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ABSTRACT

Name, Mohamed Abdelhamid Mohamed Elsayed, Masters : January: 2021, Master of

Science in Computing

Title: Deep Reinforcement Learning for Efficient Uplink NOMA SWIPT Transmissions

Supervisor of Thesis: Dr. Amr Mohamed.

A key rival technology in radio access strategies for next generation cellular commu-

nications is non-orthogonal multiple access (NOMA) due to its enhanced performance

compared to existing multiple access techniques such as orthogonal frequency division

multiple access (OFDMA). The work in this thesis proposes a framework for an en-

ergy efficient system geared towards wireless exchange of intensive data collected from

distributed Internet of things (IoT) sensor nodes connected to an edge node acting as

a cluster head (CH). The IoT nodes utilize an adaptive compression model as an extra

degree of freedom to control the transmitted rate going to the CH. The CH is an energy

constrained node and may be battery operated. The CH is capable of radio frequency

(RF) energy harvesting (EH) using simultaneous wireless power transfer (SWIPT). The

proposed framework exploits deep reinforcement learning (DRL)mechanisms to achieve

smart and efficient energy constrained up-link NOMA transmissions in IoT applications

requiring data compression. In particular, the DRL maximizes the harvested energy at

the CH while enforcing the data compression ratio constraints at the transmitting nodes

and satisfying the outage probability constraints at the CH. The data compression in

this type of sensor networks is vital in order to minimize the power consumption of the

different sensors (transmitting nodes), which increases its service lifetime.
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CHAPTER 1: INTRODUCTION

Motivation

Maintaining the viability of mobile communications networks over the next era

promotes new technology solutions that need to be architected and developed so that it

can adapt to future challenges [1]. Introducing and designing such capability of radio

access technology in wireless mobile communications is an essential aspect in terms

of cost efficiency and system reliability. The multiple access approach is a vital part

of the radio access technology. Currently, orthogonal multiple access (OMA) based on

orthogonal frequency division multiple access (OFDMA) is approved for the 3.9th and

4th generation (4G) mobile communication systems, including LTE and LTE Advanced

[2]. OMA is suitable for the field of packet domain services to achieve good system

performance by time and frequency domain scheduling utilizing channel-awareness with

fast single user identification at the receiver. However, more improvements to system

efficiency and quality of service (QoS) are needed in the future, particularly at the cell

edge. NOMA uses a new approach that exploits the power-domain for user multiplexing,

which has not been widely used in previous generations. In NOMA, many users are

multiplexed on the power domain at the transmitter side, while successive interference

cancellation (SIC) is used for DE-multiplexing of the received signal at the receiver

side [3].

Wireless network clustering is widely used for dynamic networking in emerging

communication environments. Clusters are self-established and self-maintained com-

munication networks used mainly when the base station is far away from the commu-

nicating nodes. In cluster communication networks, the central node called the cluster
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head (CH) receives the signal from the base station and transmits it to other nodes in

the cluster (e.g. in the case internet of things (IoT) sensor nodes). The CH is also used

to receive data from the IoT devices and sends the aggregate signal to a base station [4].

Cluster networks are also used to establish communication in rescue operations, remote

administration, relief work, and emergency maintenance. A key application of using

cluster communication systems is wireless remote healthcare monitoring systems [5].

Wireless networks used for monitoring patients who need continuous surveillance can

utilize clustering techniques.

An important example of wireless remote health monitoring is patients with epilepsy

who need continuous electroencephalogram (EEG) monitoring. EEG sensing nodes

collect intensive data from the patient and need to transmit this data to the CH. Data

compression for such sensor networks is vital in order to minimize the power every

sensor consumes to maximize its service lifetime and optimize the power consumption.

Meanwhile, keeping minimum level of data distortion is vital for this kind of signal

due to its importance for medical diagnosis whether by the medical experts or using an

autonomous classification system.

In order to investigate the whole system under practical conditions, channel im-

pairments and energy constraints have to be taken into consideration. Fading channel

realizations coupled with users’ quality of service (QoS) requirements result in outage

probability constraints for NOMA up-link which need to be considered [6]. Moreover,

battery operated CH units having limited access to power sources and using energy

harvesting (EH) mechanisms are key system features to take into consideration [7].

Optimizing the performance of such practical systems is not easy, thus, using state-of-

the-art Deep Reinforcement Learning (DRL) mechanism to find this trade-off between
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the system parameters will be a viable approach enabling valuable system efficiency

enhancements.

Problem Statement

In this work, we focus on building a framework for establishing energy efficient

smart data compression and energy harvesting under NOMA up-link protocol. The

framework involves multiple NOMA users connected to an edge node (cluster head

node) to transmit vital data under NOMA up-link protocol. This system design seeks

a trade-off between the involved system parameters to maximize energy harvesting at

the cluster node, while maintaining the main system constraints on QoS represented by

outage probability and compression ratio represented by data distortion.

Deliverables

1. A proposed framework for providing an energy-efficient system to compress and

transmit data, e.g. medical information such as electroencephalogram (EEG)

collected from patients suffering from certain chronic diseases for the purpose of

continuous monitoring, to an edge node using NOMA up-link techniques.

2. Incorporation of energy harvesting at the edge node mentioned above to cover its

energy requirements.

3. A deep reinforcement learning (DRL) algorithm to find the optimal trade-off

between energy harvesting and data compression under NOMA up-link protocol.

4. A simulation model of the system to provide benchmarking to check the optimal

solution delivered by the proposed DRL approach.

3



Methodology

The research approach will rely on mathematical modeling and analysis of the data

compression, outage probability, energy harvesting, and node power consumption under

a realization of the NOMA channel to extract a closed form mathematical model for

each. The deduced mathematical models will be utilized to formulate an optimization

problem that represents the energy harvesting optimization objective in terms of the

different parameters and taking into account the different required constraints. The opti-

mization problem is solved using heuristic techniques. Additionally, a DRL mechanism

is constructed and exploited to provide an optimal solution of the optimization problem.

The research plan can be divided into work packages (WPs) as follows:

WP1: Literature survey on the main system pillars including NOMA, data compression,

energy harvesting and DRL.

WP2: Comprehensive mathematical modeling and analysis of the above pillars deriving

clear model for each of them to facilitate the formulation of an optimization framework.

WP3: Design and simulation of algorithms which portrays and explores the trade-off

between these pillars.

WP4: Formulate an optimization model for the entire NOMA system.

WP5: Propose novel and efficient heuristic and DRL-based solutions to address the

trade-off between energy harvesting and performance constraints such as outage proba-

bility and distortion.

WP6: Conducting comparative studies between the proposed techniques and the state-

of-the-art to analyze the pros and cons of each solution.

WP7: Thesis write up and publications.
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Thesis Objectives and Contribution

In this thesis, we focus on three major Objectives:

1. We aim at developing a mathematical analysis to find closed form expressions for

adaptive data compression, outage probability, energy harvesting, and node power

consumption under NOMA up-link protocol. These closed form expressions can

be used to formulate an optimization problem to describe the whole system. By

solving this optimization problem, we can find out the trade-offs between data

compression, outage probability, energy harvesting and node power consumption.

This objective is tailored towards the problemmentioned in the motivation section

about finding the optimal parameters that maximize the harvested energy, while

keeping reasonable system performance under the communication constraints.

2. Develop a set of algorithms to realize the solution for the optimization framework

in order to demonstrate the relation between various parameters of the system.

These algorithms will tackle the problem of realizing such system under practical

channel, and measure the system performance under the different constraints.

3. The last objective is to realize the whole system practically by designing a com-

prehensive DRLmethod to figure out the trade-off between the system parameters.

A final comparison between the different solutions will be conducted.

Therefore, the contributions can be summarised as follows:

1. Propose a comprehensive mathematical analysis to find a closed form expressions

of cluster node harvested energy, outage probability, and power consumption of
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the sensor node with respect to the data compression and distortion ratios.

2. Design a DRL agent to achieve the trade-off between the system parameters in

real-time while satisfying design requirements.

3. Evaluate the proposed system against multiple currently followed heuristics ap-

proaches with results to show the performance of these techniques and the DRL

performance.

Thesis Overview

The remainder of this thesis is organized as follows: Chapter 2 describes the main

concepts, terminologies, and state-of-the-art frameworks. We also evaluate and contrast

our work to others’ related work. Chapter 3 provides a mathematical framework with

simulation and proposes the DRL algorithm. In Chapter 4, we introduce the concept of

energy harvesting to the system. Chapter 5 concludes and summarize the work, review

key results, and suggests potential future improvements.
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CHAPTER 2: BACKGROUND AND RELATED WORK

Background

The proliferation of broadband multimedia applications, such as machine-type net-

working, video, mobile gaming, HDTV, 3D TV,VoIP, and the booming of a wide range

of wireless sensor networks including the Internet of Things ( IoT) have motivated the

evolution towards 5th generation (5G) networks [8]. Due to this extraordinary tech-

nological impact and the current limitations of wireless resources, reliable wireless

communication networks need to be developed to fill this crucial performance gap.

Historically, wireless communication networks employed several multiple access tech-

niques. First-generation (1G) wireless network employed Frequency Division Multiple

Access (FDMA), 2G employed Time Division Multiple Access, 3G employed Code

Division Multiple Access, and 4G employed Orthogonal Frequency Division Multiple

Access (OFDMA). In other words, today’s wireless networks allocate radio resources

to users based on Orthogonal Multiple Access (OMA) principles [9].

Non-Orthogonal Multi-Access (NOMA) has recently received massive attention as a

promising solution for spectral efficiency, user fairness, better connectivity, enhanced

data rate, and reduced latency in 5G networks [10]. The fundamental concept behind

NOMA is the suitability of multiple access (MA) for 5G networks to maximize the spec-

tral efficiency through allowing nodes to transmit simultaneously with no constraints on

orthogonality of the frequency sub-carriers. The essential reason for embracing NOMA

in 5G is its capacity to serve numerous clients utilizing the same time and frequency

resource. There exists two main approaches to achieve NOMA; namely code domain

and power domain [11]. The work in [11] focuses on power-domain NOMA, which
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from this time forward, is referred to as NOMA. NOMA exploits superposition at the

transmitter, and successive interference cancellation (SIC) at the receiver.

