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ABSTRACT

Kharroub, Suleiman, K., Masters : January: 2021, Master of Science in Computing

Title: Deep Learning IoT Malware Detection Model for IoMT Edge Devices

Supervisor of Thesis: Dr. Mohsen Guizani.

Internet of Things (IoT) is defined as the massive collection of physical devices be-

ing connected to the Internet. IoT has a positive impact in multiple fields, such as

health, agriculture, and power management sectors by advancing them to new technical

horizons. However, such advanced technologies introduce security challenges that can

negatively affect IoT applications and possibly threaten their existence. In the health

sector, for instance, Internet of medical things (IoMT) devices are used to perform tasks

such as remote patient monitoring and to gather biometric information. Also, these

devices are used as a base for several healthcare procedures such as prescribing med-

ication. Several security breaches can occur to IoMT devices that may expose human

privacy and security since the data collected and processed is very sensitive. In this

thesis, we provide a light-weight malware detection deep learning model. The model

is deployed on IoMT edge devices that can detect IoT specific malware. The proposed

models utilize gray-scale images produced by the binary of malware files to classify

malware from goodwares. The achieved results were promising in terms of malware

classification accuracy, which might help prevent malware and secure the dedicated

systems for IoMT devices and applications.
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CHAPTER 1: INTRODUCTION

In this thesis, we tackled the security challenge of malware detection for the Internet

of Things (IoT). During my studies, I was heavily involved in the security aspect of

applications, systems, and networks. Due to the lack of security standards for IoT devices

and applications, achieving security became a major challenge and a hot research topic.

The processing power and energy limitations of an IoT device make it even harder to

propose a security mechanism that is viable to use in the industry. This is especially

important when we involve IoT in the medical field creating what is referred to by

the Internet of Medical Things (IoMT). IoMT enabled easier access to healthcare and

advanced the medical field in multiple ways giving birth to technologies like remote

surgeries, and remote patient monitoring. Securing such applications is a crucial task

due to the extreme sensitivity of the collected and processed data. IoMT applications

and devices are directly involved with the well-being of humans which makes failures

in such systems fatal. With that being said, it became my goal to propose a solution that

mitigates one of the major challenges in IoMT security; IoT malware detection. During

my graduate studies, I dedicated my research towards the goal of IoT and IoMT security

achieving multiple publications in that field. In this thesis, I will be showcasing all of the

steps that I took to achieve IoT and IoMT malware detection through the use of machine

learning and deep learning. The main problem that we are trying to solve is the ability

to identify IoT-specific malware on a network level. This thesis will be segmented into

the following chapters:

• Chapter 2: Showcases a survey paper that we published in IWCMC 2020 about

different encryption and security techniques in IoMT.
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• Chapter 3: Demonstrates our first attempt at creating a deep learning model that

can classify IoT specific malware using grayscale images created from the binary

of files.

• Chapter 4: Expands on our previous work in Chapter 3, converting the created

model into a lightweight version that can run directly on IoT devices.

• Chapter 5: Concludes this thesis with remarks and future work to be done.
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CHAPTER 2: LITERATURE REVIEW

Chapter Overview

In this chapter, we summarize the work done in our published survey paper [1].

This survey paper was our first step into understanding the literature regarding IoT

and IoMT security techniques and challenges making it an important cornerstone for

this thesis. Understating the state-of-the-art in IoT/IoMT security is a crucial step to

develop a solution that attempts to solve the problem at hand and improve the literature.

This chapter summarizes multiple IoT security approaches each with its benefits and

limitations to understand each approach and the reasons behind why we chose machine

learning to be our method of choice for IoT/IoMT malware detection.

Introduction

As of late, it became a simple matter to get healthcare no matter the place due to

technology. While said technology cannot simply cure chronic diseases, it can increase

healthcare accessibility all over the world. Recent advancements in the Internet of

Things (IoT) reached very sophisticated levels of precision and reliability to the point

where we can safely integrate IoT devices and their applications in our daily lives.

Such technology allowed humanity to have smart homes, smart cars, smart electric

grids, and many more applications that automate trivial and non-trivial tasks [2]. Most

importantly, IoT devices are now being used in the medical field for various applications

such as gathering biometric information from patients automatically over time intervals,

remotely give patients their medicine dosage depending on certain readings, and doing

remote surgeries where the doctor might be in a different country than the patient
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but is still able to control his/her tools and operate as if the patient is right next to

him/her. All of those technologies made the healthcare sector very advanced and made

it much easier for people all over the world to get the medical care appropriate for

them at the right time [3]. However, as we depend more and more on IoMT, the risk

on human lives increase. IoT devices are indeed somewhat reliable and therefore we

can safely implement them in a controlled environment. But that is not always the

case with IoMT and the healthcare section. As we mentioned before, most of the

medical applications of IoT require connection over the cloud to operate as intended.

And when communication over the cloud is mandatory, multiple security issues arise.

Risks like exposing patient data, data eavesdropping, unauthorized data access, location

privacy, and medical hĳacking are some of the security issues in IoMT systems [4].

Security plays a major role in making sure IoMT applications are working as intended

without risking human lives in the process. The CIA triad (Confidentiality, Integrity,

Availability) should be kept in mind when developing medical applications and the way

those applications communicate with other applications, systems, devices, and through

the cloud. Unfortunately, IoT manufacturers do not agree on specific security standards

when making IoT devices. Which makes it remarkably harder to come up with security

solutions due to compatibility issues.

Literature Review

In this section, we will provide a comprehensive literature review for different

IoMT encryption methods and categorize them under three categories, centralized, non-

centralized, and low weight security techniques. An important thing to mention is that

IoT devices are very limited in terms of processing power and energy making it difficult
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to utilize the standard security and encryption techniques that are usually used in more

powerful devices like PCs and Servers. However, some of the techniques that we will

mention utilize powerful devices such as a server to handle part of the security process.

