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ABSTRACT 

ABU GHANNAM, SAWSAN, A., Masters : January : [2021:], Applied Statistics 

Title: CUMULATIVE EXPOSURE LOGNORMAL MODEL WITH HYBRID 

CENSORING 

Supervisor of Thesis: Ayman, Baklizi. 

This research aims to analyze data coming from step stress life testing experiments that 

are commonly used to make inferences on the reliability of products and machines. 

Customers expect a reliable product that can still perform its functions for a long period 

of time. For this reason, factories are pressured to design and make products that can 

operate for a long enough period of time while performing its functions. Step stress 

experiments are accelerated experiments for which the stress level increases at a preset 

time to obtain failure data faster and make the necessary analysis. To analyze step stress 

data, a model that extrapolates the information obtained from the accelerated tests to 

normal use conditions needs to be fit to the life test data. In this study, we will use the 

Cumulative Exposure Model (CEM) to analyze  simple step stress lognormal life test 

data and estimate the model parameter and survival function in the case where hybrid 

censoring is present in the data. This study uses the maximum likelihood estimation 

method and the Maximum Likelihood Estimators (MLEs) properties to find the point 

and interval estimates of the parameters, in addition to finding the point and interval 

estimates for the survival function. The MLEs are obtained numerically since the ML 

equations cannot be found explicitly. The approximate confidence interval for 

estimating the model parameters was constructed based on the asymptotic property of 

the MLEs. To obtain the approximate confidence interval for estimating the survival 
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function, the delta method is used. The bootstrap-t intervals and percentile intervals 

were also constructed to estimate the model parameters and survival function. 

Furthermore, a simulation study has been performed to examine the proposed methods 

of estimation under different hybrid censoring schemes. The Bias, MSE, coverage 

probability and average lengths have been calculated to study and compare the 

performance of the point and interval estimators of the model parameters and survival 

function. Finally, an illustrative example has been made to view and illustrate how the 

proposed methods work. 

 

Key words: Maximum Likelihood Estimation (MLE), Cumulative Exposure Model 

(CEM), simple step stress, hybrid censoring 
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CHAPTER 1: INTRODUCTION 

1.1 Life Testing 

In life testing experiments, a sample of items of interest is placed on a test where the 

failure times of these items are recorded to analyze the life test data and to estimate the 

reliability. Reliability in statistics is the probability of the product or unit to do its 

intended functions under specific conditions for a specified time. The reliability data 

can be used to test and predict the reliability of some product, measure the time to 

failure, examine the product’s features over the warranty period or predict warranty 

costs. 

1.2 Accelerated Life Tests 

Due to the competing nature of market today, there is a lot of pressure for manufactures 

to produce and develop higher technology products in a record time and enhance the 

productivity, reliability, and overall quality of these products. Therefore, designed 

experiments are used to improve the quality and reliability of the products. In order to 

achieve higher reliability for products, it is essential to perform tests on the components 

and systems. It is difficult to practically test the reliability and performance of highly 

reliable products that have a long mean lifetime to failure under normal circumstances. 

Instead, tests running at stress higher than in normal conditions (accelerated tests) are 

used to obtain information on reliability in a limited time. Such tests use accelerating 

variables such as use-rate, temperature, voltage, or pressure to obtain more failures in 

a practical time and therefore statistical models are used to extrapolate the information 

obtained from accelerated tests to normal use conditions. The results from accelerated 

tests  are then used to assess the product’s reliability, detect failure modes, and compare 

the product from different manufacturers (Meeker W Q, 1998). Overstress testing is 



  

2 

 

one of the most common accelerated life tests which are used  to shorten the lifetime of 

the product (Nelson, 2004). Some of the overstressing tests are stress loading, constant 

stress, and step stress.  

1.3 Step Stress Accelerated Life Testing (SSALT) 

In overstress testing, the product is run at increasing levels of accelerated stress to 

shorten the product’s life which in return results in having more failure information in 

shorter time (Nelson, 2004). The failure information can then be analyzed to make 

estimates regarding the product’s reliability. SSALT is an overstress testing in which 

the product is exposed to higher successive stress levels. If n testing units are put on a 

SSALT experiment, then the units under the life test are first run on an initial stress 𝑥0 

and the stress changes to higher stress levels 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑘 at specified times 𝜏1 <

𝜏2 < ⋯ < 𝜏𝑘−1 , where 𝜏𝑖 is the preset time to change the stress level from 𝑥𝑖  to 𝑥𝑖+1. 

Step stress testing is commonly used as it yields more failures in less time and 

increasing stress levels ensures obtaining failures faster than normal use conditions. 

Simple step stress accelerated life testing (simple SSALT) is a special case of SSALT 

where the stress only changes once thereby having only two stress levels: the initial 

stress level 𝑥0 and 𝑥1. The units under the simple SSALT are first run under normal 

stress until time 𝜏 at which time the stress level increases to a stress level 𝑥1. Since 

products usually run on a constant stress, a statistical model must consider the effect of 

being exposed to successive stress levels and provide estimates under normal use 

conditions. A number of models were proposed to extrapolate the information observed 

from accelerated tests to normal use conditions. Such models explain the effect of 

changing the stress level on the residual lifetime of the experimental testing units.  

Four basic models have been proposed to deal with this issue: the tampered random 

variable model (TRVM), the tampered failure rate model (TFRM), the linear 



  

3 

 

cumulative exposure model (LCEM) and the cumulative exposure model (CEM). In 

our research we will use the cumulative exposure model to extrapolate the information 

taken from simple step stress life testing data to normal use conditions. We briefly  

introduce the TRVM, TFRM, LCEM and show their mathematical formulas and then 

introduce the CEM and talk about it in more details. 

The Tampered Random Variable Model (TRVM)  

The TRVM by DeGroot and Goel (1979) is also called the additive accumulative of 

damages model. The effect of increasing the stress level is expressed mathematically 

by multiplying the remaining lifetime of the units by a tampering /acceleration factor. 

𝐹2(𝑡) = 𝐹1(𝛾𝑡) 

Where 𝛾 is the tampering or acceleration factor 

The mathematical expression is given below:  

𝐹𝑇𝑅𝑉𝑀(𝑡) = {
𝐹1(𝑡)                            𝑡 < 𝜏

𝐹2(𝑡 − 𝜏 + 𝜏 𝛾⁄ )       𝑡 > 𝜏
 

The Tampered Failure Rate Model (TFRM ) 

The TFRM by Bhattacharrya and Soejoeti (1989) is also known as the proportional 

hazard model (PHM). The failure rate is given at the initial stress level and the effect 

of changing the stress is multiplying a factor to the current failure rate. According to 

this model, the failure rate is dependent only on the present stress and the overall time 

in which the unit has been exposed to stress. The mathematical expression of this model 

is shown below: 

λ𝑇𝐹𝑅𝑀 = {
λ1(𝑡)              𝑡 ≤ 𝜏

𝛼λ1(𝑡)           𝑡 > 𝜏
 

Where 𝜆 is the failure rate and 𝛼 is the tampering factor. 

 

 



  

4 

 

The Linear Cumulative Exposure Model (LCEM)  

 This model is by Tang et al, 1996 and Tang (2003). In this model the accumulated 

exposure of the units at each stress is assumed to be linear and it is the ratio of the actual 

time in which the units has been operating at the current stress level to its lifetime. The 

units fail when its cumulative exposure reaches 1. The mathematical expression of the 

LCEM is as follows: 

𝐹𝐿𝐶𝐸𝑀(𝑡) = {

𝐹1(𝑡)                                        𝑡 ≤ 𝜏

𝐹2 (𝑡 − 𝜏 +
𝑡(2, 𝑅)

𝑡(1, 𝑅)
𝜏)              𝑡 > 𝜏

 

Where 𝑡(𝑖, 𝑅) is the lifetime of a unit T at stress 𝑆𝑖 and R is the reliability. 

1.4 The Cumulative Exposure Model (CEM) 

According to Nelson (1980), this model mainly assumes that the residual lifetime of the 

testing units is dependent on the cumulative exposure regardless of how this exposure 

came to be. Increasing the stress results in changing the lifetime distribution from F2(t) 

to F2(t − τ + τ∗). The CEM is the most widely used model in analyzing SSALT data. 

The mathematical expression under simple SSALT: 

FCEM(t) = {
F1(t),   t < τ

F2(t − τ + τ∗), t > τ
 

    Where τ∗=F2
−1(F1(t)) is the corresponding testing time of 𝜏 under the higher stress 

level. 

1.5 Censoring Schemes 

In the life tests conducted to assess the reliability of products, there are two possible 

scenarios: if all the units under the  life test fail by the end of the experiment and the 

exact failure times for all the units are observed, we will have complete data. If however 

the exact failure times for some units are unknown for any reason, then we are dealing 

with censoring. According to Nelson (2004), censoring will arise  in the situation in 

which some testing units have been withdrawn from the experiment, as a result their 
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exact failure time cannot be observed or if the experiment ended with some test units 

not failing, thus their failure time is only known to be beyond the experiment time. It is 

common for censoring to be present in lifetimes experiments. There are different 

censoring schemes, however for the sake of our research we will only address hybrid 

censoring and the two special cases of hybrid censoring. 

Type-I censoring scheme: It occurs when the lifetime experiment is set to be terminated 

at a time prespecified by the researcher or experimenter. In this case, the number of 

observed failures is random. 

Type-II censoring scheme: It occurs in the situation where the experimenter sets the 

number of failures he wants to observe before terminating the experiment, making the 

total experiment time a random variable. 

Hybrid Censoring Scheme  

The hybrid censoring scheme introduced by Epstein (1954)  is a mix of  both type-I and 

type-II censoring schemes where the life testing experiment ends when a prefixed 

number of failures r has occurred or when a prefixed time 𝑡1 set by the experimenter 

has been reached, whichever comes first. If  r failures have been reached before the 

prefixed time 𝑡1, the experiment will terminate at the time of failure for the rth unit 

otherwise the experiment will terminate at time 𝑡1. This scheme is also known as type-

I hybrid censoring scheme. According to Balakrishnan and Kundu (2013), an advantage 

of type-I HSC is that the termination time of the experiment is preset by the 

experimenter. When we are dealing with hybrid censored life testing data, we need to 

assume  that the experiment has at least one observed failure.  
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1.6 The Lognormal Distribution 

The lognormal distribution is a commonly used distribution for life test data. It has been 

used extensively to describe time to breakage due to fatigue crack growth in metals. It 

is also used as the time to failure distribution of some degradation processes. The 

lognormal distribution is flexible which makes it suitable for many products. The 

lognormal hazard has a property that the hazard is zero at time zero then it starts to 

increase up to a maximum and decreases back to zero with time. Therefore, this 

distribution is often used to model the population of electronic components that has a 

decreasing hazard function. The lognormal distribution is called the two-parameter 

lognormal distribution. 