NOMA accomplishes superior efficiency in terms of utilizing the spectrum by serv-

ing multiple users at the same time, which means increasing the connectivity. A vital

point in the NOMA approach is that users with better channel conditions have knowl-

edge about the messages of other weaker users as it can decode their messages before

applying SIC. Relying on this concept, the strong users can work as relays to improve

the performance of the weaker users; this approach is called cooperative NOMA

Typical NOMA DOWN LINK

In down-link NOMA, the base station (BS) or cluster head sends a superimposed

signal to all NOMA users, allocating more power to the far and weaker users due to

the worst channel conditions they have and less power to the near user with better

channel conditions. The near (strong) user first subtracts the signal of the far (weak)

user through SIC, and then decodes its signal. The weak user considers the signal of

the strong user as noise and detects its signal directly [12]. Without loss of generality,

and as an example, Fig. 2.1 describes a typical NOMA down-link scenario for two

users.The conventional NOMA down-link uses a power allocation system, where high

transmission power allocated for users with bad channel conditions and vice versa. The

BS transmits a superimposed signal x to all the NOMA users, utilizing the entire system

bandwidth. The received signal at user Ui can be described as yi = Hix + ni where,

the superimposed signal x can be described as x =
k∑
i=1

√
pixi, xi is the message signal

for user i, pi represents the power allocated for this user, k is the total number of users

in the NOMA cluster, and ni is the AWGN of user Ui [13]. Thus, for a given user
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Figure 2.1: Downlink NOMA.

in the NOMA cluster, heavy interfering signals are mainly due to high power message

signals from relatively weaker channel users. Meanwhile, every user cancels the strong

interference by encoding, re-modulating and deduction of the signal obtained x, and

then cancels any intra-cell interference by the other users, whereas, the lowest channel

gain user gets the interference from all users within the same cell. Moreover, the strong

user has a better channel gain, but that doesn’t mean that the signal quality is higher. A

strong user is generally assigned a lower transmit power, and a weak user is assigned

more power. So the signal of the weak user is the strongest one. Thus, NOMA does not

contradict the basic principle of SIC, the first decoding of the strongest signal should be

done.

Typical NOMA UP-LINK

In an up-link NOMA system, the BS receives a superimposed signal from mobile

users. SIC is deployed at the users (receiving nodes (BS) ) [14]. In up-link NOMA,
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Figure 2.2: Up-Link NOMA.

users are typically transmitting with the same transmission power. Since the channels

of various users in the up-link is unique, each signal exhibits different channel gains.

As a consequence, the signal power obtained that corresponds to the user with the

highest channel is the strongest at the BS. Therefore, this signal is the first one to be

decoded at the BS, while treating all the other users in the cluster with relatively weaker

channels as interference. The decoded signal is then subtracted from the superimposed

received signal and the process repeats among the remaining users in the cluster. Hence,

the transmission of the lowest channel gain user will be decoded with almost zero

interference. Considering two-user NOMA scenario, the received signal at the BS

can be described as y = βa
√
Pthaxa + βb

√
Pthbxb + n, where Pt is the available

transmission power, βa and βb are the power split factors for the two users, xa and xb

are the transmitted signals while n the AWGN of the BS [12]. Figure 2.2 presents a two

user up-link scenario.
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Data compression

Data compression is the process of altering, encoding, or transforming the data

sample structure in such a way that it requires less disk space and less encoding and

transmission capacity and consumed power. Such process is motivated by the single-

modality and power limitation typically existing in today’s IoT devices, making such

devices optimized for special type of applications e.g. medical applications. The

process of signal reconstruction is done at the receiver side to retrieve the transmitted

signal. This data retrieval may be associated with distortion percentage for the case of

lossy compression, based on the compression ratio [15]. Many articles have tackled the

importance of this aspect from different perspectives; an example is shown in [16].

In IoT applications, data compression shall play a significant role in its efficient

design and implementation. As stated earlier, it is very likely that IoT nodes are

battery-operated and hence by exploiting an efficient and optimized data compression

scheme at the transmitting IoT nodes, battery life will be extended and the frequency of

battery replacement will be reduced. Examples of data compression in video streaming

for wireless sensor network is presented in [17] and for electroencephalogram (EEG)

monitoring for wireless body sensor networks is presented in [16].

Another example is theWireless Body Sensor Networks (WBSN) that offer essential

support to patients who require continuous care and monitoring. One of the critical

applications of WBSN is electroencephalogram ( EEG) monitoring devices, which can

continuously monitor and record vital patient signs. EEG monitoring devices are likely

to be portable due to the specificity of the application. EEG data compression is a

key to minimize the transmission power and, jointly, increase battery life [18]. Long
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monitoring time, a large number of electrodes and a high sampling rate together produce

high Electroencephalography (EEG) data size. There is, therefore, a need for more

bandwidth and storage space for efficient data transmission. EEG data compression is,

hence a fundamental issue to efficiently transmit EEG data with less bandwidth and to

store it in less space.

Energy Harvesting

Energy harvesting from wireless signals could redefine mobile connectivity. Re-

cently, researchers have developed a novel way that can convert energy from wireless

signals into electricity [19]. Radio frequency (RF) energy is currently being transmit-

ted by a huge number of worldwide radio transmitters, including mobile telephones,

portable radios, cellular base stations, and TV/radio stations. With this ubiquitous sup-

ply of RF energy, charging devices for RF harvesting is a viable approach. This allows

battery-based devices to be charged to reduce new batteries replacement and/or extend

the operating life of systems with removable batteries. Battery-free systems may also

be designed to use storage capacitors continuously charged instead of batteries [20].

The ability to maintain RF-to-DC performance over a variety of operating conditions,

including fluctuations in input and resistance to output loads, is an essential element of

RF energy harvesters.

Simultaneous wireless information and power transfer (SWIPT), allows for the trans-

mission of information and energy on the same RF signal at the same time [21]. There

are two main categories for SWIPT; power splitting (PS) and time switching (TS). Un-

der PS SWIPT, the received RF signal is divided using a power divider between signal

decoding and harvesting energy. Under TS SWIPT, the receiver keeps communication
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scheme keeps alternating between power and data transmission. PS SWIPT exhibits a

better performance than TS SWIPT in terms of achieved data rate and harvested energy.

Outage Probability

Outage probability is the probability that the receiver power value is below the

threshold where the power value is related to the minimal cluster signal - to - noise

ratio ( SNR). In this case, there is a high probability that an outage will occur at this

time period. It is an indicator of the quality of the communication channel, which

means, finding the possibility that a specific transmission rate is not supported because

of variable channel capacity [12]. the outage probability is a vital metric in order to

measures the performance of a system. it measure the capability of the NOMA system

to satisfy the the user QoS constraint.

Deep Reinforcement Learning

Artificial intelligence (AI) can be considered as the intelligent software that can solve

problems and make decisions by itself. As a branch of AI, Machine Learning (ML)

algorithms and techniques can learn from data to take decisions or to classify an input

based on some feature understanding. Reinforcement learning is a category of machine

learning suitable for optimal control and decision-making process. It is different from

supervised and unsupervised learning techniques since there is no input/output mapping

like supervised learning. In addition, there is no hidden pattern recognition, as exists

in unsupervised learning. In reinforcement learning approaches, we usually deal with a

dynamic environment, in which an agent learns how to interact with this environment by

taking a sequence of actions (which we call a policy) to maximize a global reward over
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time. Therefore, the main components of the reinforcement learning system include

an environment, which defines the context of the problem. It is the territory where

the agent explores and makes actions. The other component is the agent itself, which

has a sequence of actions for the environment. The main point is the agent does not

know anything about the internal dynamics of the environment. Nevertheless, the

agent tries to figure out how the environment works by doing random actions and

observing how the environment responds to these actions. This response comes to the

agent in two separate pieces of information, as the agent can observe the change of

the state of the environment as well as a reward or punishment signal. The main idea

behind reinforcement learning is imitating human learning mechanisms. The training

in reinforcement learning is an interactive process, in which, each interaction with the

environment trains the agent, and this process can be realized in a dynamic environment

where the state of the system may change by each interaction. This may contradict

the concept of other supervised and unsupervised learning, as the training is isolated

from the real environment. Reinforcement learning differs from supervised learning in

the needless to present labeled input / output pairs and the absence of the explicit need

to correct sub-optimal actions. In other words, the emphasis is on finding a balance

between exploration (of unknown territory) and exploitation of current knowledge .[22].

The actions of the agent decide not only its current (immediate) reward, but also (at

least probabilistic) the next state of the environment. When determining the action to

take, the agent must take the next state into account as well as the immediate reward. The

model of long-run optimally used by the agent determines exactly how the value of the

future should be taken into account. Moreover, the agent has to be able to learn from the

delayed reward andmust be able to learn which of its behaviors are desirable. It may take
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a long sequence of actions, may receive insignificant punishment, then finally attains

the best policy that allows it to take the best action based on the system state. Therefore,

reinforcement learning can usually be regarded as 5 main tuple {S,A,T,R, γ}, where

S is the state’s space, A is the actions space, T is the state transition values as a function

of given action a in a given state, R is the reward and γ is the discount factor that adjust

the action.

Related Work

Uplink NOMA has been considered in several research work recently. The authors

in [23], [24] investigated the scenario of two uplink NOMA users under statistical

quality of service (QoS) delay constraints extracted based on user’s effective capacity

only. They compared the performance of NOMA users with OMA users. However, the

system structure does not include neither energy harvesting nor data compression. An

iterative analysis of multi-cell NOMA devices with imperfect SIC has been shown in

[25]. The authors aimed at minimizing the power consumption under QoS constraints

in particular. But in their model, they assumed that many users have the same impact of

interference. They did not tackle the impact of user pair selection. In [26] rate splitting

(RS) is being investigated for a NOMA uplink device with a close and far users pairs

following cyclic prefixed single carrier transmissions. Frequency-domain equalization

is used to support SIC at base-station. This scenario was for two users not located

in discs around the base station. They assumed a fixed distance conventional uplink

users. However, all the work presented in [23]–[26] does not explore neither concepts

of energy harvesting nor data compression and the possible impact of these concepts on

the system performance. Moreover, the work presented in [27] investigated the outage
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performance of land mobile satellite (LMS) device composed of two terrestrial user

nodes executing NOMA in an uplink with either successive interference cancellation or

joint decoding at the satellite receiver. A cumulative distribution function (CDF)-based

scheduling scheme is investigated in [28] for the uplink NOMA network. Taking into

account the SIC and SIC power constraints, they proved that CS-NOMA can achieve

better performance than random pairing scheme and OMA scheme.

SWIPT schemes were introduced in [29], [30] under consideration of the EH at the

receiving nodewhile the proposed systemdoes not take into accountNOMAas themulti-

access scheme. On the other hand, RF EH in wireless sensor networks under uplink

NOMA scheme in the presence of eavesdroppers considering the possible secrecy outage

probability of wireless sensor nodes and base station has been investigated in [31]–[33].

This research focused only on the investigation of the secrecy performance of NOMA for

RF EH WSNs without the consideration of data compression at the transmitting nodes.

