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Face Recognition in the Scrambled Domain via
Salience-Aware Ensembles of Many Kernels
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Abstract— With the rapid development of Internet-of-
Things (IoT), face scrambling has been proposed for priv-
acy protection during IoT-targeted image/video distribution.
Consequently, in these IoT applications, biometric verification
needs to be carried out in the scrambled domain, presenting
significant challenges in face recognition. Since face models
become chaotic signals after scrambling/encryption, a typical
solution is to utilize the traditional data-driven face recognition
algorithms. While chaotic pattern recognition is still a challenging
task, in this paper, we propose a new ensemble approach—
many-kernel random discriminant analysis (MK-RDA)—to dis-
cover discriminative patterns from the chaotic signals. We also
incorporate a salience-aware strategy into the proposed ensemble
method to handle the chaotic facial patterns in the scrambled
domain, where the random selections of features are made on
semantic components via salience modeling. In our experiments,
the proposed MK-RDA was tested rigorously on three human face
data sets: the ORL face data set, the PIE face data set, and the
PUBFIG wild face data set. The experimental results successfully
demonstrate that the proposed scheme can effectively handle
the chaotic signals and significantly improve the recognition
accuracy, making our method a promising candidate for secure
biometric verification in the emerging IoT applications.

Index Terms—Facial biometrics, face scrambling, many
manifolds, many kernels, random discriminant analysis, mobile
biometrics, Internet-of-things, user privacy.

I. INTRODUCTION
ITH rapid developments in Internet-of-Things (IoT)
W technology, face recognition [1]—[4] has recently found
a new use in web-based biometric verification, man-machine
interaction, internet medical diagnosis, video conferencing,
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Fig. 1. A detected face in video scrambled by using the Arnold transform.

distance learning, visual surveillance, and psychological
evaluation. In the context of mass internet technology,
privacy [5]-[14] has become an issue of wide concern in
web-based video streaming. As a result, face scrambling [5]
is emerging as a practical technique to protect privacy
legally during video distribution over the public internet.
By scrambling faces detected in private videos, the privacy
of subjects can be respected, as shown in Fig.1.

Compared with full encryption methods, face scrambling
is a compromise choice because it does not really hide
information, since unscrambling is usually achievable by
simple manual tries even though we do not know all the par-
ameters. It avoids exposing individual biometric faces without
really hiding anything from surveillance video. As shown
in [5]-[13], scrambling has recently become popular in the
research field of visual surveillance, where privacy protection
is needed as well as public security. Another advantage of
face scrambling over encryption is its computing efficiency,
and usually it is far simpler than complicated encryption
algorithms. In many business cases such as public surveillance,
the purpose is limited to only privacy protection from
unintentional browsing of user data. Hence, full encryption
becomes unnecessary in this context.

There are many ways to perform face scrambling. For
example, scrambling can be done simply by masking or
cartooning [8]. However, this kind of scrambling will simply
lose the facial information, and hence subsequent face
recognition or verification becomes unsuccessful in this case.
Especially for security reasons, it is obviously not a good
choice to really erase human faces from surveillance videos.
In comparison, the Arnold transform [12], [13], as a basic
step in many encryption algorithms, is a kind of recoverable
scrambling method. Scrambled faces can be unscrambled
by several manual tries. Hence, in this work, we have
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Fig. 2. Semantic approaches such as using AAM [17]-[24] for facial emotion
estimation cannot be applied in the scrambled domain.

chosen Arnold transform based scrambling as our specific test
platform.

Face recognition has been extensively researched in the
past decade and significant progress has been seen towards
better recognition accuracy in recent reports [14]-[20]. These
approaches usually exploit semantic face models [21], [22]
where a face is considered as an integration of semantic
components (such as eyes, nose and mouth), and hence
semantic related sparse features or local binary patterns (LBP)
can be effectively used to improve the recognition accuracy.
Beyond 2D facial modelling, 3D models [22] can also be
exploited for better accuracy by taking advantage of 3D face
alignment.