The pdf, CDF, survival function and hazard function of the lognormal distribution are 

expressed mathematically as follows: 

f(t; μ, σ) =
1

σt√2π
e

−
1
2

(
logt−μ

σ
)

2

, t > 0, −∞ < μ < ∞, σ > 0 

F(t; μ, σ) = Φ (
logt − μ

σ
) ,  t > 0, −∞ < μ < ∞, σ > 0 

𝑆(𝑡) = 1 − Φ (
logt − μ

σ
) ,  t > 0, −∞ < μ < ∞, σ > 0 

ℎ(𝑡) =

1

σt√2π
e

−
1
2

(
logt−μ

σ
)

2

1 − Φ (
logt − μ

σ
)

,  t > 0, −∞ < μ < ∞, σ > 0 

Where μ is the mean of the log lifetime data and thereby the log mean of the lifetime 

data, 𝜎 is the log standard deviation, and Φ is the standard normal cumulative 

distribution function. The mean lifetime for units coming from the lognormal is 𝑒𝜇+
𝜎2

2 .  

The pdf, survival function and hazard function of the lognormal distribution with mean 

equal to 0 and a standard deviation having values ranging from 1- 4 are graphed and 

shown in figures 1-3 respectively. 
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Figure1. The pdf of  the lognormal distribution with different scale 

parameter values 

Figure 2. The lognormal survival function with different scale parameter 

values 
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1.7 The Statement of the Research Problem 

Many products produced nowadays are highly reliable under normal use conditions. 

Therefore it is nearly impossible to observe failure information for these products in 

life tests under normal use conditions as few to non-failures will be observed due to the 

experiment’s time restriction. To assess the performance of such highly reliable 

products that may have a mean time to failure up to 100,000 hours, step stress life tests 

are used. In Step stress accelerated life tests, the stress level changes after a prespecified 

period during the life testing, resulting in more test units’ failures which guarantees 

more failure in less time. To extrapolate from the information obtained under overstress 

to normal use conditions, the cumulative exposure model is used. In lifetime 

experiments, some test units will still be functioning when the lifetime experiment is 

over, and thus the lifetime of these units are only known to be greater than the 

experiment time (censoring). In this study we will estimate the parameters of the 

lognormal simple step stress data with hybrid censoring 

Figure 3. The lognormal hazard function with different scale parameter values 
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1.8 Literature Review           

We are mainly interested in reviewing research papers in which the cumulative 

exposure model has been fit to lognormally distributed step stress data to estimate the 

model parameters. We first review a research paper introducing four main models that 

has been used to model step stress data and methods for choosing the best model to fit 

the step stress data.  

Comparison between the four step stress models 

Xu and Fei (2012) presented and compared between four basic models for fitting step 

stress life test data TRVM, CEM, TFRM and LCEM. It was noticed that the difference 

between these four models lies in the expression of the equivalent operating time of the 

stress changing time. The equivalent operating stress time is equal for the CEM, LCEM 

and TRVM if the tampering coefficient 𝛾 in the TRVM is constant (in other words if it 

is independent from the stress changing time 𝜏). The authors then proceeded with 

comparing the TFRM with the TFRM. It was concluded that both models are identical 

only when the lifetime distribution is exponential. The best model was selected 

according to a selection criterion that a higher log likelihood value means the best 

model. The authors performed a simulation study to examine the performance of the 

CEM and TFRM when the distribution is Weibull. Finally, they discussed the 

limitations of  the CEM and the LCEM.  
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▪ Step stress data having other distributions 

1- Estimating the model parameters 

Several research papers addressed the problem of finding good estimates for step 

stress data modeled with the CEM assuming that the life data comes from 

exponential and Weibull distributions. 

Balakrishnan and Kundu (2007) considered a simple step stress data with 

exponentially distributed lifetimes with the presence of type I censoring. They 

obtained the MLEs and their conditional exact distributions. The authors derived 

the conditional moment generating functions (CMGF) and obtained the exact 

conditional distributions of the MLEs of the model. The authors also constructed an 

approximate and adjusted percentile confidence interval. Finally, they ran a 

simulation study to evaluate  the point estimates of the model parameters and 

compare between the different confidence intervals for the MLEs.  

Balakrishnan et al.(2007) considered a simple step stress model for  exponentially 

distributed lifetimes with type II censoring. The authors obtained the MLEs and 

derived their exact conditional distributions by finding the inverse of the CMGF of 

the MLEs. The authors then obtained the exact, approximate, and bootstrap 

confidence intervals and ran a Monte Carlo simulation study to assess the 

performance of the of the point and interval estimates of the model parameters. 

Balakrishnan, Xie and Kundu (2007) considered a CEM for simple step stress 

exponentially distributed life test data with hybrid censoring. They obtained the 

MLEs and their exact distributions by deriving the CMGF. The authors then 

obtained the exact, approximate, and bootstrap confidence intervals and ran a 

simulation study to compare the performance of the point and interval estimates of 

the model parameters. 
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Ismail (2014) considered a TRVM for step stress partially accelerated life test 

(SSPALT) with type-I progressive hybrid censoring where the distribution of the  

life test data is Weibull. In partially accelerated life testing experiments, some of 

the test units are put under higher stress levels than normal. In progressively type-I 

hybrid censoring scheme, all the units are first run under normal stress that changes 

to a higher stress level at a predetermined time at which a predetermined number of 

the unfailed units are removed randomly from the life test experiment. The 

experiment ends when a predetermined number of failures has occurred or when a 

predetermined time has been reached whichever occurs first. The author used the 

Newton Raphson method to find the MLEs and obtained the approximate 

confidence interval according to the asymptotic property of the MLEs.  Finally, the 

author ran a Monte Carlo simulation to evaluate the performance of the point and 

interval MLEs  

2- Finding the optimal design plan 

Several research papers considered planning a step stress experiment where the 

cumulative exposure model has been fit to the data. 

 Samanta et al. (2019) considered a step stress exponentially distributed life testing 

model with two stress levels. The authors proposed a type II hybrid stress changing 

time to obtain more information at the initial stress level. In type II hybrid stress 

changing time, the stress level changes to a higher stress level when a prespecified 

number of failures occur or at a preset time, whichever occurs later. The experiment 

then continues until all the units have failed. The authors obtained the conditional pdf 

of the MLEs and the approximate confidence intervals by pivoting the CDF of the 

MLEs provided that the CDF of the MLEs is a monotonically decreasing function. The 

authors also obtained a bias adjusted bootstrap confidence interval because the exact 
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distributions are very complex to obtain. Finally, the authors defined an optimality 

criterion to  obtain the best possible choices of the predetermined number of failures 

and the stress changing time.  

 

▪ Research done on the lognormal distribution 

There are several research papers that considered a lognormally distributed step stress 

life test data. 

Balakrishnan, Zhang and Xie (2009), considered a lognormally  distributed simple step 

stress model with type I censoring. The authors used three numerical methods to obtain 

the MLEs of the model parameters: Newton-Raphson(NR) , Davidon-Fletcher-Powell 

(DPF) and Broyden-Fletcher-Goldfarb-Shannon (BFGS) method.  The authors then 

performed a numerical simulation study to assess the performance of the three 

algorithms above. The simulation results showed that the BFGS method gave the most 

satisfying results and thus this numerical method has been used throughout the research 

to obtain the point and interval MLEs. The authors also obtained the approximate,  

Bootstrap-t intervals, percentile intervals and adjusted percentile (BCa) intervals. 

Finally, they ran a simulation study to compare and assess the properties of the point 

and interval estimators. Dube et al.(2011), considered the case where the life test data 

are following the lognormal distribution with hybrid censoring. They obtained the 

MLEs numerically using the EM algorithm. The authors then performed a simulation 

study to compare the performances of the MLEs obtained from the EM algorithm and 

the approximate MLEs obtained by using the Taylor series expansion for the nonlinear 

term in the likelihood equations. The authors also discussed finding the optimal 

censoring scheme. 
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Lin and Chou (2012) considered k step stress life test data and proposed a two-stage 

global optimization strategy where a modified simulated annealing algorithm (MSA) is 

integrated with a Newton Raphson (NR) algorithm for obtaining the MLEs. The MSA 

algorithm was used to adjust the tolerance level for convergence, number of iterations 

and the parameter values. The authors ran a numerical simulation to compare different 

algorithms for obtaining the MLE and found that the NR method requires the least 

number of iterations. The authors then derived the approximate, likelihood ratio and 

parametric bootstrap intervals. Finally, they performed a  Monte Carlo simulation study 

to assess the performance of the point intervals of the model parameters and compare 

the  performance of the different confidence intervals. 

 Hakamipour (2017) considered a plan for step stress lognormal life test data with two 

stress factors having two stress levels where a linear relationship exists between the 

mean of the log lifetime and the stress levels. The author proposed minimizing the 

asymptotic variance of the estimate of the reliability under normal use conditions and 

maximizing the determinant of the fisher information matrix as two optimality criteria 

for obtaining the optimal test design. Finally, the author did a sensitivity analysis to 

explore whether changing the initial parameters affects the optimal values of the time 

to increase the stress levels. 

1.9 The Research Objectives: 

The main objective of this research is to estimate the parameters of the lognormal 

simple step stress model with hybrid censoring and to estimate the reliability under 

normal conditions. 

To reach our main objective, the following specific objectives must be achieved. 

1- Obtaining the MLEs of the model parameters and studying their properties.  
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Since the likelihood equations cannot be found in a closed form, numerical methods are 

used to obtain the MLEs of the step stress lognormal model with hybrid censoring. To 

study the properties of the MLEs, a simulation study is performed where the MLEs of 

2000 replications are obtained and their Bias and MSE are calculated. 

2- Deriving and studying the performance of the asymptotic, bootstrap-t 

confidence intervals and percentile confidence intervals. 

The approximate confidence interval is constructed depending on the asymptotic 

property that the MLEs approach normal distribution as the sample size increases. 

To construct the bootstrap-t and percentile confidence intervals, 1000 bootstrap 

samples are simulated for each of the 2000 replications to obtain the interval estimates 

of the bootstrap intervals for estimating the model parameters.  

To study the performance of the interval estimates, the coverage probabilities and 

average interval lengths are calculated. The coverage probability indicates how many 

times the true parameter value was included in 2000 confidence intervals. The average 

interval length is the sum of the lengths of 2000 intervals (the interval length is the 

difference between the upper and lower bounds of the confidence interval) divided by 

2000. 

3- Assessing the performance of the point and interval estimates of the survival 

function.  

To assess the performance of the point and interval estimates of the survival function, 

the Bias, mean square error (MSE), coverage probability and average interval lengths 

are calculated. 

4- Analyzing the results obtained for different hybrid censoring schemes. 