A deferment prospective has been introduced in [34] as they tackle the challenge of

leveragingNOMAparadigm for uplink communication from an unmanned aerial vehicle

(UAV) to cellular base station, under spectrum sharing with the existing ground users. In

[35], the authors suggested a cooperating NOMA, where only the nearest user is an EH

node that works as a relay to the far user. The work in [36] optimized energy efficiency in

non-cooperative NOMAunder power budget and data rate constraints without exploiting

the concept of EH to extend the system life time. However, all of the above related

work in [31]–[35] does not directly address the impact of data compression on both

outage probability and EH under uplink NOMA protocol. An optimization technique

for power distribution to boost energy efficient IoT-NOMA network performances has

been presented in [37], however the proposed system focuses mainly on the down-link
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scenario and disregarded the uplink situation.

Several data compression techniques have been exploited within the context IoT as

in [38]–[40]. Data compression can occur using compressive sensing as in [40], which

has a low complexity that comes at the cost of poor performance when compared to

transform based compression. Discrete wavelet transform (DWT) data compression and

reconstruction methods have high construction accuracy. EEG DWT data compression

is presented in [18], [41], [42] as a lossless compression technique for EEG signal.

However, because of the randomness of the EEG signal, high compression rates cannot

be attained with lossless compression. Other transforms such as Walsh transform can

also be used for the purpose of data compression as in [43]. Obviusoly, none of the

research work presented in [18], [38]–[43] studies the impact of data compression in

uplink NOMA EH scenario.

Deep Reinforcement Learning Related work

For optimization in dynamic domains, DRL has shown impressive results. For

example, [44] demonstrates the ability of a single DRL agent to adapt to various wireless

network circumstances, while still optimally allocating resources (transmission power)

to various network nodes. Authors in [45] jointly optimize resource distribution and

user association in heterogeneous cellular networks for offloading mobile traffic and it

showed that optimal interaction between network efficiency and user quality of service

could be achieved. A survey on using DRL in broad applications of IoT has been

presented in [46]. Exploiting DRL approaches in uplink NOMA has been studied in

[47]–[51]. An investigation of the performance of Federated Learning (FL) update is

presented in [47] for mobile edge devices that are connected to the parameter server
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wirelessly. The proposed system applies NOMA together with gradient compression in

the wireless uplink. The work presented in [48] proposes an uplink NOMA framework

for ultra-dense network communications. They study the dynamic energy efficiency

problem. The Markov Decision Process model is built through a quantification of

resources at Access Points and user equipment to ensure the real-time requirements

of user equipment. An investigation of sub-carrier assignment jointly with Power

allocation issue in NOMA multi-user uplink system that maximizes energy efficiency

thus safeguarding QoS of all-user has been carried out in [50]. They proposed two

models using deep q-network (DQN) to figure out the optimum sub-carrier assignment

policy and the other model was based on DDPG network to dynamically optimize the

transmit power of all users. The work proposed in [49] examined a user clustering based

resource allocation under uplink NOMA Multi-cell systems using DRL techniques. It

executes user grouping based on Network-traffic to effectively leverage the available

resources. Moreover, DRL in the decision making for grant-free NOMA systems has

been shown in [51], in order to avoid collisions and improve the system throughput in

an unknown network environment. However, the work presented in [47]–[51] neither

considers data compression in the proposed uplink NOMA scheme nor application of

SWIPT.
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CHAPTER 3: DEEP REINFORCEMENT LEARNING ALGORITHM FOR SMART

DATA COMPRESSION UNDER NOMA-UPLINK PROTOCOL

In this chapter, we discuss the first contribution of the thesis, which is to design a

Deep Reinforcement Learning (DRL) approach that optimizes the quality of the health

monitoring data sent to the cloud through a NOMA-Uplink multi-access channel, while

meeting the resource constraints of the edge node responsible for delivering the data to

the cloud.

System Model

The systemmodel assumes thatmultiple EEGnodes continuously collect information

from patients under surveillance. These nodes are distributed in clusters around mobile

edge nodes (ENs) as shown in Figure 3.1. Each edge node is surrounded by a group of

EEG nodes named as u1, . . . , uk. The whole system is operating under NOMA-up-link

protocol. The nodes send the collected data from the patients to the cluster edge node,

which will re-transmit this data to the service provider or a cloud.

We assume that there is an agent, which manages the operation of the edge node

to optimize the distortion of the EEG data sent to the cloud, while meeting the rate

constraints of the edge node. The users are randomly located around the edge node

following a homogeneous Poisson Point Process (PPP) so that, each user node is far

from the cluster edge node by a certain distance ri. The nature of the collected data is

intense, hence, it necessitates compression prior to transmission to save transmission

energy as the nodes are battery-operated and jointly require high bandwidth resources.

We assume each node is equipped with an adaptive data compression mechanism based

on DWT employing a threshold-based technique shown in [52] . To avoid the data
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lengths synchronization problem at each transmission cycle, we assume these sensor

nodes are always saturated, which means that these nodes have data to send in each

period all the time. As part of our analysis and optimization, Cluster edge nodes

will optimize compression ratios based on the distances between itself and the NOMA

users and jointly optimize the average distortion among other optimization parameters.

Figure 3.1 shows the proposed system architecture.

We assume the wireless channel between cluster edge node and the NOMA users is

modeled as a block fading channel, which implies that the channel coefficient remains

constant during the transmission block but vary randomly between transmission blocks.

We assume that the cluster edge node has full knowledge of the channel state information

(CSI) and based on that, the edge node assigns each sensor node the required compression

ratio to optimize the overall system performance. The amplitude of the channel gain is

assumed to be Rayleigh; therefore the channel distribution follows a complex Gaussian

distributionCN(0, 1). Furthermore, the receiver noise of all nodes ismodeled as additive

white Gaussian noise (AWGN) with zero mean and variance σ2. To maintain the system

connectivity, the outage probability constraint must be full-filled and should be kept

below a minimum threshold enough to allow all nodes to transmit their data without

outage.

Proposed Framework and Reinforcement Learning Modeling

The following part shows the derivation of the mathematical model for our proposed

system. According to [53], the up-link NOMA system is processed entirely differently

from the down-link-NOMA system. In up-link-NOMA protocol, the intended data to be

transmitted to the Cluster edge node from the NOMA users are first compressed using
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DRL Agent Cloud

Figure 3.1: System Model for smart Compression Under NOMA Up-Link.

adaptive data compression technique. As per our assumption, all the NOMA users are

implementing adaptive data compression using a well known discrete wavelet transform

(DWT). Therefore, after compression, the generated data length at a given user node is:

Nc = Na(1− k), (3.1)

whereNa,Nc are the number of samples before and after compression respectively, and

k ∈ [0, 1]) represent compression ratio of the raw data at a given node. The decrease in

the number of samples of transmitted data due to compression is at the cost of receiver-

side distortion after restoration of data. As an example for intensive data transmission,

the proposed framework uses the compression paradigm in [15] for EEG. However, it

is easy to extend the proposed framework without compromising its generality to take

into account various data compression models. By referring to the findings in [15],

the amount of the encoding distortion is the Percentage Root-mean - square difference
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(PRD) between the recovered EEG signal, and the original signal. Using a real time

implementation model in [15] the relationship of encoding distortion to compression

ratio, can be described as:

D =
d1e

(1−k) + d2(1− k)−d3 + d4F
−d5 − d6

100
, (3.2)

where d1, d2, d3, d4, d5 and d6 are the parameters estimated statistically from the typical

EEG model used in [15] and F is the wavelet filter length of the adopted DWT scheme.

The NOMA users simultaneously transmit signals to the cluster edge node over the the

available bandwidth applying a control algorithm to allocate the desired compression

ratio from the cluster edge node in order to control the sum data rate at the cluster

edge node and minimize the outage probability of each user. The cluster edge node

receives a superimposed signal from the NOMA users [53]. Moreover, the message of

the near user will be decoded first since it has the highest SNR among all users [54].

The cluster edge node applies successive interference cancellation (SIC) to decode the

other user’s signals after subtracting the near user signal and it will keep doing the

same until decoding all users. The objective of this work is to minimize the expected

distortion among all users through adapting their compression ratio to meet the total

rate of the edge node, and under real block fading channel. The NOMA users adjust

the power of their transmitted signal using the NOMA power factors. The NOMA users

simultaneously transmit their compressed signals to the cluster head node. The received

signal at the edge node per time slot, which is superimposed signal of all users, can be
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written as [54]:

y = c1β1
√
Pt h1 x1 + c2β2

√
Pt h2 x2 + ...+ ckβk

√
Pt hk xk + n,

where x1 ∈ CNc×1 , up to xk ∈ CNc×1 are the transmitted signals from each sensor node

respectively, y ∈ CNc×1 is the received signal at the edge node, n is the additive white

Gaussian noise (AWGN), which follows CN(0, σ2) where σ2 is the noise variance, h1

up to hk are the complex channel gains of the users 1, 2, .., k, respectively. c1 =
√

1
1+rα1

,

up to ck =
√

1
1+rαk

, where r1 up to rk are the distances between the edge node and users

1, 2, .., k, respectively, and αisthepathlossexponent.andβi is the transmit power split

factor at each user. It is assumed that all users have the same available transmission

power, Pt.

Outage performance

As per the NOMA-up-link protocol, the edge node applies successive interference

cancellation (SIC) by detecting and decoding the signals sequentially starting from the

near user moving to farther ones. Hence, the messages of the farther users are treated

as interference. The signal to interference plus noise ratio during the decoding process

can be written as:

ρ1 =
ρβ2

1c
2
1 | h1 |2

1 + ρ(β2
2c

2
2 | h2 |2 +...+ β2

kc
2
k | hk |2)

(3.3)
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Where ρ = Pt
σ2 is the signal to noise ratio. Therefore, the rate at which the edge node

can decode the message sent by the near-user u1 correctly is

R1 = log2(1 + ρ1). (3.4)

The edge node will apply SIC to decode the second nearest signal by canceling out the

nearest user signal from the received signal. The signal to interference plus noise ratio

for the second near user becomes

ρ2 =
ρβ2

2c
2
2 | h2 |2

1 + ρ(β2
3c

2
3 | h3 |2 +...+ β2

kc
2
k | hk |2)

. (3.5)

and the rate at which the edge node can decode the message sent by the second nearest

user correctly is

R2 = log2(1 + ρ2). (3.6)

Finally, the rate at which the edge node can decode the message sent by the farthest k

user correctly is

ρk = ρβ2
kc

2
k | hk |2 (3.7)

Rk = log2(1 + ρk). (3.8)

Using the arithmetic-geometric inequality, we can have the upper bound of the sum rate

at the cluster edge as:

Rs = log2(1 + ρ(β2
1c

2
1 | h1 |2 +β2

2c
2
2 | h2 |2 +...+ β2

kc
2
k | hk |2)).
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Therefore, we can define the data rate region to avoid outage considering the target

data rate of each user (assuming target data rate thresholds for the NOMA users as R1

up to Rk, respectively)

R1 ≤ R1

R2 ≤ R2

...

