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ABSTRACT 

Bennbaia, Shada, T., Masters: June : 2021, Masters of Science in Mechanical Engineering 

Title: Prediction of Optimal Hexagonal Interior Angle For Energy Absorption: ANN to 

Predict In-between Experimental Data 

Supervisor of Thesis: Prof. Elsadig, S, Mahdi. 

This thesis's proposed strategic procedure is to predict the interior angle of a 

hexagonal passive energy absorber structure based on specific properties using an ANN 

model, which has a great potential to be used as an intelligent engineering design tool. The 

application of passive energy absorption structures are continuously growing in 

automobiles, aerospace, packaging industries, and many more due to their high energy-

absorbing capabilities. This study investigated the energy absorption performance of the 

aluminum hexagonal structure under quasi-static axial compression tests. These hexagonal 

structures are designed to have varying interior angle values to study their crushing 

behavior and identify the relationship between the energy absorption capability and the 

angle. Artificial Neural Network (ANN) model has been developed, optimized, and 

evaluated based on the Mean Squared Error (MSE) as a loss function to evaluate the 

performance of the model. During training, the configured ANN model had a training loss 

of only 0.09. The model predicted the hexagonal ring angle from unseen data with accuracy 

between 98.24% and 99.85%. Moreover, the predictive model was used to predict an 

optimal angle for targeted energy absorption properties based on two different cases. The 
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first case was to maximize the energy absorption and the crushing stability, while the 

second case was to maximize the load-carrying capacity and amount of energy absorption.  
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CHAPTER 1: INTRODUCTION 

This chapter contains a brief introduction to the investigated problem, detailed 

objectives, and the general outline of this thesis. 

1.1. Background Study 

The hexagonal, circular, and square geometries are the most common metallic 

structures that have been investigated by researchers for their energy absorption 

capabilities [1, 2]. Their application of these protective structures is continuously growing 

in automobiles, aerospace, railway vehicles, packaging industries, and many more due to 

their high energy-absorbing capabilities. Aluminum is a lightweight metal that is widely 

used in the transport industry and several other industrial sectors due to its high-energy 

absorbability, combined with great bending stiffness and strength [3]. For that reason, 

aluminum-based crash energy absorbers have become more predominant in the vehicles' 

passive safety systems [4, 5]. The metallic passive energy absorbers are made of structures 

that can deform and collapse in a controlled behavior and dissipate impact energy in order 

to increase the passenger’s safety and decrease the damage in the critical components of 

the vehicle [1, 6].  

Over the past decades, studies have been conducted on the axial crushing of 

different cross-sections, such as the circular tubes, where they offer good energy absorption 

capability [7]. Other cross-sections that were extensively investigated are the polygons, 

especially the square, hexagon, and star geometries which also proved to have good energy 

absorptions under axial compression loads [8, 9]. However, limited studies investigated the 

effect of the interior geometrical parameters such as wall thickness, side lengths, and 

interior angles on the energy absorption capabilities and the energy absorbers' crush 
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behavior. Baykasoglu and Cetin [3] studied the effect of varying the wall thickness on 

aluminum-based circular tubes' energy absorption characteristics under axial impact 

loading. They concluded that the crashworthiness performance could be controlled and 

improved with the appropriate selection of the tubes' geometric parameters. Gowid et a., 

[10] investigated the use of a composite hexagonal quadruple ring system as a passive 

energy absorber device and found, through experiments, that the energy absorption 

capacity of this system significantly varies based on the interior hexagonal ring angle value. 

Therefore, it is proven that the geometry and the thickness are both factors that affect the 

structure's performance in terms of energy absorption.  

Up-to-date,  the study of energy absorption and quasi-static crushing behavior is 

done experimentally and numerically. Experimentally through performing experimental 

tests such as the quasi-static compression test, the results are analyzed through visual 

inspections throughout and after the test and from the load-displacement curves to calculate 

the quantitative energy absorption performance indicators discussed later. Numerical 

studies are mainly performed using finite element analysis software such as LS-DYNA to 

simulate the test and generate predictions of the energy absorption performance [11–13]. 

Regardless of the good agreement between the finite element analysis and the literature's 

experimental results, the authors noticed that the imperfections from the structures' 

fabrication process can not be included in the finite element analysis. One method to 

include the material inhomogeneity and specimen irregularities in the model is to use the 

experiments' results to predict the behavior of energy absorption structure with different 

geometrical parameters under loading. Artificial neural networks (ANN) is a machine 

learning tool that can use experimental data to predict energy absorption performance. 
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Using this artificial intelligence technique, any mperfections due to fabrication process are 

implicitly included within the neural network's input data. 

ANN is one of the common machine learning algorithms, and nowadays, it is 

gaining more confidence to solve complex problems in science, business, and engineering 

applications [14–21]. ANN process information is inspired by how the biological nervous 

systems work and how the human brain processes and analyzes information. For that 

reason, ANN can effectively solve real-life non-linear problems that cannot be solved by 

classical programming. ANN has been used widely in diversified areas because of its 

unique features, such as its ability to learn and model complex and non-linear relationships. 

It does not impose any restrictions on the input variables; it provides fast learning with high 

accuracy for data classifications and value-based predictions and predicting future events 

from unseen data [22].  

ANN model reliability is based on how the model architecture is formulated and 

constructed. The capability of predicting unseen values evaluates the performance. Thus, 

the ANN model's efficient and strategic construction can facilitate its use in diverse field 

applications. Intelligent product design can be achieved by utilizing ANN, especially 

where the relationship between the designing parameters can be established, facilitating 

the designing phase and allowing researchers to explore untapped intelligent design 

concepts by using advanced predictive models.  

Conducting a series of experiments requires extra cost and time. These experiments 

are necessary to reach a high level of understanding of the specific subject. In this case, 

the main objective is to predict an optimal hexagonal ring angle through the structure 

energy absorption (EA) capability and mechanical properties, while there no direct 
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correlation between these properties and the hexagonal ring interior angle. If the optimal 

geometry parameter can be determined with a predictive model's help, experimental work 

can be designed to be more time-efficient and cost-effective. However, the use of ANN 

predictive models trained on experimental data for predicting aluminum hexagonal ring 

interior angle has not been addressed in the literature.  

This work proposes a systematic approach for determining the optimal interior angle 

of a hexagonal ring for energy absorption applications using ANN models. The model 

will be developed to predict the targeted angle to optimize the energy absorption 

capabilities. The approach used to develop the ANN model in this work can be extended 

for other geometrical parameters and cross-sections if the necessary experimental data are 

available.  

1.2. Project Objectives 

1. To investigate the influence of changing the interior angle of a hexagonal ring 

structure on its energy absorption capability under in-plane quasi-static loading. 

2. To build and validate an ANN predictive model that can predict and optimize the 

interior angle of a hexagonal ring based on desired energy absorption 

performance with an accuracy higher than 90%.   

a.  Thesis Layout 

This thesis is divided into five chapters. The next chapter, Chapter 2, is the literature 

review from related sources regarding the behavior of energy absorption capabilities, 

collapsible metallic energy absorption devices, in-plane quasi-static crushing of metallic 
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tubular devices, the quantitative energy absorption performance indicators, artificial 

intelligence in mechanical design, and predictions by ANN models. Chapter 3 presents the 

experimental study astarting from a systematic and detailed description of the methodology 

used to fabricate the test specimens and conduct in-plane quasi-static compression tests to 

the results and discussion of the experimental work. In Chapter 4, the methodology of 

artificial neural network predictive model development and training is presented, followed 

by the predictions results and detailed discussion. Lastly, Chapter 5. presents the 

conclusion and recommendations for future work. 
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CHAPTER 2. LITERATURE REVIEW  

In this chapter, the literature related to similar work was reviewed. Accordingly, 

information is given on energy absorption capability, collapsible energy absorbers under 

lateral loading, energy absorbers made of aluminum, and hexagonal energy absorbers. The 

in-plane quasi-static test was explained, and quantitative energy absorption performance 

indicators were presented in detail. Furthermore, previous work concerning artificial neural 

networks in engineering design and specifically in energy absorbers design was reviewed.   