The results are analyzed by checking whether the Bias and MSE decrease with 

increasing the sample size and comparing the performance of the coverage probability 
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for the three confidence intervals by  checking which of the confidence intervals have 

coverage probability close to the nominal level for different hybrid censoring schemes. 

5- Presenting a detailed example to illustrate the application of the methods 

discussed in this thesis. 

Since a real step stress data has not been found, a generated sample is used instead. In 

the illustrative example, a step stress lognormal sample with hybrid censoring is 

generated and the point and interval estimates of the model parameters are obtained. 
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CHAPTER 2: MAXIMUM LIKELIHOOD INFERENCE 

2.1 Overview of the Maximum Likelihood Inference 

One of the most commonly used methods to estimate the model parameters is the 

maximum likelihood estimation method (ML methods) . This method applies to most 

data types and can be used with censored data in addition to providing good point and 

interval estimates of the model parameters. Functions of the model parameters to be 

estimated can also be estimated with the ML methods according to the invariance 

property of the MLE. To find the MLE of the reliability function at specific times, we 

evaluate the reliability function at the MLEs of the model parameters.  

The likelihood function is expressed mathematically as the function of the model 

parameters as shown below: 

𝐿(𝜃) = 𝐿(𝜃; 𝑑𝑎𝑡𝑎) = 𝐶 ∏ 𝐿𝑖(𝜃; 𝑑𝑎𝑡𝑎𝑖)

𝑛

𝑖=1

 
 

Where C is a constant that does not contain the model parameters or the data and thus 

can be removed when finding the roots of the equations. The maximum likelihood 

estimator MLE is the unique value that maximizes the likelihood function. For the 

mathematical ease, the log likelihood function is more commonly used instead of the 

likelihood function. 

 

2.2 Likelihood for Estimating the Model Parameters 

  In this section, we will construct the likelihood function for the step stress life test data 

with the presence of hybrid censoring. There are two cases that we have to consider 

when constructing the likelihood function. The case in which the preset experiment 

time is reached before having r failures (type I censoring) and the case where r units 

fail before the predetermined time of the experiment is reached ( type II censoring). 
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We first introduce some notations that we will be using throughout this research. 

Notations 

𝑡1= The preset experiment time  

r= The predetermined number of failures  

𝜏= The stress changing time 

𝑥0= The initial stress level 

𝑥1= The higher stress level 

𝑁1= The number of failures at the initial stress level 

𝑁2= The number of failures at the higher stress level 

m= The total number of failures in the experiment, m=𝑁1+𝑁2 

 

The MLE 𝜇̂1 doesn’t exist when the number of failures 𝑁1 in the initial level 𝑥0 is zero 

and the MLE 𝜇̂2 doesn’t exist when the number of failures 𝑁2 in the second stress level 

𝑥1 is zero, therefore, we will condition on that 𝑁1 > 0 𝑎𝑛𝑑 𝑁2 > 0. 

The simple step stress data follow a lognormal distribution. We fit a CEM to the step 

stress lognormal distributed life test data to extrapolate the data to normal use 

conditions and relate the distribution to the stress levels. 

The pdf  and CDF of the lognormal simple step stress model are shown in eq 1 and 2 

respectively: 

𝑔(𝑡) = {
𝑔1(𝑡) =

1

𝜎𝑡√2𝜋
𝑒

−
1

2
(

𝑙𝑜𝑔𝑡−𝜇1
𝜎

)
2

, 0 ≤ 𝑡 < τ

𝑔2(𝑡) =
1

𝜎[𝑡−𝛼(𝜇)]√2𝜋
𝑒−

1

2
(

𝑙𝑜𝑔[𝑡−𝛼(𝜇)]−𝜇2
𝜎

)
2

, τ ≤ 𝑡 < ∞

  

 

(1) 

 

𝐺(𝑡) = {
𝐺1(𝑡) = Φ (

𝑙𝑜𝑔𝑡−𝜇1

𝜎
) , 0 ≤  𝑡 < τ

𝐺2(𝑡) = Φ (
log [𝑡−𝛼(𝜇)]−𝜇2

𝜎
) , τ ≤  𝑡 < ∞

  

(2) 
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𝑊ℎ𝑒𝑟𝑒  𝛼(𝜇) = 𝜏(1 − 𝑒𝜇2−𝜇1) (3) 

𝑔1(𝑡) is the distribution of the lifetime of the units under normal conditions 𝑥0 and 

𝑔2(𝑡) is the distribution at the higher stress level 𝑥1. 

The graphical representation of the CDF of the lognormal  simple step stress model 

where 𝜏=30 and model parameters 𝜇1 = 𝑙𝑜𝑔(200), 𝜇2 = 𝑙𝑜𝑔(5), 𝜎 = 3 is shown in 

figure 4: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Likelihood construction  

Case 1: Let 𝑇∗ = 𝑚𝑖𝑛(𝑡1, 𝑡(𝑟)) = 𝑡1, where 𝑁1 + 𝑁2 < 𝑟 

The observed time to failure of the n units in this case will be in the form shown in 

equations 4: 

𝑡1:𝑛 < 𝑡2:𝑛 < ⋯ < 𝑡𝑁1:𝑛 < 𝜏 < 𝑡𝑁1+1:𝑛 < ⋯ < 𝑡𝑚:𝑛 < 𝑡1  (4) 

Figure 4. Cumulative exposure lognormal model 
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The likelihood function is constructed as shown in equation 5: 

𝐿(𝜃|𝑡) = {∏ 𝑔1(𝑡𝑘:𝑛
𝑁1
𝑘=1 )} ∗ {∏ 𝑔2(𝑡𝑘:𝑛

𝑚
𝑘=𝑁1+1 )} ∗ (1 − 𝐺2(𝑡1  ))𝑛−𝑚  (5) 

Substituting the pdf and CDF of the step stress model, we get equation 6: 

𝐿(𝜃|𝑡) = (
1

𝜎√2𝜋
)

𝑚 1

∏ 𝑡𝑘
𝑁1
𝑘=1

1

∏ [𝑡𝑘:𝑛−𝛼(𝜇)]𝑚
𝑘=𝑁1

∗

𝑒
−1

2
∑ (

𝑙𝑜𝑔𝑡𝑘−𝜇1
𝜎

)
2

𝑁1
𝑘=1 𝑒−

1

2
∑ (

𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]−𝜇2
𝜎

)𝑚
𝑘=𝑁1+1

2

∗ {1 − Φ (
log [𝑡1−𝛼(𝜇)]−𝜇2

𝜎
)

𝑛−𝑚

}  

 

(6) 

Taking the log of the likelihood of the function: 

𝑙(𝜃|𝑡) = −𝑚𝑙𝑜𝑔(√2𝜋𝜎) − ∑ log(𝑡𝑘:𝑛)𝑁1
𝑘=1 − ∑ log[𝑡𝑘:𝑛 − 𝛼(𝜇)] −𝑚

𝑘=𝑁1+1

1

2
∑ (

𝑙𝑜𝑔𝑡𝑘−𝜇1

𝜎
)

2

−
1

2

𝑁1
𝑘=1 ∑ (

 log[𝑡𝑘:𝑛−𝛼(𝜇)]−𝜇2

𝜎
)

2

+ (𝑛 − 𝑚)𝑙𝑜𝑔 (1 −𝑚
𝑘=𝑁1+1

Φ (
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
))  

 

(7) 

The first derivative of the log likelihood function with respect to 𝜇1, 𝜇2 and 𝜎 

respectively is shown in equations 8 to 10: 

𝜕

𝜕𝜇1
𝑙(𝜃|𝑡) = ∑

𝜏𝑒𝜇2−𝜇1

[𝑡𝑘−𝛼(𝜇)]
𝑚
𝑘=𝑁1+1 + ∑ (

𝑙𝑜𝑔(𝑡𝑘)−𝜇1

𝜎2 )
𝑁1
𝑘=1 +

∑ (
𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]−𝜇2

𝜎
)

(𝜏𝑒𝜇2−𝜇1)

𝜎[𝑡𝑘−𝛼(𝜇)]
𝑚
𝑘=𝑁1+1 − (𝑛 − 𝑚) ∗

𝜑(
1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)

1−𝛷[
1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2]

∗

(𝜏𝑒𝜇2−𝜇1)

𝜎[𝑡1−𝛼(𝜇)]
  

 

(8) 

 

𝜕

𝜕𝜇2
𝑙(𝜃|𝑡) = ∑

𝜏𝑒𝜇2−𝜇1

𝑡𝑘−𝛼(𝜇)
+ ∑ (

𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎
) ∗ (

𝜏𝑒𝜇2−𝜇1

𝜎[𝑡𝑘−𝛼(𝜇)]
−

1

𝜎
)𝑚

𝑘=𝑁1+1
𝑚
𝑘=𝑁1+1 +

(𝑛 − 𝑚) 
𝜑(

1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)

1−𝛷(
 𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
)

∗ (
𝜏𝑒𝜇2−𝜇1

𝜎[𝑡1−𝛼(𝜇)]
−

1

𝜎
)  

 

(9) 
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𝜕

𝜕𝜎
𝑙(𝜃|𝑡) =

−𝑚

𝜎
+ ∑ (

(𝑙𝑜𝑔(𝑡𝑘)−𝜇1)2

𝜎3
)

𝑁1
𝑘=1 + ∑ (

(𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]−𝜇2)2

𝜎3
)𝑚

𝑘=𝑁1+1 + (𝑛 −

𝑚)
𝜑(

1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)

1−Φ[
1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2]

∗
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2

𝜎2
  

 

(10) 

 

Case 2: 𝑇∗ = 𝑚𝑖𝑛(𝑡1, 𝑡(𝑟)) = 𝑡(𝑟), where 𝑁1 + 𝑁2 = 𝑟 

The observed time to failure of the n units in  case 2 will be in the form shown in 

equation 11: 

𝑡1:𝑛 < 𝑡2:𝑛 < ⋯ < 𝑡𝑁1:𝑛 < 𝜏 < 𝑡𝑁1+1:𝑛 < ⋯ < 𝑡(𝑟)  (11) 

The likelihood function is constructed as shown in equation 12: 

𝐿(𝜃|𝑡) = {∏ 𝑔1(𝑡𝑘:𝑛
𝑁1
𝑘=1 )} ∗ {∏ 𝑔2(𝑡𝑘:𝑛

𝑟
𝑘=𝑁1+1 )} ∗ (1 − 𝐺2(𝑡𝑟  ))𝑛−𝑟  (12) 

Substituting the pdf and CDF of the step stress model: 

𝐿(𝜃|𝑡) = (
1

𝜎√2𝜋
)

𝑟 1

∏ 𝑡𝑘
𝑁1
𝑘=1

1

∏ [𝑡𝑘:𝑛−𝛼(𝜇)]𝑟
𝑘=𝑁1

∗

𝑒
−1

2
∑ (

𝑙𝑜𝑔𝑡𝑘−𝜇1
𝜎

)
2

𝑁1
𝑘=1 𝑒−

1

2
∑ (

𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]−𝜇2
𝜎

)𝑟
𝑘=𝑁1+1

2

∗ {1 − Φ (
log [𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
)