Rk ≤ Rk

R1 +R2 + ...+Rk ≤ Rs,

(3.9)

where R1, R2, ... and Rk are shown in equations (3.4), (3.6), ..., (3.8), respectively

and R1,R2, ...,Rk representing the threshold rates to avoid outage of NOMA users

respectively. Therefore, in order to avoid outage of users.

u = β2
1c

2
1 | h1 |2 +β2

2c
2
2 | h2 |2 +...+ β2

kc
2
k | hk |2≤ τ (3.10)

where

τ =
2
∑k
i=1 Ri−1

ρ
. (3.11)

The main objective of data compression in our proposed system is to save scarce energy

at the NOMA users, which could be IoT nodes with limited access to power source

and/or battery operated. The energy consumed by user i ∈ [1 : k] to transmit their

compressed and encoded bits can be given by

Ei = Ee
i + Et

i , (3.12)
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whereEe
i is the energy consumed for encoding at users i andEt

i is the energy consumed

during transmission of the encoded samples at users i. The encoding energy is negligible

compared to transmission energy. Therefore, Et
i can be written in terms of the rates,Ri,

already defined above as:

Et
i = β2

i

Pt `i
Ri

, (3.13)

Where βi is the power split factor for user i, Pt is the transmission power, Ri is data

rate, and `i is the length of data to be sent from user i. Assuming xi is the channel gain

defined as xi = kϕ
No
|hi|2, where k = −1.5

log(5BER)
as in[15], and No is the noise spectral

density. so, the required transmission energy to send a data of length `i with rate Ri is

Et
i =

β2
i `i

Rixi
(2Ri − 1), (3.14)

Optimization Problem

Defining a new parameter denoted by D′, which is the complement value of the

distortion D′ = 1 − D to indicate the user’s signal quality, we can formulate the

optimization problem as

P1 : max
β1,...,βk,k1,...kk

E{D′}, (3.15)

s.t. u ≤ β

δi ≤ Ei ≤ Bt
ri
,

0 ≤ ki, βi ≤ 1,
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where ki is the compression ratio of user i and δi = min(βi, Pε) where Pε is the

minimum required energy to transmit data without outage. βi is the power split factor

for NOMA users. Bt
r is the current battery level of node i, Bt+1

ri = Γi − Et
i and Γi is

the available power budget for this node. One thing to notice here is that the problem

3.15 is generally NP hard [15], in addition to the fact that the solution of this problem

is greedy with respect to time. In other words, the solution generated will be optimal

only at one time step, and hence the optimization has to be performed at each time step,

making this solution inefficient for a long time horizon. Therefore, we propose to use

DRL as a method to devise a policy of how to set the decision variables to optimize the

system performance over a long time horizon.

DRL Agent Design

The environment should be designed to describe the main parameters of the system

that will interact with the agent per each time step t. According to the problem descrip-

tion, the environment E will have a continuous behavior as the episode keeps running

with no break state. The agent’s behavior will be described by a policy π, which maps

states S1, S2, ..Sn ∈ S into a given actions a1, a2, ..an ∈ A at each time step t ∈ T,

where S is the state space andA is the action space. During the experiment at each time

step, the environment state St will correspond to an action at from the agent based on

the policy π and then generates the next state (st, at)→ St+1. As a result, an immediate

delayed rewardR(St, at)→ rt will be attained by the agent. The total cumulative reward

across the experiment starting from time t′ = t can then be calculated as:

Γt =
T∑
t′=t

rtγ
t′−t, (3.16)
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where T is cumulative time for the experiment and γ ∈ [0, 1] represents the discount

factor. The interactive state/action value function, which is also called the Q-function

of a policy π, can be written as:

π(s, a) = Eπ[Γt|st = s, at = a]. (3.17)

The Q-function describes how efficient it is for the agent to perform a specific action in

a state as part of a policy π. Replacing Γt with its value, the Q-function becomes

Qπ(s, a) = Eπ

[
T∑
t′=t

rtγ
t′−t|St = s, at = a

]
. (3.18)

the optimal action a′(s) that can be taken at any given state can be calculated according

to:

a′(s) = max
a
Q′(s, a), (3.19)

which represents the policy learned. The state space S in our model includes every

possible state at every time step t. It consists of average distortion, node energy

consumption as well as the channel state at this time t. All the values are normalized

between [0,1], therefore, the normalized state will be st = (Êt
i , D̂

t
i , ĥ

t
i),∀s ∈ S. The

agent’s action at a given time t,is the NOMA power split factor βti for the NOMA node

and the data compression ratio kti . The agent’s actions are also normalized between

[0,1]. Hence, the action space at a given time step t will be at = (k̂ti , k̂
t
i),∀s ∈ A. The

state transitions in our model are deterministic in the system, since the above values are

analytically based on the derived equations mentioned above.
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DDPG-based Approach for Minimizing Distortion

DeepDeterministic Policy Gradient (DDPG) is a model-free off-policy algorithm for

continuous action learning [55]. It incorporates Deterministic Policy Gradient (DPG)

and Deep Q-Network (DQN), uses the DQN experience replay and slow-learning target

networks, and is based on DPG, which can operate across continuous spaces of actions

and states. The "deterministic" in DDPG refers to the fact that the actor explicitly

evaluates the action rather than the distribution of the likelihood over actions. Q-

learning is the most common off-policy reinforcement learning algorithm because the

Q-function updates the Q-values based on action that are outside the current policy and

initializes the Q table randomly. Using optimization techniques directly in continuous

space of actions is difficult to apply because it is necessary to optimize greedy policies

at every time step. Such kind of optimization is too slow to be realistic with large or

unconstrained problems and nontrivial action spaces. Alternatively, DDPG approach,

which is based on actor-critic networks, can be used to devise an efficient suboptimal

policy for continuous action space. The actor neural network maintains the parametric

actor function µ(s|θµ) that specifies the current policy by mapping states to a specific

action deterministically. In DQN the optimal action is taken by taking argmax over all

actions of Q-values. In DDPG the actor is a network of policies that does precisely that.

It explicitly evaluates the action bypassing the argmax as.

Q
′
(s, a) = argmax

a
Q
′
(s, a), (3.20)

However, to measure a state’s Q-value, the actor output is fed into the Q-network for

calculation of the Q-value. For calculating the Q values, we use the target critic network
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and pass the action calculated by the target actor network. Each network has a time-

delayed copy of itself. These target networks have been used to stabilize the learning

process and these target networks will be updated in a soft manner based on the main

networks. The critic networkQ(S, a) learns using the Bellman equationwhich describes

the optimal action value function as shown in [56] which is:

Qµ(st, at) = E
rt,st+1∼E

[r(st, at) + γmax
at+1

Qµ(st+1, at+1)], (3.21)

To encourage exploration, a certain Gaussian noise is applied to the policy-determined

action. The optimal approximation of the action value function will be given by

Q(s, a;φ), Where φ is the parameter set for the Q-value neural network, meanwhile, the

approximation of the action value function , shall be described by µ(s; θ), where θ is

the set of parameters for the policy of the Neural network. The function approximator

Q(st, at;φ) is assumed to be differential with respect to the moving action statement,

which means for one policy µ(s; θ) we can create a gradient based learning rule that

minimizes the expensive computation of max
at

Q(st, at) over the continuous action space

to be Q(st, µ(st; θ)). The mean square Bellman error (MSBE) represents the the error

function, which indicates how far the approximation from satisfying Bellman equation.

The loss function for a given state sampled from the environment can be defined for

both networks as:

L(φt, D) = E
(s,a,r,s′ ,d)∼D

[
(
Qφt(s, a)− y(r, s

′
, d)
)2

], (3.22)
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and the temporal difference (TD) target error is

y(r, s
′
, d) = r + γ(1− d)

(
Qφt(s

′
, µ(s

′
; θ))

)
, (3.23)

where D is a set of transitions sampled from the environment and d is the terminal.

Therefore, the main objective is to learn a deterministic policy µ(s, θ) that allows the

actions to maximize Q(st, at;φ). The complete architecture of the DDPG system is

shown in Figure 3.2. The main purpose of the parameter φ is policy evaluation. The

training process will utilize the replay buffer that represents the previous experience

of learning. This can improve the data and stabilize the training process of the neural

networks, accordingly. Each network has a time-delayed copy of itself in order to

stabilize the minimization process of MSBE during the training. In order for the

algorithm to achieve a stable behavior, the replay buffer must be large enough to contain

a wide range of experiences. The DDPG Training and testing algorithm in pseudo code

is shown in Algorithm 1.

As shown in Figure 3.2, which describes the DDPGmodel architecture based on our

objective function in (3.15). The main goal is to minimize the expected distortion in

(3.15) by incorporating its impact in the reward function in order to obtain the trade-off

between minimum distortion, satisfying the main constraints in the problem including

the compression ratios and transmission rates of the NOMAusers. TheMarkovDecision

Processes (MDPs) shall be considered while designing the environment E. The MDPs

shall model the relations between the agent and the environment, while the environ-

ment changes continuously. The environment is episodic, which represents the lifetime

of the nodes batteries, and the episodes represent the dynamics of the environment
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Figure 3.2: DDPG system environment/agent architecture model 1.

changes. The environment is fully observable by the agent, and the state, st, is rep-

resented by [E1, .., Ek, D1, .., Dk, h1, .., hk], where [E1, .., Ek, D1, .., Dk, h1, .., hk] ∈ S

and h1, .., hk represents the channels between users and the edge node. All of the pa-

rameters have to be normalized to train the network’s nodes; therefore, the state will be

st = [Ê1, .., Êk, D̂1, .., D̂k, ĥ1, .., ĥk], ∀s ∈ S. , where at+1 → µ(st|θµ) and st+1 implies

that the next state is sampled by the environments following the distribution P (· · · |s, a).

We can notice that the state transitions are not deterministic in the system due to the

fact that all of these parameters depend on the randomness of the channel estimation.

Nevertheless, the state transition can still be calculated by invoking our optimization

parameters [β1, .., βk, k1, .., kk] where [at = β1, .., βk, k1, .., kk] ∈ A represents the ac-

tion space of the system. The agent will generate these actions and invoke them with

the environment to calculate the next state and get the discounted reward based on the
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previous state as shown in Algorithm 1.

