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1.  INTRODUCTION

Climate change has been shown to have a signifi-
cant effect on and pose a substantial risk to ecosys-
tems, taxa and ecological processes around the world
(Walther et al. 2002, Hays et al. 2003, Fuentes et al.
2010, Muhling et al. 2011, Riegl & Purkis 2012,
Alongi 2015, van Hooidonk et al. 2015, Patrício et al.

2019). Species distributions and phenology are shift-
ing in the face of recent climate change (Estiarte &
Peñuelas 2015, Hereford et al. 2017). Since the con-
cept of climate change was first introduced, research
has tried to predict possible species responses to its
potential effects (Short & Neckles 1999, Walther et al.
2002, Hays et al. 2003, Rooker et al. 2003, Muhling et
al. 2011, Lehodey et al. 2015).
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ABSTRACT: Projected climate change is forecasted to have significant effects on biological sys-
tems worldwide. Marine turtles in particular may be vulnerable, as the sex of their offspring is
determined by their incubating temperature, termed temperature-dependent sex determination.
This study aimed to estimate historical, and forecast future, primary sex ratios of hawksbill turtle
Eretmochelys imbricata hatchlings at an important nesting ground in northeastern Qatar. Incuba-
tion temperatures from the Arabian/Persian Gulf were measured over 2 nesting seasons. Climate
data from same period were regressed with nest temperatures to estimate incubation tempera-
tures and hatchling sex ratios for the site from 1993 to 2100. Future hatchling sex ratios were esti-
mated for 2 climate forecasts, one mid-range (SSP245) and one extreme (SSP585). Historical cli-
mate data showed female-biased sex ratios of 73.2 ± 12.1% from 1993 to 2017. Female biases from
2018 to 2100 averaged 85.7% ± 6.7% under the mid-range scenario and 87.9% ± 5.4% under the
high-range scenario. In addition, predicted female hatchling production was >90% from 2054 and
2052 for SSP245 and SSP585, respectively. These results show that hawksbill primary sex ratios in
Qatar are at risk of significant feminization by the year 2100 and that hawksbill turtle incubation
temperatures in an extreme, understudied environment are already comparable to those pre-
dicted in tropical rookeries during the latter half of the 21st century. These results can help conser-
vationists predict primary sex ratios for hawksbill turtles in the region in the face of 21st-century
climate change.
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Marine turtles are at particular risk from climate
change since hatchling sex is determined by their in-
cubation temperature (temperature-dependent sex
determination, TSD; Yntema & Mrosovsky 1980,
Mrosovsky et al. 1992, Ackerman 1997, Godfrey et al.
1999, Godley et al. 2002, LeBlanc et al. 2012b). The
pivotal temperature (PT), approximately 29°C in most
marine turtle species, is the incubating temperature
at which a clutch will produce a 1:1 male: female sex
ratio (Gross et al. 1995, Godley et al. 2002). However,
recent research has shown that the PT may vary con-
siderably between species, populations and even be-
tween clutches (Howard et al. 2015, Bentley et al.
2020). PTs between different flatback turtle Natator
depressus populations in western Australia varied up
to 1.5°C and were as high as 31.1°C (Bentley et al.
2020). While sea turtles show resilience to climate
variability and heightened temperatures, the magni-
tude of forecasted climate change in the 21st century
is likely to induce significant in creases in incubation
temperatures, causing primary sex ratios to skew
(Booth & Freeman 2006, Tezak et al. 2018).

While previous research has predicted hatchling
sex ratios using climate data (Hays et al. 1999, 2003,
Hawkes et al. 2007, Fuentes et al. 2010, Askari Hesni
et al. 2016, Laloë et al. 2016, Monsinjon et al. 2019b,
Patrício et al. 2019), relatively few studies exist from
the extremities of global marine turtle distribution.
The Arabian/Persian Gulf (hereafter referred to as
‘the Gulf’) is an extreme environment in which
hawksbill turtles Eretmochelys imbricata nest (Pil -
cher et al. 2014a, Pazira et al. 2016, Chatting et al.
2018, Rees et al. 2019). The sea is a shallow basin
with mean and maximum depths of ~35 and 160 m,
respectively, and regularly experiences summer sea
surface temperatures (SSTs) in excess of 36°C (Price
et al. 1993, Sheppard et al. 2010). The region also
experiences extreme seasonal heating and cooling
cycles (Price et al. 1993), and many species persist on
the threshold of their physiological tolerances (Hof-
mann & Somero 1995, Pörtner & Knust 2007, Riegl &
Purkis 2012). Hawksbills in the Gulf display reduced
fecundity compared to tropical populations; for ex -
ample, it has been reported that they lay fewer eggs
per clutch and may nest for a shorter period each
year (Chatting et al. 2018). Despite many studies
reporting on the nesting ecology of hawksbills in the
region (Pilcher 1999, Pilcher et al. 2014b, Pazira et al.
2016, Chatting et al. 2018, Rees et al. 2019), incuba-
tion temperatures have received little attention, and
it is still not known how incubation temperatures in
this extreme environment compare with other re -
gions. In addition, the Gulf is expected to experience

