathways via metabolic engineering
and their application on plants in the field can overcome negative
impact of chemical control.
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