𝑛−𝑟

}  

 

(13) 

Taking the log of the likelihood of the function: 

𝑙(𝜃|𝑡) = −𝑟𝑙𝑜𝑔(√2𝜋𝜎) − ∑ log(𝑡𝑘:𝑛)𝑁1
𝑘=1 − ∑ log[𝑡𝑘:𝑛 − 𝛼(𝜇)] −𝑟

𝑘=𝑁1+1

1

2
∑ (

𝑙𝑜𝑔𝑡𝑘−𝜇1

𝜎
)

2

−
1

2

𝑁1
𝑘=1 ∑ (

 log[𝑡𝑘:𝑛−𝛼(𝜇)]−𝜇2

𝜎
)

2

+ (𝑛 − 𝑟)𝑙𝑜𝑔 (1 −𝑟
𝑘=𝑁1+1

Φ (
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
))  

 

(14) 

The first derivative of the log likelihood function with respect to 𝜇1, 𝜇2 and 𝜎 

respectively are as shown in equations 15 to 17: 
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𝜕

𝜕𝜇1
𝑙(𝜃|𝑡) = ∑

𝜏𝑒𝜇2−𝜇1

[𝑡𝑘−𝛼(𝜇)]
𝑟
𝑘=𝑁1+1 + ∑ (

𝑙𝑜𝑔(𝑡𝑘)−𝜇1

𝜎2 )
𝑁1
𝑘=1 +

∑ (
𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]−𝜇2

𝜎
)

(𝜏𝑒𝜇2−𝜇1)

𝜎[𝑡𝑘−𝛼(𝜇)]
𝑟
𝑘=𝑁1+1 − (𝑛 − 𝑟) ∗

𝜑(
1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)

1−𝛷[
1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2]

∗

(𝜏𝑒𝜇2−𝜇1)

𝜎[𝑡𝑟−𝛼(𝜇)]
  

 

(15) 

 

𝜕

𝜕𝜇2
𝑙(𝜃|𝑡) = ∑

𝜏𝑒𝜇2−𝜇1

𝑡𝑘−𝛼(𝜇)
+ ∑ (

𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎
) ∗ (

𝜏𝑒𝜇2−𝜇1

𝜎[𝑡𝑘−𝛼(𝜇)]
−

1

𝜎
)𝑟

𝑘=𝑁1+1
𝑟
𝑘=𝑁1+1 +

(𝑛 − 𝑟) 
𝜑(

1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)

1−𝛷(
 𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
)

∗ (
𝜏𝑒𝜇2−𝜇1

𝜎[𝑡𝑟−𝛼(𝜇)]
−

1

𝜎
)  

 

(16) 

 

𝜕

𝜕𝜎
𝑙(𝜃|𝑡) =

−𝑟

𝜎
+ ∑ (

(𝑙𝑜𝑔(𝑡𝑘)−𝜇1)2

𝜎3 )
𝑁1
𝑘=1 + ∑ (

(𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]−𝜇2)2

𝜎3 )𝑟
𝑘=𝑁1+1 + (𝑛 −

𝑟)
𝜑(

1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)

1−Φ[
1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2]

∗
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎2   

 

(17) 

 

2.3 Likelihood for Estimating the Survival Function 

The Survival function is given by 𝑆(𝑡) = 1 − Φ (
𝑙𝑜𝑔(𝑡)−𝜇1

𝜎
). To find the MLE of the 

survival function, we substitute the values of the  MLEs 𝜇̂ and 𝜎̂  in the survival function 

𝑆̂(𝑡) = 1 − Φ (
𝑙𝑜𝑔(𝑡)−𝜇̂1

𝜎̂
) based on the invariance property. 

To calculate the variance of a function of the MLEs, we can use the delta method (see  

Casella G, Berger, R.L, 2002 ) 

√𝑛[𝑔(𝜃1, … . , 𝜃𝑠) − 𝑔(𝜃1, … . , 𝜃𝑝)] → 𝑁 (0, ∑ ∑ 𝜎𝑖𝑗
𝜕𝑔(𝜃)

𝜕𝜃𝑖
∗

𝜕𝑔(𝜃)

𝜕𝜃𝑗
)  

 

Where 𝜎𝑖𝑗 = 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗) 

The variance of the survival function is calculated as follows: 

𝐺 = (
𝜕𝑆(𝑡)

𝜕𝜇1
  

𝜕𝑆(𝑡)

𝜕𝜇2

𝜕𝑆(𝑡)

𝜕𝜎
) 
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Where,  

𝜕𝑆(𝑡)

𝜕𝜇1
=

1

𝜎√2𝜋
𝑒−

1

2
(

𝑙𝑜𝑔(𝑡)−𝜇1
𝜎

)
2

  
(18) 

 

𝜕𝑆(𝑡)

𝜕𝜇2
= 0  (19) 

 

𝜕𝑆(𝑡)

𝜕𝜎
=

𝜇1−𝑙𝑜𝑔(𝑡)

𝜎2√2𝜋
𝑒−

1

2
(

𝑙𝑜𝑔(𝑡)−𝜇1
𝜎

)
2

  
(20) 

𝑣𝑎𝑟̂ (𝑆̂(𝑡)) ≈ [𝐺𝑡𝐼−1(𝜇1, 𝜇2, 𝜎)𝐺](𝜇̂1,𝜇̂2,𝜎̂) 

2.4 Asymptotic Confidence Intervals for the Model Parameters 

The MLE has an asymptotic property in which the MLE has approximate distributions 

where √𝑛(𝜃 − 𝜃) → 𝑁(0, 𝜎2)(see  Casella G, Berger, R.L, 2002 ) 

 We can obtain approximate confidence intervals for the MLEs by using the asymptotic 

property. The number of failures in the sample should be large in order to have a good 

normality approximation (based on the  large sample theory). 

 Finding the approximate distributions for the MLEs requires the knowledge of the 

information matrix. And since the inverse of the information matrix is usually difficult 

to analytically derive, the inverse of a numerical approximation of the information 

matrix is usually used instead. 

The information matrix is given by: 

𝐼 = [

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

] 
 

Where 𝑐𝑖𝑗 = −𝐸 [
𝜕2𝑙(𝜃|𝑡)

𝜕𝜃𝑖𝜕𝜃𝑗
] ,       𝑖, 𝑗 = 1,2,3
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The second partial derivatives of the log likelihood function for case I (type I censoring) are as follows: 

𝜕2𝑙(𝜃|𝑡)

𝜕𝜇2
1

= − ∑ 𝜏𝑒𝜇2−𝜇1𝑚
𝑘=𝑁1+1 −

𝑁1

𝜎2 + ∑ [(
𝜏𝑒𝜇2−𝜇1

(𝜎[𝑡𝑘−𝛼(𝜇)])
)

2

+ (
𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎
) ∗

(−𝜎𝜏𝑒𝜇2−𝜇1[𝑡𝑘−𝛼(𝜇)])+𝜎(𝜏𝑒𝜇2−𝜇1)2

(𝜎[𝑡𝑘−𝛼(𝜇)])2 ] − (𝑛 −𝑚
𝑘=𝑁1+1

𝑚) ∗ [
1−Φ(

 log[𝑡1−𝛼(𝜇)]−𝜇2
𝜎

)∗𝜑(
1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)∗
1
𝜎

−𝜏𝑒𝜇2−𝜇1

[𝑡1−𝛼(𝜇)]
∗

(𝜏𝑒𝜇2−𝜇1)

𝜎[𝑡1−𝛼(𝜇)]

(1−Φ(
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
))

2 ] + [
𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)

1−Φ[
1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2]
∗

(−𝜎[𝑡1−𝛼(𝜇)]∗𝜏𝑒𝜇2−𝜇1)+(𝜎(𝜏𝑒𝜇2−𝜇1)2)

(𝜎[𝑡1−𝛼(𝜇)])2 ]  

(21) 

 

      

𝜕2𝑙(𝜃|𝑡)

𝜕𝜇2
2

= ∑
[𝑡𝑘−𝛼(𝜇)]∗𝜏𝑒𝜇2−𝜇1−((𝜏𝑒𝜇2−𝜇1)2)

[𝑡𝑘−𝛼(𝜇)]2
𝑚
𝑘=𝑁1+1 + ∑ [

𝜏𝑒𝜇2−𝜇1

(𝜎[𝑡𝑘−𝛼(𝜇)])
∗

1

𝜎
[

𝜏𝑒𝜇2−𝜇1

([𝑡𝑘−𝛼(𝜇)])
− 1]]𝑚

𝑘=𝑁1+1 + (
𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎
) ∗

1

𝜎

𝑡𝑘−𝛼(𝜇)∗𝜏𝑒𝜇2−𝜇1−((𝜏𝑒𝜇2−𝜇1−1)∗𝜏𝑒𝜇2−𝜇1)

[𝑡𝑘−𝛼(𝜇)]2 + (𝑛 − 𝑚) ∗

[
1−Φ(

 log[𝑡1−𝛼(𝜇)]−𝜇2
𝜎

)∗𝜑(
1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)∗
1
𝜎

(
𝜏𝑒𝜇2−𝜇1

[𝑡1−𝛼(𝜇)]
−1)∗

(𝜏𝑒𝜇2−𝜇1)

𝜎[𝑡1−𝛼(𝜇)]
−1+((𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2))

2

∗
1

𝜎
[

𝜏𝑒𝜇2−𝜇1

(𝜎[𝑡1−𝛼(𝜇)])
−1])

(1−Φ(
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
))

2 ] +

[
𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)

1−Φ[
1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2]
∗

1

𝜎

([𝑡1−𝛼(𝜇)]∗𝜏𝑒𝜇2−𝜇1)−((𝜏𝑒𝜇2−𝜇1−1)𝜏𝑒𝜇2−𝜇1)

([𝑡1−𝛼(𝜇)])2 ]  

(22)    
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𝜕2𝑙(𝜃|𝑡)

𝜕𝜎2 =
𝑚

𝜎2 − ∑
(𝑙𝑜𝑔(𝑡𝑘)−𝜇1)2

𝜎4 − ∑
(𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]−𝜇2)2

𝜎4
𝑚
𝑘=𝑁1+1

𝑁1
𝑘=1 + (𝑛 − 𝑚) ∗

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2

𝜎2 ∗

−(1−Φ(
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
)∗𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)∗(
1

𝜎2𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2))

(1−Φ(
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
))

2 −
(

 log[𝑡1−𝛼(𝜇)]−𝜇2
𝜎

)∗−𝜑(
1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)∗−
1

𝜎2𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2

(1−Φ(
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
))

2 +

𝜑(
1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)