Reward Function

The reward function at each time step, t, is the most important one that describes

the main parameters of the optimization problem and it is a function of the current state

st and current action at. The aim of the problem is to maximize D′it , while satisfying

the main constraints. Therefore,D′it must be involved in the reward function and jointly

we need to optimize the energy consumption at the nodes. Hence, we assume a battery

indicator χi to be involved into the state parameters and χt+1
i = χti − Et

i . The reward

function is given by

rt =


λ1(1−D′t) + λ2

∑
i
(χti−Eti )

χ0
if remaining constraints in (3.15) hold

−1 otherwise

, (3.24)

where λ1, λ2, are the weights for each term and λ1+λ2 = 1. The condition for the reward

is the constraints listed in the problem above in order to ensure the parameters do not go

below certain lower bounds, otherwise the reward will be penalized by -1. The weights

above play an important role in the system performance to obtain the trade-off between

these parameters. These weights could be adjusted based on the system requirements.

χ0 represents the total battery capacity.

Performance Evaluation

A simulation using Matlab has been conducted with numerical results for data

compression under our proposed up-link NOMA approach for multiple users located

around the edge node with different distances. User 1 is the closest to the edge node,
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Algorithm 1 Deep Deterministic Policy Gradient algorithm [57]
Input:Initializing Q network Qφ and policy network µθ with weights φ and θ,

Initializing the target networks parameters with φtarg ← φ , θtarg ← θ

Initialize Replay buffer D

for episode i = 1 to M do

Receive initial state s0

for t = 1:I do

Select action at = Clip (µθ(s) + ε,alow, ahigh) where ε ∼ N(0, 0.1)

Execute action at in environment,observe next state s′, reward r and done signal d.

Store (s, a, r, s′, d) in replay buffer D

if it’s time to update and there are enough samples in D then

Randomly sample a batch B = (s, a, r, s′, d) of transitions from D

Compute targets y:y(s′, r, d) =
(
r + γ(1− d)Qφtarg

(
s′, µθtarg(s

′)
) )

Compute loss function L: L(φ,B) = 1
|B|

∑
(s,a,r,s′,d)∈B

(
Qφ(s, a)− y(s′, r, d)

)2
Update Q network parameters by one step of gradient descent:

φ← φ− ηφ∇φL(φ,D)

Update policy network parameters by gradient ascent:

θ ← θ + ηθ∇θ
1
|B|
∑
s∈B

Qφ

(
s, µθ(s)

)
Update target networks parameters:

φtarg ← (1− ρ)φtarg + ρφ

θtarg ← (1− ρ)θtarg + ρθ
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next User 2, while User 3 is the farthest with the lowest channel gain.

DDPG Model Convergence

Figure 3.3 shows the convergence behavior of our DDPG-based algorithm. The

algorithm had an exploration decay rate of φ = 0 during the first 100 episodes, which

implies that the entire experiment was observed during those episodes. This means

that the algorithm analyses the whole continuous action space to figure out the most

recompensed actions necessary to develop the optimal policy, thereby maximizing the

benefits. Since we have continuous action spaces, exploration is done via adding noise

to the action itself. Afterwards, the entire exploration term decreases to almost 0, so that

the full exploitation is accomplished and hence searches for actions that only yield the

greatest possible rewards. The efficiency has stabilized for all the channel gain values,

converging roughly after 2000 episodes, i.e., the algorithm finds an optimal policy to

achieve the highest reward. In Figure 3.3, we present the average reward of the proposed

DDPG algorithm, which takes into account immediate changes in the environment as

a function of channel gain and battery level. Hence, it reduces multiple needs for re-

optimization when the environment changes. Since the distortion has direct relation

with the compression ratio as it increases while compression ratio increases in nonlinear

relationship, the other factor that has impact is theNOMApower split factor. This impact

arise due to the increasing the transmission power reduces the effect of the error channel

on the transmitted data. The DRL shows the minimum average distortion is occurred

when β1 = 1,β2 = 0.1 and β3 = 0.21 the compression ratios was k1 = 0.68,k2 = 0.12

and k3 = 0.12. However, In order to ensure training fairness and maximize efficiency

between energy consumption of the nodes and the compression ratio, we set λ1 = 0.7
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Figure 3.3: DDPG model reward versus episodes.

and λ2 = 0.3. The results reflects the effect of NOMA power split factors as well as the

compression ratio on the system performance.

Adaptive compression and distortion

Figure 3.4 shows the average distortion versus the remaining battery level for different

users. As the average distortion increases (this mean higher compression ratio) the

remaining battery increases. Figure 3.5, presents the remaining battery level against

the compression ratios for the different users. As shown, the remaining battery level

increases with the compression ratio. The results have been calculated with respect to

the channel gain for these users.
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Figure 3.4: Average distortion versus remaining battery level for 3 different users.

Energy consumption

Finally, Figure 3.7 reflects the exponential relationship between the node energy

consumption and the NOMA power split factor β, as β raises up the energy consumption

raises too.In Figure 3.6, we show an example of the energy consumption versus the

compression ratio for the nearest node to cluster head. the graph depicts the decreasing

of power consumption with the increase of the compression ratio. We can clearly

notice the effect of the NOMA allocated power transmission ratio β1, β2, β3 on the

energy consumption from the graph. Figure 3.8 shows the outage probability versus the

compression ratio at different power split factors. the graph shows most of outage event

can be controlled by adjusting the targeted data rate threshold.

To benchmark between the performance of the greedy solution (where the greedy
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Figure 3.5: Compression ratio versus remaining battery level for 3 different users.

solution is greedy with respect to time) and the DRL solution, figure 3.9 shows the

average reward versus time at a certain time period. The reward decaying reflects the

effect of the battery level on the average reward as the battery level decay with time.

Figure 3.10 presents the average distortion with time of the DRL solution with average

level around 25%. Figure 3.11 reflects the battery level changes with time from the

DRL.
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Figure 3.6: Energy consumption vs compression ratio for user 1.
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Figure 3.7: Energy consumption vs NOMA power split factor for 3 different users.
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Figure 3.9: Average reward vs Time.

Figure 3.10: Average distortion with Time from DRL.
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Figure 3.11: Battery level with Time from DRL.



CHAPTER 4: DEEP REINFORCEMENT LEARNING FOR EFFICIENT DATA

TRANSMISSION AND ENERGY HARVESTING UNDER

NOMA-UP-LINK PROTOCOL

System Model

The system model that we introduced in chapter 3 has been expanded to tackle the

Energy harvesting at the cluster head node using the SWIPT paradigm. We consider a

network operating under a NOMA scenario with users grouped in discs surrounding the

cluster-head (CH) node. The discs are categorized into two sets: near user discs denoted

byAj , where j ∈ [1 : J ] and J is the total number of near users discs, and far users discs

denoted Bm, where m ∈ [1 : M ], whereM is the total number of far user discs. Users

located in disc Aj that has inner radius, ra1 and outer radius ra2 are referred to as near

users and denoted as a1, . . . , ai, . . . , an. Users located in disc Bm that has inner radius,

rb1 and outer radius rb2 are referred to as far users and denoted as b1, . . . , bi, . . . , bn. Note

that rb > ra. In each disc, the users are randomly located according to the homogeneous

Poisson Point Process (PPP). The NOMA users are assumed to be connected to IoT

sensors that collect data from surrounding environment such as images, videos or EEG

data. These types of data are intense and require compression prior to transmission to

save transmission energy and increase bandwidth efficiency.

We assume that wireless channel between CH and the NOMA nodes are modeled as

block fading channels, which implies that the channel coefficient remain constant during

the transmission block but vary randomly between transmission blocks. The channel

is modeled as Rayleigh channel that follows a complex Gaussian distribution CN(0, 1).

Furthermore, the receiver noise is modeled as additive white Gaussian noise (AWGN)

44



𝐵1

𝐵2

𝐶𝐻

𝐵4

𝐵3

𝐴𝑛

𝐴2
𝐴3

𝐴4

𝐴1

𝑟𝐴>>𝑟𝐵

𝐵𝑛

𝐴5

…
.

𝑟𝐴

𝑟𝐵

𝑟𝑘

Figure 4.1: Network Topology

with zero mean and variance σ2.

Transmission Protocol description and Analysis

In the following, we form the basis for our system analysis and derivations.

Framework Description

In our unlink (UL) NOMA framework, the intended data to be transmitted to the

CH from the two paired users are first compressed using adaptive data compression

technique. According to our proposed model, we assume that user ai from disc Aj

is paired with user bi from disc Bm. Selection of the users within the discs is not in

the scope of this work and hence moving forward, we will drop the subscripts i and j

and will denote the selected NOMA pair as a and b. The paired users simultaneously

transmit signals to the CH over the same frequency resource using a power control

algorithm imposed by the CH. The CH receives a superimposed signal from the two

users. Then the message of the near user a will be decoded first due to the possibility
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Table 4.1: Summary of the notations.

Parameter Name Discretion

za and zb Data to be sent by users a and b

Ψj,k The wavelet functions

ka, kb The compression ratios

da, db Distance from the Cluster head for user a and b

Ht
k ∈ CNc×Nc The Teoplitz channel matrix with the channel coefficients

between CH and users k as its first column

βa, βb NOMA power factors for user a and b

θ Power split factor for the cluster head node

Pt, σ
2 Available transmission power at the nodes and the noise

variance

βa, βb The distortion ratios of the received signal

Tr{X} denotes the trace of matrix X.

ka, kb the compression ratios for user a and b

[z]2F1 (a, b; c; d) The incomplete version of theGauss hypergeomtric function

ε, δa, δb, µa, µb Threshold levels for outage probability,node energy, and dis-

tortion ratios respectively

Ra,Rb Target data rates for users a and b



of having stronger SNR than the other user b. The CH then applies SIC to remove the

decoded signal that belongs to a from the received signal prior to decoding the message

sent by b.

We assume the CH is capable of energy harvesting (EH) using SWIPT. The CH

applies a power splitting (PS) scheme, where a fraction of the received signal is used for

EH.

As per the information available at the CH and based on key criteria including

required harvested energy, outage probability, compression ratio and distortion ratio,

the CH selects the near user disc from the set of the available near user discs (set A)

and the far user disc from the available far user discs (set B). In addition, the CH

assigns to the user the desired compression ratios and the NOMA power factors that

adjust the transmitted power for the near and far users selected from the selected discs.

The objective is then to maximize the harvested energy by the CH, while minimizing

the distortion ratio and outage probability and maximizing the compression ratio at the

NOMA users.