2.1.     Energy Absorption Capability 

Researchers and engineers and are continuously attempting to develop efficient 

structures for energy absorption. These structures are essential, especially in automobiles, 

where they are used in vehicles to absorb collision energy to avoid or minimize any damage 

to the passengers or the critical components such as the motor. When the energy absorbers 

plastically deform, they dissipate the impact kinetic energy. The geometry and material are 

important aspects to consider when developing an efficient energy-absorbing component 

[23]. 

The energy absorbed by a structure can be measured by calculating the area under 

the load-displacement curve that can be obtained from a quasi-static test. Energy absorption 

capability can be described and measured by the specific energy absorption (SEA), where 

it can be measured by dividing the total energy absorbed over the structure's unit mass. The 

initial peak force and the mean force the structure experience when absorbing energy are 

two of the primary energy absorption capability indicators  [24]. The load-deformation 

curve is also used to measure the crashworthiness of the energy absorber [25]. The 
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crashworthiness is the capability of materials to fail within controlled modes and 

mechanisms during absorbing impact energy while keeping stable load deterioration [26].  

According to Mahdi et al. [27], crushing capability can be described through 3 

phases. The first phase represents the total energy absorbed during the pre-crush phase until 

the initial peak force. The second phase is the total energy absorbed in the post-crash zone, 

and the third phase is the total energy absorbed in the material densification phase. The 

energy absorbed in the third phase is negligible as it is usually trivial. 

2.2.     Collapsible energy absorbers Under Lateral Loading 

It is important to observe how a structure can absorb impact energy through 

collapsing and deforming itself. The characteristics of structure deformation predict its 

ability, i.e., the structure may or may not be appropriate for a certain application. 

Collapsible structures such as tubes, columns, and honeycombs can absorb energy when 

subjected to loadings, where the absorbed energy dissipates through different failure 

mechanisms [28]. Alexander [29] was the first to use these structures as energy absorbers 

after investigating the in-plane loading for cylinders. Tubular structure folding is one of 

the common mechanisms that provide energy absorption capability. Subsequently, 

Abramowicz and Wierzbicki [30], Abramowicz and Jones [31] and, Andrews et al. [32] 

carried out theoretical and experimental studies on tubular collapsible structures with 

different cross-sections, such as circular, square and hexagonal, by subjecting these 

structures under quasi-static loading. Gupta and Abbas [33] also conducted an 

experimental study of composite cylindrical tubes under quasi-static lateral compressing 

Alghamdi [34] conducted a study to review collapsible energy absorbers with  
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different shapes and different deformation mechanisms under loading. Examples of these 

shapes are square tubes, circular tubes, honeycombs, and sandwich plates. The 

deformation modes reviewed include lateral flattening, lateral indentation, axial crushing, 

inversion, and splitting.  

Lateral flattening of is the deformation mode studied in this work. It founded that 

in tubular structures, the amount of plastic deformation was most global in the axial 

crushing, then in lateral flatting then in the lateral indentation. Deruntz and Hodge [35] 

analyzed the plastic deformation of a single tube under lateral compression. Furthermore, 

Reddy and Reid [36] studied the lateral compression of tubular energy absorbers supported 

by side constraints; the results showed that the energy absorbed by a constrained system 

increased by 300% compared to an unconstrained system. Wu and Carney [37] investigated 

the initial collapse of braced elliptical tubes and found that the energy dissipation increased 

when the elliptic tubes are crushed along their major axes. Mahdi and Kadi [38] presented 

a study investigating the composite elliptical tubes crushing behavior under lateral 

compression test and found that the ellipticity ratio has a significant effect on the crushing 

behavior of the loaded tubes. 

The design of tubular structures under lateral loading needs to be enhanced to 

improve energy absorption capability and crashworthiness properties as they showed 

ineffective performance when absorbing impact energy [39]. To improve energy 

absorption under lateral loading, Chen et al. [40] designed a novel self-locked device with 

a dumbbell shape shown in Figure 1; mild steel is used to fabricate this structure. During 

compression, the interlocked design provides a lateral constraint. The authors used this  
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Figure 1. Schematic of the (a) dumbbell-shaped novel tube, (b) cross-sectional view, and 
(c) self-locking tube. Reprinted with permission from [40]. 

 

stacking arrangement and the dumbbell-shaped energy absorber geometry to prevent tubes 

splashing when a circular tube is used with the same arrangement.  

Many researchers [39–42]  have investigated the capability of stacked systems to 

absorb impact energy. Nested or stacked systems are customarily designed for a particular 

application with a defined stroke length. It is easier to design nested tubular structures in 

comparison to design multi-cell structures. A nested tube is defined as a tube with multiple 

energy-absorbing elements, in the same system and compared to a single tube, the nested 

system provides higher EA capability per unit length [41]. Baroutaji et al. [41] conducted 

a parametric study on nested tubular structures to examine their EA performance under 

lateral dynamic and quasi-static loadings. Three types of the studies nested tubular systems 

are illustrated in Figure 2; they consist of oblong and circular tubes. Results showed that 

the systems showed a similar response in the load-displacement curve under dynamic and 

quasi-static loadings.  



 10 
 

 

 

Figure 2. Nested tubular structures with the same outer circular tube and different inner 
structures (a) An oblong cross-section, (b) Two circular tubes with different diameters, 
and (c) two circular tubes with the same diameter [41]. 

 

Mahdi et al. [45] experimentally investigated composite hexagonal ring systems' 

crushing under in-plane quasi-static loading. They discovered that the hexagonal ring 

geometry (e.g., angle and side lengths) significantly affects energy absorption capability 

and the failure mechanism. Figure 3 shows the collapsing history of the hexagonal ring 

system. 

 

Figure 3. Collapsing history of the composite hexagonal system [45] 
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Galehdari et al. [46] studied a graded honeycomb structure (Figure 4) as a 

lightweight energy absorber and analyzed its crushing behavior under in-plane quasi-

static and low-velocity impact loading. The research objective was to create an analytical 

model that can be used to study this structure. The obtained results from the analytical 

model showed good compliance with the experimental results. 

 

 

Figure 4. Honeycomb graded structure under in-plane quasi-static test [46] 

 

Sun et al. [47] carried out an in-plane compression test for a triangular multi-cell 

lattice structure to investigate its collapsing mechanisms and folding modes. As shown in 

Figure 5, the crushing started from the top layer under compressive loading then gradually 

progressed to the below layers. From the load-displacement curve, they found that there 

are three stages of deformation mode for each layer. Similarly, collapsing of a single 

triangle has the same deformation mode. This study's multi-cell structure provides better 

energy absorption with lower initial peak force compared to a single triangular structure. 
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Figure 5. Triangular multi-cell lattice structures under lateral loading [47] 

 

Advanced tubular energy absorbers derived from common structures exhibit good 

EA performance under axial loading from reviewing the available literature. However, 

studies on the response of these structures under lateral loading conditions remain very 

limited. Thus, more studies should be conducted to furtherly explore the performance and 

deformation mechanisms under lateral loading.  

2.3.     Metallic Energy Absorbers  

2.3.1. Aluminum Energy Absorbers 

Throughout the years, researchers explored the collapse mechanisms of lightweight 

metallic structures. Most of the studies focus on axial loading conditions. Aluminum is a 

lightweight metal that has seen increased use in automobiles as a replacement for steel. The 

benefits the lightweight metallic materials can provide made them attractive to the 

automobile industry. Using aluminum instead of conventional steel in vehicle structures 

can save up to 25% by reducing fuel consumption and carbon dioxide emissions[48]. 

The design of aluminum structures and the study of crashworthiness have been 

extensively investigated [48–56]. Demirci and Yildiz [57] compared thin-walled energy 
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absorbers made of different types of steel, magnesium alloys, and aluminum alloy in crush 

performance and EA capability to be used as lightweight structures in vehicles. They found 

that steel achieved better EA capability compared to magnesium and aluminum absorbers. 

However, aluminum provided a better capacity of AE absorption per unit mass. 