However, as shown in Fig.2, a scrambled face has a very
different appearance from its original facial image. While
we can easily match a 3D model to a normal facial image,
it becomes extremely hard to do so after the face has
been scrambled. In the scrambled domain, semantic facial
components simply become chaotic patterns. In this context, it
becomes difficult to exploit landmarks or 3D models for better
accuracy. As shown in Fig.2, while face models can be easily
fitted with a facial image, it becomes impossible after a face is
scrambled into chaotic patterns. As has been discussed in [14],
one straightforward way is to use traditional data-driven
approaches, where chaotic signals are treated simply as a set
of data points spread over manifolds.

Various data-driven face recognition algorithms have
been developed over several decades. In the early days,
linear dimensionality reduction [23]-[26] was used for this
challenge, such as principal component analysis (PCA) [23],
independent component analysis (ICA) [23], and Fisher’s
linear discriminant analysis (FLD) [24]. With kernel
methods (KM) [25], these methods can be extended to
a reproducing kernel Hilbert space with a non-linear mapping,
and extended as k-PCA and k-FLD. Recent progress
on nonlinear manifold learning [26]-[31] has produced
a number of new methods for face recognition, such
as Laplacianface [29] and Tensor subspace [30]. These
approaches have been successfully used for data-driven face
recognition. However, for face recognition in the scrambled
domain, we need a robust approach to handle chaotic signals
in the scrambled domain, which appear random and beyond
human perception.

In recent research, multi-kernelization [31], [32] has been
proposed to handle the complexity of data structure, where it
is believed multiple-view discriminative structures [33], [34]
need to be discovered where a manifold may have different
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geometric shapes in different views. With the hope of utilizing
this approach for chaotic signals, in this paper we propose
a new approach called Many Kernel Random Discriminant
Analysis (MK-RDA) to handle this new challenge of chaotic
signal recognition in the scrambled domain. We also propose
a mechanism to incorporate a salience model [35] into
MK-RDA for pattern discovery from chaotic facial signals,
since it is believed that semantic features are usually salient
and useful for facial pattern classification.

In the following sections, facial image scrambling using the
Arnold transform is introduced in section II, and the semantic
mapping of facial components for robust feature extraction in
the scrambled domain is described. In section III, we introduce
the background and motivation of our “many kernel” ensemble
method, and present our many-kernel random discriminant
analysis. In Section IV, we present the framework using
MK-RDA with the salience model for chaotic facial pattern
verification. Section V gives the experimental results on three
face datasets, and conclusions are drawn in Section VI.

II. FACIAL COMPONENTS IN THE SCRAMBLED DOMAIN
A. Face Scrambling

In many IoT applications, it is not encouraged to hide any
information by encryption; on the other hand, it is legally
required to protect privacy during distribution and browsing.
As a result, scrambling becomes a compromise choice
because it doesn’t really hide information (unscrambling is
usually achievable by simple manual attempts), but it does
avoid exposing individual faces during transmission over the
internet. Additionally, scrambling usually has much lower
computation cost than encryption, making it suitable for simple
network-targeted applications using low power sensors.

Among various image scrambling methods, the Arnold
scrambling algorithm has the feature of simplicity and
periodicity. The Arnold transform [11], [8] was proposed
by V. I. Arnold in the research of ergodic theory; it is also
called cat-mapping before it is applied to digital images. It has
been widely used in visual surveillance systems where it is
favored as a simple and efficient scrambling method which
nevertheless retains some spatial coherence. In this paper, we
use this scrambling method to set up the test environment of
our algorithm in the scrambled face domain.

In the Arnold transform, a pixel at point (x, y) is shifted to
another point (x’, y') by:

Gl L o

which is called two-dimensional Arnold scrambling. Here,
x and y are the coordinates of the original pixel; N is the
height or width of the square image processed; x” and y’ are
the coordinates of the scrambled pixel. The Arnold transform
can be applied iteratively as follows:

PEI = APY, Pl =(x, ) 2)
Here, the input is the original image after the k-th Arnold
transform, and P)fy* I on the left is the output of the k + 1th
Arnold transform. k represents the number of iterations, where
k= 0,1, 2 and so on.
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b)

Fig. 3. Face scrambling by the Arnold transform. a) Facial components.
b) After one Arnold transform. c) After 2 Arnold transforms. b) After 3
Arnold transforms.

By the replacement of the discrete lattice for transplantation,
the Arnold transform produces a new image after all pixels
of the original image have been traversed. In addition, Arnold
scrambling also has the property of being cyclic and reversible.