Adaptive Data Compression

The data to be transmitted by the two NOMA users are first compressed. Adaptive

data compression is implemented using a famed, discrete wavelet transformation (DWT)

compression approach presented in [15]. There exists many types of the wavelet func-

tion including Daubechies, Haar and Morlet1.The users employ a thresholding-based

technique for data compression that uses discrete wavelet series expansion. Data to

be sent by users a and b are denoted as za and zb, respectively. A DWT operation is

1The reader is referred to mallat_book, [58] and the references therein for more details on how the
wavelet functions are designed.
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applied on za and zb, which yield to a compressed signal donated as xa and xb. The

compression ratio for each of user aand b can then calculated by

ka = (1− Na

La
)× 100, (4.1)

kb = (1− Nb

Lb
)× 100, (4.2)

where La and Lb are the lengths of the original signal and Na and Nb are the number

of non-zero samples generated after the thresholding at users a and b, respectively. It is

assumed that the IoT sensor nodes, i.e., NOMA users are identical and hence these steps

are same at the two nodes. Those steps are then reversed at the receiver side to yield

the transmitted signals xa and xb. Since these steps are common and for simplicity,

it is assumed that the number of transmitted samples after passing the signals through

those blocks are mapped one to one. In other words, the number of the lengths of the

transmitted signals by users a and b are Na and Nb, respectively.

NOMA Uplink Transmission

The two NOMA users split the number of samples to be transmitted into a fixed

time slots with length Nc. Hence, we have Na = `aNc and Nb = `bNc, where `a

and `b are integer values that represent the number of needed time slots for users a

and b, respectively. When mod (Na, Nc) 6= 0 or mod (Nb, Nc) 6= 0, the last time

slot in user’s a or b transmission is appended by a number of zeros Na
z = Nc −

mod (Na, Nc) and N b
z = Nc − mod (Nb, Nc), respectively, where mod (., .) is the

modulus operation. Hence, we will have `a = Na+Na
z

Nc
and `b = Nb+N

b
z

Nc
. It is worth

noting that since Na � Nc or Nb � Nc, appending the last time slot by zeros should
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have a negligible impact on the transmission efficiency.

The two NOMA users adjust the power of their transmitted signal using the NOMA

power factors. The two NOMA users simultaneously transmit their compressed signals

to the CH. The received signal at CH per time slot can be written as

y = βaca
√
Pt Ht

a xa + βbcb
√
Pt Ht

b xb + n, (4.3)

where xa ∈ CNc×1, xb ∈ CNc×1, y ∈ CNc×1, n ∈ CNc×1, βk, k ∈ {a, b}, is the allocated

power factors to user k, and Ht
k ∈ CNc×Nc is the Teoplitz channel matrix with the

channel coefficients between CH and users k as its first column. The channel taps are

assumed to be complex Gaussian random variables with zero mean and variance σ2
k,n for

the nth tap of the channel between CH and user k. ca =
√

1
1+dαa

, cb =
√

1
1+dαb

, where da

and db are the distances between CH and a, b, respectively, α is the path loss exponent.

n is the AWGN, which follows CN(0, σ2), where σ2 is the noise variance and Pt is the

available transmit power at users a and b, which we assume to be the same.

The CH splits its received signal between EH and signal decoding using a PS factor

θ. The signal that will be then decoded can be written as

yd = θ
(
βaca

√
Pt Ht

a xa + βbcb
√
Pt Ht

b xb

)
+ n. (4.4)

The CH applies SIC by decoding the message of the near user a first. The CH then

removes this signal from the received signal before decoding the far user’s signal. After

reversing the transmission steps stated earlier, yd yields x̂a and x̂b. The original data is

retrieved at the CH through an inverse DWT operation that is applied on x̂a and x̂b. The

distortion ratios calculated through the root mean square difference between the original
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and reconstructed data is given by:

Da =
||xa − x̂a||
||xa||

× 100, (4.5)

Db =
||xb − x̂b||
||xb||

× 100, (4.6)

where x̂a and x̂b are the retrieved data at users a and b, respectively.

Outage Probability

As per uplink NOMA protocol, the CH applies SIC by detecting and decoding the

signal of the near user a first. Hence, the signal of the far user is treated as interference.

The rate at which CH can correctly decode the message sent by the near user a is

Ra=log2 det

(
INc+

ρθ2β2
ac

2
aH

t
aH

t
a
∗

(
INc+ρθ

2β2
b c

2
bH

t
bH

t
b
∗

)−1)
, (4.7)

where INc is the identity matrix with size Nc ×Nc and ρ = Pt
σ2 . The CH then cancels

out this signal from the received signal prior to decoding the far user’s signal. The rate

at which CH can correctly decode the message sent by the near user b is

Rb = log2 det
(
INc + ρθ2β2

b c
2
bH

t
bH

t
b
∗)
. (4.8)

The sum rate is then

Rs = log2 det
(
INc + ρθ2β2

ac
2
aH

t
aH

t
a
∗
+ρθ2β2

b c
2
bH

t
bH

t
b
∗)
. (4.9)
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Using the arithmetic-geometric inequality, we can have

Rs = log2 det
(
INc + ρθ2β2

ac
2
aH

t
aH

t
a
∗
+ρθ2β2

b c
2
bH

t
bH

t
b
∗) (4.10)

≤ log2

(
1 + ρθ2β2

ac
2
aTr
{
Ht
aH

t
a
∗}

+ ρθ2β2
ac

2
aTr
{
Ht
bH

t
b
∗})

,

where Tr{X} denotes the trace of matrix X.

The data rate region is defined as

Ra ≤ Ra

Rb ≤ Rb

Ra +Rb ≤ Rs

(4.11)

where Ra, Rb, and Rs are defined in Equations (4.7), (4.8), and (4.10), respectively.

Assuming target data rates for users a and b are Ra and Rb respectively, the outage

probability

Po = Pr {Rs < Ra + Rb}

= Pr

{
log2 det

(
INc + ρθ2β2

ac
2
aH

t
aH

t
a
∗
+ρθ2β2

b c
2
bH

t
bH

t
b
∗
)}

< Ra + Rb

= Pr

{
β2
ac

2
aTr
{
Ht
aH

t
a
∗}

+ β2
b c

2
bTr
{
Ht
bH

t
b
∗}
<

2(Ra+Rb) − 1

ρθ2

}
. (4.12)

Letting u = β2
ac

2
aTr
{
Ht
aH

t
a
∗}

+ β2
b c

2
bTr
{
Ht
bH

t
b
∗}, we have

Po = Pr

{
u <

2(Ra+Rb) − 1

ρθ2

}
. (4.13)
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Note that Tr
{
Ht
kH

t
k
∗}

=
∑Nc

i=1

∑Nc
j=1 |hki,j|2. Since hki,j follows CN(0, 1), |hi,j| follows

a Rayleigh distribution with a scale parameter 1√
2
. Therefore, |hi,j|2 follows exponential

distribution with parameter 1. Since Ht
k is a lower triangular matrix, the number of non-

zeros elements in
∑Nc

i=1

∑Nc
j=1 |hi,j|2 isN0 = Nc(Nc+1)

2
. Therefore, Tr

{
Ht
kH

t
k
∗} follows

a Gamma distribution with shape N0 and scale 1, i.e., Tr
{
Ht
aH

t
a
∗} ∼ Gamma(N0, 1).

Hence, the random variable u is defined as the weighted sum of Gamma random

variables, hence the exact CDF of u can be given by [59]

Po =

(
β2
b c

2
b

β2
ac

2
a

)N2
0

× [
2(Ra+Rb)−1

β2
b
c2
b
ρθ2

]
2F1

(
2N0, N0; 2N0;

(
1− β2

b c
2
b

β2
ac

2
a

))
, (4.14)

where [z]2F1 (a, b; c; d) is the incomplete version of the Gauss hypergeomtric function.

We would like to note that since Ht
k is Toeplitz lower triangular matrix, we can have

Tr
{
Ht
kH

t
k
∗}

= Nc|hk0|2 + (Nc − 1)|hk1|2 + (Nc − 2)|hk2|2 + · · ·+ (Nc − νk)|hkνk |
2

(e)
≈ Nc

νk∑
`=1

|hk` |2
(f)
≈ Nc

(4.15)

where νk is the delay spread of the channel between CH and user k with number of

channel taps equal to νk + 1. When Nc is much greater than νk, we can approximate

Nc−νk asNc. Hence, the approximation (e) holds. On the other hand, the approximation

(f) holds from law of large numbers, assuming each channel tap has variance equal to

σ2
b,n = 1/νb. This leads to the nice fact that β2

ac
2
aTr
{
Ht
aH

t
a
∗}

+ β2
b c

2
bTr
{
Ht
bH

t
b
∗} is

almost deterministic with approximated value β2
ac

2
aTr
{
Ht
aH

t
a
∗}

+ β2
b c

2
bTr
{
Ht
bH

t
b
∗}

=

Nc[β
2
ac

2
a + β2

b c
2
b ]. Hence, we can mitigate any outage event by adjusting Ra + Rb such

that Nc[β
2
ac

2
a + β2

b c
2
b ] ≥ 2(Ra+Rb)−1

ρθ2
. Or the other parameters based on what is fixed and
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what is variable.

Consumed Energy at NOMA users

The main objective of data compression is to save scarce energy at the NOMA users,

which could be IoT nodes with limited access to power source and/or battery operated.

The energy consumed by users a and b to transmit their compressed and encoded bits

can be given by

Ea = Ee
a + Et

a, (4.16)

Eb = Ee
b + Et

b, (4.17)

where Ee
a and Ee

b are the energies consumed for encoding at users a and b, respectively

and Et
a and Et

b and the energies consumed during transmission of the encoded samples

at users a and b, respectively. Et
a and Et

b can be written in terms of the rates Ra and Rb

already defined in (4.7) and (4.8), respectively, as

Et
a = `aβ

2
a

Pt κa
Ra

, (4.18)

Et
b = `bβ

2
b

Pt κb
Rb

, (4.19)

where κa and κb are lengths of the transmitted bits per hertz within a time slot at users a

and b, respectively. The encoding energy comprises the energy consumed during DWT

and quantization and encoding steps. The encoding energies at a and b can be written
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as [15]

Ee
a = Ed

a + Eq
a, (4.20)

Ee
b = Ed

b + Eq
b , (4.21)

where Ed
a and Ed

b are the energies consumed during DWT operation at users a and b,

respectively and Eq
a and Eq

a are the energies consumed during quantization at users a

and b, respectively. Ed
a and Ed

b can be written as [15]

Ee
a = Fa Na

(
Da∑
n=0

1

2n

)
Ecomp +Na(1− ka)Ecs, (4.22)

Ee
b = Fb Nb

(
Db∑
n=0

1

2n

)
Ecomp +Nb(1− kb)Ecs, (4.23)

where Fa and Fb are the lengths of the filters used to implement DWT at users a and

b, respectively. Da and Db are the number of DWT decomposition levels at users a

and b, respectively. Ecomp is consumed energy per computation and Ecs is the energy

consumed at each analog to digital conversion step as in [60].