1−Φ(
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
)

∗
−𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2

𝜎3   

(23) 

 

                                                                                                                                  

𝜕2𝑙(𝜃|𝑡)

𝜕𝜇1𝜕𝜇2
= ∑

([𝑡𝑘−𝛼(𝜇)]∗𝜏𝑒𝜇2−𝜇1)−((𝜏𝑒𝜇2−𝜇1)2)

([𝑡𝑘−𝛼(𝜇)])2 + ∑ ((
1

𝜎
[

𝜏𝑒𝜇2−𝜇1

([𝑡𝑘−𝛼(𝜇)])
− 1]) ∗

𝜏𝑒𝜇2−𝜇1

([𝑡𝑘−𝛼(𝜇)])
) + ((

𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]−𝜇2

𝜎
) ∗𝑚

𝑘=𝑁1+1
𝑚
𝐾=𝑁1+1

1

𝜎

((𝑡𝑘−𝛼(𝜇))∗𝜏𝑒𝜇2−𝜇1)−((𝜏𝑒𝜇2−𝜇1)2)

[𝑡𝑘−𝛼(𝜇)]2
) − (𝑛 − 𝑚) ∗

[
1−Φ(

 log[𝑡1−𝛼(𝜇)]−𝜇2
𝜎

)∗𝜑(
1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)∗

1

𝜎
(

𝜏𝑒𝜇2−𝜇1

[𝑡1−𝛼(𝜇)]
−1)+((𝜑(

1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2))

2

∗
1

𝜎
[

𝜏𝑒𝜇2−𝜇1

(𝜎[𝑡1−𝛼(𝜇)])
−1])

(1−Φ(
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
))

2 ]  

(24) 
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𝜕2𝑙(𝜃|𝑡)

𝜕𝜎𝜕𝜇1
= ∑

−2

𝜎3

𝑁1
𝑘=1 (𝑙𝑜𝑔(𝑡𝑘 − 𝜇1)) ∗ − ∑

2𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎3
𝑚
𝑘=𝑁1+1 ∗ [

𝜏𝑒𝜇2−𝜇1

([𝑡𝑘−𝛼(𝜇)])
] + (𝑛 − 𝑚) ∗ (

1

𝜎
[

𝜏𝑒𝜇2−𝜇1

([𝑡1−𝛼(𝜇)])
− 1]) ∗

(1−Φ(
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
))∗𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)∗−
𝜏𝑒𝜇2−𝜇1

𝜎[[𝑡1−𝛼(𝜇)]]
−((𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2))

2

∗−
−𝜏𝑒𝜇2−𝜇1

𝜎[[𝑡1−𝛼(𝜇)]]
)

(1−Φ(
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
))

2 −
𝜑(

1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)

1−𝛷[
1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2]

∗

1

𝜎2 [
𝜏𝑒𝜇2−𝜇1

([𝑡1−𝛼(𝜇)])
]   

(25) 

 

 

𝜕2𝑙(𝜃|𝑡)

𝜕𝜎𝜕𝜇2
= ∑

−𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎2
𝑚
𝑘=𝑁1+1 ∗

1

𝜎
[

𝜏𝑒𝜇2−𝜇1

([𝑡𝑘−𝛼(𝜇)])
− 1] − (

𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎
) ∗

1

𝜎2 [
𝜏𝑒𝜇2−𝜇1

(𝜎[𝑡𝑘−𝛼(𝜇)])
− 1] + (𝑛 − 𝑚) ∗ (

1

𝜎
[

𝜏𝑒𝜇2−𝜇1

([𝑡1−𝛼(𝜇)])
− 1]) ∗

(1−Φ(
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
))∗𝜑(

1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)∗−

1

𝜎2[𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2]−((𝜑(
1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2))

2

∗
1

𝜎2𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)

(1−Φ(
 log[𝑡1−𝛼(𝜇)]−𝜇2

𝜎
))

2 −

𝜑(
1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2)

1−𝛷[
1

𝜎
𝑙𝑜𝑔[𝑡1−𝛼(𝜇)]−𝜇2]

∗
1

𝜎2
[

𝜏𝑒𝜇2−𝜇1

([𝑡1−𝛼(𝜇)])
− 1]  

 

(26) 
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The second partial derivatives of the log likelihood function for case II (type II censoring) are as follows: 

𝜕2𝑙(𝜃|𝑡)

𝜕𝜇2
1

= − ∑ 𝜏𝑒𝜇2−𝜇1𝑟
𝑘=𝑁1+1 −

𝑁1

𝜎2 + ∑ [(
𝜏𝑒𝜇2−𝜇1

(𝜎[𝑡𝑘−𝛼(𝜇)])
)

2

+ (
𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎
) ∗

(−𝜎𝜏𝑒𝜇2−𝜇1[𝑡𝑘−𝛼(𝜇)])+𝜎(𝜏𝑒𝜇2−𝜇1)2

(𝜎[𝑡𝑘−𝛼(𝜇)])2 ] − (𝑛 −𝑟
𝑘=𝑁1+1

𝑟) ∗ [
1−Φ(

 log[𝑡𝑟−𝛼(𝜇)]−𝜇2
𝜎

)∗𝜑(
1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)∗
1
𝜎

−𝜏𝑒𝜇2−𝜇1

[𝑡𝑟−𝛼(𝜇)]
∗

(𝜏𝑒𝜇2−𝜇1)

𝜎[𝑡𝑟−𝛼(𝜇)]

(1−Φ(
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
))

2 ] + [
𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)

1−Φ[
1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2]
∗

(−𝜎[𝑡𝑟−𝛼(𝜇)]∗𝜏𝑒𝜇2−𝜇1)+(𝜎(𝜏𝑒𝜇2−𝜇1)2)

(𝜎[𝑡𝑟−𝛼(𝜇)])2 ]  

(27) 

 

 

𝜕2𝑙(𝜃|𝑡)

𝜕𝜇2
2

= ∑
[𝑡𝑘−𝛼(𝜇)]∗𝜏𝑒𝜇2−𝜇1−((𝜏𝑒𝜇2−𝜇1)2)

[𝑡𝑘−𝛼(𝜇)]2
𝑟
𝑘=𝑁1+1 + ∑ [

𝜏𝑒𝜇2−𝜇1

(𝜎[𝑡𝑘−𝛼(𝜇)])
∗

1

𝜎
[

𝜏𝑒𝜇2−𝜇1

([𝑡𝑘−𝛼(𝜇)])
− 1]]𝑟

𝑘=𝑁1+1 + (
𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎
) ∗

1

𝜎

𝑡𝑘−𝛼(𝜇)∗𝜏𝑒𝜇2−𝜇1−((𝜏𝑒𝜇2−𝜇1−1)∗𝜏𝑒𝜇2−𝜇1)

[𝑡𝑘−𝛼(𝜇)]2 + (𝑛 − 𝑟) ∗

(28)    
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[
1−Φ(

 log[𝑡𝑟−𝛼(𝜇)]−𝜇2
𝜎

)∗𝜑(
1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)∗
1
𝜎

(
𝜏𝑒𝜇2−𝜇1

[𝑡𝑟−𝛼(𝜇)]
−1)∗

(𝜏𝑒𝜇2−𝜇1)

𝜎[𝑡𝑟−𝛼(𝜇)]
−1+((𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2))

2

∗
1

𝜎
[

𝜏𝑒𝜇2−𝜇1

(𝜎[𝑡𝑟−𝛼(𝜇)])
−1])

(1−Φ(
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
))

2 ] +

[
𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)

1−Φ[
1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2]
∗

1

𝜎

([𝑡𝑟−𝛼(𝜇)]∗𝜏𝑒𝜇2−𝜇1)−((𝜏𝑒𝜇2−𝜇1−1)𝜏𝑒𝜇2−𝜇1)

([𝑡𝑟−𝛼(𝜇)])2 ]  

 

 

𝜕2𝑙(𝜃|𝑡)

𝜕𝜎2 =
𝑟

𝜎2 − ∑
(𝑙𝑜𝑔(𝑡𝑘)−𝜇1)2

𝜎4 − ∑
(𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]−𝜇2)2

𝜎4
𝑟
𝑘=𝑁1+1

𝑁1
𝑘=1 + (𝑛 − 𝑟) ∗

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎2 ∗

−(1−Φ(
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
)∗𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)∗(
1

𝜎2𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2))

(1−Φ(
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
))

2 −
(

 log[𝑡𝑟−𝛼(𝜇)]−𝜇2
𝜎

)∗−𝜑(
1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)∗−
1

𝜎2𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2

(1−Φ(
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
))

2 +

𝜑(
1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)

1−Φ(
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
)

∗
−𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎3   

(29) 
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𝜕2𝑙(𝜃|𝑡)

𝜕𝜇1𝜕𝜇2
= ∑

([𝑡𝑘−𝛼(𝜇)]∗𝜏𝑒𝜇2−𝜇1)−((𝜏𝑒𝜇2−𝜇1)2)

([𝑡𝑘−𝛼(𝜇)])2
+ ∑ ((

1

𝜎
[

𝜏𝑒𝜇2−𝜇1

([𝑡𝑘−𝛼(𝜇)])
− 1]) ∗

𝜏𝑒𝜇2−𝜇1

([𝑡𝑘−𝛼(𝜇)])
) + ((

𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]−𝜇2

𝜎
) ∗𝑟

𝑘=𝑁1+1
𝑟
𝐾=𝑁1+1

1

𝜎

((𝑡𝑘−𝛼(𝜇))∗𝜏𝑒𝜇2−𝜇1)−((𝜏𝑒𝜇2−𝜇1)2)

[𝑡𝑘−𝛼(𝜇)]2
) − (𝑛 − 𝑟) ∗

[
1−Φ(

 log[𝑡𝑟−𝛼(𝜇)]−𝜇2
𝜎

)∗𝜑(
1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)∗

1

𝜎
(

𝜏𝑒𝜇2−𝜇1

[𝑡𝑟−𝛼(𝜇)]
−1)+((𝜑(

1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2))

2

∗
1

𝜎
[

𝜏𝑒𝜇2−𝜇1

(𝜎[𝑡𝑟−𝛼(𝜇)])
−1])

(1−Φ(
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
))

2 ]  

(30) 

𝜕2𝑙(𝜃|𝑡)

𝜕𝜎𝜕𝜇1
= ∑

−2

𝜎3

𝑁1
𝑘=1 (𝑙𝑜𝑔(𝑡𝑘 − 𝜇1)) ∗ − ∑

2𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎3
𝑟
𝑘=𝑁1+1 ∗ [

𝜏𝑒𝜇2−𝜇1

([𝑡𝑘−𝛼(𝜇)])
] + (𝑛 − 𝑟) ∗ (

1

𝜎
[

𝜏𝑒𝜇2−𝜇1

([𝑡𝑟−𝛼(𝜇)])
− 1]) ∗

(1−Φ(
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
))∗𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)∗−
𝜏𝑒𝜇2−𝜇1