Andrews et al. [32] experimentally studied aluminum tube's crushing behavior and 

classified the failure modes into four classes; diamond, concertina, bulking, and mixed. Li 

et al. [58] studied the lateral crushing behaviors of circular tubular structures made of 

aluminum, carbon fiber reinforced plastics, and glass fiber reinforced plastics. To study the 

effect of the structure's geometries, different configurations of thickness and diameter-to-

thickness ratio are utilized. Because of the aluminum's ductile behavior, the aluminum 

tubes showed significantly greater lateral crashworthiness than the composite tubes. 

Furthermore, with the higher diameter-to-thickness ratio, aluminum tubes also provided 

better crashworthiness than composite tubes.  

2.3.2. Hexagonal Tubular Device 

Researchers have a growing interest in studying the plastic deformation of the 

metallic energy absorbers with hexagonal geometry and cross-section under lateral and 

axial and loadings. The structures with hexagonal cross-sections were proved to have 

superior crashworthiness due to their folding mechanism [59].  

Rahmani and Abbas [60] used the hexagonal metal ring as energy absorbers and 

investigated their plastic deformation under lateral quasi-static loading (Figure 6, a ). The 

specimens were made of different metals such as steel, galvanized iron, and brass alloy. 

They found that hexagonal column's crashworthiness is significantly affected by the 

column's length, wall thickness, and material properties. Several studies were investigating 
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hexagonal cellular structures to understand their crushing behavior. Alkbir et al. [61] 

studied a cellular structure consists of hexagonal cells with varying interior angles from 

45° to 60° and concluded that as the angle increases, the SEA increase. Composite 

hexagonal ring systems with different angles from 45° to 70° were tested under in-plane 

quasi-static loading. The experimental results showed that the energy absorption capability 

increases as the system's angle increases; thus, angle 70° achieved the best energy 

absorption capability among all tested samples [38].  

Xu et al. [59] proposed a unique hierarchical hexagonal column that showed an 

ability to enhance crashworthiness and EA performance. The hierarchical hexagonal 

columns structure is designed to have smaller hexagons at the corners of the central 

hexagon. This study's results open the door to a new route of designing new novel 

structures with high crashworthiness and EA absorption capacity. 

Nia and Parsapour [28] have designed aluminum single and multi-cell thin-walled 

tubular structures with different cross-sections, such as triangular, hexagonal (Figure 6, b 

), square, and octagonal. These tubular structures were subjected to quasi-static loading to 

obtain experimental data that can validate numerical simulations. They concluded that the 

EA capability of multi-cell structures is better than the capability of single-cell sections. 

Furthermore, the hexagonal and octagonal cross-sections sections of a multi-cell 

configuration exhibited the best specific energy absorption.  

A similar conclusion was reached by Li et al. [62] as they found that multi-cell 

metallic tubes provide more efficient specific energy absorption than single-cell tubes 

(Figure 6, c). They tested and analyzed two tubular structures, one has a hexagonal single-

cell cross-section, and the other has a hierarchical multi-cell cross-section. Finite element 
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analyses and axial compression tests are used to investigate the crushing behavior of the 

structures. The results showed that the hierarchical tubes have three crushing mechanisms 

has three folding phases, sub-cell folding, mixed folding, and global folding. In the sub-

cell folding mechanism, the mean crushing force is significantly increased, and the force 

reached its maximum when in the mixed folding phase, which is in between the sub-cell 

folding and global folding. Numerical models are built for these folding styles and used to 

predict the mean crushing force. 

2.4.     In-plane Quasi-static Compression Test  

The quasi-static test is one of the most common tests used to study the structural 

performance, energy absorption capacity, and crashworthiness of structures  [63–68]. In 

the quasi-static tests, the specimen is compressed between two steel plates at a very low 

speed by a hydraulic press (Figure 7).  The sample under quasi-static testing is crushed at 

a steady rate using a universal testing machine. The test specimen is laterally or axially 

compressed, depends on the position and geometry of the structure between two flat steel 

plates positioned parallel to each other. The lower plate is kept static while the top plate 

moves downwards at a constant speed. 

For crushing and energy absorption performance analysis, the quasi-static testing 

might not ideally replicate an actual crash condition. In an actual collision, the structure 

subjected to crushing loading does not experience a constant loading as the loading is 

maximum at the beginning if the collusion then starts to decrease until stopping. 
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(a) (b) (c) 

Figure 6. Metallic hexagonal energy absorbers. a) Hexagonal metal columns under lateral 

loading [60]. B) Multi (upper) and single (lower) hexagonal tubes tested under axial loads 

[28]. c) Single-cell (upper) and hierarchical (lower) hexagonal tubes [62].   

However, to initiate a structural performance study of any structure, it is 

recommended to investigate the deformation styles and failing modes under a quasi-static 

load. For automobile applications, the tubular structures used as collapsible energy 

absorbers are mostly attached at one end, where the energy absorption and crushing start 

at the free end, which is a similar condition in the quasi-static crushing [69].  

In quasi-static testing, it is relatively easy to control the test conditions. Usually, the test's 

required equipment is cheaper than the ones needed for impact testing due to the very high 

speed that should be used in impact testing. Thus, quasi-static testing provides a means to 

experimentally study the structures’ failure mechanisms and EA capability at slow crushing 

speed. The machine used in the quasi-static test has a computerized data acquisition system 

that automatically recorded load-displacement curves. These curves are used to get an 

insight into the failure mechanisms, obtain, and calculate different parameters used to 

evaluate the tested structure’s energy absorption capability. 
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Figure 7. In-plane quasi-static test of a specimen that will be compressed. 

 

2.5.     Quantitative Energy Absorption Performance Indicators  

Quantitative analysis of a structure’s energy absorption capabilities requires 

quantifying the crashworthiness characteristics to enable the research to understand the 

structure’s capabilities [70]. In this section, the Critical EA indicators used in this work are 

explained in detail. Figure 8 illustrates a typical load-displacement curve with notations 

showing some of the essential parameters used to obtain and calculate the EA performance 

indicators.  
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Figure 8. Typical load-displacement curves with notations showing some of the essential 
EA indicators [71] 

 

2.5.1. Energy Absorption and Specific Energy Absorption  

Energy absorption value is used to evaluate structures' ability to absorb crushing 

energy. The amount of absorbed energy can be determined by calculating the area under 

the load-displacement curve. It can be calculated by integrating the load (F) concerning the 

crushed height. The formula is as follows [72]:  

 
𝐸𝐴	 = 	% 𝐹	(𝑠)	𝑑𝑠

!"#$

%
 1 

 

The specific energy absorption (SEA)  is the energy absorbed per unit mass of the crushed 

structure [23].  

 𝑆𝐸𝐴	 = 	
𝐸𝐴
𝑚  2 
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2.5.2. Initial Peak Force  

The initial peak force (IPF) is the load required to start plastic deformation. To 

increase the crushing's stability and provide a better safety mechanism during collisions 

when the structure is used as an energy absorber in vehicles, it is recommended for the IPF 

to be lower to reduce the reaction forces experienced during collisions [23].  

 

2.5.3. Mean Crushing Force  

The mean crushing force (MF) is the average force that a structure is experiencing 

during the post-crushing Phase. The forces experienced in the densification stage are 

excluded when calculating the MF. The formula is as follows [70]:  

 𝑀𝐹	 = 	
𝐸𝐴

𝐷𝑚𝑎𝑥 3 

 

Where 𝐷𝑚𝑎𝑥 is the displacement of the structure at the end of the post-crushing phase.  

2.5.4. Crushing Force Efficiency  

Crushing force efficiency (CFE) is the ratio of the mean crushing force to the 

initial peak crushing force [71]:  

 𝐶𝐹𝐸	 = 	
𝑀𝐹
𝐼𝑃𝐹 4 
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It is preferred for the CFE to be close to 1 as this means the crushing behavior 

during the post-crushing phase is stable. CFE value of one means that the IPF is sustained 

throughout the entire post-crushing phase, and it is equal to the mean crushing force [71].  