Fig.3-a) shows a face with its facial components (i.e.,
eyes, nose and mouth) circled by different colors. Fig.3-b)
shows the scrambled face after one operation of the Arnold
transform, where it can be seen that facial components have
drastic displacements. Fig.3-c) and d) shows the scrambled
faces after two and three operations of the Arnold transform.
In comparison with Fig.3-b), the scrambled faces in Fig.3-c)
and d) are more difficult to identify by the human eye. In this
work, we use three operations of the Arnold transform to
scramble all faces.

As we can see from Fig.3, before scrambling, facial
components can easily be identified by the human eye. After
scrambling, the images become chaotic signals, and it is hard
to figure out eyes and noses. Since semantic facial components
are considered important cues for face recognition, we need
to find a way to incorporate semantic approaches into the
scrambled domain to attain higher matching accuracy.

In many IoT based applications, it may not be allowed to
unscramble detected faces due to privacy-protection policies.
Moreover, unscrambling may involve parameters (such as the
initial shift coordinates) that are usually unknown by the online
software. Facial recognition in the scrambled domain then
becomes a necessity in these IoT applications.

B. Semantic Facial Components

Fundamentally a 2-D face image is the projection of
a real 3-D face manifold. This viewpoint leads to model-based
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face recognition, where semantic facial components (such
as eyes, nose, and lips) are modeled by their parameters.
A very frequently applied face model is the active appearance
model (AAM) [19]-[22]. 3D facial information is better for
describing the semantic facial components in the presence
of illumination and pose changes, where 2-D descriptors
sometimes turn out to be less effective. Cootes et al. [22] have
advocated that such semantic facial components constitute
the meaning of a face and decisively form the basis of face
recognition.

Along this roadmap, template-based face description [20]
has been considered to emphasize the importance of
semantic facial components. In our human perception system,
concept-level semantic features are more meaningful than
pixel-level details. A good emotion estimation model usually
relies on the importance of semantic features. Changes in
a single pixel or sparse set of pixels should not distort the
final decision.

Though semantic approaches have attained great success
in facial analysis, they need a robust scheme to map a 2D
image into its semantic feature space or 3D deformable model.
This computation is not trivial and usually cannot be afforded
by many real-world applications such as mobile computing
platforms. Besides, the detection of semantic features can be
sensitive to different conditions, and hence produces extra
errors in face classification. To take advantage of semantic
features without worrying about its computing complexity, in
this paper we introduce a salience-aware method into our facial
analysis.

C. Semantic Salience Mapping of Facial Images

Since semantic components are important cues to identify
a specific face, we need to find a way to introduce these factors
in statistic face modelling. In this paper, we propose to use
salience learning for semantic facial mapping, and incorporate
the learned semantic map into a random forest method for face
recognition.

As shown in Fig.4-a), facial components are usually salient
features in a facial image. In this paper, we employ the Deep
Salience model [38] for sematic feature mapping. Unlike other
models based on color salience using pixel contrast, this deep
salience model bases its algorithm on structural salience, and
hence can easily find the semantic components as its salient
features, as shown in Fig.4-a). This fits well with our purpose
to exploit semantic components in a facial image.

We then apply a Gaussian mixture model to summarize
the learned salience maps of the training dataset, where the
salience distribution is considered as a mixture of Gaussian
functions,

pxld) =D wig (x|ui, 01) 3)

where g (x|u;,o0;) is the normalized Gaussian distribution
with mean u; and variance o;. In our work, we use
a two-class GMM model and estimate the probability of a pixel
being salient or non-salient. Learning with GMM mixtures
can find optimized Gaussian distribution parameters in the
GMM model, and consequently produce a distribution map
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b)

Fig. 4. Semantic salience of facial images. a) Structural salience mapping
of semantic features. b) Summarized semantic map. c) Scrambled semantic
map.

S = p(x|A) from Eq.(2), which is referred to as the semantic
importance map in this paper.

Fig.4-b) shows the estimated semantic importance map
learned from Fig.4-a), which highlights semantic features such
as eyes, nose and mouth. This importance map represents the
importance of each feature subspace in terms of its relation
to semantic features. Fig.4-c) shows the scrambled semantic
map. Once we have the semantic salience map of the training
dataset, we can then use it to guide the feature sampling to
favor semantic features.