𝜎[[𝑡𝑟−𝛼(𝜇)]]
−((𝜑(

1
𝜎

𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2))

2

∗−
−𝜏𝑒𝜇2−𝜇1

𝜎[[𝑡𝑟−𝛼(𝜇)]]
)

(1−Φ(
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
))

2 −
𝜑(

1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)

1−𝛷[
1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2]

∗

1

𝜎2 [
𝜏𝑒𝜇2−𝜇1

([𝑡𝑟−𝛼(𝜇)])
]   

(31) 
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𝜕2𝑙(𝜃|𝑡)

𝜕𝜎𝜕𝜇2
= ∑

−𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎2
𝑟
𝑘=𝑁1+1 ∗

1

𝜎
[

𝜏𝑒𝜇2−𝜇1

([𝑡𝑘−𝛼(𝜇)])
− 1] − (

𝑙𝑜𝑔[𝑡𝑘−𝛼(𝜇)]

𝜎
) ∗

1

𝜎2
[

𝜏𝑒𝜇2−𝜇1

(𝜎[𝑡𝑘−𝛼(𝜇)])
− 1] + (𝑛 − 𝑟) ∗ (

1

𝜎
[

𝜏𝑒𝜇2−𝜇1

([𝑡𝑟−𝛼(𝜇)])
− 1]) ∗

(1−Φ(
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
))∗𝜑(

1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)∗−

1

𝜎2[𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2]−((𝜑(
1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2))

2

∗
1

𝜎2𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)

(1−Φ(
 log[𝑡𝑟−𝛼(𝜇)]−𝜇2

𝜎
))

2 −

𝜑(
1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2)

1−𝛷[
1

𝜎
𝑙𝑜𝑔[𝑡𝑟−𝛼(𝜇)]−𝜇2]

∗
1

𝜎2 [
𝜏𝑒𝜇2−𝜇1

([𝑡𝑟−𝛼(𝜇)])
− 1]  

 

(32) 
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The inverse of I denoted by 𝐼−1 is the variance-covariance matrix for the MLEs. 

𝐼−1 = [

𝑑11 𝑑12 𝑑13

𝑑21 𝑑22 𝑑23

𝑑31 𝑑32 𝑑33

]  

 

The approximate confidence intervals are then given by: 

𝜇̂1±
𝑧𝛼

2⁄ ∗ √𝑑11  

 

𝜇̂2±
𝑧𝛼

2⁄ ∗ √𝑑22  

 

𝜎̂±𝑧𝛼
2⁄ ∗ √𝑑33  

 

Numerical Methods 

The ML equations for the lognormal distribution cannot be found in a closed form. 

Therefore, the MLEs are obtained by using a numerical optimization algorithm in order 

to maximize the  log likelihood function. We use the nlm function in R to numerically 

obtain the MLEs of the model parameters. The nlm function minimizes the log 

likelihood function and therefore, we need to multiply the log likelihood function of a 

negative sign to obtain the MLEs. 

2.5 Bootstrap Inference 

Bootstrapping is a computer intensive non-parametric method used for making 

statistical inference about the parameter of interest. Bootstrap sampling can also be 

carried out parametrically when some knowledge about the distribution of the 

population is available. To estimate the parameter of interest by bootstrap sampling, 

B samples of size n are drawn from the parametric estimate of the population and 

the statistic of interest is evaluated for each bootstrap sample (Efron, B. & 
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Tibshirani, R,1998).   

Bias and Standard Error 

Let 𝜃 be the parameter of some population, 𝜃 is the estimate from the given data and 

𝜃∗ is the estimate for the bootstrap sample. The bootstrap bias estimate is given by: 

𝐸(𝜃∗) −  𝜃  

Standard Error 

The parametric bootstrap estimate of the standard error is the standard deviation of the 

bootstrap sample. 

Bootstrap Sample 

The bootstrap sample from the simple step stress lognormal model with hybrid 

censoring is obtained using the following steps: 

Step 1. Generating a random sample  of size n from the uniform distribution and sorting 

it in an ascending order as shown in eq 33: 

U(1)<U(2)<………<U(N1)< 𝜏<U(N1+1)<….<U(N1+N2)< min(t(r),t1) (33) 

Step 2. Finding N1 such that:  

𝑈𝑁1:𝑛≤ 𝛷 (
𝑙𝑜𝑔𝜏− µ̂1

𝜎̂
 ) (34) 

For i=1,………..,N1   

𝑇𝑖:𝑛
∗ = 𝑒𝜎̂∗Φ−1(𝑢)+𝜇̂1 (35)   

For j= N1+1,……..,n  

𝑇𝑗:𝑛
∗ = 𝛼(µ̂) + 𝑒𝜎̂∗Φ−1(𝑢)+𝜇̂2 , 𝑤ℎ𝑒𝑟𝑒 𝛼(µ̂) = 𝜏 ∗ (1 − 𝑒𝜇̂2−𝜇̂1) (36) 

Step 3. Finding N2 such that: 𝑇𝑗:𝑛
∗ ≤ min(t(r),t1) 

Then the sample will be in the following form: 

𝑇(1:𝑛
∗

)< 𝑇(2:𝑛
∗

)<………< 𝑇(𝑁1:𝑛
∗

)< 𝜏<𝑇(𝑁1+1:𝑛
∗

)<….< 𝑇(𝑁1+𝑁2:𝑛
∗

) <min(t(r),t1)  (37) 

Step 4. Obtaining the MLEs 𝜇̂1
∗,  𝜇̂2

∗𝑎𝑛𝑑 𝜎̂∗ by using the nlm function in R.  
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Step 5. Repeating steps 2-5 R times. 

Bootstrap Confidence Intervals 

The parametric bootstrap procedures can be used as a replacement for the mathematical 

approximations that are difficult to compute and obtain by the means of Monte Carlo 

simulation. The parametric bootstrap procedures are used when the given data has a 

specified distribution and it usually  gives good confidence intervals even for small 

sample sizes if the chosen distribution for the given data is the right distribution. There 

are several bootstrap confidence intervals that have been proposed so far. In our study 

we focus on two bootstrap intervals, the bootstrap-t interval, and the percentile interval. 

Bootstrap-t Intervals 

In the bootstrap-t method, we compute the statistic 𝑡∗ =
𝜃̂∗−𝜃̂

𝑠𝜃̂∗
 for each generated 

bootstrap sample where 𝜃∗ is the value of 𝜃 for the bootstrap sample and 𝑠𝜃̂∗ is the 

standard error for the bootstrap sample. 

The bootstrap-t interval is constructed as follows: 

(𝜃 − 𝑞1−𝛼𝑠𝜃̂, 𝜃 − 𝑞𝛼𝑠𝜃̂)  

Where  𝑞1−𝛼  and 𝑞𝛼  are the  (1 − 𝛼) & 𝛼 percentiles of 𝑡∗ respectively. 

Percentile Intervals 

The percentile interval is the range of the middle (1 − 𝛼)% of a bootstrap distribution 

and it is given by: 

(𝑞𝛼
2⁄ , 𝑞1−𝛼

2⁄ )  
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CHAPTER 3: SIMULATION STUDY 

A Monte Carlo simulation has been performed for different sample sizes n, different 

predetermined number of failures r, and different stress changing time to assess the 

performance of the point and interval estimates for the model parameters and survival 

function. The simulation results are based on 2000 simulated samples and 1000 

bootstrap samples. Table 1 shows the different choices of hybrid censoring schemes 

with different sample sizes and stress changing time. 

 

 

      Table 1. Different Hybrid Censoring Schemes 

Scheme n r (τ, t1) 

1 30 r1 =15 (30,60) 

2 30 r2 =23 (30,60) 

3 30 r3 =27 (30,60) 

4 50 r1 =25 (30,60) 

5 50 r2 =38 (30,60) 

6 50 r3 =45 (30,60) 

7 80 r1 =40 (30,60) 

8 80 r2 =60 (30,60) 

9 80 r3 =72 (30,60) 

10 100 r1 =50 (30,60) 

11 100 r2 =75 (30,60) 

12 100 r3 =90 (30,60) 

13 30 r1 =15 (50,80) 

14 30 r2 =23 (50,80) 

15 30 r3 =27 (50,80) 

16 50 r1 =25 (50,80) 

17 50 r2 =38 (50,80) 

18 50 r3 =45 (50,80) 

19 80 r1 =40 (50,80) 

20 80 r2 =60 (50,80) 

21 80 r3 =72 (50,80) 

22 100 r1 =50 (50,80) 

23 100 r2 =75 (50,80) 

24 100 r3 =90 (50,80) 
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The simulation study is performed based on two stress changing time values τ =

30 and 50 respictively and test times T1
∗ = min (tr, 𝑡1 = 60) and T2

∗ = min (tr, 𝑡1 =

80) with different sample sizes n and predetermined number of failures r. The sample 

was generated considering the true values of μ1, μ2 and σ as log(200), log(5) and 3, 

respectively. The true values of the survival function for t1= 4.278758, t2=41.47604 

and t3= 200 are .9, .7 and .5, respectively.  

The performance of the MLEs of the model parameters and survival function is studied 

by calculating the Bias and MSE for different censoring schemes. 

Approximate confidence interval, bootstrap-t interval and percentile confidence 

intervals have been constructed to obtain the interval estimates of the model parameters 

and the survival function for three different values of t. To compare the performance of 

these confidence intervals, the coverage probabilities and average interval lengths are 

calculated.  

Table 2 shows the Bias and MSE of the point estimators of μ1, μ2 and σ for different 

hybrid censoring schemes. 