2.6.     Artificial Neural Networks  

2.6.1. Artificial Neural Network for Engineering Design  

In engineering design, computers are essential in daily activities as engineers use 

many applications to enhance their designs. Engineers have utilized artificial intelligence 

(AI) to accomplish design tasks since the 1970s [73]. One of the most known AI 

applications is artificial neural networks (ANNs). Recently, they have been widely utilized 

in many fields of engineering and science. The late 80s is when early applications of ANN 

in are used in civil engineering [74]. ANNs are machine learning algorithms capable of 

performing advanced pattern recognition and fittings that enable users to obtain complex 

relationships between non-linear variables [75]. This learning process can occur even if the 

input data are incomplete, fuzzy, or contain errors, or is incomplete or fuzzy, which is how 

data usually are during the design process. ANNs can conduct different tasks, such as 

prediction, identification, filtering, and control. These features of ANNs make them a 

favorable candidate to model a variety of engineering problems [74].  

The way the biological neurons inspire aNNs process information through neurons 

in the human brain. These algorithms are trying to replicate the human brain learning 

activities, except that they are simpler as they consist of fewer components and work 

abstractly. 
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The neural network’s training process contains entering examples that learn the 

input dataset patterns, along with a known target output. The system modifies the weights 

of the network’s internal connections to reduce the errors between the network’s predicted 

output and target known output.  After the ANN is trained and tested and proved 

satisfactory performance, it can generalize rules and use them to react to unseen input data 

to predict the output, which has to be within the training dataset domain. 

Feedforward artificial neural networks are among the most used ANN algorithms 

in different applications due to their great success in solving the desired problems. The 

main advantage of ANNs is that they do not need an algorithm that is user-specified to 

solve a specific problem as the classic programming, as problem-solving, instead, like 

humans, they can learn through examples. Another advantage of the ANN is their 

generalization ability which  indicates that they can identify and react to patterns similar to 

the patterns they have been trained on [76] 

It is still a nontrivial task to build a perfect ANN, mainly due to difficulties finding 

the networks' architecture, which dramatically affects the ANN performance and accuracy 

[77].  

2.6.2. Artificial Neural Network Architecture  

The ANN architecture consists mainly of several hidden layers, hidden nodes, and 

connections between those nodes. If the ANN architecture is improperly built, it might 

cause the model to be overfitting, significantly reducing its accuracy.  

One of the most common algorithms to train multilayer feedforward ANN is the 

backpropagation algorithm. It is composed of an input layer, many hidden layers, and an 

output layer. Backpropagation training provides a technique to fine-tune a neural network's 
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weights depending on the error obtained from the previous training iteration (i.e., 

epoch). Efficient weights tuning can reduce error and make the model more reliable by 

increasing its improved generalization [78].  

Typically an ANN architecture consists of the following elements [76]:  

1. The number input layer 

2. The number of hidden layers.  

3. The number output layer 

4. The number of neurons in each layer 

5. The number of epochs 

6. The activation function of each layer  

7. The training algorithm  

 

Basically, o be able to feed and obtain data to and from an ANN, only the output and input 

layers are the minimum requirements. The number of neurons that should be in the input 

and output layers depends on the number of input and output variables of the model. Thus, 

the challenge is to determine how many hidden layers are required and how many neurons 

should each hidden layer contain. A higher number of hidden layers in ANN could improve 

the model's performance. For example, two hidden layers are more efficient for many types 

of non-linear problems than an ANN with only one hidden layer [18]. 

One of the typical methods used to determine ANN architecture is the trial-and-

error method. In this method, different architectures are evaluated and compared to each 

other. This process can be time-consuming and involves high uncertainty as it mainly 

depends on the human expert's intuition and experience [76]. Srivastava et al. [79] used the 
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dropout method to determine the ANN structure and prevent overfitting. In this method, 

the ANN nodes are dropped out randomly to find the most accurate structure during the 

training process. 

2.6.3. Energy Absorption Predictions by Artificial Neural Network  

ANNs can be used as a technique that can be trained to predict a structure's behavior 

from existing experimental data. Caliskan [12] conducted one of the first published studies 

the utilizes ANNs in predicting the crushing behavior of composite structures based on 

input data from tensile properties. The study also predicted the amount of energy absorbed 

by circular tubes made of carbon fiber-reinforced under axial loading. He used a simple 

ANN with a backpropagation training algorithm and experimental data set of 84 rows of 

absorbed crushing energy by the tubular structures. 

Mahdi and El-Kadi  [19] used the ANN technique to predict the energy absorption 

characteristics and the crushing behavior of laterally loaded elliptical tubes made of glass 

fiber/epoxy composite. The predicted energy absorption capability and load-carrying 

capacity were compared to actual data from the experiment and showed good compliance. 

This indicated that ANN could be an effective tool in predicting collapsible composite 

energy absorbers' behavior when subjected to loading conditions. 

Kazi et al. developed an ANN model to predict the optimal filler content in cotton 

fiber/polypropylene composite material for targeted mechanical properties. The ANN 

model was trained using existing experimental and built via Keras library in Python. The 

grid search method is used to tune the model's hyperparameter and k-fold cross-validation 

to achieve a good performing model capable of predicting reliable results for targeted filler 
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content. Using predictive models to predict a targeted material design parameter is proved 

to be efficient in reducing the time and effort used for material characterization. 

Gowid et al. [10] also build ANN predictive model to predict the non-linear 

crushing behavior and the optimal angle for EA of a hexagonal quadruple ring system with 

different angle configurations made of composite material. Mean Square Error is used to 

estimate and optimize the model performance. The predicted results are compared to the 

actual results for experiments to evaluate the prediction's true error. The ANN model 

accurately predicted the energy absorption capability and load-carrying capacity for 

different angles where the reported mean square Error was 0.39 N and 1 J, respectively. 

The model was used to optimize the hexagonal ring system's angle to maximize the EA 

capabilities; the system's optimal angle was predicted to be 47° with 69 J of absorbed 

energy. 
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CHAPTER 3. EXPERIMENTAL STUDY 

In this chapter, the methodology used to conduct the experimental study is 

described. The first section demonstrates the test specimens fabrication process, which is 

hexagonal structures with different internal angles—followed by presenting the in-plane 

quasi-static compression test conducted to study the structures crushing behavior and 

obtain the load-displacement data. The second section shows and explains the tests' 

detailed results by analyzing the resulting data, discussing and evaluating each hexagonal 

structure's energy absorption performance based on the calculated energy absorption 

indicators.  

3.1. Methodology  

3.1.1. Fabrication Process 

In this study aluminum sheet with a thickness of 20 millimeters (mm) is used to 

fabricate the specimens. These specimens are hexagons with a thickness of 3 mm, a fixed 

height of 100 mm, fixed top and bottom sides length of 50 mm, and varying interior angle 

θ configurations from 30° to 85° with an increment of 5° (30°, 35°, 40°, 45°, 50°, 55°, 60°, 

65°, 70°, 75°, 80°, 85°) as illustrated in Figure 9.  

 

Figure 9. Test Specimen critical parameters dimensions 
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A water jet machine is used to cut the hexagonal specimens from the aluminum 

sheet. Three samples of each angle configuration are fabricated to be tested under a quasi-

static compression test, as shown in Figure 10. 

 

 
(a) 

 
(b) 

 
                                  35°                                                       55°                                  85°  

(c) 

Figure 10. (a) and (b): test specimens after fabrication (Note: Specimens with angles 45° 

and 50° are fabricated after the show specimens are tested). (c) Close-up shots for a few 

of the samples. 
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3.1.2. In-plane Quasi-Static Compression Test 

 Quasi-static crushing was carried out using the INSTRON material testing 

machine. The test machine has two plates where the specimen is placed in between them. 

The lower plate was kept stationary while the upper plate was positioned to contact the test 

sample's upper surface as it will be moving downwards at a constant speed to apply the 

load during the test see Figure 11. The same loading conditions were applied to all 

specimens, compressed at a 10 mm/min speed up to a displacement of 90 mm to collect 

around 5500 data points to build an accurate load-displacement curve for each test. The 

machine computerized data acquisition system automatically records Load-displacement 

curves during testing. The crushing process for all specimens under compressive loading 

was recorded in high-quality videos to provide a detailed crushing process's history to 

observe and analyze the crushing mechanisms. 