significant climate warming in the 21st century (Pal &
Eltahir 2016). As such, extreme temperatures may
already be skewing primary sex ratios, and climate
change is likely to pose a serious threat to marine tur-
tles in the region throughout the 21st century.

The current study represents the first published
account of hawksbill incubation temperatures in the
Gulf. This study also aimed to predict incubation
temperatures from air temperatures and use this
relationship to statistically model primary sex ratios
from 1993 to 2100. The results reported here can add
to global understanding of hawksbills and can inform
conservation and management practices to help mit-
igate against the potential effects of climate change.

2.  MATERIALS AND METHODS

2.1.  Study site

Nesting site incubation temperatures were meas-
ured along the northeastern coast of Qatar in the 2016
and 2017 nesting seasons. This area of Qatar has a
well-documented history of hawksbill turtle nesting
and represents a significant nesting aggregation for
the species in the Gulf (Pilcher 1999, Tayab & Quiton
2003, Pilcher et al. 2014a, Chatting et al. 2018). As this
work was part of a wider conservation program, 22 of
the total number of clutches in which incubation tem-
peratures were recorded (n = 26, see Table S1 in the
Supplement at www. int-res. com/ articles/ suppl/ n044
p149 _ supp. pdf) were relocated to protect against tidal
flooding or predation. Clutches were laid anywhere
from 26.1275° N, 51.3181° E to 26.0047° N, 51.4005° E
along the northeastern coast of Qatar (Fig. 1a) and
were relocated to a protected hatchery site on Fu -
wairit Beach (26.0311° N, 51.3752° E, Fig. 1b).

Incubation temperatures were measured during
the 2016 (n = 2) and 2017 (n = 24) nesting seasons
using TidbiT v2 loggers with a resolution to 0.02°C
and an accuracy of ±0.21°C. Relocation efforts were
only made if clutches were thought to have been
deposited <12 h earlier to minimize potential dam-
age to developing embryos (Ahles & Milton 2016).
When relocating clutches, eggs were placed in relo-
cation boxes to minimize disturbance. Data loggers
were deployed into the middle of the clutch immedi-
ately post relocation. The middle of the clutch was
determined by counting the eggs upon excavation,
replacing half in the nest, deploying the temperature
logger and then replacing the second half of the
eggs. If clutches were left in situ, eggs were exca-
vated, counted and then placed back into the nest.

https://www.int-res.com/articles/suppl/n044p149_supp.pdf
https://www.int-res.com/articles/suppl/n044p149_supp.pdf
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Loggers were deployed during this process after half
of the eggs had been returned to the nest. All contact
with clutches was minimized and monitored by the
Qatar Ministry of Municipalities and Environment to
ensure ethical treatment of clutches. Prior to engag-
ing in this work, all participants were trained in the
handling and relocating of marine turtle eggs. Mean
daily incubation temperatures for each of the 26
nests in which loggers were deployed were calcu-
lated. Nests where loggers were deployed spanned
all 4 months of the annual nesting period in Qatar
(April to July) (Chatting et al. 2018) and the loggers
recorded temperatures every 4 h.