 

 

Table 2. The Bias and MSE of the MLE of the Model Parameters for Different Hybrid 

Censoring Schemes 

n r (τ, t1) Bias MSE 

   μ̂1 μ̂2 σ̂ μ̂1 μ̂2 σ̂ 

30 15 (30,60) -0.145 -0.013 -0.247 0.815 0.521 0.621 

 23  -0.042 0.094 -0.140 0.748 0.414 0.474 

 27  -0.021 0.100 -0.116 0.725 0.408 0.446 

50 25  -0.082 0.013 -0.149 0.511 0.307 0.380 

 38  -0.016 0.075 -0.082 0.441 0.253 0.269 

 45  -0.002 0.079 -0.068 0.431 0.249 0.257 

80 40  -0.045 0.013 -0.098 0.341 0.182 0.231 

 60  -0.009 0.047 -0.060 0.278 0.151 0.159 
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n r (τ, t1) Bias MSE 

   μ̂1 μ̂2 σ̂ μ̂1 μ̂2 σ̂ 

 72  -0.0001 0.050 -0.050 0.270 0.149 0.153 

100 50  -0.056 0.008 -0.082 0.272 0.141 0.192 

 75  -0.027 0.035 -0.051 0.214 0.118 0.127 

 90  -0.020 0.037 -0.043 0.210 0.117 0.123 

30 15 (50,80) -0.035 -0.011 -0.177 0.638 0.594 0.548 

 23  -0.020 0.100 -0.128 0.667 0.447 0.459 

 27  -0.003 0.107 -0.109 0.653 0.440 0.438 

50 25  -0.026 0.009 -0.108 0.410 0.357 0.328 

 38  -0.0003 0.078 -0.074 0.397 0.279 0.263 

 45  0.010 0.083 -0.062 0.389 0.275 0.254 

80 40  -0.005 0.001 -0.064 0.273 0.216 0.203 

 60  0.010 0.042 -0.046 0.243 0.169 0.156 

 72  0.017 0.046 -0.037 0.238 0.167 0.152 

100 50  -0.012 -0.004 -0.046 0.218 0.165 0.170 

 75  -0.003 0.027 -0.034 0.186 0.131 0.124 

 90  0.004 0.029 -0.027 0.183 0.129 0.121 

 

 

From table 2, we can see that the bias decreases as the sample size n and r increase, 

however the bias for μ̂2  increases slightly with increasing the predetermined number 

of failures r. The MSE decreases as the sample size n and r increase. It can be noticed 

that the bias for σ̂ is always negative which indicates that  the MLE for σ̂ seems to 

underestimate the parameter value of 𝜎. 

 

Table 3 shows the Bias and MSE of the point estimators of the survival function for 

different hybrid censoring schemes. 
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Table 3. The Bias and MSE of the MLE of the Survival Function for Different Hybrid 

Censoring Schemes 

n r (τ, t1) Bias MSE 

   S(t1) S(t2) S(t3) S(t1) S(t2) S(t3) 

30 15 (30,60) 0.008 -0.014 -0.044 0.002 0.007 0.019 

 23  0.005 -0.006 -0.023 0.002 0.007 0.015 

 27  0.004 -0.004 -0.018 0.002 0.007 0.014 

50 25  0.005 -0.008 -0.025 0.001 0.004 0.011 

 38  0.003 -0.002 -0.012 0.001 0.004 0.008 

 45  0.003 -0.001 -0.009 0.001 0.004 0.008 

80 40  0.004 -0.004 -0.015 0.001 0.003 0.007 

 60  0.003 -0.001 -0.007 0.001 0.003 0.005 

 72  0.003 -0.0004 -0.005 0.001 0.003 0.005 

100 50  0.002 -0.006 -0.015 0.001 0.002 0.005 

 75  0.001 -0.003 -0.008 0.001 0.002 0.004 

 90  0.001 -0.002 -0.007 0.001 0.002 0.004 

30 15 (50,80) 0.010 0.001 -0.022 0.002 0.005 0.012 

 23  0.006 -0.002 -0.017 0.002 0.006 0.012 

 27  0.005 -0.001 -0.014 0.002 0.006 0.012 

50 25  0.006 -0.001 -0.014 0.001 0.004 0.008 

50 38 (50,80) 0.004 -.00003 -0.008 0.001 0.004 0.007 

 45  0.004 0.001 -0.007 0.001 0.004 0.007 

80 40  0.004 .0001 -0.007 0.001 0.002 0.005 

 60  0.003 0.001 -0.004 0.001 0.002 0.004 

 72  0.003 0.002 -0.002 0.001 0.002 0.004 

100 50  0.002 -0.001 -0.007 0.001 0.002 0.004 

 75  0.002 -0.0003 -0.004 0.001 0.002 0.003 

 90  0.001 .00004 -0.003 0.001 0.002 0.003 

 

 

Based on the above table, the bias and MSE decrease with increasing the sample size n 

and the predetermined number of failures r. 

 

Table 4  shows the coverage probability and average length for the three confidence 

intervals for estimating the model parameters. 
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Table 4. The Average Length and Coverage Probability for the Three Confidence Intervals for Estimating the 

 Model Parameters 

 n r (τ, t1) Approx. CI Bootstrap-t CI Percentile CI 

    μ1 μ2 σ μ1 μ2 σ μ1 μ2 σ 

E.L 30 15 (30,60) 3.580 2.693 2.876 4.109 3.193 3.964 3.295 2.946 2.750 

C.P    0.892 0.934 0.862 0.955 0.957 0.957 0.936 0.932 0.853 

E.L  23  3.307 2.474 2.530 3.824 2.590 3.202 3.390 2.559 2.541 

C.P    0.917 0.936 0.900 0.943 0.947 0.951 .919 .929 .882 

E.L  27  3.312 2.486 2.522 3.573 2.571 2.877 3.394 2.549 2.510 

C.P    0.924 0.938 0.909 0.937 0.950 0.945 0.93 0.93 0.908 

E.L 50 25  2.858 2.104 2.322 2.969 2.266 2.658 2.661 2.210 2.208 

C.P    0.918 0.939 0.896 0.926 0.947 0.935 0.921 0.938 0.872 

E.L  38  2.574 1.925 1.978 2.826 1.946 2.118 2.586 1.947 1.970 

C.P    0.933 0.945 0.917 0.946 0.941 0.933 0.927 0.935 0.898 

E.L  45  2.574 1.930 1.970 2.703 1.925 2.047 2.570 1.940 1.938 

C.P    0.939 0.946 0.931 0.947 0.942 0.933 0.937 0.936 0.915 

E.L 80 40  2.293 1.668 1.874 2.442 1.731 2.029 2.206 1.713 1.820 

C.P    0.930 0.951 0.922 0.948 0.945 0.945 0.944 0.944 0.9 

E.L  60  2.031 1.521 1.563 2.098 1.639 1.662 2.051 1.538 1.576 

C.P    0.936 0.946 0.933 0.948 0.957 0.939 0.946 0.940 0.921 

E.L  72  2.028 1.523 1.555 2.105 1.618 1.608 2.034 1.534 1.549 

C.P    0.942 0.946 0.940 0.953 0.957 0.942 0.956 0.941 0.928 

E.L 100 50  2.052 1.496 1.684 2.119 1.550 1.784 2.008 1.528 1.661 

C.P    0.928 0.951 0.919 0.942 0.948 0.933 0.944 0.942 0.916 

E.L  75  1.809 1.362 1.396 1.918 1.425 1.439 1.840 1.381 1.415 

C.P    0.943 0.950 0.935 0.955 0.953 0.938 0.945 0.943 0.935 

E.L 100 90 (30,60) 1.807 1.364 1.389 1.870 1.419 1.393 1.823 1.376 1.392 

C.P    0.948 0.949 0.937 0.951 0.956 0.936 0.948 0.948 0.94 

E.L 30 15 (50,80) 3.302 2.937 2.783 3.401 3.583 3.910 2.918 3.238 2.668 
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 n r (τ, t1) Approx. CI Bootstrap-t CI Percentile CI 

    μ1 μ2 σ μ1 μ2 σ μ1 μ2 σ 

C.P    0.938 0.929 0.870 0.969 0.959 0.970 0.982 0.934 0.889 

E.L  23  3.066 2.561 2.485 3.368 2.803 3.240 3.109 2.663 2.480 

C.P    0.922 0.926 0.898 0.944 0.955 0.963 0.927 0.924 0.893 

E.L  27  3.072 2.570 2.480 3.227 2.727 3.064 3.120 2.637 2.465 

C.P    0.925 0.929 0.908 0.941 0.952 0.96 0.938 0.928 0.915 

E.L 50 25  2.599 2.279 2.216 2.511 2.606 2.472 2.361 2.491 2.114 

C.P    0.932 0.940 0.901 0.936 0.961 0.941 0.953 0.938 0.895 

E.L  38  2.390 1.992 1.946 2.406 2.046 2.037 2.390 2.026 1.932 

C.P    0.930 0.936 0.915 0.926 0.94 0.925 0.926 0.934 0.903 

E.L   45  2.392 1.996 1.940 2.376 2.021 1.989 2.382 2.014 1.912 

C.P    0.931 0.941 0.921 0.935 0.939 0.925 0.938 0.939 0.914 

E.L 80 40  2.082 1.783 1.785 2.170 1.887 1.953 1.962 1.905 1.723 

C.P    0.947 0.948 0.928 0.958 0.952 0.953 0.951 0.945 0.915 

E.L  60  1.894 1.577 1.545 1.975 1.697 1.616 1.896 1.594 1.545 

C.P    0.944 0.938 0.934 0.956 0.961 0.949 0.946 0.938 0.922 

E.L  72  1.892 1.579 1.538 1.936 1.677 1.611 1.885 1.586 1.526 

C.P    0.944 0.938 0.939 0.954 0.959 0.956 0.955 0.936 0.931 

E.L 100 50  1.866 1.597 1.606 1.922 1.625 1.676 1.791 1.683 1.564 

C.P    0.946 0.952 0.932 0.952 0.943 0.935 0.944 0.944 0.921 

E.L  75  1.692 1.413 1.382 1.747 1.460 1.445 1.698 1.427 1.387 

C.P    0.943 0.947 0.939 0.954 0.955 0.942 0.943 0.944 0.927 

E.L  90  1.691 1.415 1.377 1.722 1.460 1.406 1.688 1.422 1.371 

C.P    0.949 0.950 0.937 0.954 0.953 0.941 0.949 0.945 0.931 
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From table 4, the performance of the three confidence intervals for estimating the model 

parameters is evaluated based on the average length and coverage probability. 

Based on the average length,  it can be seen that as the sample size n and predetermined 

number of failures r increase, the average lengths for the three confidence intervals 

decrease. As it can be seen from table 4, the bootstrap-t interval has the highest average 

length compared to the approximate and percentile CIs. 

Based on the coverage probability, when the sample size is small (n=30,n=50), the 

bootstrap-t interval gives the best results. For large sample sizes (n=80,n=100), all three 

confidence intervals give considerably good coverage probabilities. 

Comparing the performance of the three CI based on the coverage probabilities, the 

bootstrap-t interval gives the best results at all considered sample sizes and r values.  

Both the approximate and percentile intervals give good coverage probabilities when 

the sample size is large. 

Comparing the coverage probability for the different sample sizes considered in this 

simulation study, the coverage probability is closer to the nominal level for the three 

confidence intervals when the sample size is 100.  