 

  

(a) (b) 

     Figure 11. Quasi-static compression test. a) Schematic representation of the loading 
condition. b) Test specimen in the INSTRON material testing machine  
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A total of 36 tests have been conducted in the experimental part of this work, three 

samples for each angle value. All energy absorption indicators calculations have been done 

in Python. Trapz function from Python NumPy library, which uses the composite 

trapezoidal rule to calculate an area under a curve, is utilized to calculate the area under the 

load-displacement curves resulted from the compression tests. The load-displacement 

curves were split into three parts: the pre-crushing phase, post-crushing phase, and material 

densification phase, as illustrated in Figure 12. The readings starting from the material 

densification phase are removed. The resulting data and the calculated indicators will be 

used to analyze the hexagonal energy absorption devices' crushing behavior and energy 

absorption performance to train the ANN predictive models. 

 

 

Figure 12. Pre-crushing, post-crushing, and material densification phases of 40° sample 
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3.2. Experimental work Results and Discussions 

3.2.1. Load-Displacement Curves Analysis 

In this section, the results of quasi-static axial compression tests carried out on the  

various hexagon angles are presented, categorized, and discussed. Figure 13 to Figure 24 

shows the load-displacement curves resulting from the test and the corresponding images 

captured from the videos recorded during compressing the specimens with notations that 

relate the different stages in the plot with the images to identify the crushing behavior of 

the samples. From the images, it can be seen that all the hexagonal structures with different 

internal angles are crashing down with the same mechanism.  

From these figures, it can be noticed that there are two main behaviors showed in 

the load-displacement curves. The first one is from 35° to 55° with the corresponding 

figures from Figure 13 to Figure 17. Taking the hexagon with 35° angle specimen in Figure 

14 Figure 6 as an example, notation 2 locating the initial peak force in which after it the 

specimen keeps on crushing smoothly through notations 3 and 4 while maintaining the IPF 

almost constant as the displacement increase from about 10 mm to about 70 mm. Notation 

5 marks the start of the material densification as seen in the corresponding image 5, the 

deformed top and bottom of the specimens are in touch, which caused the force to increase 

as shown in the plot in between notations 5 and 6 until the specimen is completely crushed 

as shown in the corresponding image 6 in Figure 14.  

The second group with similar behavior is shown in the figures from  

Figure 19 Figure 24 for the angles from 60° to 85°, respectively. Taking angle 60° 

in  
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Figure 19 as an example here, it can be seen that the load reaches its peak at notation 

2 relatively faster and at lower displacement. The load then starts to drop through notation 

three till reaching notation four as the structure is smoothly compressed down and the 

displacement is increasing. When reaching notation 4, it is shown from the corresponding 

image four that parts of the deformed structure are touching the machine’s upper and lower 

plates, which required a higher load to compress. Then the load dropped as the compression 

proceeds till the upper and lower sides of the hexagonal structure start touching, which 

initiate the material densification phase where the load is increasing while displacement is 

constant as the specimen is completely crushed.   
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Figure 13. Load displacement curve for in-plane compression test of 30° hexagon and 
corresponding through test images. 
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Figure 14. Load displacement curve for in-plane compression test of 35° hexagon and 
corresponding through test images. 
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Figure 15. Load displacement curve for in-plane compression test of 40° hexagon and 
corresponding through test images. 
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Figure 16. Load displacement curve for in-plane compression test of 45° hexagon and 
corresponding through test images.  
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Figure 17. Load displacement curve for in-plane compression test of 50° hexagon and 
corresponding through test images 
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Figure 18. Load displacement curve for in-plane compression test of 55° hexagon and 
corresponding through test images.  
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Figure 19. Load displacement curve for in-plane compression test of 60° hexagon and 
corresponding through test images. 
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Figure 20. Load displacement curve for in-plane compression test of 65° hexagon and 
corresponding through test images. 
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Figure 21. Load displacement curve for in-plane compression test of 70° hexagon and 
corresponding through test images. 
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Figure 22. Load displacement curve for in-plane compression test of 75° hexagon and 
corresponding through test images. 
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Figure 23. Load displacement curve for in-plane compression test of 80° hexagon and 
corresponding through test images. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90

Lo
ad

 [K
N

]

Displacement [mm]

Load vs. Displacement (Angle 80°) 

2

1

3
4

6

5



 42 
 

 

  
1 2 

  
3 4 

  
5 6 

 

Figure 24. Load displacement curve for in-plane compression test of 85° hexagon and 
corresponding through test images. 
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Figure 25. Load displacement curves for in-plane compression test of the hexagons with 
angles from 30° to 55°.  

 

Based on the crushing behavior of the samples, they can be grouped into two 

categories. The first one in Figure 25 shows the angles from 30° to 55° having relatively 

similar behavior under the axial compressive load where the initial peak load is very close 

to the mean crushing force compared to the other group of angles in Figure 26. The 

maximum IPF is 0.1KN at 9.9 mm displacement, which marks the end of the specimen's 

elastic deformation stage. The compressive load remained almost at a constant value during 

the post-crushing phase while the displacement is increasing as the samples are being 

compressed; this indicated that these specimens have a very high crushing force efficiency. 

In other words, that the specimens did not experience a noticeable drop in load-bearing  
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Figure 26. Load displacement curves for in-plane compression test of the hexagons with 
angles from 60° to 85° 

 

capacity after reaching the initial peak force as it continues to bear the load while crushing 

down. The constant load values in the plots shown in Figure 25 continue until reaching the 

material densification phase, where the upper and lower sides of the specimens are in 

contact, and the specimens are completely crushed flat, which causes the load to spike up.  

The load-displacement curves in Figure 26 show the rest of the angles, from 60° to 

85°. Hexagonal rings with the angles:  60°, 65°, and 70° showed similar behavior to the 

angles in Figure 25 but with a slight drop in the load-bearing capacity after reaching the 

initial peak force. The load starts to decrease slowly as the displacement increase during 

the post-crushing phase until it spikes up when reaching the material densification phase. 
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For hexagons with the larger angles of  75°, 80°, and 85°, the pre-crushing phase is 

much smaller than it is in the smaller angles. The load reached the initial peak force faster 

at small displacements of between 0.7 and 3 mm. After this peak, the load drops suddenly 

during the post-crushing phase. Due to the sudden drop in the load, the specimens would 

have a low crushing force efficiency, which means a less crushing mechanism. 

  One of the main differences between the load-displacement plots in Figure 25 and 

Figure 26 is the small increase in the load shown in Figure 26 before entering the material 

densification phase. The reason behind it can be observed through the test images in the 

figures from  

Figure 18 to Figure 24, where the specimens are tilted to one side as they are being 

compressed down. When the specimen is tilted, the deformed sides became in contact with 

the machine's upper and lower plates, which caused the load to increase to continue 

compressing the specimen until entering the material densification and making the 

specimen completely flat. This behavior could be due to imperfections existing from the 

fabrication process or other reasons.  

3.2.2. Energy Absorption Performance Indicators  

All of the calculations for the energy absorption indicators have been done in 

Python Jupiter Notebook as it provides an efficient computing environment for data 

calculations and analysis. Table 1 contains all of the calculated values of the energy 

absorption indicators: specific absorbed energy, the pre-crushing absorbed energy, the 

post-crushing absorbed energy, the initial peak force, the mean crushing force, and the 

crushing force efficiency. While  
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Table 2 shows the angles with the highest and lowest values of the energy 

absorption indicators. Starting from the specific energy absorption, from the values in 

Table 1, it can be seen that the change in SAE as the angle values increase is not linear. 

The lowest specific energy was absorbed by angle 30°, while the highest was achieved by 

angle 75°. The specific energy was absorbed in the pre-crushing phase was also non-linear 

as the angle values increased linearly; the highest was achieved by angle 50° while the 

lowest values achieved by the angles 30° and 65°. Thus, the highest SAE in the elastic 

deformation region of the hexagonal structures was by angle 50°. For the post-crushing 

phase, where the major amount of the energy is absorbed, the most considerable amount of 

energy per unit mass was absorbed was by the hexagon with an angle of 75° followed with 

angle 80°, and the hexagon absorbed the lowest energy per unit mass with an angle of 30°.  