Centralized:

A centralized approach is an approach where a powerful device is used to perform

process-heavy tasks, pushing the workload away from IoMT devices. In these types

of solutions, the goal is usually to use classic encryption, decryption, and key sharing

techniques within an IoT environment. Since IoT devices are limited in processing

power and energy, so typical security techniques cannot work if we deploy them on the

IoT device itself. However, processing the complicated security techniques on a more

powerful node (Centralized Node) like a server or a computer is one solution to this

issue [2] [3].

Figure 2.1: The IoMT Landscape [5]
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In [5] a novel ontological scenario-based methodology is used to develop a web-based

IoMT Security Assessment Framework (IoMT-SAF). The proposed system is used to

recommend security features and evaluate security and limitation in IoMT solution.

IoMT-SAF supports the selection of a solution that matches the stakeholder’s security

objectives and supports the decision-making process. The value of IoMT-SAF lies in

its extensibility, attention to detail, as well as customizability for different stakeholders

while keeping top performance according to technology and medical standards. Several

components defined by the Open Web Application Security Project (OWASP) are pre-

sented in the paper [5] as the classic components in IoMT solutions such as endpoints,

where medical devices are connected to hospital networks, the Internet, or to other med-

ical devices. From the above Figure 2.1 which illustrates the layout of IoMT Landscape

and is presented as the following:

1. Represents the endpoints section, The DFA showcases connected medical devices

(IoMT endpoints) as medical devices that are connected to hospital networks,

remote cloud, other devices, or the internet. The work done in [5] consider

non-medical devices that can be used in IoMT environments such as ambient

sensors.

2. Represents gateways, they act as a support mechanism for enhancing the connec-

tivity of weak endpoints by working as a bridge.

3. Back-end section, current back-end servers are used by IoT systems to run IoMT

solutions, process data, And store data produced from the network.

4. Mobile Devices/Applications that are usually deployed in IoT systems to grant

remote control access for endpoints and back-end management.
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However, essential components in an IoMT solution are different based on the used

framework that we are working with. IoMT devices are classified as follows:

• Wearable devices (e.g., heart monitors).

• Implantable devices (e.g., embedded cardiac function monitors).

• Ambient (e.g., door sensors).

• Stationary (e.g., computerized tomography scanners).

The nature of the IoMT platforms also vary, but the most common ones are cloud-

based platforms that are used to establish smart IoT devices and IoT applications.

Such platforms offer administrators centralized back-end management capabilities like

analytics backup through web interfaces, and ecosystem administration reports [6].

Services are used to provide edge computing to analyze the collected data and to

integrate IoMT with other systems [7]. Typically, IoMT solutions are a combination of

systems, some applications utilize the accounting and long-range monitoring systems

to come up with a solution. Therefore, securing IoMT applications depend on what

systems are involved in a given solution and that is why it is typically difficult to come

up with a standardized general solution. Following the centralized approach, some

solutions already exist that support symmetric secret key -or shared key- in IoT. In such

approaches, the IoT devices initiate mutual communication between the sensors and

base station to agree on a common key (shared-key), another connection between a base

station and key distribution center is established after that. Since IoT devices are limited

in terms of power, such approaches prove to be difficult to implement since regular

encryption and decryption techniques like RSA and ECC cannot be used within IoT

environments [6][7].
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Non-Centralized

The Non-Centralized approach came about to mitigate the limitations of the cen-

tralized approach. Since IoT devices are limited in terms of resources, centralized

approaches tend to be very difficult to implement. On the other hand, non-centralized

approaches tend to have different solutions to reduce the load on IoT devices and use the

nature of their Ad-hoc connectivity. When an IoT device communicates with the cloud,

the security risks increase dramatically. Although having an infrastructure can help us

detect security breaches and better assess the overall security of the network, we will

learn in this section that it is not always the case.

Figure 2.2: Example of a typical encryption and decryption scheme

Figure 2.2 shows the message as plaintext, also identified as the original message,

Which is changed to a ciphertext through an encryption algorithm. Each ciphertext

goes through the mentioned public channel whenever a message is sent from sender

to receiver. When the receiver gets the message, it gets decrypted to plaintext. As
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mentioned in [8], we can implement data encryption at three communication levels:

node level encryption, link-level encryption, and end-to-end encryption. In the case of

intermediate nodes in a given link, each received message from the former link will

first be decrypted to plaintext, then, using the secret key of the next link, the plaintext

is encrypted into ciphertext. On the other hand, node encryption does not allow any

plaintext messages to be formed within network nodes. That is why node encryption

can be a good solution to provide high security for network data. Lastly, in end-to-end

encryption, messages are not decrypted until they are fully transmitted to the destination

[9]. In that case, themessages in a given transmission are always encrypted as ciphertext,

minimizing the risk of information leakage if a node gets corrupted. To secure healthcare

connections, key management protocols play a major role in the overall security process.

The use of composite encryption algorithms or transmission protocols can heavily affect

transmission rate making it impossible to transmit data in some cases. Moreover,

striking a balance between energy consumption and acceptable security measurements

is a problem that needs to be solved methodically. To control malicious activities, the

transmission protocol of data requires a secure channel between IoMT devices and the

cloud. The research work in [10] proposed PROTeCt—Privacy architecture which is a

cloud-based security approach for IoT. The model enhances user privacy by enforcing

privacy at the device level instead of the gateway. In that case, we eliminate the issue of

single point of failure which increases the overall security and fault tolerance of a given

system. The results show that the proposed solution is promising in terms of increasing

the privacy and security of IoT devices.
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Figure 2.3: Cryptographic process using secure transport layer protocol [10]

Therefore, every single transformation from IoMT to the cloud should include a code;

it recognizes the device and proves it has permission to store the data on behalf of the

user. The following Figure 2.3 shows that the cryptographic operations and message

format of transmission while using a secure transport layer protocol. It also highlights

two important processes, (a) or a shared key with the cloud provider (b). The blue and

white boxes represent encrypted and plain content, respectively. The data is generated

through IoMT devices and encrypted two times, the first one at the application layer, and

the transport layer is responsible for the second encryption. Thus, the entire message

is encrypted, which includes the encrypted data, MAC and access code [10]. Another

interesting approach that is completely non- centralized is using block-chains to establish

security within an IoT network. Blockchains proved to be useful in multiple IoT related

technologies, especially in the field of security [11]. It provides an immutable ledger

where data can be stored without the fear of it being changed unexpectedly later on. This

ledger can be accessed by the devices connected to the network so that every device can
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verify and consent to any updates or changes in the ledger. Thus, making it very suitable

for security applications like key sharing.