 

Table 5  shows the coverage probability and average length for the three confidence 

intervals for estimating the survival function. 
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 Table 5. The Average Length and Coverage Probability for the Three Confidence Intervals for Estimating the  

                         Survival Function 

 n r (τ, t1) Approx. CI Bootstrap-t CI Percentile CI 

    S1 S2 S3 S1 S2 S3 S1 S2 S3 

E.L 30 15 (30,60) 0.371 0.582 0.482 0.435 0.513 0.962 0.156 0.336 0.529 

C.P    0.970 0.983 0.828 0.947 0.950 0.985 0.877 0.997 0.986 

E.L  23  0.325 0.501 0.443 0.282 0.492 0.771 0.160 0.336 0.478 

C.P    0.979 0.976 0.864 0.946 0.962 0.975 0.908 0.946 0.929 

E.L  27  0.322 0.496 0.443 0.254 0.488 0.687 0.160 0.330 0.465 

C.P    0.978 0.979 0.880 0.943 0.966 0.971 0.914 0.946 0.941 

E.L 50 25  0.305 0.455 0.383 0.176 0.389 0.549 0.129 0.263 0.402 

C.P    0.990 0.985 0.867 0.932 0.973 0.953 0.896 0.976 0.961 

E.L  38  0.258 0.386 0.345 0.149 0.358 0.484 0.128 0.256 0.362 

C.P    0.994 0.987 0.905 0.931 0.976 0.962 0.911 0.93 0.927 

E.L  45  0.257 0.384 0.344 0.150 0.356 0.450 0.128 0.252 0.352 

C.P    0.995 0.986 0.917 0.932 0.977 0.965 0.912 0.938 0.937 

E.L 80 40  0.249 0.362 0.307 0.124 0.296 0.405 0.106 0.208 0.313 

C.P    0.998 0.994 0.894 0.949 0.978 0.966 0.918 0.955 0.949 

E.L  60  0.207 0.304 0.272 0.112 0.258 0.334 0.104 0.200 0.281 

C.P    0.996 0.995 0.918 0.939 0.982 0.963 0.929 0.949 0.946 

E.L 80 72 (30,60) 0.205 0.302 0.272 0.114 0.251 0.318 0.104 0.197 0.274 
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 n r (τ, t1) Approx. CI Bootstrap-t CI Percentile CI 

    S1 S2 S3 S1 S2 S3 S1 S2 S3 

C.P    0.996 0.993 0.926 0.943 0.980 0.958 0.931 0.950 0.956 

E.L 100 50  0.225 0.323 0.274 0.108 0.261 0.337 0.095 0.185 0.279 

C.P    0.999 0.995 0.891 0.95 0.983 0.955 0.916 0.955 0.945 

E.L  75  0.186 0.271 0.242 0.101 0.231 0.274 0.094 0.178 0.249 

C.P    0.998 0.994 0.918 0.944 0.984 0.955 0.933 0.952 0.945 

E.L  90  0.185 0.269 0.241 0.101 0.230 0.266 0.093 0.176 0.244 

C.P    0.998 0.993 0.926 0.945 0.982 0.955 0.933 0.955 0.949 

E.L 30 15 (50,80) 0.336 0.524 0.452 0.994 0.416 0.590 0.151 0.279 0.448 

C.P    0.965 1 0.893 0.957 0.966 0.978 0.872 0.969 0.998 

E.L  23  0.303 0.465 0.416 0.372 0.411 0.586 0.157 0.306 0.432 

C.P    0.970 0.978 0.885 0.951 0.963 0.968 0.895 0.935 0.932 

E.L  27  0.302 0.462 0.416 0.356 0.415 0.558 0.158 0.303 0.423 

C.P    0.969 0.982 0.892 0.952 0.962 0.966 0.901 0.931 0.943 

E.L 50 25  0.276 0.408 0.352 0.191 0.339 0.393 0.128 0.229 0.344 

C.P    0.988 0.994 0.897 0.942 0.979 0.947 0.906 0.969 0.986 

E.L  38  0.243 0.360 0.322 0.156 0.317 0.369 0.127 0.236 0.329 

C.P    0.991 0.987 0.909 0.937 0.971 0.940 0.903 0.934 0.926 

E.L  45  0.241 0.358 0.322 0.153 0.316 0.360 0.127 0.234 0.323 

C.P 80 40 (50,80) 0.991 0.986 0.915 0.932 0.973 0.947 0.905 0.935 0.938 

E.L    0.226 0.325 0.280 0.123 0.252 0.311 0.105 0.186 0.273 

C.P    0.996 0.997 0.919 0.937 0.966 0.957 0.919 0.978 0.984 
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 n r (τ, t1) Approx. CI Bootstrap-t CI Percentile CI 

    S1 S2 S3 S1 S2 S3 S1 S2 S3 

E.L  60  0.195 0.284 0.254 0.112 0.248 0.298 0.103 0.186 0.258 

C.P    0.995 0.994 0.927 0.939 0.981 0.961 0.926 0.950 0.946 

E.L 
 

72  0.194 0.283 0.254 0.113 0.242 0.276 0.103 0.185 0.253 

C.P    0.995 0.993 0.933 0.938 0.977 0.958 0.932 0.95 0.955 

E.L 100 50  0.204 0.291 0.250 0.106 0.232 0.277 0.095 0.168 0.245 

C.P    0.998 0.998 0.923 0.937 0.982 0.959 0.922 0.975 0.968 

E.L  75  0.176 0.254 0.226 0.103 0.220 0.251 0.093 0.166 0.230 

C.P    0.998 0.994 0.936 0.945 0.984 0.958 0.927 0.948 0.943 

E.L  90  0.175 0.252 0.226 0.102 0.217 0.240 0.093 0.165 0.226 

C.P    0.998 0.995 0.938 0.943 0.982 0.957 0.930 0.954 0.949 
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From table 5, it can be seen that the average length of the confidence intervals decreases 

as the sample size n and r increase. 

Based on the coverage probability, when the sample size is small, the approximate and 

percentile CI give poor performance while the bootstrap-t interval gives satisfactory 

performance. When the sample size increases, the bootstrap-t and percentile CI give 

good results while the approximate CI still gives poor results. 

It can be noted that when comparing the bootstrap-t CI and the percentile CI, the 

bootstrap-t interval gives better coverage probability for small sample sizes while the 

percentile CI gives better results for large sample sizes. 
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CHAPTER 4: AN ILLUSTRATIVE EXAMPLE 

 

To illustrate the application of the methods presented and discussed in this research, we 

present a numerical example from simulated data. 

A step stress lognormal sample of size 30 with hybrid censoring was generated. The 

predetermined number of failures r was chosen to be 15 with stress changing time of 

30 and experiment time of  T1
∗ = min (t15, 60). The MLE of 𝜇1, 𝜇2 ,𝜎  and their 

corresponding standard errors were obtained along with the hessian and variance-

covariance matrix. The approximate, bootstrap percentile and bootstrap-t confidence 

intervals were obtained, and their corresponding length was also calculated.  

The simulated sample and the obtained MLEs are shown in table 6  and 7. 

 

 

Table 6. Generated Lognormal Simple Step Stress Sample of Size 30 with τ=30 and 

Fixed Time 𝑡1 = 60 with True Parameter Values 𝜇1 = 𝑙𝑜𝑔(200), 𝜇2 = 𝑙𝑜𝑔(5) and  

𝜎 = 3 

Lifetimes 

 

Under normal stress level 

0.5259    11.2563    12.0893    21.9279  

Under higher stress level 

   30.0079    30.0537   30.9522    31.13089    31.3562    32.0215    32.15492    

32.7659   32.8116    33.8831    35.6947    36.1690    36.4736    43.9303 

48.6155    49.9542    52.2285    61.9079    68.0899   157.7506   158.6676    

223.0157    432.5115  1338.9093    3101.1047    3276.2830 
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Table 7. The MLEs for the Parameters 𝜇2, 𝜇2and 𝜎 and Their Corresponding Standard 

Errors 

𝜇̂1 𝜇̂2 𝜎̂ 

6.553779 

 

1.869605 

 

2.870388 

 

SE(μ̂1) SE(μ̂2) SE(𝜎̂) 

1.995996 

 

0.4186727 

 

0.8634164 

 

 

 

 

The hessian matrix was found as below: 

(
1.8111902 −0.9171184 −2.1090687

−0.9171184 2.9909645 0.6566688
−2.1090687 0.6566688 3.6810780

) 

The variance-covariance matrix was then derived by finding the inverse of the hessian 

matrix and is given below: 

(
1.9959957 . 3756656 1.0765879
. 3756656 . 4186727 . 1405500
1.0765879 . 1405500 . 8634164

) 

 

The confidence intervals for the model parameters and their corresponding lengths are 

calculated and shown in table 8. 

 

 

Table 8. 95% Confidence Intervals for the Model Parameters 

 

 Approx. CI                 Length       Bootstrap-t CI Length Percentile CI Length 

𝜇1 (3.785, 9.323) 

 

5.538 

 

(2.787, 10.237) 7.451 

 

(4.314, 8.844)  4.530 

 

𝜇2 (0.601, 3.138) 

 

2.536 

 

(0.481, 3.426) 2.945 

 

(0.568, 3.030)  2.461 

 

𝜎 (1.049, 4.692) 

 

3.642 

 

(1.158, 5.223) 4.065 

 

(1.092, 4.165)  3.073 
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The length of the Bootstrap-t confidence interval is the longest followed by the 

approximate interval. The percentile interval for estimating the model parameters 𝜇1, 𝜇2 

and 𝜎 has the shortest length. 
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CHAPTER 5: CONCLUSIONS AND FURTHER RESEARCH 

5.1 Conclusions 

In this research, we work with step stress lognormal life test data with hybrid censoring 

where the cumulative exposure model has been fit to the data. The study’s main interest 

is finding good estimators for the model parameters in addition to estimating the 

survival function. We obtained the maximum likelihood estimators numerically by 

using the nlm function in R since the likelihood equations for the lognormal distribution 

cannot be found explicitly. To study and examine the performance of the point and 

interval estimates, a simulation study was performed. The Bias and MSE were 

calculated to assess the performance of the point estimators of the model parameters 

and survival function and the coverage probabilities and average lengths were 

calculated to examine the performance of the confidence intervals. After analyzing the 

simulation results, we observe the following points:  

 

•  When assessing and comparing the performance of the interval estimates of the 

model parameters based on the coverage probability, it was found that the 

bootstrap-t interval gives the best results for all the considered sample sizes in 

this simulation study compared to the approximate and percentile confidence 

intervals. The approximate and percentile confidence intervals can be used with 

large sample sizes (n=80, n=100).  

 

• When evaluating and comparing the performance of the interval estimates of 

the survival function based on the coverage probability, it can be noticed that 

the approximate confidence interval gives the worst results for the small and 

large sample sizes considered in this simulation study and hence is not 
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recommended to use for estimating the survival probability. The bootstrap-t  

interval gives satisfactory performance for all considered sample sizes, while 

the percentile intervals give satisfying coverage probability for large sample 

sizes. 

 

5.2 Further Research 

We now mention some problems related to our research and has yet to be considered: 

• We considered a special case of the SSTLT experiments. therefore, a study 

about multiple step stress lognormal model can be considered. 

• Other hybrid censoring schemes can also be considered.  

• Other models for extrapolating step stress data can be also considered.  
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