III. ENSEMBLES OF MANY-KERNEL
DISCRIMINANT ANALYSIS

A. Background on Multi-Kernel Approaches

In many real world applications such as face recognition
and image classification, the data often has very high dimens-
ionality. Procedures that are computationally or analytically
manageable in low-dimensional spaces can become completely
impractical in a space having several thousand dimensions.
This has been well known in machine learning as a notorious
issue — the “Curse of Dimensionality” [1]-[3]. To tackle this
challenge, various techniques [1]-[11] have been developed
for reducing the dimensionality of the feature space, in the
hope of obtaining a more manageable problem. Dimensionality
reduction has become an especially important step for face
classification.

Fig. 5. Multi-view dataset and multi-manifold dataset. When the sequence of
data points in the second subspace is shuffled, the two sub-manifolds become
independent of each other, and cannot be unified in a higher dimensional
subspace. a) Multi-View Problem. b) Multiple Manifold Problem.

Various algorithms have been developed for image-based
face recognition. In this paradigm, dimensionality reduct-
ion [18] has always been a primary concern. As mentioned
previously, methods developed for this challenge include
principal component analysis (PCA) [23], independent
component analysis (ICA) [23], and Fisher’s linear discrimi-
nant analysis (FLD) [24]. With kernel methods (KM) [25],
these methods can be extended to a reproducing kernel
Hilbert space with a non-linear mapping, and extended as
k-PCA, k-ICA and k-FLD. Recent progress on nonlinear
manifold learning [26]-[30] has led to a number of new
methods for face recognition, such as Laplacianface [34],
Tensor subspace [35], non-negative matrix [36], and local
Fisher discriminant analysis (LFDA) [21], [37]. These
approaches wusually assume there is an underlying
discriminative structure to discover, which leads to the
paradigm of manifold learning.

Recently, the multi-view problem has been noticed by
the research community, where the same manifold can
have different shapes in different subspaces, as shown in
Fig.5-a). Foster et al. have employed canonical correlation
analysis (CCA) [31] to derive the low dimensional embedding
of two-view data and to compute the regression function
based on the embedding. Hedge er al. [32] propose a multiple
projection approach from the same manifold. Hou et al. [33]
used the pairwise constraints to derive embedding in multiple
views with linear transformation. Xia et al. [34] combined
spectral embedding with the multi-view issue. Han er al. [35]
proposed a sparse unsupervised dimensionality reduction
to obtain a sparse representation for multi-view data.
Lin et al. [36] proposed multiple kernel learning of a manifold,
where various kernel spaces are constructed with different sets
of parameters. Zien and Ong [37] considered multiple kernels
with regards to multi-class cases.

In the multi-view problem, as shown in Fig.5-a), although
a manifold has different forms in different subspaces, these
forms can always be unified as the same manifold in a higher-
dimensional subspace. However, this may not always be true.
As shown in Fig.5-b), when the sequence of data points
in the second subspace is shuffled, the combination of two
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submanifolds simply creates a noisy-like distribution. This
means two submanifolds cannot be merged at all. In this
case we have to treat it as a multiple or even “many
manifold” problem, where multiple manifold structures need
to be discovered.

In our facial recognition in the scrambled domain, facial
images become chaotic signals, as shown in Fig.1 and Fig.2.
In this real-world case, its underlying discriminative structures
could be more like the case in Fig.5-b), where multiple
manifold structures need to be discovered. In this paper, we
include this case in our consideration and propose a new
many-kernel approach to handle its complexity. Before we go
further, we give an introduction to kernel based analysis.

B. Preliminary on Kernel Based Discriminant
Analysis (KDA)

For a set of data points {x;} € RV, we may select a set of
data points as the landmarks {L;} that can characterize this
dataset. A data point on the manifold then can be located by
its kernel distance to the landmarks:

xi—>1ci={K (xi,Lj)} (4)

Hence, each data point is represented in the constructed kernel
space as k; € RM™_ where M is the number of selected
landmarks. Following this, we then simply apply Fisher’s
linear discriminant analysis in the kernel space:

[©” S|
arg max

— 5
o [oTswo ©

where @ is the projection matrix, and Sp is the between-class
covariance matrix:

Kc
Sp= > nelue— il (6)

c=1
and S, is the within-class covariance matrix:

Kc ne

Sw= > i — el ©

c=1i=1
By optimizing over Eq.(7), we then have the Eigen projection
matrix W, and each data point is then represented by its new
coordinates in the KDA space:

yi = Dk; (8)

Here, © is an Eigen matrix € RDXM yi € RP, and D is
usually a number smaller than M as well as smaller than the
number of classes in the training dataset {x;}.