2.2.  Nest temperature reconstruction

Recorded incubation temperatures were regressed
with climate data to reconstruct an hourly time series
of past and future nest temperatures based on a pre-
viously published method (Girondot & Kaska 2015,

Monsinjon et al. 2017, 2019b, Laloë et al. 2020).
Generalised linear models (GLMs) with a Gaussian
distribution were used to predict daily mean nest
temperature and daily nest temperature amplitude
sep a rately. Increasing lag between successive nest
temperature measurements and predictors (from 1 to
15 d) were contrasted to determine the best model for
daily mean nest temperature (Girondot & Kaska
2015, Monsinjon et al. 2017). Predictors used for daily
mean nest temperature were daily mean air temper-
ature at 2 m height (TAS) and site-adjacent daily SST
as reported in previous studies (Girondot & Kaska
2015, Monsinjon et al. 2017). The best predictors of
TAS, SST and daily maximum (Tmax) and minimum
(Tmin) temperatures were used to model daily nest
temperature amplitudes. Multicollinearity was ad -
dressed by removing explanatory variables with a
variance inflation factor >3.3 (Kock & Lynn 2012).
Models that best fit the data were selected by the
lowest Akaike’s information criterion (AIC) value
(Zuur et al. 2009). Daily nest temperature maximum
and minimum (daily mean ± amplitude/2) as well as
time of day they were recorded (minimum: 02:00 h
and maximum: 14:00 h) were then used to model a
sinusoidal function of hourly time-series nest temper-
atures using the ‘HelpersMG’ package in R (Giron-
dot 2017). Daily mean TAS and SST directly seaward
of the nesting beach have previously been used to
predict daily nest temperatures (Monsinjon et al.
2017). TAS, Tmin and Tmax datasets were obtained
from the National Center for Environmental Predic-
tion (NCEP, www. cpc. ncep. noaa. gov) (Kanamitsu et
al. 2002), and SST was ob tained from the National
Oceanic and Atmospheric Administration National
Climatic Data Centre (NOAA NCDC) (https:// psl.
noaa.gov) (Reynolds et al. 2007). Climate datasets
(daily TAS, Tmin, Tmax and SST) were extracted from
NCEP and NOAA data for the relevant location in
Qatar from 1993 to 2017 to reconstruct past in -
cubation temperatures. The entire NCEP dataset
ranges from 1979 to 2017; however, missing data in
the years 1979−1992 prevented extraction from these
years. Precipitation, which has previously been
reported as an influential factor in nest temperatures
(Wyneken & Lolavar 2015), was excluded, as Qatar is
a desert nation that experiences a general lack of
rainfall (Sheppard et al. 2010). A mechanistic micro-
climate model, which uses weather data, local topog-
raphy and soil thermal properties, has previously
been shown not to have greater predictive power
than correlative models using TAS and SST to infer
incubation temperatures and so was not used in the
current study (Laloë et al. 2020).

Fig. 1. (a) Qatar, in the Arabian/Persian Gulf. Boxed area de-
picts (b) hawksbill turtle nesting beaches in north eastern
Qatar (darker shaded areas) where nests were relocated to
a protected hatchery on Fuwairit beach (star) to protect 

against tidal flooding and predation
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To predict future incubation temperatures from
2018 to 2100, forecasted climate data in Fuwairit
Beach, northeastern Qatar, were extracted from the
Coupled Model Intercomparison Project phase 6
(CMIP 6) climate forecasts. Shared socio-economic
pathways (SSPs) 245 and 585 (https:// esgf-node. llnl.
gov/ projects/ cmip6/) were selected. SSP245 and SSP
585 represent mid- and high-level climate scenarios,
respectively. Climate datasets (daily TAS, Tmin, Tmax

and SST) were extracted from an ensemble of 6 cli-
mate projections (Table S2 in the Supplement) for
both scenarios. The climate ensemble was bias-cor-
rected for each location using historic observations
and hindcast climate data from the same model
ensemble using the equation (Luo et al. 2018):

Cor Tmin(d) = Hist Tmin(d) + {μ[Obs Tmin(d)] − 
μ[Hist Tmin(d)]} (1)

where Cor Tmin(d) represents corrected Tmin for the
d th day. Hist Tmin and Obs Tmin refer to hindcast his-
torical and observed Tmin data, and μ is the mean.
Weighting coefficients for each bias-corrected
ensemble member were then calculated following
Muhling et al. (2011) (Table S2). From weighting
coefficients, a mean weighted climate forecast data-
set was calculated for daily TAS, Tmin, Tmax and SST.
Incubation temperatures and 95% CIs were pre-
dicted on an hourly scale up to the year 2100.