Harvested Energy

The CH harvests energy in the analog domain before signal decoding. The harvested

energy can be calculated as

Eh =
ηθ̄2Pt
Nc

[
`aTaβ

2
ac

2
aTr
{
Ht
aH

t
a
∗}

+ (4.24)

`bTbβ
2
b c

2
bTr
{
Ht
bH

t
b
∗}]

,
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where θ̄ = 1−θ, Ta and Tb are the harvesting energy times at users a and b, respectively,

and η is efficiency of the RF conversion process. Assuming normalized power profile

with equal-power taps, for channel betweenCH and user k ∈ {a, b}, we haveE{|hki |2} =

1/(νk + 1). Thus, we have

E
{
Tr
{
Ht
kH

t∗
k

}}
=

1

νk + 1

(
Nc + (Nc − 1) + (Nc − 2)

+ · · ·+ (Nc − νk)

)

=
1

νk + 1
(νNc −

νk∑
n=1

n)

=
1

νk + 1
(νkNc −

νk(νk + 1)

2
)

=
νk

νk + 1
(Nc −

(νk + 1)

2
)

≈ νkNc

νk + 1

(4.25)

where the last approximation occurswhenNc is significantly larger than the delay spread,

which is the typical case. In addition, this could be approximated to Nc. Substituting

into the EH expression, we get the expectation as

E{Eh} =
ηθ̄2Pt
Nc

[
`aTaβ

2
ac

2
a

νa
νa + 1

(Nc −
(νa + 1)

2
)

+ `bTbβ
2
b c

2
b

νb
νb + 1

(Nc −
(νb + 1)

2
)

]
,

≈ ηθ̄2Pt
Nc

[
`aTaβ

2
ac

2
a(Nc −

(νa + 1)

2
)

+ `bTbβ
2
b c

2
b(Nc −

(νb + 1)

2
)

]
≈ ηθ̄2Pt

Nc

[
`aTaβ

2
ac

2
aNc + `bTbβ

2
b c

2
bNc

]
≈ ηθ̄2Pt

[
`aTaβ

2
ac

2
a + `bTbβ

2
b c

2
b

]

(4.26)
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where in the first approximation we assumed that νk
νk+1

≈ 1, k ∈ {a, b}. On the other

hand, the second approximation (last approximation) is based on the assumption that

Nc � νk/2.

Optimization Problem

We optimize

P2 : max
βa,βb,θ,ka,kb

: E {Eh} ,

s.t. Po ≤ ε,

Ea ≤ δa, Eb ≤ δb,

Da ≤ µa, Db ≤ µb

0 ≤ βa, βb, θ ≤ 1,

da ∈ dA, db ∈ dB,

da < db.

(4.27)

where dA and dB are the vectors that contain the distance values for the sets of near and

far user discs, respectively. Some Remarks on Eqn. (4.27): There are some trade-offs

in (4.27) as follows

• dA and dB contain discrete values, which implies that this constraint is non-

convex, and yields that the optimization problem above is non-convex.

• The higher the compression ratio, the lower the harvested energy at the CH.

• The higher the compression ratio, the lower the consumed energy at the transmit-

ting IoT nodes.
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• The CH can adjust the compression ratio for each user based on each desired

value.

• The higher the PS factor, the higher the harvested energy, but the lower the SNR

and hence the higher the outage probability and the distortion ratio.

• The higher the NOMA power split factor, the higher the consumed energy at the

transmitting nodes, and the higher the harvested energy at the CH.

Regarding the solution of (4.27), the optimization problem is non-convex due to the

non-convexity of the objective function and the constraints. Hence, we cannot exploit

existing efficient methods used to solve convex problems.

Using exhaustive search (also known as brute force) is not the most efficient way

to solve the problem. However, exhaustive search is typically used to benchmark other

solving methods, is easy to implement and will always find a solution if it exists. Please

note that some of our optimization variables are discrete values with small set, and even

the range of the continuous ones could be divided into O points and the optimization

problem could be evaluated accordingly. Increasing the value of O increases both

accuracy of the solution as well as the complexity. In addition, we optimize the average

performance, the optimization problemwill be resolved only when the average/statistical

parameters are changed, which does not occur frequently.

Due to the high degree of complexity of the optimization problem in (4.27), we

propose to use DRL approach to find the optimized values as described the following

Section.
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Optimization through Deep Reinforcement Learning

Reinforcement learning peers the input datawith the delayed reward valuemaking the

agent take actions that lead to higher rewards. When a new data point is fit for training,

the agent can see the reward from the previous data point. Therefore, reinforcement

learning can usually be regarded as 5 tuple {S,A,T,R, γ}, where S is the state’s space,

A is the actions space, T is the state transition values as a function of given action a in

a given state, R is the reward and γ is the discount factor that adjust the action.

Agent and Environment

The environment should be designed to describe the main parameters of the sys-

tem that will interact with the agent per each time step t. According to the problem

description, the environment E will have a continuous attitude as the episode keeps

running with no break state. The agent’s behavior will be described by a policy π, which

maps states S1, S2, . . . , Sn ∈ S into a given actions a1, a2, . . . , an ∈ A at each time step

t ∈ T . During the experiment, the environment state St will take an action at from the

agent according to the policy π and then generates based on the state transition dynam-

ics, the next state (st, at) −→ St+1 and an immediate delayed reward R(St, at) −→ rt at

each time step t. The total cumulative discounted future reward across the experiment

starting from time t′ = t can be calculated by Rt =
T∑
t′=t

rtγ
t′−t, where T is cumulative

time for the experiment and γ ∈ [0, 1] represents the discount factor. The interactive

state/action value function which also called Q function of a policy π can be written as

Qπ(s, a) = E
rt,st∼E,at∼π

[Rt|st = s, at = a], it describes how efficient it is for the agent

to perform a specific action in a state with the policy π and by replacing Rt with its
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Figure 4.2: DDPG System environment/agent Architecture model 2

value the Q-function will be Qπ(s, a) = Eπ
[∑T

t′=t rtγ
t′−t|St = s, at = a

]
, the main

objective of the agent is to learn an optimal policy π′ that harvest the optimal Q-function

Q′(s, a) = max
π
Qπ(s, a) and this will be the policy of learning.

Again, using Q–learning directly in continuous spaces of action is difficult to apply

because it is necessary to optimize greedy policies at every step of the time. Such kind

of optimization is too slow to be realistic with large or unconstrained problems and

non-trivial action spaces.

Proposed DDPG-based approach to maximize harvested energy

Based on our objective function in (4.27), we propose the deep deterministic policy

gradient (DDPG) algorithm as a practical optimizer to imply that DRL can be used in
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such optimization problem and to benchmark its results with our Matlab simulation.

Architecture of the proposed DDPG-based approach

The complete architecture of the DDPG system is shown in Figure 4.2. The main

objective is to learn a deterministic policy µ(s, θ) that allows the actions to maximize

Q(st, at;φ). The main purpose of parameter φ is for policy evaluation. The training

process will utilize the replay buffer that represents the previous experience of learning

which also, can improve the data and stabilize the training process of the neural networks

according to [61]. The mean square Bellman error (MSBE) represents the the error

function which indicate how far the approximation from satisfying Bellman equation.

Each networkwill have a time-delayed copy of itself in order to stabilize theminimization

process of MSBE during the training.

The actor neural network would maintain the parametric actor function µ(s|θµ) that

specifies the current policy bymapping states to a specific action deterministically. How-

ever, the critic network Q(S, a) will learn using the Bellman equation which describes

the optimal action value function [56], [57] :

Qµ(st, at) = E
rt,st+1∼E

[r(st, at) + γ max
at+1

Qµ(st+1, at+1)],

where at+1 −→ µ(st|θµ) and st+1 implies that the next state is sampled by the en-

vironments following the distribution P (· · · |s, a). Since the function approximator

Q(st, at;φ) is assumed to differential with respect to the moving action statement,

which means for one policy µ(s; θ) we can create a gradient based learning rules that

minimizes the expensive computation of max
at

Q(st, at)) over the action space to be
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Q(st, µ(st; θ).

Agent and environment of our optimization problem

The main goal is to maximize the objective function in (4.27) by maximizing its

reward function in order to obtain the trade off between maximum harvested energy

satisfying the main constrains listed in the problem including the compression and

distortion ratios, outage probability and consumed energy by the NOMA users. The

Markov Decision Processes (MDPs) shall be considered while designing the environ-

ment E. The MDPs shall model the relations between the agent and the environment

while the environment changes continuously. The environment will be episodic, where

the episodes represents the dynamicity of the environment changes. The environment

will be fully observed by the agent and the state st will be [Eh, Po, Ea, Eb,Ha,Hb] ∈ S.

All of these parameters have to be normalized to train the network’s nodes, therefore,

the state will be st = [Êh, P̂o, Êa, Êb, Ĥa, Ĥb],∀s ∈ S. We can notice that, the state

transitions are not deterministic in the system due to the fact that all of these parameters

depends on the randomness of the channel estimation. Nevertheless, the state transition

can still be calculated by invoking our optimization parameters [θ, βa, βb,ka,kb] where

[at = θ, βa, βb,ka,kb] ∈ A represents the action space of the system. The agent will

generate these actions and invoke them with the environment to calculate the next state

and get the discounted reward based on the previous state.

Reward function

The reward function at each time step t describes the main parameters of the op-

timization problem and it is a function of the current state st and current action at.
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The aim of the problem is to maximize the harvested energy Eh while satisfying the

main constrains. Therefor, Eh must be involved in the reward function and jointly we

need to optimize the compression ratio while the distortion of the data is kept below the

threshold. The reward function has to include all the system constrains. From that the

reward function is

rt =



λ1Eh + λ2(δa − Ea)+

λ3(δb − Eb)+

λ4(µa −Da) + λ5(µb −Db) if remaining constraints in (4.27) hold

−1, otherwise

(4.28)

whereλ1, λ2, λ3, λ4, λ5, are theweights for each term andλ1+λ2+λ3+λ4+λ5 = 1. The

condition for the reward is the constraints listed in the problem above in order to ensure

the parameters do not go below a certain lower bounds. Otherwise, the reward will be

be penalized by -1. The weights above play important role in the system performance

to obtain the trade-off between the optimization parameters. These weights could be

adjusted based on the system requirements.
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Simulation and Results Analysis

DRL Conversion

During the first 100 episodes, the algorithm had an exploration decay rate of φ = 0,

which means that during those episodes, the entire experiment was observed. This

implies that the algorithm analyzes the entire continuous space of actions to determine

the most rewarded actions required to establish the optimal strategy, thus optimizing the

total reward. Exploration is achieved by adding noise to the action itself, as we have

continuous action spaces. Subsequently, the entire exploration term decreases to almost

0, such that maximum exploitation is achieved and thus seeks actions that only yield the

greatest possible rewards. For all the channel randomness, the efficiency has stabilized,

converging approximately after 1500 episodes, i.e. the algorithm achieved an optimal

policy to obtain the highest reward. We present the average reward of the proposed

D-DDPG algorithm in Figure 4.11, which takes immediate changes in the environment

into account as a function of channel gain and node energy consumption. Therefore,

as the environment changes, it eliminates numerous needs for re-optimization.The main

simulation parameters set to be similar in both Matlab simulation and the DRL model.