C. Many Kernels for the Many Manifold Problem

Though it has been assumed in many methods that there is
only one underlying manifold structure, it is obvious that there
can often be multiple manifolds underlying many real-world
datasets, as shown in Fig.5-b). However, the discovery of
the underlying manifold structures is an inverse engineering
problem that could be very complex, and often intractable.

For example, consider selecting M dimensions out of the
feature space €R": there are K = N!/{M!(N — M)!} such
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List 1 Random Generation of Many Kernels
Input:
{x;} — Dataset;
Lx — Number of kernels;
Output:
{xik } — Constructed “many kernel” representations;
Process:
Loop for Lk times
Generate random selection {/7"}
Select K; landmarks from {x;}
Loop for each data point x;
Compute its kernel representation Kl-k based on {lj? }.
End Loop
End Loop
Return {xik }.

choices that can be made, and within each selection an
independent sub manifold may be discovered. For example,
when N = 10 and M = 5, K will be 252. For a facial
image, there could be 64 x 64 = 4096 dimensions, and
M could be any number. Hence, the estimation of possible
subspaces becomes an NP-hard problem that cannot be
handled exhaustively in realistic computing time. Hence, the
discovery of “many manifolds” becomes a major challenge
that has not yet been fully appreciated.

In this work, to address the challenge shown in Fig.5-b), we
propose a randomization strategy to generate “many kernels”
and try to cover as many manifolds as possible in a given
dataset by chance, which reduces the complexity of the “many
manifolds” problem from its exponential computing time to
something manageable.

D. Many Kernels From Random Feature Selection

If we have K data points {x;}, then typically the random
selection of subspaces can be easily attained by generating
a list of random numbers /i, and selecting Kj features to
construct the new datasets:

Z]j‘- ~ xj (k) ©)

Here, {z;} € RKL. Then we can construct a kernel space based
on this randomly selected subspace:

ot = )]

We can repetitively redo the above randomization process, and
as a result, we can easily construct as many kernels as we want.

If we have Lk kernels and each kernel has K; dimensions,
then for each data point x;, we will have the kernel
representation {K{‘} actually as an Lgx x K; matrix.
To guarantee the kernelized dimensions are not too much more
than the original data dimensions, we add a constraint:

(10)

Lx xKp ~N, (11)

which means the “many kernel” process will not increase or
decrease the dimensions. This process is outlined in List L.
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E. Many-Kernel Random Discriminant Analysis

The purpose of this many-kernel strategy is to find the
underlying discriminative structures in each subspace. After
we obtain the many kernel based representation zcl.k, we can
then apply discriminant analysis over each kernel subspace
and find its discriminative projection.

For a set of training data and its kernel representation {Kik 1,
we can calculate its within-class covariance at its k-th kernel

subspace as:

Kc ne
S D3) 3 T )
c=1 j=
and its between-class covariance matrix:
Kc
Sh=>"ne|uk - 7| (13)
c=1

To find the most discriminative features, we can maximize its
between-class covariance over its within-class one by finding
a projection matrix ®:

o sht]
O ~ arg max

r = 1 14
| St k| ”

By optimizing over Eq.(10), we then have the Eigen
projection matrix ®f € BP*KL For each data point K!‘ , we

can then have its discriminant projection in its k-th subspace:
k k. _k
i =P'r; (15)

For each kernel subspace, we can obtain the kernel
discriminant projection for each data point. As a result, we will
have the Lk projection:
k
v~}

BDXLK

(16)

where Y will be a matrix €

IV. FACIAL SEMANTIC AWARE ENSEMBLES OF MANY
KERNELS

A. Salience-Biased Feature Space Reconstruction

Unsurprisingly, salient features usually play an important
role in face classification. Therefore, rationally we can expect
a mechanism to give salient features more weight than others.
In this work, we consider a biased strategy to reconstruct the
feature space to favor semantic salient features.