2.3.  Modelling embryonic development of
 hatchlings

Sex of marine turtle hatchlings is determined in the
middle third of development, which is termed the
thermosensitive period (TSP) (Girondot 1999, Godley
et al. 2002, Wyneken et al. 2007, LeBlanc et al. 2012b,
Girondot & Kaska 2014, Girondot et al. 2018). The
timing of the TSP is not constant and changes de-
pending on incubation temperature. It can be esti-
mated from the thermal reaction norm model (Giron-
dot & Kaska 2014, Fuentes et al. 2017, Girondot et al.
2018) using the ‘embryogrowth’ (Girondot 2019)
package in R. The thermal reaction norm model was
fit using maximum likelihood estimation from incu-
bation data collected by loggers deployed in the field.
Confidence intervals of the thermal reaction norm
were generated by using Monte Carlo simulations
over 10 000 iterations. From the thermal reaction
norm, hatchling growth throughout the incubation
process can then be modelled using the equation
(Fuentes et al. 2017):

X(t) = K exp{ln[X(0)/K] exp[−r(T)t]} (2)

where X(t) represents the size of a developing hatch-
ling at time t, and X(0) is the size of the embryo at the
time of egg laying (1.7 mm) (Girondot & Kaska 2014).
K represents the final straight carapace length (SCL)
of hatchlings upon hatching. Hawksbill hatchlings in
Qatar have a mean (±SE) SCL of 35.74. ± 1.20 mm
(M. Chatting unpubl. data). The rate of development
at temperature T is represented by r(T). The middle
third of development then starts when a developing
hatchling reaches 1/3 of the final SCL and ends at 2/3
of the final SCL. It has previously been proposed
(Hays et al. 2003) that mean temperatures during the
middle third of development can be used to predict
sex ratios; however, this does not take into account
the increase in rate of development during higher
temperatures. Therefore, it is more accurate to use
the constant temperature equivalent weighted by
embryo growth (CTEw) to predict clutch sex ratio.
CTEw is calculated by (Fuentes et al. 2017):

(3)

where Ti is the temperature at any time i during incu-
bation, Wi is the growth from time i to i + 1, and N
represents the length of incubation in the same time
unit as i. A metabolic heating coefficient was added
to CTEw values to account for the increase in incuba-
tion temperatures during the incubation process with
respect to the surrounding sand (Monsinjon et al.
2017). The metabolic heating value was calculated
by assuming a final difference of nest and surround-
ing sand temperature of +2.05°C at the time of hatch-
ing (Monsinjon et al. 2017) and that metabolic heat-
ing only affected sex ratios up to the end of the TSP.
Hence metabolic heating follows the developmental
curve modelled by Eq. (2), and metabolic heating
that affected sex ratios was 2/3 × 2.05.

2.4.  Annual sex ratio estimation

It was assumed that the timing and distribution of
the annual nesting period remained the same each
year from 1993 to 2100 and lasted from the start of
April to the middle of June and peaked in the first 2 wk
in May (Chatting et al. 2018). CTEw and 95% CI were
calculated from reconstructed hourly incubation tem-
peratures for each day of the nesting season starting
on 1 April until 15 June for each year. This approach
captured 76 unique incubation periods annually and
their corresponding CTEw. A logistic regression model
using a quasibinomial distribution predicted sex ratio
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from each unique CTEw and its associated CIs to de-
termine the proportion of each clutch that was female
from 1993 to 2100. As no previous efforts have investi-
gated PTs in hawksbills in the Indian Ocean, the logis-
tic regression model was developed by combining ob-
servations from Godfrey et al. (1999) and Mrosovsky et
al. (1992), the only 2 previous published attempts to
develop such a model for hawksbill turtles (Fig. S1 in
the Supplement). The PT (mean ± SE) for this model
was 29.8 ± 0.1°C while the transitional range of tem-
perature was from 28.6 to 30.8°C. Previously, incuba-
tion temperatures >35°C have been assumed to be the
lethal limit for marine turtle clutches (Valverde et al.
2010, Howard et al. 2014). This assumption was not
applied in this study, as there was no decrease in
hatching success in 7 out of the 26 clutches monitored
(M. Chatting unpubl. data) where incubation temper-
atures regularly exceeded 35°C. To calculate total an-
nual sex ratios, a normally distributed frequency of
nesting over each nesting season was assumed from 1
April to 15 June. The results of the logistic regression
were then weighted depending on when in the season
they occurred, and the sum of all of these weighted sex
ratio estimates was the total sex ratio for the year
(Fig. S2 in the Supplement). This was repeated for
upper and lower CI bounds to propagate uncertainty
levels. All statistical and numerical analyses were per-
formed in R version 4.0.2.