After reaching the conversion point, the model start to fine tune the action parameters

to maximize the total reward in a slow learning rate fashion. We can see this from the

slit increase of the reward values with time. The optimal parameters to attain highest

harvested energy were when βa and βb were at maximum which is 0.9 each and θ was

low to 0.1. The compression ratio was zero at node a and 0.75 at node b.
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Figure 4.3: DRL Result .

Results Analysis

Comprehensive simulations have been conducted to figure out the effect of each

single parameter on the performance of the system. Simulation of the NOMA SWIPT

Method Using fading channel realizations based on Rayleigh channel model that obey

CN(0, 1) for each user. The main simulation parameters set to be Pt = 1 watt and

σ2 = 1 ∗ e − 8,Nc = 64, α = 2. The NOMA users are organized in rings around the

cluster head node with different distances disc Aj ∈ [5 : 10] and disc Bj ∈ [11 : 20]

meters respectively.the objective parameters have been set to be 0 ≤ βa, βb, θ, ka, kb ≤ 1

as shown in equation 4.27. The numerical simulation results have been presented in

Figures 4.4 - 4.10.
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Some Remarks on the simulated results:

• In order to tackle the trade-off between the total energy harvesting (EH) and θ and

the effect of βa, βb on the harvested energy, we plotted the harvested energy Eh

versus θ for different values of βa, βb, meanwhile we kept the compression ratios

constant at this point. In Figure 4.4, we show the relation between the EH Eh

versus θ, where θ is always split between signal decoding and harvesting energy at

the cluster head node. As we showed in equation [4.28], the amount of harvested

energy decreases when the allocated decoding power θ from the CH increases as

this will decrease the amount of power allocated to harvest energy. The second

important set of parameters in this curve are βa and βb representing the allocated

power ratio for transmission for node a and b respectively. As the transmitting

nodes spend more power in each transmission the CH will be able to harvest more

energy. The highest harvest power was achieved when the node transmission

power was at its maximum. Conversely, the energy harvested decreases βa, βb

decreases. Moreover, The NOMA user pairing is important factor and always

have effect on the energy harvesting performance. The best performance was

always achieved when we pair the node at the edges of the discs. For example

when user a ∈ discAj which have the nearest distance from the CH node is paired

with user b ∈ discBj which have the nearest distance from the CH node in disc

Bj , this gives the highest harvested energy in most of the case and depends on the

values of βa, βb. This implies that, it important to pair the between the nodes on

the edges closest to the CH node. And on the contrary, Pairing the meddle nodes

is will not preserve the highest harvested energy.
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• On the other hand, to study the effect of the compression ration on the harvested

energy, we presented in Figure 4.5, the relation between the harvested energy

versus θ and we kept βa, βb fixed. As presented in the graph, the harvested energy

always depends on the transmitted number of samples. The highest results shows

that without data compression we get more energy. This behavior holds for the

two right sub figures in the graph as the total number of transmitted sampled when

user a transmit 90 percent of its samples and user b transmit only 25 percent or

vice versa, this means the total transmitted samples is above 50 percent. However,

in the left down corner sub figure both users transmit only 50 percents of the total

number of samples and therefore, lowest harvested energy.

• In Figure 4.6, we present the relation between the outage probability and the

CH power split factor θ with respect to the variation in the values of βa, βb. A

threshold level ε has been fixed to measure any outage event of the users. And as

we presented in equation [4.19] that we can mitigate any outage event by adjusting

Ra + Rb such that Nc[β
2
ac

2
a + β2

b c
2
b ] ≥ 2(Ra+Rb)−1

ρθ2
. Or the other parameters based

on what is fixed and what is variable. Therefore, as βa, βb varies we presented the

outage events in different case. when βa, βb are high grantee no outage event will

occurred and as both of them goes low there will be a possibility of outage for

some users especially when pairing the meddle nodes. the factor that controls this

behavior is the targeted date rate Ra + Rb. The target data rate can be adjusted

based on the application requirement. We notice from the graph that at higher

average transmission power of the NOMA users, we satisfy the outage condition

for the majority of user pairing, except pairing the middle users in disc Aj with

the farthest of disc Bj .
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• The node’s consumed energy is always function of the transmission power and the

compression ration. The transmission power per each transmission is dominated

by the compression ratio. The compression ratio reduces the power consumption

as it goes high. As per the system model we assumes that the transmission power

ratio is always controlled by the CH node. however, we can notice the effect of

the compression ratio on the node consumption for user a in Figure 4.7. As the

compression ration goes high, we notice a considerable decrease of the consumed

energy based on the values of βa and distance from the CH. Since we fixed the

transmission with each time slot to Nc samples so the compression ratio will

determine the total number of slots that required to transmit the current available

data. Both of θ and the distance from the CH have minimum impact on the node’s

energy consumption.

• At Node b, the energy consumption is shown in Figure 4.8. Because node b is the

far user we can notice the effect of the value of distance from the CH. Compression

ratio and βb values have the same impact as for node a on the consumed energy.

The lowest consumption was when βa and βb was low for both nodes.

• Figure 4.9 represents the relation between compression ratio versus distortion

for user a, while θ is constant with varying βa. Since the signal is transmitted

over an error channel, the SNR between the transmitter and receiver is the main

factor of distorting the signal. Since user a (the near user) is always suffering

interference from the far user b, the signal received from user a will face much

distortion than the signal coming from user b. The value of βa could minimize

the level of distortion as βa have a higher value. In Figure 4.10, we can see the
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Figure 4.4: Energy Harvesting vs θ with constant compression ratio

level of distortion is below the threshold level in all cases due to the higher SNR

between this node and the receiver. The DRL solution shows better performance

then the greedy solution where the greedy solution is greedy with respect to

time. Figure 4.11 shows the average reward versus time for both of the greedy

solution and the DRL solution. The average reward that achieved from the DRL

is higher significantly the the average reward achieved from the greedy solution.

Because of the target of the DRL is to maximize the expected harvested energy,

we can in figure 4.12 the average harvested energy gained from the DRL is higher

significantly than what we get from the greedy solution.
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Figure 4.11: Average reward Vs. Time.
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Figure 4.12: Average harvested energy Vs. Time.



CHAPTER 5: CONCLUSIONS AND FUTURE WORK

In this thesis work, we investigated the scope of integrating multiple IoT nodes ca-

pable of smart data compression in a system coordinated through a cluster head node

capable of harvesting energy from the wireless signal under NOMA up-link protocol

for smart and efficient data transmission. The main objective was to identify the de-

sired trade-off between the system parameters in order to archive higher performance

in terms of data compression with acceptable level of distortion, meanwhile gain the

highest possible harvested energy to cover the power expenses of the cluster head node.

The system architecture is designed to satisfy the applied constraints in terms of outage

probability of the transmitting node and target rate to minimize out probability. In this

regards, we introduced two different system models described in chapter 3 and chapter

4 respectively.

Firstly, we considered wireless remote monitoring sensor networks, with an energy-

limited nodes, transmitting a collected data from the surrounding environment, such

as medical EEG data to an edge node under NOMA-up-link protocol. We presented

a smart model for data compression with minimal expected distortion among NOMA

users using the DRL approach. The problem was formulated in the form of satisfying

the constraint of node’s outage probability, pre-transmission signal compression, and

considering the power budget constraint of the user nodes. The proposed DDPG agent

was able to learns the optimal policy that leads to a trade-off between the users’ mini-

mum expected distortion and the probability of outage by achieving the highest possible

reward. the agent was designed to adjust the node’s transmission power and the desired

compression ratio.
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The results in this part show the effect of both NOMA power split factor and

compression ratio on the total expected distortion. The total distortion due to data

encoding and quantization reached its maximum level when compression ratio was at

the highest value. In addition, the higher the compression ratio, the lower the energy

consumption of the node. Also, the NOMA power split factors could minimize the effect

of the noisy channel on the distortion, such that the higher NOMA power split factor the

higher energy consumption. Finally, the outage events can be controlled by the targeted

data rate threshold.

Secondly, we expanded the system model to investigate the energy harvesting re-

quirements to grant the cluster head node longer life time. The system was designed

to include multiple nodes arranged in discs surrounding the cluster head node. We

studied the visibility of pairing users in order to gain the maximum harvested energy

from the RF signal. we investigated the effect of each single system parameter on the

performance of the harvested energy and outage probability. Moreover, we investigated

the energy consumption at each node in order to increase the battery life time of these

nodes. A second dynamic DRL model was designed to determine the optimal system

parameters that allow the system to operate under the highest possible performance.

Compiling the generated results from DRL and the optimization-based solution

would lead to understanding the effect of each parameter on the performance. The

harvested energy is higher when the transmitted number of samples is higher. However,

NOMA power split factors βa and βb will have the main impact on the harvested energy

as the highest harvested energy was achieved when both of them were to the maximum.

The outage probability could be mitigated by controlling the threshold of the targeted

data rate. Both ofNOMApower split factors and compression ratio aswell as the targeted
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data rate have impact on the node energy consumption especially when the values of βa

and βb are high. Finally, the level of distortion depends on both compression ratio and

SNR between the transmitter and the receiver, such that the higher the SNR the lower

the distortion.

Future Work

• The system model tackled in this thesis work was based on a group of IoT de-

vices connecting to one cluster head (CH). As a future work, we will look into

large systems utilizing multiple cluster heads or multi-base station systems. The

optimization problem in this case will be highly complex, and can be mapped

to multi-agent reinforcement learning, where the agents at the base stations can

compete or cooperate to achieve the best policy that optimizes the global system

reward.

• In our model we assumed that the nodes are saturated and always have data to

send during the transmission time. The model can be expanded to study the per-

formance of probabilistic effect of the data arrival distribution on the performance

of the NOMA system, because this will have impact on the interference with the

other nodes.

• We assumed in ourmodel that the transmission rate is fixed toNc value during each

transmission. Therefore, the model can investigate the transmission of various

data rate per time slot in the future, and the effect of that on the harvested energy.

• We can also consider certain energy constraint per slot on the source, then compute

processing time due to enabling DWT (or any other filters). This will allow us
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to use the remaining energy for data transmission. Since data transmission power

impact both data rates and EH rates, the compression ratio would impact both.

• We can expand the model to include mutable CH nodes and use DRL to study

the feasibility of increasing the life time of these nodes based on priority of data

transmission.
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