Considering a scrambled facial image x as a vector of facial
features/signals {fi, f2..., fx,...}, and a semantic salience
map S ~ {s1,%2..., 5k, ...} learned from training (as shown
in Fig.4-c), we can then construct a new feature space by
replicating each feature according to its semantic importance.
Assuming the maximum multiplicative factor as K, the
repetition of each feature is then defined as:

Si
1+ K

k; = int s—————
max {s; }
i

a7)
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Fig. 6.  Selecting kernel subspaces toward semantic features. a) Random
feature selection in scrambled domain guided by the salience map in Fig.4-c).
b) The corresponded pixels on the original facial image. c) Actual hit rates
in scrambled domain. d) Unscramble the hit map back to facial domain.

Here, k; means how many times the i-th feature/signal will be
repeated, and s; is the salience value of the i-th signal shown
in Fig.4-c). Consequently, we have a new set of features:

Xnew= f])"')f]a"'
—_—

k1 ki

s Sls coes Sy cuven (18)
—_—

With the above multiplicative process, salient features will
have a higher likelihood to be chosen in the randomized
selection process in Eq.(9).

We then can apply the random selection to select subspaces
from the reconstructed feature space ype, to form the “many
kernels” for MK-RDA. Fig.6 shows the results of such
a salience-guided selection using the scrambled salience map
in Fig.4-c). We can see that with the salience guiding, semantic
facial features will be more likely to be used to form our
kernels subspaces.

B. Salience-Aware MK-RDA

After the feature space is reconstructed, we can apply
MK-RDA on the reconstructed datasets {l).( } instead of {x;},
and we have:

Y =¥ x K (z(0). z(xj))s Tw{q)k} 1

At the end, we will have Y as a matrix € BP*LK,
For any two data points x; and x», their distance in the
projected subspaces can be calculated as:
k Mk
dy = |k =4 20)

Here || - || denotes the Euclidean norm.
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For data classification, the likelihood of a data point
belonging to a class ¢ can be estimated from its distances
to all training data points in the k-th learned kernel subspace:

k P (cl2)
P (cl(l) ) =) Q1)
> P (Ck, (Dk)
Here, P(c|®*) denotes the estimated probability in the k-th
kernel projection ®* that an input data point x belongs to
aclass c (c= 1, 2,...,n.). For all kernels, the discriminant
function is defined as:

ge (1) = % 2P (clom) (22)
ke

and the decision rule is to assign x to class ¢ for which ¢, (x)
is the maximum.

C. Overview of the Salience-Aware Scheme

Fig.7 gives an overview of the proposed salience-aware
scheme for scrambled face verification. Given a training
dataset, faces are forwarded to the training procedure. The
offline procedure then learns its semantic salience map.
Following this, the database is scrambled and the feature space
is reconstructed by multiplying salient features according to
their semantic salience weights. Random sampling is then
applied to select features sparsely to construct as many kernels
as is allowed, and discriminant analysis is used to learn
a kernel subspace for each kernel.

After a scrambled facial image is input as a test, the input is
projected into each kernel subspace, and the distance to each
training sample is computed. The decision procedure is based
on the combination of all kernel subspaces via Eq.(22).

It is noted that we can have unscrambled images (mainly for
statistic salience learning) in the offline training because offline
training is carried out centrally with authorities’/business
supervisors’ permission and will not undermine users’ privacy.
Privacy protection is mainly an issue with distribution over the
internet.

In this scheme, the training procedure can be carried
out offline. The online verification then becomes purely
a data-driven process. In the test procedure, all test images and
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Fig. 8. Parameters in Salience-Aware MK-RDA. a) A small face

dataset — Yale dataset. b) Number of kernels in MK-RDA. c¢) Semantic weight
factor Ks.

semantic maps are scrambled for privacy protection, and no
original face will be utilized for recognition purposes. Hence,
it is similar to other data-driven approaches, and is simple and
straightforward.