Figure 2.4: Blockchain Structure

Every blockchain ledger contains a series of blocks as represented in Figure 2.4. Within

every block, we have data and a hash that points to the previous block in the series.

Before a block is established and added to the ledger, every device on the network must

verify its legitimacy. Also, if we want to change the data in a specific block, this action

must be verified for legitimacy by every device on the network before changing the data

in one block. One noticeable drawback of the blockchain is the fact that if we change

the data of one block, we must change the hash pointers of every block that comes

after it. Which is a costly process in terms of energy and processing power. In [12]

they proposed a solution for smart home IoT security that implements blockchains. The

solution proposed is based on the following components:

11



Transactions

It is defined as the mutual communication between local devices and-or overlay

nodes. Different transactions correspond to different functions within the smart home

system.

• “Store” transaction is created by devices to store data.

• “Access” transaction is generated by a service provider (SP) or the homeowner to

access the cloud storage.

• “Monitor” transaction is generated by the homeowner or SPs to periodically

monitor device information.

• “Genesis” transaction is to add a new device to the network.

• “Remove” transaction is to remove a device from the network.

Transactions mentioned in the list above, utilize a shared key to secure communication.

Light-weight-hashing is used to detect any change in a specific transaction content during

transmission. All out-going and in-going transactions of the smart home are stored in a

local private BlockChain.

Local Block-Chain (BC)

Within every smart home, there is a local private BC that maintains a record of

all transactions that occur in the home network. After the “Genesis” transaction, each

consecutive transaction is linked with another transaction making the immutable ledger.

Each block contains two headers, the block header, and the policy header. Policy

12



header utilized for authorizing connected devices, and enforcing policies defined by the

homeowner. Every block header includes the hash of the previous block to keep the

integrity of the BC.

Home Miner

A device that is responsible for processing incoming and outgoing transactions of

the network. It can be integrated within a network gateway or as a separate device. Like

current central security devices, the home miner authenticates, audits, and authorizes

transactions in the network. It also generates “Genisis” transactions and handles key

distribution and key updates. It is also responsible for collecting all transactions into

a block to append in the BC. It also handles local storage, which provides adds to the

maximum network capacity [12].

Low-Weight Security

Some research efforts are done in the area of asymmetric key sharing between

IoT devices without the need for a base station or infrastructure. In [13] they propose a

solution that divides the resource-limited sensors under the same environment presented

by the Light-Weight Implementation Guidance (LWIG) working group into two different

classes; Class 0 super-light sensors and Class 1 or above sensors. They deploy the

authentication method and session key sharing method according to the performance of

each group of sensors. They have the following parameters for their solution:

• I is the authentication initiator.

• R is the responder to the message from I.
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• R1 and R2 are random nonce values.

• IR is the safely shared key in advance between I and R.

• Sk is the session key shared between I and R.

The proposed system allows devices to authenticate each other and share a key to be

used for symmetric encryption. In their solution, it is assumed that the secret key value

and the encryption function Ek(x) are safely saved in each device at the setup stage.

Then the procedure of the mutual M2M authentication is as follows:

1. I → R : {IID, R1} I generate a random number R1, and sends it with its ID, IID

to R.

2. R → I : {RID, EKIR(R1||R2)} R encrypts the received R1 and then, the co-

herently generated R2 with kIR and sends those values to I along with its ID

(RID).

3. I and RXOR-operate R1 and R2, and encrypt the value with to generate the session

key SK.

4. I → R : {ESK(R2)} I encrypt R2 with the session key SK, then re-transmits it

to R to get the authentication.

The following is a continuation of the communication process between the IoT

devices after the shared key has been established:

5. R → I : {ESK(DATA1)} Sends back the authentication to I from the previ-

ous step (4). Then encrypts the data that it wants to transmit using SK before

transmitting. Lastly, it sends the encrypted data to I.
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6. I → R : {ESK(DATA2)} Similarly, I then use SK to encrypt the data that it

wants to send.

7. Session end. After data has been communicated, the session ends and both devices

dispose of the shared key SK.

In this approach, every IoT device can authenticate other devices and share a new key

with every communication session. Although this type of security is not fully robust

against the toughest of security attacks. But it provides a sufficient level of protection

due to the fast and rapid nature of data exchange between IoT devices it becomes difficult

for attackers to figure out the shared key (SK) in time before it is changed again. With

this solution, IoMT devices that are present within the same network (i.e. deployed

on the same patient) can communicate securely with each other. Maintaining secure

enough communication to safely ensure the integrity and confidentiality of vital health

data.

Chapter Conclusion

After discussing different state-of-the-art techniques in IoT security. We concluded

that such techniques are not sufficient to satisfy the security requirements of IoT devices

and systems. A typical IoT ecosystem consists of two important types of devices; a

sensor that collects data from the physical world, and an actuator that alters physical

world attributes based on signals that it receives from other sensors or commands issued

by users. Actuator functionalities can vary in terms of criticalness, a simple example

could be turning on the light, a more complicated example could be insulin injection

pumps. While failure in simplistic actuator functionalities is tolerable, failure in the
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more complicated ones can directly risk human lives. Therefore, we need an adaptive

approach if we want to implement an acceptable level of security. Adaptive technologies

like machine learning and deep learning can be very beneficial in this case. We can

train models -using known IoT malware- that can classify any given data as malware

or goodware. Machine learning is especially useful here because it can also detect

unknown malware based on what it learned from known malware in terms of patterns

and features. Then the idea came to mind to implement such an approach which we

discuss in the following chapter.
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CHAPTER 3: BASE MODEL

Chapter Overview

This chapter explains the work that we published in [14]. After discussing the

literature in the previous chapter, we realized that machine learning can be implemented

for IoT security purposes. Due to its adaptive nature, machine learning proves to be

useful in implementing malware detection. Therefore, in this chapter, we explain how

we created a lightweight machine learning model that can classify data accurately into

IoT specific malware or goodware.