The initial peak force is one of the most important indicators when evaluating the 

energy absorption performance as it marks the force required to take the test specimen from 

the elastic to the plastic deformation region. Here, the highest IPF reported was for angle 

85° at a value of 1.86 KN, followed by angle 80° at a value of 0.80 KN.  The lowest IPF 

values were for angles 30° at 0.1 KN. Angles with low IPF means they showed less 

resistance to the deformation caused by the compressive force due to their low load-

carrying capacity.  

The mean crushing force is the mean force the structure experience during the post-

crushing phase. It is essential to evaluate the crushing force efficiency of each structure. 

The closer the MF to the IPF, the more stable the crushing behavior is. The CFE, as stated 

before, is the ratio of the MF to the IPF. The ideal CFE is one, as this indicates that the IPF 

is sustained throughout the post-crushing phase, which means the failure mechanism is 
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stable through this phase. The best CFE was achieved by angle 45° at 97.1%. The first 

three angles (30°, 35°, and 40°) have CFE greater than one ( 1.174, 1.080, and 1.030, 

respectively) it means that the MF is greater than the IPF, it can be seen in Figure 25 that 

the plots of these angles are slightly increasing during the post-crushing phase. However, 

the CFE values are very close to one for these angles. From Table 1, it can be seen that the 

CFE starts decreasing from angle 60° where it decreased from 95.3% for angle 55° to 

69.2% for angle 60°. CFE decreased even more for angle 65° to reach 33.9% then it 

increased to be around 50% for angles 70°, 75°, and 80°. Lastly, the CFE decreased to 

reach 21.9% for the hexagon with the largest angle.  

 From these results, it can be noticed that there is not only one optimal angle that 

has the best performance based on all of the calculated indicators in Table 1. The optimal 

angle will be different based on the application it will be used for. For example, suppose 

the hexagonal structure will be used as an energy absorption device in a vehicle where the 

crushing stability is very important. In that case, the hexagon with an angle of 45° can serve 

this application best for its low IPF and high CFE. Energy absorbers in automobiles are 

preferred to have a lower initial peak crushing force and stable failure to minimize injuries 

the vehicle passengers could be exposed to during collision accidents and minimize 

damage to the vehicle's critical components. On the other hand, if the application requires 

the structure to have the best load carrying capacity and to resist any compressive loads, a 

hexagonal structure with 85° interior angles should be used as it requires 1.86KN (highest 

IPF) for the structure to start crushing and deforming plastically. 
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  In the following chapter, the data extracted for the tests will be used to train and 

test ANN models in order to optimize the hexagonal energy absorber design based on any 

specific application and targeted properties.  

 

Table 1. Quantitative Energy Absorption Performance Indicators.  

S/N Angle Specific 
Absorbed 

Energy 
[J/Kg]  

Pre- 
crushing  
Specific 

Absorbed 
Energy 
[J/Kg]  

Post- 
crushing  
Specific 

Absorbed  
Energy 
[J/Kg] 

  

Initial  
Peak  
Force 
[KN]  

Mean 
Crushing 

Force 
[KN]  

Crushing 
Force 

Efficiency 
[KN/KN] 

1 30 93.33 7.62 85.71 0.10 0.11 1.17 
2 35 140.97 13.59 127.38 0.14 0.15 1.08 
3 40 255.02 25.92 229.10 0.22 0.23 1.03 
4 45 194.21 34.44 159.77 0.17 0.16 0.97 
5 50 289.28 48.12 241.16 0.20 0.19 0.95 
6 55 514.35 40.71 473.64 0.39 0.38 0.95 
7 60 210.32 18.04 192.29 0.23 0.16 0.69 
8 65 99.61 10.16 89.46 0.18 0.06 0.34 
9 70 360.49 18.03 342.46 0.42 0.23 0.53 
10 75 795.55 27.23 768.31 0.85 0.51 0.60 
11 80 728.70 18.79 709.91 0.80 0.40 0.49 
12 85 657.33 24.32 633.01 1.86 0.41 0.22 

 

Table 2. Hexagon’s Angles Ranking Based on Energy Absorption Performance 

  

Specific 
absorbed 
 energy 
[J/Kg] 

Pre-crushing 
specific 

absorbed  
energy 
[J/Kg]  

Post-crushing 
specific 

absorbed 
energy 
[J/Kg] 

 

Initial peak 
force 
[KN] 

Mean  
crushing  

force 
[KN]  

Crushing 
force 

efficiency 
[KN/KN] 

Highest Lowest Highest Lowest Highest Lowest Highest 
 

Lowest Highest Lowest Highest Lowest 

75° 30° 50° 30° 75° 30° 85° 30° 75° 65° 40° & 
45° 85° 
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CHAPTER 4. ARTIFICIAL NEURAL NETWORK 

This chapter presents the predictive study by artificial neural network developed 

for this work. The first section is the methodology used, where it starts with data 

preprocessing, then neural networks models development, followed by presenting the steps 

of building, training, and validating the models. The second section presents and discusses 

the models' results and applying the predictive model to optimize the hexagonal energy 

absorber for different applications. 

4.1.Methodology 

4.2.Data Preprocessing 

Data preprocessing is the technique of preparing the raw data to make it suitable 

for building and training a machine learning model. In this case, it is an ANN model. It is 

an important step to enhance the quality of data and facilitate the extraction of useful 

insights from the data. The first step in data preprocessing is to make sure that the data are 

in a suitable format and free from missing data, outliers, and erroneous data values. The 

next step is feature extraction. It is necessary to identify the independent variables to be the 

model input and the dependent variable to be the output. In this case, six features were 

identified, which are the energy absorption performance indicators (e.g., initial peak force, 

specific absorbed energy, specific absorbed energy of the pre-crushing phase, specific 

absorbed energy of the post-crushing phase, mean crushing force, and crush force 

efficiency) in addition to the angle which is the variable that will be predicted based on 

these six features. There will be six input nodes in the input layer and one output node in 

the output layer in the predictive model. The last step is splitting the data set into a training, 
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Figure 27. Plots of the independent variable against the dependent variable.  

 

test and validation datasets. The validation dataset was removed manually from the 

dataset. Since the data is limited, the K-fold cross-validation is used in the training phase 

as this will allow the whole data set (after removing the validation set) to be used for 

training and testing simultaneously. Three test specimens were tested for each of the 12 

angles shown in Table 1; a total of 36 data points were used to train, test, and validate the 
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ANN model. Table 1 shows the averaged results of AE performance parameters of each 

angle, and these parameters have been plotted versus the angles to get an insight into the 

relationship between them and identify which regression model is best suited for 

predicting the optimal angle. From Figure 27, it can be seen from the plots that all of the 

features have a non-linear relationship with the variable to be predicted. Thus, the 

artificial neural network machine learning algorithms might be the best suited for solving 

its problem due to their high capability to learn the non-linear relationship between the 

data.  

4.1.1. Model Development  

The main challenge for the regression is the limited data points, thus developing a 

model that can efficiently learn from the available data, which are the energy absorption 

indicators, will not be straightforward. Due to the data's nonlinearity, a classical 

optimization/regression model cannot give good predictions. Hence, the ANN model can 

learn complex non-linear relationships between the data through its hidden layers that 

consist of neurons that a suitable learning algorithm can train. One of the standard methods 

of training artificial neural networks is the backpropagation algorithm. It is a learning 

method for multilayer feedforward networks that calculates the gradient of a loss function 

for all the weights in the network, then modifying the input variables' internal weightings 

to produce an expected output variable. The error between the model's output and a known 

actual output is presented to the model and used to modify its internal parameters. 