D. Discussion of Salience-Aware MK-RDA

Before we proceed to our benchmark experiments, there are
two questions that need to be answered. First, in the MK-RDA
mechanism, what is the best Lx to choose? Namely, how
many kernels are enough? Second, in the above salience-aware
mechanism, can such a salience biased mechanism really help
attain better accuracy in face recognition? Here, we design an
experiment to find out the answers to these two questions.

For this experiment, we chose the Yale face dataset [39]
for our tests. In the Yale dataset, each of the 15 subjects
has 11 sample faces with different expression, illumination and
glasses configuration. We only choose 6 faces with different
expressions for our test, as shown in Fig.8-a). With this small
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dataset, we carried out the face recognition tests by splitting
the small dataset into training and test datasets, where the
training dataset has five subjects and test dataset has the rest.
We then varied L, the number of kernels, and K, the max
weight of salience map, in our experiments. We then examined
which set of parameters gives the best error rates. Fig.8 shows
the results of our experiment.

Fig.8-b) gives the experiment results on the number of
kernels. Given K as 1.5, the number of kernels varied
from 5 to 60. We can see that the error rate is lowest when L g
is around 32. Basically, more kernels mean more computing
time. As long as we have a low error rate, using fewer kernels
is often preferable. It is also observed that compared with
the baseline kLDA, MK-RDA has attained marginally better
accuracy.

We then ran an experiment on K. As shown in Eq.(17),
K; = 0 means no bias. The bigger K; is, the more biased it
is toward the salient features. Fig.8-c) shows the experimental
results. It can be seen that the error rate is lowest when K
is around 2.5. It is also observed that biased sampling with
higher K simply worsens the accuracy because it means some
non-salient features may be abandoned in the random process
even though they may contribute to the recognition process.

V. EXPERIMENTS

To validate our algorithm, we implemented our face
recognition method in Matlab, and ran on a PC with 2.5GHz
dual-core Intel CPU. Before running the benchmark on face
datasets, all images in the datasets were scrambled using the
(triple) Arnold transform [7], [8]. Fig.9 shows selected face
images from the three datasets: ORL, PIE and PUBFIG.

The ORL database has 40 subjects, each with 10 faces
at different poses. In total, 400 faces are used for the test.
The CMU PIE database [39] has 41,368 faces, comprising
67 classes with about 170 faces per class, including a wide
spectrum of variations in terms of pose, illumination,
expression and appearance. In our tests, we use 50 faces per
subject, similar to [29] and [30].

The PUBFIG database [41] contains wild faces selected
from the internet. It is very similar to LFW [42] but it provides
standard cropped faces. As has been shown [42], background
textures in LFW can help attain a higher accuracy. Since we
consider face recognition only, PUBFIG fits better with our
purpose.

In many previous reports [9], the leave-one-out test scheme
has been widely used. However, this test is too simple because
it leaves one image out as the test image and keeps all the rest
in the training set. In our test scheme, we try to increase the
challenge and adopt a test scheme called leaving-k-out, where
in each test k samples per category are left out as test samples.
For example, we have N samples, and then we choose all faces
of (N-k) samples as the training dataset, and use k samples for
the test.

For a leaving k out scheme, there are usually Clli, choices.
In our experiment, we just chose 3 sets of consecutive faces
from N samples, starting at N/4, N/2 and 3N /4. As a result,
we have 3 sets of tests in turn for a leave-k-out experiment.
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Fig. 9. Facial images in the ORL, PIE and PUBFIG datasets. a) Samples
in the ORL database and their scrambled images. b) Samples in the PIE
database and their scrambled images. ¢) Wild faces in the PubFig dataset and
their scrambled images.

The final accuracy is given by the average of all three tests. It is
noted that the consecutive splitting will usually bring out the
large difference between test and training datasets, because the
datasets have faces varied consecutively and the first k faces
are usually very different from the last (N-k) faces.

Our benchmark tests aim to verify whether or not the
proposed MK-RDA can enhance the accuracy on scrambled
face recognition. Our approach is a pure data-driven face
classification method. Hence, similar to [14], we compared
our approach with a number of typical data-driven methods,
including Eigenface [24], Fisherface [24], kPCA [25],
kLDA [25], and Laplacianface (LPP) [30], each applied to
facial images in the scrambled domain. In the evaluation of
the proposed scheme, we simply use the nearest neighbor
classifier because any involvement of any other methods may
blur the comparison and we then cannot easily assert if the
enhancement comes from our MK-RDA scheme or any other
underlying more complicated classifiers.