Briefing

Efforts in the research field have been made to create a standard for IoT security that

covers all IoT fields. An example of such efforts can be seen in ISO/IEC 27030 and

ISO/IEC 30141. which are used as tools to assess an IoT framework by looking into the

trustworthiness to evaluate the reliability of an IoT system and how safe is it taking into

consideration the context of said system [15]. Governments in theUS andEU are looking

forward to having a standard for IoT security that is proved to be robust. However, there

are two main concerns regarding the development of such standard; the first one being

the diversity of IoT applications and their suggested standards make it challenging to

find common ground that can unify them, the second one is mainly due to lack of

information regarding implementations and review rates of suggested standards which

makes it difficult to assess each standard with its respective context to signify its impact.

Even though there are bunches of endeavors in the IoT security field, it stays dubious

what is the best innovation to use to provide acceptable security without negatively
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affecting energy utilization. Since IoT gadgets are normally extremely restricted in

terms of energy and processing power, so it is challenging to propose a lightweight,

high-security solution. In this chapter, we are targeting network-level packet filtering to

achieve IoT malware detection based on Convolutional Neural Networks (CNN). With

this, we will be able to recognize malicious nodes currently connected to a network and

safely apply the appropriate security mitigation.

Related Work

This section mentions recent advancements and approaches that use different tech-

nologies to fulfill the required aspects in safe and secure IoT systems. In [16], a

blockchain-based control scheme is used to fulfill IoT security requirements. The pro-

posed solution utilizes the fact that blockchain has an immutable ledger that resists

un-authorized data altering. Blockchains are a robust security solution, but they re-

quire high processing power as mentioned previously in Chapter 2. In the case of IoT,

implementing blockchain can heavily negatively affect energy consumption, making

blockchains an invalid option. [17] proposes a different security approach specifically

for Android-based IoT device. By utilizing a fusion of machine learning and blockchains

to establish malware detection. The proposed methodology utilizes machine learning

to extract malware information, classify malware, then write that information to the

blockchain making the information visible to all nodes in the network. The main is-

sues with the two previously mentioned papers [16][17] is the high processing power

required to implement such solutions. In this case, security solutions that require heavy

processing prove to be counterproductive to the overall performance of the network.

This means that such solutions are not a viable option in our case. Therefore, we need
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to look at lightweight security approaches that do not affect our network negatively. In

[18], the authors proposed a lightweight malware classification model that utilize images

to classify IoT specific malware. The fact that the proposed model is lightweight, makes

it a much more viable option than the previously mentioned solutions in the case of

IoT. The authors mentioned that DDos malware mitigation in an IoT environment was

their area of focus in that work. By extracting features from grayscale images created

from the malware binary, they were able to train a lightweight CNN model that can

classify malware based on their corresponding grayscale image. The proposed model

achieved a classification accuracy of 94% when testing using a batch of DDoS malware

and goodware. The used dataset in the proposed work can be found in [19], where they

mainly focused on IoT malware collecting that can be used for research purposes.

Methodology

Our approach incorporates taking a gander at specific advances that will hugely

improve the result of a classifier, particularly when utilizing CNN as the principal model

for arrangement. The proposed solution should incorporate a lightweight CNN model

which should deal with various situations utilizing distinctive data representations that

we will be using to test and evaluate the proposed model. We were able to acquire

a dataset from IoTPoT [19], where he wrote a paper explaining the assembling of the

dataset. The dataset consists of 5000 samples of IoT specific malware that we used to

train and test the model. However, the dataset was not labeled. Therefore we had to

use a labeling service called VirusTotal API [20] to label all entries in our dataset. The

majority of the dataset contains malware from Linux.Mirai and Linux.Gafgyt malware

families. The dataset was comprehensive of extremely light malware which can only
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spread through IoT devices, which restricted the variety of obtained malicious binary

files. This will make classification simpler and convenient as we will be considering the

two mentioned malware families as the output categories. We also collected a sample

of 1000 goodwares that consist of Linux based software since usually IoT devices use

a Unix based kernel. We added the goodware samples to the malware samples to

accumulate our finalized dataset. In terms of data representation, we decided to include

two forms of images to represent the binary files that we have in our dataset. The first

representation includes reading the binary files in bytes then convert each byte into a

value between 0 and 255 to produce a grayscale image seen in Figure 3.1.

Figure 3.1: Example of Produced Grayscale Image

Figure 3.2: Example of Produced Hilbert Curve Image

The second representation of binary files is using Hilbert curve, which is an entropy
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cluster image that is produced by reading the binary files in bytes then passing each

byte through an image generating function used from [21]. An example of the produced

Hilbert curve image can be seen in Figure 3.2.

Figure 3.3: CNN Model Summary

Figure 3.3 showcase the summary of our proposed CNN model. The main highlight in

this is the fact that we added an extra convolution layer which will help in increasing

the overall accuracy. Another point worth mentioning is that we expand on the features

that we have rather than reducing them. Given that we have a limited size of inputs, we

had to expand on our current features to give a better classification process. As for the

gate function, we used ReLu which is considered reliable in most cases. In the case of

other training metrics like the image_size, epochs, etc. they were all selected according

to our own experiments through trial and error to provide the highest possible accuracy.

Simulation Process

To train the model, we used the following hardware components:
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CPU Architecture and OS: Windows 10 Pro with Intel i7-7700HQ – 8GB RAM GPU

Architecture: NVIDIA GeForce GTX 1050 Max-Q (2GB RAM)

And we used the following software frameworks:

• TensorFlow => 2.0+

• PIL

• matplotlib.pyplot

• Python => 3.7+

We will be conducting our experiment following three simple steps which are; data

initialization, model training, model testing. And we will be repeating this process

until producing good results. As mentioned previously we will be categorizing our

outputs into three classes; Gafgyt and Mirai being the malware families, and goodware

representing benign software. We also used 64x64 images since it provides the highest

efficiency without compromising model accuracy during training. Our main goal here is

to create a balance in terms of model performance and viability of use by optimizing as

many input parameters as we can. As for the number of iterations, referred to by epochs.