3.  RESULTS

Mean ± SE measured daily clutch temperature from
April to June was 31.1 ± 0.1°C and ranged from a min-
imum to maximum mean daily temperature of 25.9 and
34.9°C, respectively. Mean monthly incubation temper-
atures showed an increase throughout the season from
April (26.9 ± 0.2°C) to May (29.7 ± 0.1°C), June (32.1 ±
0.05°C) and July (33.8 ± 0.1°C). The thermal reaction
norm exhibited by hawksbills in Qatar showed an in-
crease in embryonic growth rate up to 35.1°C, after
which the rate decreased (Fig. 2). The logistic model
used to predict proportion female from TSP incubation
temperature showed a PT of 29.6°C and a transitional
temperature zone (the range of temperatures in which
a mixed sex ratio occurs) from 28.6 to 30.8°C (Fig. S1).

Daily mean incubation temperature (Tnest) was
best predicted by the GLM with lagTAS = 1 d and
lagSST = 5 d (F2,1020 = 1051, p < 0.01, r2 = 0.67):

Tnest = 0.27 × lagTAS + 1.00 × lagSST − 8.15 (4)

This model performed better than the next best
model with lagTAS = 1 and lagSST = 4 (ΔAIC: 22.52,

ΔRMSE: 0.01). Daily mean incubation temperature
amplitude (Tamp) was best predicted by the GLM
with lagTAS = 2 d (F1, 524 = 42.73, p < 0.01, r2 = 0.07):

Tamp = −0.15 × lagTAS + 5.93 (5)

This model performed better than the next best
model with lagTAS = 3 (ΔAIC: 4.28, ΔRMSE: 0.01).

Annual mean TAS and SST showed an increasing
trend from 1993 to 2100 (Fig. 3). TAS and SST aver-
aged 26.8 and 26.4°C, respectively, in 1993. By 2100,
they increased to 29.7°C (TAS) and 28.5°C (SST)
under the mid-range scenario (SSP245, Fig. 3a) and
to 32.4°C (TAS) and 31.6°C (SST) under the high-
range scenario (SSP585, Fig. 3b). Historical (1993−
2017) reconstructed hourly incubation temperatures
showed slight increases in maximum temperatures
from highs of 36.9°C in 1993 to highs of 38.3°C in
2017. Post-2017 increases were more significant;
highs >39°C were detected every year from 2062
onwards under SSP245 and even earlier (2039) under
SSP585. The maximum incubation temperature pre-
dicted under SSP245 was 40.5°C in 2095, while un -
der SSP585, hourly incubation temperatures reached
a maximum of 43.7°C in 2098. Mean annual CTEw

prior to 2018 was 30.9°C (Fig. 3), while forecasted
CTEw values increased by 1.8°C (32.7°C) and 2.7°C
(33.7°C) under mid- (SSP245) and high-range (SSP585)
scenarios from 2018 to 2100.

A significant female bias was detected throughout
the entire study period (1993−2100) (Fig. 4). Two
years out of the 107 yr study period were male biased
(<50% female hatchling production). Data also
showed a steady increase in female hatchling pro-
duction from 1993 to 2100 (Fig. 4). Historical data
revealed that annual female hatchling proportions
ranged from a minimum of 49.0 ± 22.6% to a maxi-

Fig. 2. Thermal reaction norm used for modelling hawksbill
turtle embryo growth throughout the incubation process.
The solid line is the mean growth rate and dashed lines are 

95% confidence intervals
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mum of 89.5 ± 8.1% prior to 2017 (Fig. 4). This
resulted in a female bias of historical primary sex
ratios of 73.2 ± 12.1% for the first 25 yr of the study
period (1993− 2017, Fig. 4). The following 25 yr of the
study period (2018−2043) remained comparable
under both scenarios (SSP245: 73.5 ± 9.9%, Fig. 4a;
SSP585: 75.2 ± 10.3%, Fig. 4b), while the final 25 yr
of the study period (2075−2100), resulted in the
greatest increase in female hatchling production
(SSP245: 95.1 ± 2.9%; SSP585: 98.6 ± 0.3%). Over
90% annual female hatchling production occurred
regularly by 2054 and was predicted to occur in 41
out of 107 years (38.3%) under the mid-range sce-
nario (SSP245), while it occurred earlier under the
high-range scenario (2052) and was predicted in 47
years (43.9%) between 2018 and 2100.