The key to building the ANN predictive model is to find the right architecture. The 

ANN architecture is the structure of the model; it consists of parameters such as the number 

of hidden layers, epoch, batch size, etc. Other parameters are learned automatically by the  
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Figure 28. Strategic steps for ANN model development and prediction 

 

algorithm, such as node weights, bias, etc. Moreover, hyperparameter controls the learning 

process by tuning these hyperparameters to enable the model to solve the machine learning 

optimally. Problem and reach the desired output. The hyperparameter can be tuned 
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manually or automatically by using a tuning method, such as a TensorFlow grid search. 

The flow chart in Figure 28 shows the strategic steps to develop the ANN model.  

4.1.2. Building and training the ANN prediction model 

The main three steps to build any machine learning model are data preprocessing, 

model building and training, and model validation through testing and evaluating the 

trained model performance with a testing data set. The ANN model consists of three layers, 

which are input, hidden, and output layers. Figure 29 illustrates the structure of the ANN 

model. The input layer is the beginning of the ANN workflow; it is composed of artificial 

input neurons that bring the initial input data to the system to be processed by the 

subsequent layers. The hidden layers are located between the input and output layers; they 

can be one or more layers. Each consists of many neural elements, which work as 

mathematical functions designed to produce an output specific to the desired result. The 

hidden layers perform non-linear transformations of the inputs entered into the network by 

applying weights and direct them through an activation function.  

The ANN model is built using the Keras-Dense layer of the TensorFlow open-

source library. The Dense implements the operation [81]:  

 

 y	 = ϑ 67𝑤𝑥9 + 𝑏 
5 

 output	 = 	activation(dot(input, kernel) 	+ 	bias) 

 

Where input is the input data, activation is the element-wise activation function 

passed as the activation argument, and the kernel is a weights matrix created by the layer,  
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Figure 29. The layered structure of the ANN predictive model  

 

the dot is the NumPy dot product inputs and their corresponding weights, and bias is a bias 

vector also created by the layer [81]. Rectified linear unit activation function (ReLU) is 

used as it is one of the most widely used activation functions estimators that can activate 

all neurons simultaneously and proved that it could greatly improve the performance of 

feedforward networks [18]. During training the model, several activation functions of 

Tensor Flow were tested, such as ‘sigmoid’ and ‘Softmax.’ However, The ReLU activation 

function showed better performance, and it is described as follows:  

 

 𝑓(𝑥) = 0; 𝑓𝑜𝑟	𝑥 < 0 6 

 𝑓(𝑥) = 𝑥; 𝑓𝑜𝑟	𝑥	 ≥ 0 7 
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Adam optimizer is from TensorFlow is used here, as it one of the most used 

optimizers as it implements the Adam optimization algorithm, which is a stochastic 

gradient descent method that can calculate individual adaptive learning rates for different 

variables. The Mean Squared Error (MSE) is used as the loss function in this model. The 

best iteration and regression were considered based on the lowest MSE value. The MSE 

equation is as follows: 

 

 
𝑀𝑆𝐸 = 	

1
𝑁7(	𝑦 − 𝑦X	)&

'

()*

 8 

 

Where y is the measured output and 𝑦X is the predicted output. The error is reduced 

by modifying the weights according to the following equation:  

 

 ∆𝑤 =	−𝜂
𝜕𝑀𝑆𝐸
𝜕𝑤  9 

 

Where 𝜂 is the learning rate, the optimum ANN structure was obtained by the 

manual and automatic hyperparameter tuning method. The Dropout method was used to 

prevent the Neural Networks from overfitting. One of the most critical parameters in the 

configuring ANN model is the number of epochs. Epoch refers to one cycle through the 

entire training dataset. Too few epochs can lead to under fitted model, while too many 

epochs can lead to overfitted model. Thus, it is critical to monitor the model performance 

and indicate the stopping criteria as it should not be stopped before reaching a stable result. 
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Python Keras Callbacks provides an Early stopping method that allows entering a 

large number of epochs, and the model training will stop automatically once the model 

performance stops improving. The loss function is the evaluation parameter to be optimized 

during the model training, and it is calculated at the end of each epoch.  

Once the results are stable and the loss function is not decreasing anymore or the specified 

maximum number of epochs reached, the early stopping function will stop the training 

process. The main advantage of this method to avoid model overfitting [82]. A large 

number of feedforward network configurations were trained, tested, and evaluated. The 

final ANN model configuration is presented in Table 3.  

 

Table 3. The optimum configuration of the ANN model 

Parameter Value 
 

Validation set 16% 
Training & test sets 6 k-folds 

Number of neurons in the input layer 6 
Number of hidden layers 3 

Number of hidden layers 1, 2 and 3 200 
Number of neurons in the output layer 1 
Number of folding in cross-validation 3 

Number of cross-validation repeats 10 
Number of epochs 2407 (Early stop tool) 

Optimizer adam 
Activation function ReLU 

Loss function Mean squared error 
 

4.1.3.  Model validation 

As stated before, the validation dataset splittted manually for the dataset, and the k-

fold cross-validation method was used for training and testing due to the data limitation. 

This was split the available data into three sets, as mentioned in Table 3. The k-fold cross-
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validation is a standard procedure for evaluating a machine learning algorithm's 

performance on a dataset. This procedure works by splitting the limited dataset into k 

nonoverlapping folds where each fold is used once held back test set while other folds are 

used as the training dataset. To improve the performance the repeated k-fold cross-

validation is used. It simply replicates cross-validation procedures multiple times and 

computes the average result of all folds across all runs. The calculated mean result is 

expected to be much closer to the model's true unknown mean performance. Even though 

this approach is more computationally expensive, it does not waste data and gives an 

accurate evaluation of the model performance. 

After evaluating the model performance and deciding on the model configuration, the 

model is fitted using the whole dataset (except the validation dataset) to make predictions 

on unseen data. The ANN model was validated by using the unseen data from the validation 

dataset to predict the angles and find the true error between the actual and predicted values. 

Moreover, the model is used to find the optimal angles based on input parameters by 

feeding the model with targeted energy absorption properties. The developed ANN model 

was run multiple times to check the accuracy, reliability, and robustness of the predicted 

optimal hexagonal angle. 

4.2. Models results and discussion 

4.2.1. Model Performance  

The developed ANN model was applied to predict the optimal angle for the 

hexagonal energy absorption device based on targeted energy absorption performance 

parameters. It was able to build up a robust relationship between the AE parameters and 
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the hexagon’s angle. In the model parameter tuning phase, it was noticed that a relatively 

high number of neurons of 200 in each hidden layer and also a high number of epochs 

(around 2400 for each run) were needed to improve the model accuracy. This high number 

of neurons and epochs indicates that the relationship between the independent variables 

and the dependent variable was not straightforward. For this reason, and in addition to the 

data limitation, building an accurate predictive ANN model was challenging and required 

hundreds of runs to optimize it. To avoid the overfitting of the model due to the nigh 

number of epochs and neurons, the dropout function was used. The dropout function is a 

regularization technique that prevents neural networks from overfitting [83].  

The performance of the model was measured based on loss function values using 

MSE. The configured model was run many times to check its robustness and reliability 

then it was validated by making predictions from the validation dataset.  

Table 5 shows the results of four runs of training and validating the configured 

ANN model. The validation dataset consists of the EA properties for 6 angles, and the 

model was used to predict these 6 angles in order to compare the predicted values with the 

actual values. The lowest training loss achieved was 0.09, with a validation loss of 0.49. 

The predicted angles and training and validations MSE values for the best-performed 

model are shown under Prediction 4 in  

Table 5 with accuracy between 98.24% and 99.85%. 2407 epochs were required to 

reach that accuracy. Furthermore, the R2 values in  

Table 5 indicate how accurate the regression model can predict the angle by 

comparing the predicted and actual angles. This statistic measure of R2 is used to determine 

when the model fits the training data and its capability of providing accurate predictions. 
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It can be seen that all of the R2 in the 4 predictions between the actual and predicted angles 

are very high (the highest is 0.998 and the lowest is 0.9929), which proves the efficiency 

of the model in predicting the angles based on the energy absorption properties.  