One epoch is defined to be one passing of the entire dataset forward and backward

through the neural network according to [22] making 1 epoch a huge investment. Since

our main worry here is the viability of use, we deconstructed each epoch into multiple

smaller training batches. Each batch in Tensorflow consists of 32 entries by default.

Therefore, after testing our model using a different number of epochs, the accuracy

curve flattens after five epochs. In that case, if we train the model for more than five

epochs it will harm classification accuracy. To save time and energy we decided to use
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only five epochs to train our model with a batch size of 32 since batch size doesn’t affect

training time. In terms of loss value optimization, we attempt to optimize the value of

‘sparse_categorical_crossentropy’ alongside ‘adam’ as our targeted optimizer function.

A machine learning algorithm utilizes loss functions to learn, it is also used to evaluate

the performance of a model on how well it can predict the classification of given data.

If a prediction is very far off from the true value, the loss function will give us a large

number, and if a prediction is close to the true value, the loss function will give us a

small number. In our case, we used the default parameters for the used functions to

make sure that we do not overfit our model.

Results

After we set up the data and the model, the experimental parameters were as follows:

• Goodware files: 1000

• IoT malware files: 4000

• Number of epochs: 5

• Convolution layers: 3

• Pooling layers: 3

• Input image size and channel: (64, 64, 1)

• Input data are randomized

We assume that we captured the packets or binary files that contain malicious code.

Afterward, we run our pre-processing script to produce the grayscale images from the
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binary of the captured data. This assumption will help in understating how the model

can be used in the future. After training the model on several trials, we grasped a rough

estimation of howmuch data we need for training and howmuchwe need for testing. The

split we opted for was as follows; 70% of our dataset would be used for training, and the

remaining 30%will be used for testing and evaluation purposes. Afterward, we produced

key evaluation values for any machine learning model which includes Precision, Recall,

and F-1 Scores of our proposedmodel. Figure 3.4 shows a comparison between different

scores compared to solutions in the literature, in [18] to be specific. Our proposed model

provided much higher accuracy and fewer misclassifications.

Figure 3.4: Comparison Tables of Related Scores and Metrics

As we can see from the overall F1-scores, the small modifications that we showcased

in this chapter proved to be very beneficial on the overall evaluation metrics. And

most importantly, our model maintained the balance between performance and being

lightweight due to the low number of layers in it. To showcase the difference between

using the hilbert curve image compared to the grayscale image for classification purposes
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we present our results in Figure 3.5. It is worth noting that the accuracy is very similar

between the two input data, even though the Hilbert Curve image is an RGB image with

3 channels. We also notice that the training time is not different between the two input

data representation, that is why we did not include it in this simulation.

Figure 3.5: Accuracy VS Size of Training Set

The main focus of this chapter is to create an optimized CNN model that can help in

malware detection specifically in IoT. Given a relatively small HDF5 file, the proposed

model can identify whether or not a given file or packet is considered malicious or

benign. According to [23], HDF5 files have very minimal limits, which means that it

can be used in multiple devices assuming that we provide the appropriate user interface

(UI).

Chapter Conclusion

To conclude this chapter, we were able to create a lightweight CNN model that

can accurately classify IoT-specific malware. The results that we found were really
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impressive in terms of IoT specific malware detection compared to the literature as

demonstrated. We believe that deploying this model over IoT devices is possible but we

did not attempt to do that in this chapter. We will be exploring the deployment of the

proposed model over IoT devices in the next chapter.
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CHAPTER 4: IMPROVED LIGHTWEIGHT MODEL

Chapter Overview

This chapter expands on the work done in the previous chapter (Chapter 3) by taking

the previously proposed model and convert it into an even lighter model that can run

directly and smoothly on IoT and IoMT devices. Pushing the malware detection process

to edge deviceswill make it faster andmore energy-efficient. Sincewe eliminate the need

to communicate with an external server for malware detection purposes, this makes it so

that each IoT device can verify data that it receives individually. The process of creating

such a lightweight deep learning model and the methodology behind it is recorded in

this chapter.

Briefing

As we mentioned, the implications of a security breach on IoMT devices and appli-

cations are quite dangerous on human lives where we cannot tolerate any kind of failure.

Therefore, a security mechanism is required to mitigate such implications. Recently, the

use of deep learning in security applications is receiving a lot of attention in the research

field. Due to the ability of deep learning techniques to adapt to new or unknownmalware

and malicious code, they prove to be extremely useful in the security department [24].

However, training a deep learning model is generally a heavy computational process

that usually is not applicable to be used over IoT and IoMT devices. But there are

ways that we can benefit from the security implications of a deep learning model and

deploy it over IoMT/IoT devices with as low demand in terms of processing power. In

this chapter, we will propose a lightweight deep learning convolution neural networks
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(CNN) model that can detect IoT specific malware on an edge devices level. We will

deploy this lightweight model on IoMT devices which will help in securing peer-to-peer

communications as well as cloud communications.

Motivation

The main goal of this chapter is to propose a secure method for IoMT edge devices to

exchange and process data in a secure manner. Because IoMT and IoT are significantly

prone to security attacks and breaches due to the lack of securitymeasurements in several

stages such as during device manufacturing, communication protocols, and software. To

mitigate this challenge, we develop a CNN deep learning model that is trained to detect

IoT specific malware using grayscale images created via the binary code of files received

by the IoMT device. After training the model, we will convert it into a lighter version

to be deployed over IoMT devices. We believe that this solution provides a sufficient

level of security for IoMT devices on the edge level. The proposed architecture of

the IoMT system is shown in Figure 4.1 where data passes through every IoT device

gets transformed into grayscale images and then fed to the proposed malware detection

model before further processing. Since the model is deployed on an edge level, it can

also secure peer-to-peer communication between IoMT devices.
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Figure 4.1: Proposed IoMT Architecture

Pushing the malware detection process to edge devices will improve malware detection

accuracy, removes unnecessary overhead, and reduce detection time which is vital to

IoMT applications. We believe that given the proposed architecture, the overall security

accuracy of an IoMT system would improve.