4.  DISCUSSION

Results from this study predict a significant
increase in the proportion of female hatchlings pro-

duced in Qatar in the 21st century, an important nest-
ing ground in the Gulf (Tayab & Quiton 2003, Pilcher
et al. 2014a, Chatting et al. 2018). These results sup-
port other predictive studies forecasting significant
feminization of primary sex ratios in marine turtle
species around the world (Fuentes et al. 2009, 2010,
Laloë et al. 2016, Reneker & Kamel 2016, Monsinjon
et al. 2019b, Patrício et al. 2019). An almost ‘complete
feminization’ of green turtles Chelonia mydas in the
northern Great Barrier Reef has been predicted
(Jensen et al. 2018, p. 154). In the northeast Carib-
bean, 0.4% male green turtle hatchling production
has been predicted by 2090 (Laloë et al. 2016), and
76− 93% female hatchling production is predicted in
West Africa (Patricio et al. 2019). Our results showed
current incubation temperatures at the end of the
nesting season in the Gulf (July mean: 33.8 ± 0.1°C)
to be comparable to the 33.0°C forecasted in the Ca -
ribbean by the year 2060 (Laloë et al. 2016). In addi-
tion, maximum incubation temperatures to which
clutches were exposed in the present study (36.8°C)
were higher than incubation temperature predictions
for the Caribbean by the year 2090 (34.2°C) (Laloë et

Fig. 3. Annual constant temperature equivalents weighted
by hawksbill turtle embryo growth (CTEw) and 95% CIs
(thick black lines with dashed lines), annual air temperature
(red lines) and annual mean sea surface temperature (SST,
blue lines) directly seaward of  the nesting beach for (a) the
mid-range  scenario SSP245 and (b) the high-range scenario 

SSP585

Fig. 4. Forecasted annual mean and 95% CIs for the propor-
tion of female hawksbill turtle hatchlings from 1993 to 2100
for (a) the mid-range scenario SSP245 and (b) the high-

range scenario SSP585
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al. 2016). However, unlike in the Gulf, some recent
work has found male-biased or balanced sex ratios
from nesting sites at higher latitudes and in tropical
areas where thick vegetation shaded nests, provid-
ing cooler incubating temperatures (Steckenreuter et
al. 2010, LeBlanc et al. 2012a, Kamel 2013, Patrício et
al. 2017, Jensen et al. 2018). Recent research of green
turtles in the Great Barrier Reef traced adults back to
the beach on which they incubated and found that
adult males originated from sites with cooler temper-
ature profiles (Jensen et al. 2018). These regional
male-producing nesting grounds may become
increasingly important for sea turtle resilience to cli-
mate change.

Annual female hatchling production in the first half
of the 21st century was comparable to historical esti-
mates, whilst the latter half of the 21st century
showed a significant increase in female sex ratios.
Prior to 2040, annual female hatchling production
was ~75% over both scenarios, which is comparable
to hawksbill juvenile ratios found in the Dominican
Republic (2.71:1, F:M) (Leon & Diez 1999). In con-
trast, adult sex ratios in Qatar have been reported to
be 1:4 (F:M) (Pilcher et al. 2015). It is still unclear
what the ideal operational sex ratio is for marine tur-
tle species. Recent work has shown that males breed
more frequently than females; subsequently, fewer
males are needed to reproduce in order to sustain the
population (Hays et al. 2010, 2014). It has also been
suggested that small increases in female hatchling
sex ratios would in crease the number of nesting
females and subsequently could boost population
numbers (Hays et al. 2017, Patrício et al. 2019).