The developed ANN model provides satisfactory results, which makes it a very 

useful tool for product design. It can be used as an intelligent engineering design tool where 

designers can insert any targeted properties to get the optimal desired parameters, as long 

as the values of these properties are within the range of the experimental dataset. In this 

case, an optimal angle can be found with high accuracy only within the range of the trained 

dataset (30°- 85°).  

 

Table 4. Four runs for predicting the angles using properties from the validation dataset  

Actual angle Predictions 
1 

Predictions 
2  

Predictions 
3 
  

Predictions 
4  

30 29.86 30.18 29.04 29.51 
40 39.78 40.23 38.29 40.28 
50 49.22 48.74 49.36 49.28 
60 60.38 60.38 60.74 60.74 
70 70.06 68.94 68.48 68.77 
80 81.75 82.48 82.17 80.12 

 

Table 5. The associated losses and R2 for each prediction run  

 
Predictions 

1 
Predictions 

2  
Predictions 

3  
Predictions 

4 
  

Training loss 0.4582 0.6126 0.4804 0.0872 
Training R2 0.99913 0.99872 0.9992 0.9997 

Validation loss 0.6473 1.5146 1.878 0.4855 
Validation R2 0.9977 0.99480 0.9935 0.9983 
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4.2.1. Angle predictions  

The trained best-performed model was used to predict the angles based on their 

energy absorption parameters that were calculated from the load-displacement 

experimental data that resulted from applying the quasi-static compression test on the test 

specimens. The trained models were saved using Keras ‘model. Save ()’ function and then 

loaded with ‘load_model()’ whenever need to use it for prediction to save time required to 

run the whole process and also to be able to use the trained model across platforms. The 

input parameters were typed manually and sent via Keras ‘model. predict()’ function to 

predict the angle from unseen data. The predicted angle can be any value between 30° and 

85°, including the values in-between the angles used to get the experimental data.  

The ANN model was used for geometry optimization by predicting the optimal 

angle to design a passive hexagonal energy absorption device. Two different sets of 

targeted properties were used to predict an angle for two different needs or applications. 

The first will be to maximize the energy absorbed by the hexagonal structure and the failure 

mechanism's stability by maximizing the crushing force efficiency. The targeted properties 

in Table 6 will be used to predict the optimal angle to use this structure as an energy 

absorber in vehicles where the SEA and CFE will be maximized, and the IPF will be the 

same as the MF ensure stable crushing. It must be noted that the angle predicted here is the 

optimal angle required to achieve the targeted performance. As seen in Table 6, the 

predicted optimal angle for the targeted parameters is 48.33°.  

The second prediction will be to maximize the load-carrying capacity before 

crushing is initiated by increasing the initial peak force and energy absorbed in the pre-

crushing phase. The targeted performance parameters are as in Table 7, where the predicted  
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Table 6. Prediction of optimal angle for energy absorption 

- Specific 
Absorbed 

Energy 
SAE 

[KJ/g]  

Pre-crushing 
Specific 

Absorbed 
Energy 

PRE-SAE 
[KJ/g] 

Post- 
crushing 
Specific 

Absorbed 
Energy 

POST-SAE 
[KJ/g] 

  

Initial 
Peak   
Force 
IPF 
[N]  

Mean 
Crushing 

Force 
MCF 
[N]  

Crushing 
Force 

Efficiency 
CFE 

Predicted 
Optimal 
Angle 

Targeted 
 EA 

performance 
parameters 

224.62 30.18 194.44 0.19 0.20 1.05 43.43° 

 

Table 7. Prediction of optimal angle for load-carrying capacity 

- Specific 
Absorbed 

Energy 
SAE 

[KJ/g]  

Pre-crushing 
Specific 

Absorbed 
Energy 

PRE-SAE 
[KJ/g] 

Post- 
crushing 
Specific 

Absorbed 
Energy 

POST-SAE 
[KJ/g]  

Initial     
Peak      
Force 
IPF 
[N] 

 
 

  

Mean 
Crushing 

Force 
MCF 
[N]  

Crushing   
Force 

Efficiency 
CFE 

Predicted 
Optimal 
Angle 

Targeted 
 EA 

performance 
parameters 

578.02 22.63 555.39 0.64 0.37 0.56 73.42° 

 

 

angle was 73.42°. The proposed strategic procedure in this thesis to predicting the interior 

angle of a hexagonal structure based on specific properties using the ANN model can be 

easily be used for different geometries and structures, and even on composites materials 

compositions, as long as the experimental data of the required mechanical properties are 

available to the product designers.  
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CHAPTER 5. CONCLUSION AND RECOMMENDATIONS 

In the first stage study, hexagonal structures were subjected to quasi-static axial 

compression tests to determine the effect of hexagon's interior angel on their 

crashworthiness properties. These structures are designed to have varying interior angle 

values (30°-85°) to study the relationship between the angle values and the energy 

absorption performance indicators. After conducting the test and collecting the load-

displacement data used to calculate the total specific energy absorption, the specific energy 

absorption in the pre-crushing zone, the specific energy absorption in the post-crushing 

zone, the initial peak force, the mean crushing force, and the crushing force efficiency. 

These calculated parameters and the recorded crushing footage from the test are used to 

provide a detailed analysis of the experimental study results. In the second stage of this 

study, an ANN model was developed to predict optimal hexagonal ring angle based on 

targeted EA indicators. The experimental data are used as an input dataset to train, test, and 

validate the ANN model to be used as a predictive model that can provide accurate 

predictions. The feedforward ANN was used with the backpropagation of the error training 

algorithm. The mean squared error value was used as the loss function, and the k-fold cross-

validation method was used to evaluate the model's performance. Lastly, the final 

predictive model was trained on the entire dataset, saved, and made ready to make 

predictions based on any targeted energy absorption performance.  

5.1. Conclusion  

The following conclusions were drawn from the study: 

• The energy absorption performance significantly varies depending on the 

interior hexagonal angle value. 
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• From the load-displacement curves, it was noticed the smaller angles (30°-55°) 

showed a very stable crushing mechanism under the compression test with 

lower IPF. These angles also achieved a higher CFE than the larger angles 

where the best CFE reported was for angles 40° and 45° at 1.03 and 0.97, 

respectively. 

• The larger angles showed a significant decrease in the load-carrying capacity 

after reaching the initial peak force, which caused the CFE to be reduced. The 

lowest CFE was for angle 85° at only 22%. While the most energy absorbed 

was by angle 75°.  

• All of the energy performance indicators are plotted against the angle to get an 

insight into the relationship between them. From the plots, the relationship was 

highly non-linear, making the optimization of the interior angle of the 

hexagonal structure a complex task. 

• The developed model was validated by using it to predict the angles from the 

unseen validation dataset. The model’s performance exceeded the required 

accuracy specified in the thesis objectives and predicted the angles with an 

accuracy between 98.24% and 99.85%. 

• Finally, the model is used to predict the optimal angle based on two cases of 

targeted EA properties. The first was to maximize energy absorbed and the CFE 

while minimizing IPF and make it closer to the MF to ensure stable crushing; 

the predicted optimal angle was 43.43°. The second case was to maximize the 

load-carrying capacity before the crushing was initiated by increasing the IPF 
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and the amount of energy absorbed in the pre-crushing phase. The model 

predicted that angle 73.42° would be best suited for the targeted properties. 

5.2. Recommendations for Future Work 

For future work, it is recommended to investigate the accuracy of the predictions 

through fabricating new structures with the predicted optimal interior angles and test them 

under quasi-static compression test to obtain the actual energy absorption performance 

indicators and compare them with the targeted indicators which were fed into the trained 

ANN model to make the predictions. This comparison will provide further insight into the 

model’s performance. 

It would be very beneficial to perform a study on the required amount of 

experimental data required to accurately optimize a certain design parameter. This could 

save the time and money required to conduct a large number of tests for optimization and 

help in efficient experiment planning. Furthermore, more features and mechanical 

properties should be investigated as there might be other features that have a more direct 

relationship with the predicted/optimized structure's angle, which can make the ANN 

model simpler and more accurate. Lastly, it is recommended to investigate how the 

proposed approach can be used to develop the ANN model and use it for multi-objective 

optimization where more than one design parameter can be optimized simultaneously.  
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