Methodology

This section will cover all the details and implementation process that we went

through to achieve the proposed solution. As discussed before, the proposed solution

in this chapter is an extension of our work in the previous publication [14] mentioned

in Chapter 3. We discuss the main building blocks of the model, what dataset is used,

how we pre-processed the data, what percentages from the dataset we used for training

and testing, and how we exported the model to run on an IoT edge device. The main

purpose of the work in this chapter is to convert the model that we created in [14]

into a lightweight model that can run over less powerful devices such as IoMT and IoT
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devices while maintaining acceptable levels of malware classifications accuracy. There

are specific steps that need to be followed in the development of any deep learning or

machine learning models:

Acquiring Data

Before starting to explain the deep learning model, we first have to acquire an IoT

Malware dataset. The dataset used in this chapter includes the binary files of the IoT

specific malware that was collected by Yoshioka from IoTPoT, where he wrote a research

paper explaining the assembly of this dataset in [25]. The mentioned dataset initially

is not labeled, therefore we used an API called VirusTotal to label all the data that we

acquired [20]. After a deep inspection of the dataset, we found that all data falls into

two categories, Linux Gafgyt or Linux Mirai malware family. In the proposed solution,

we will consider those two families as the categories for the classifier. We also included

around 1000 samples of Linux based software to be considered and labeled as goodware

making our classification categories as:

Categories = [′Gafgyt′,′ Mirai′,′Goodware′](1)

Data Pre-Processing

Before using the data that we acquired and labeled, we first have to unify and

normalize data into a specific representation. In our previous work [14], we represented

the data in two forms. The first one being grayscale image representation and the other

one is as Hilbert curve (Entropy) image representation as previously mentioned in the

methodology section of Chapter 3. However, in this chapter, we will be only focusing
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on the grayscale image representation since it requires less processing power to produce.

Given that we will be deploying the model over IoT devices, the lower the processing

power required, the more usable our model will be. We also use a standard size for the

grayscale images and that is 64x64, which we believe is enough to achieve our goal of

malware detection.

Feature Extraction

After pre-processing the data, we need to extract specific features from the grayscale

images to correctly classify malware from goodware. We first need to build our CNN

model which we already built previously in chapter 3. As a recap, we mention the use

of every layer that we implemented in the model as follows:

Convolution Layers

The following command creates a convolution kernel that is convolved with the layer

input to produce a tensor of outputs. For the first layer, we have to specify the input

shape or data format, in this case, the format is shown with the mentioned command as

follows:

inputshape = (64, 64, 1)

Specifying the height and width of the input images 64x64 respectively, and the number

of channels which in this case is one channel. Usually, Red-Green-Blue (RGB) images

have three channels: one for each red, green, and blue colors. However, the proposed

CNN classification model requires input images to be grayscale, hence we need only

one channel to represent black and white. We also specify the number of filters to be

learned by the model on every convolution layer. The first convolution layer will learn
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64 filters from the image, the second and third convolution layers will learn 128 filters.

Lastly, we will set the kernel size of the first layer to (5,5) which specifies the height

and width of our 2D convolution window. Each layer has an activation function that

is responsible for transforming the summed weight of inputs into the activation of the

output in every layer. In our model, we used the rectified linear activation function

(ReLU) which is a piecewise linear function that will give output to the given input

directly if it is positive, and will output zero otherwise. It is considered the default

activation function for neural networks since it makes the training process for the model

easier and often achieves better performance. As seen in the example in Figure 4.2, the

default ReLU has the threshold of zero. Any values above the threshold are kept at the

output as-is. Otherwise, the output is zero.

Figure 4.2: Example ReLU Activation Output Graph [26]

Max Pooling Layers

the main purpose of max-pooling layers is to down-sample the input into the window

of (2,2) for each dimension along the feature axis. Thewindow is then shifted by "strides"

(which defaults to the given window size (2,2)) in each dimension thus the resulting
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output of each maximum pooling layer given a "valid" padding type as:

output_shape =
(input_shape− pool_size+ 1)

strides

Classification

Classification technique is important to identify the malware by a standardized

system. After setting up the data and the CNN model, we then test it against the dataset.

After training, themodel should be able to predict if the given grayscale image of a binary

file is categorized as malicious or benign. We expanded our classification categories

according to the list (1) mentioned previously, meaning that we have two classes for

IoT malware; Mirai and Gafgyt, and one other class that represents goodware or benign

binary files. The model should be able to also identify to which malware family the

malicious binary file belongs, further enhancing the usefulness of the classification

model.

Tensorflow Lite

The main contribution of this chapter is to convert the explained CNN deep learning

model into a light version that can run on IoMT devices to achieve malware detection on

the edge level. For that to be done, we will use a tool called Tensorflow Lite Converter

that converts a regular Tensorflow model into a Tensorflow Lite model that is designed

to run on IoT devices [27]. We will first be training the regular model over the dataset

in [25] that contains binary files of around four thousand IoT specific malware. We

will also be including one thousand goodware files in our training set. The training of

the regular Tensorflow model will be done on a PC with the following model compile
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settings:

• epochs = 5

• Training dataset is 0.7% out of acquired dataset

• Testing dataset is 0.3% out of acquired dataset

The mentioned compile settings are selected because they produce the most optimal

accuracy as per our experiments in [14] more details can be found in the result section

of chapter 3. Where we noticed that anything more than five epochs will not improve

the accuracy but rather lower it. And the ratio of 70% training set, 30% test set provides

quick training and prediction time that maintains the most optimal accuracy for the

proposed model as we explained in [14]. After training, we will save the model and

deploy it on capable nodes like a PC or a Server for malware detection. This model will

also be the input to the Tensorflow Lite converter. The Tensorflow Lite converter will

take the trained model that we produced in the previous step and convert it into a lighter

model with the ability for it to run natively on IoT devices. The produced Tensorflow

Lite model is expected to maintain relatively similar accuracy compared to the regular

full-fledged Tensorflow model produced in chapter 3. We now showcase the accuracy

metrics results of both the regular Tensorflow model and the Tensorflow Lite model to

compare them against each other and state-of-the-art technologies in the results section

discussed later on.