The majority of years in the second half of the 21st

century produced a >90% female ratio. Since hawks-
bill nesting in Qatar has historically been from spring
into summer, this period has provided a wide enough
range in temperatures suitable for producing males.
However, such high female proportions by the year
2100 could result in insufficient numbers of males to
sustain the population. Moreover, the high incubat-
ing temperatures we forecast would likely impede
clutch development and significantly reduce hatch-
ing success (Fisher et al. 2014, Santidrián Tomillo et
al. 2015, Rafferty et al. 2017). Recent tracking work
has also shown that hawksbills in the Gulf migrate
relatively short distances compared to other marine
turtle species (Pilcher et al. 2014a, Rees et al. 2019).
Significant feminization of hatchlings in Qatar, cou-
pled with limited migration distances of adults,
would mean nesting grounds within the region
would need to produce enough males to sustain the
entire Gulf hawksbill population.

In estimating historical and future primary sex
ratios, numerous assumptions had to be made from
previous work. It was assumed that the PT is within
the range of those reported by Mrosovsky et al.
(1992) and Godfrey et al. (1999). However, other mar-
ine turtle species have shown PTs to vary within spe-
cies, and population-specific PTs are likely to exist
(Wibbels 2003, Howard et al. 2015, Bentley et al.
2020). Local adaptations of the TSD reaction norm
may be present in hawksbills of the Gulf, which is
possible, as 7 of the 26 nests where temperatures
were recorded experienced incubation temperatures
>35°C, the previously considered upper limit for
thermal stress in incubating marine turtle eggs, with
no detriment to hatching success (Valverde et al.
2010, Howard et al. 2014). Likewise, under higher
temperatures, the TSP may be shorter than the those
estimated in the current study, which would affect
sex ratio estimates (Fuentes et al. 2017). Future
research should investigate the PT of hawksbills in
the region to reduce the uncertainty on estimates
provided in this study. 

We also assumed that the annual timing and distri-
bution of nesting in Qatar would remain constant
throughout the 21st century, but this may not be the
case, as marine turtles may change their nesting phe-
nology in response to environmental variations and
climate change (Mazaris et al. 2013, Patel et al. 2016,
Monsinjon et al. 2019a). However, as the region
experiences a huge change in climate throughout the
year, many biological processes are driven by envi-
ronmental change (Price et al. 1993). As other tropi-
cal populations may rely on spatial heterogeneity of
nesting grounds to produce male and female hatch-
lings, temporal plasticity in nesting periodicity may
be a more important driver for sex ratios in the Gulf.
However, long-term annual nest timing datasets are
required to confirm this. In addition, the underlying
assumptions of the approach used assume that the
relationship between climate data (SST and TAS)
and incubation temperature will remain the same
throughout the 21st century. Climate change is fore-
casted to occur at an unprecedented rate in the
region (Pal & Eltahir 2016), and this relationship may
not remain constant. Mechanistic models that in -
clude microclimate and topography data could offer
better predictive power, but this is not always the
case (Laloë et al. 2020). The approach used in the
current study has previously been used to forecast
marine turtle incubation temperatures (Patrício et al.
2019) and can still inform conservationists today of
the potential impacts of climate change. In addition
to these assumptions regarding modelling the in -
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creasing feminization of primary sex ratios, sea level
rise may also be a significant threat to marine turtle
rookeries in the region. Clutches in Qatar are already
being relocated to avoid inundation as part of a wider
conservation program.

Despite these assumptions, these results can be im-
portant for conservationists throughout the region
and globally. Our study provides information on
hawksbill turtles in an extreme environment that al-
ready experiences incubation temperatures compara-
ble to forecasted temperatures elsewhere in the
world. This study can help conservationists in the re-
gion mitigate against potential impacts of climate
change by monitoring incubation temperatures and
primary sex ratios going forward into the 21st century,
as well as any possible impacts from climate change,
for example, reductions in hatching success or tempo-
ral shifts in nesting phenology. Our results also high-
light important directions of research in the region.
For example, determining a specific PT for hawksbills
within the Gulf would help reduce uncertainty in sex
ratio estimates provided in this study. Recent work
has shown that hatchlings can be reliably sexed with
just a small blood sample (Tezak et al. 2020). This new
approach may allow conservationists to track future
primary sex ratios and may help detect extreme sex
ratio biases, to further inform conservation actions. In-
vestigations into the thermal properties on more nest-
ing grounds across the region would help identify po-
tential key male-producing sites that would need to
be protected to ensure future population viability.
Continuation of long-term reproductive monitoring
projects can also help identify any timing shifts in an-
nual nesting behaviour.
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