Simulation Set-up Specifications

In this section, we briefly list the hardware and software specifications that we used

to build and run the proposed model for both the full version (Tensorflow, PC) and the
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lite version (Tensorflow Lite, IoMT).

Hardware

We used a Macbook Pro 16" Laptop with the hardware specifications shown in

Figure 4.3 to train the base model (.h5) that can run on PCs and servers.

Figure 4.3: Hardware Specification Used to Train the Model

As for the TensorflowLitemodel, wewill use a raspberry pi 4model Bwith the following

specifications:

• Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

• 1GB LPDDR4-2400 SDRAM

• 2.4 GHz and 5.0 GHz IEEE 802.11b/g/n/ac wireless LAN, Bluetooth 5.0, BLE

• True Gigabit Ethernet

• 2 x USB 3.0 Ports, 2 x USB 2.0 Ports

• Fully backwards compatible 40-pin GPIO header

• 2 x micro HDMI ports supporting up to 4K 60fps video resolution
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• 2-lane MIPI DSI/CSI ports for camera and display

• 4-pole stereo audio and composite video port

• Micro SD card slot for loading operating system and data storage

• Requires 5.1V, 3A power via USB Type C or GPIO

• PoE (Power over Ethernet) enabled (requires PoE HAT)

Software

We used the main Tensorflow frameworks along side Keras which is a wrapper

library that goes on top of Tensorflow to make writing ML/DL code easier and much

more efficient. We used Tensorflow Lite and Tensorflow interpreter to run .tflite models

on the Raspberry Pi (IoT device). And we used OpenCV to do the conversion from the

binary data to grayscale images in the pre-processing stage. All of our programming

was done in Python to make it simpler and much more accessible. The following list

will showcase the versions of frameworks that we used to build the proposed models:

• Tensorflow (PC) => 2.3

• Tensorflow (IoT) => 2.2

• Tensorflow Lite (IoT) => 2.3

• Keras => 2.4.3

• Python 3 => 3.8

• OpenCV => 4.3

• Sklearn => 0.23.2
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Results

In this section, we will be showcasing the accuracy metrics produced when we

evaluate the full model (PC), the lite model (IoT), and compare them against each other

and similar models in the literature.

Tensorflow Model

This section shows and discusses the results that we achieved in terms of model

accuracy, loss function, F1-Score, recall, and precision of the model when we run

the corresponding built-in Sklearn evaluation methods on the proposed model. The

evaluation code is used to create the histograms of the accuracy and loss function

percentages after training the model using the following code:

model.evaluate(test_images, test_labels, verbose = 2)

Thementioned code gave us a complete histogram graph of howwell themodel is trained

in terms of correct classification accuracy and loss function optimization. Figure 4.4

shows the results in two graphs, Figure 4.4a explains how our model optimizes the

loss function to be as minimum as possible after each epoch iteration. One epoch

consists of one passing of all training dataset over the model to learn features, multiple

epochs signify that we are passing the training set multiple times over the model to

further enhance the classification accuracy. Figure 4.4b is the most important figure,

showcasing the overall accuracy of our model after every iteration of an epoch. We can

see that the model performs at an acceptable level of classification accuracy averaging

around 96% on a PC. The model required an average time of 1 : 25 minutes to finish
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training, and 2 − 5 seconds to convert to Tensorflow Lite, which is considered good

compared to its accuracy and the small number of convolution layers.

(a) Loss Percentage VS Epochs (b) Accuracy Percentage VS Epochs

Figure 4.4: Tensorflow Model Accuracy Histogram on PC Node

Table 4.1: Tensorflow F1-Score, Recall, and Precision

Class Precision Recall F1-Score
Gafgyt 0.99 0.98 0.98
Mirai 0.77 0.69 0.73
Goodware 0.83 1 0.91
Average 0.86 0.89 0.87
Accuracy 96 %

Table 4.1 presents the results produced in terms of F1-score, precision, and recall values

of each class when we pass the testing dataset to the evaluation algorithm that uses the

model to create a list of class label predictions of the given dataset. The prediction list

is then compared to the actual labels of the testing dataset to attain the mentioned values

in the table. We can see that the averages are quite acceptable in terms of classification

accuracy and average precision, recall, and F1-score.
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Table 4.2: Tensorflow Confusion Matrix

True
Predict Gafgyt Mirai Goodware

Gafgyt 805 14 4
Mirai 7 47 14
Goodware 0 0 90

Table 4.2 shows the confusion matrix of the proposed model that highlights how many

malware are identified correctly and how were miss-classified. The diagonal of this

matrix shows the number of files that were correctly classified by the proposed model

in their corresponding classes shown in the first column. The other columns represent

the number of files that were falsely classified as the class of that row. We notice

that our model had no problem classifying goodware but shows small inaccuracy when

classifying Gafgyt and Mirai malware.

Tensorflow Lite Model

Similarly, we show the TensorflowLite version of ourmodel in terms of classification

accuracy, F1-score, precision, and recall compared to the full-fledgedmodel. We run the

metric tests in this sub-section directly on the IoT device and using only the Tensorflow

Lite model to perform predictions.

Table 4.3: Tensorflow-Lite F1-Score, Recall, and Precision

Class Precision Recall F1-Score
Gafgyt 0.99 0.99 0.99
Mirai 0.84 0.68 0.75
Goodware 0.83 1 0.91
Average 0.89 0.89 0.88
Accuracy 96 %

Table 4.3 shows the metric results that we achieved by running the same testing scenario
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on the Tensorflow Lite model. As we can see, the model maintained a similar classifi-

cation accuracy of 96% with similar precision, recall, and F1-score values. This means

that the conversion from Tensorflow to Tensorflow Lite was a seamless transition that

did not harm our classification accuracy.

Table 4.4: Tensorflow-Lite Confusion Matrix

True
Predict Gafgyt Mirai Goodware

Gafgyt 801 10 2
Mirai 9 53 16
Goodware 0 0 90

In table 4.4, we present the confusion matrix of the same testing set that we used before.

But this time we produced our predictions through the Tensorflow Lite model running

on the IoT device directly. The achieved confusion matrix is very similar to the previous

Table 4.2 which is a good sign that our model maintained its performance. However, we

can see that the Tensorflow Lite model achieved slightly better classification, especially

in the Mirai malware family.

Comparison

We compare our findings with the results in [28]. The latter used machine learning

techniques to achieve IoT malware detection. They proposed a system that enhances IoT

malware detection called SAE that boosts the classification accuracy of a given classifi-

cation technique. However, if we compare the accuracy of our model to the accuracy of

the base classification techniques shows promising results. The best base classification

technique presented in [28] is the K-Nearest-Neighbour (KNN) technique averaging

around 97.5%, followed by Support Vector Machine (SVM) at 97.5%, Decision Trees
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(DT) at 96.8% which is similar to the accuracy of our model, and lastly Naive Bayes

(NB) at 91.1% accuracy.

Table 4.5: Deep Learning Model Results [28]

Method Precision Recall F1-Score
DT 0.968 0.967 0.968
SAE-DR 0.986 0.992 0.989
KNN 0.975 0.975 0.975
SAE-KNN 0.981 0.993 0.987
NB 0.911 0.906 0.905
SAE-NB 0.948 0.999 0.973
SVM 0.975 0.975 0.975
SAE-SVM 0.960 0.999 0.980

We can see that ourmodel is quite similar in terms of accuracy compared to the literature.

We compared our full-fledged and Lite models to the mentioned models in Table 4.5

and we can see that classification accuracy is similar. The presented literature in [28]

provide models with higher accuracy and that is because they have more sophisticated

CNN architecture with more layers compared to our lightweight oriented CNN that

contains only three convolution layers. However, our model maintained acceptable

accuracy even though we have fewer convolution layers.

Table 4.6: Deep Learning Performance for Android IoT devices [29]

Method Accuracy Precision Recall F1-Score
DexCNN 93.6% 91.8% 95.7% 0.937
DexCRNN_GRU 93.7% 91.7% 96.1% 0.939
DexCRNN_LSTM 93.4% 93.7% 93.1% 0.934
DexCRNN_BiGRU 94.4% 94.9% 93.8% 0.944
DexCRNN_BiLSTM 94.9% 93.7% 96.4% 0.950
Proposed Lite Model 96.0% 89% 89% 86%

In [29] they introduced a similar methodology to our approach in the sense that they

transformed the binary of files into grayscale images to utilize CNN classification.
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However, they classified a different type of IoT malware from the "Ghost" family. The

presented classifier showed around 93.7% classification accuracy using Long Short-

Term Memory (LSTM). We cannot fully compare our findings with [29] in terms of

accuracy but our models showed higher accuracy results in classifying two IoT malware

families compared to one malware family presented in [29]. However, this may be due

to multiple factors ranging from the ambiguity of the grayscale images produced by the

"Ghost" malware family, to the way they expand features of the grayscale image. The

main advantage of the proposed model is that it requires drastically less time to train

compared to the models in [29]. The DexCNN model provides an accuracy of 93.6%

and requires 2 hours of training compared to 1 : 30 minutes of training for the proposed

model.

Chapter Conclusion

In this chapter, we proposed a deep learning CNN model that can detect IoT specific

malware. We created a lighter version of this model to be deployed natively on IoMT

devices achieving edge level malware detection. We produced promising results in

terms of malware classification accuracy that might aid the literature to create malware

prevention and security response systems dedicated to IoMT devices and applications.

New cyber-security technologies to help improve the state-of-the-art of IoMT security

are needed to have safer, more consistent health care systems and applications that

are based on IoT [30]. Given the ever-evolving nature of security attacks, it is of

utmost priority to secure IoMT applications especially those that have heterogeneous

communication between IoMT devices, creating new attack surfaces for multi-vector

malware attacks. With that being said, more efforts should be aimed towards creating
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adaptable malware detection and prevention systems that are capable of recognizing

unknown and known IoT malware.
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CHAPTER 5: CONCLUSION AND FUTURE WORK

Overall, machine learning and deep learning techniques proved to be an efficient

utility for implementing IoT malware detection. In this thesis, we discussed multiple

approaches to IoT and IoMT security in the literature. While some approaches provide

robust levels of security, they are not always applicable to use in IoT environments due

to processing power and energy limitations. Some approaches proposed hybrid security

solutions that combine two techniques (e.g. blockchains and machine learning) in an

attempt to eliminate the negatives of each technique by utilizing the positives of the

other. However, the discussed techniques still require heavy computational power and

can be hardly adapted to fit the needs of IoT/IoMT security. Therefore, we believe that

machine learning and deep learning models that are pre-trained are a great solution to

serve as IoT/IoMT malware detection tools. The adaptive nature of machine learning

and deep learning provides flexibility and higher accuracy when dealing with unknown

malware or zero-day attacks. However, there are still gaps in the literature that more

research efforts can go towards as we mention in the following subsection.

Future Work

Our proposed models can be further optimized by acquiring more features and input

data to expand the learning process. Data like attack patterns, malicious behavior

of packets, and malicious network access patterns may enhance the performance and

accuracy of the proposed models. The proposed model can indeed classify unknown

malwares, but this is based on best effort as the classification decision relies on known

malware that we used to train the models. However, certain techniques like Generative

Adversarial Networks (GANs) is worth exploring to enhance the prediction accuracy of
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the model regarding unknown malware. It is also worth noting that we deployed our lite

Tensorflow model over a Raspberry Pi 4 Model B which is considered an IoT devices

but we did not deploy over real IoMT devices. Deployment on real IoMT devices might

be a good opportunity for future development of this thesis.
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