A. Tests on the ORL Dataset

The ORL database has 10 faces per subject. In our
leave-k-out test, k varies from 1 to 6. In total, each k-test
has 3 subtests, with different selections of query faces from
10 faces. The final accuracy is the average on all subtests.

Fig.10-a) shows all leave-k-out tests, where k varies
from 1 to 6. We can see that the proposed MK-RDA attained
the best accuracy in all five k tests.

Fig.10-b) lists out the overall accuracy by averaging all k
tests. Here, we included PCA, LDA, kPCA, kLDA and
LPP for comparison because they are typical data-driven
face recognition methods based on dimensionality reduction.
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Fig. 10. Leave-k-out tests on ORL dataset. a) Leave-k-out tests. b) Over all
accuracy of all k fests.
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Fig. 11. Leave-k-out tests on PIE dataset. a) Leave-k-out tests. b) Over all

accuracy of all k fests.

We can see that our MK-RDA attained the best accuracy
over all k-tests of around 95.7%. In comparison, LPP
attained 91.5%, kLDA 93.3%, LDA 93.6%, and kPCA and
PCA attained 87.5%.

B. Tests on the PIE Dataset

In our experiment, we used 50 faces per subject and in
total 3350 faces were used in our leave-k-out experiment.
In this test scheme, k faces from N samples per subject are
selected as test samples, and the rest are used as training
samples.

Fig.11 gives the test results on the PIE dataset. Fig.11-a)
shows all leave-k-out tests, where k varies from 5 to 25.
We can see that the proposed MK-RDA attained the best
accuracy in all k tests. However, when k is increased, fewer
samples are left for training and as a result the accuracy drops
in all methods.

Fig.11-b) lists out the overall accuracy by averaging all
k tests. PCA and kPCA attained an average accuracy of
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Fig. 12.  Experimental results on PubFig wild faces. a) Rank-1 accuracy

versus dimensionality. b) TP-FP curves.

around 76.0%, LDA attained 80.0%, kLDA got a better score
of 81.5%, and LPP has the second best accuracy of 83.1%.
In comparison, our MK-RDA attained the best accuracy
of 91.5, clearly better than the other data-driven approaches.

C. Tests on PUBFIG Dataset

The PUBFIG dataset is designed to compare various
algorithms against the human vision system. Its typical
benchmark test can have as many as 20,000 pairs of faces
for comparison. However, in IoT-targeted scrambled domain,
human perception can barely recognize any scrambled faces,
making it meaningless to carry out this human-compared test.
On the other hand, in the scenarios of IoT applications, usually
we have training datasets on the server side, making it most
likely as a leave-k-out experiment. For this reason, we need
to design a new evaluation scheme.

In our experiment, we selected 52 subjects with 60 faces
each, and split it randomly into test and training datasets, with
each having 30 x 52 = 1560 faces. We then test all data-driven
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methods by comparing each test face against all training faces.
In total, we have 1560 x 1560 = 2.4 million pairs for testing.
Here we use two criteria to evaluate our experiment. One is
the rank-1 accuracy versus dimensionality. The other is the
true positive (TP) versus the false positive (FP).

Fig.12-a) shows the accuracy versus dimensionality. It is
shown that the proposed MK-RDA attained marginally
better accuracy-dimensionality performance, consistently
corroborating the underlying conjecture that the proposed
many kernels method may help capture the intrinsic multiple
manifolds lying under the given dataset, as discussed in
Section III.

Fig.12-b) gives the results on TP-FP curves. Here, we
obtained a likelihood matrix of 1560 x 1560 elements by
comparing each test sample against all training samples. Then
we applied varying thresholds on the likelihood matrix, and
counted how many pairs classified as positive are false positive
and true positive pairs. From the results shown in Fig.12-b),
it is observed that PCA has the worst performance, nearly
no different from random guessing. From the comparison, we
can clearly see that the proposed MK-RDA has clearly better
performance on the true/false positive tests, with consistently
better true/positive rates (TPR) over other data-driven face
recognition methods.

VI. CONCLUSION

In conclusion, we have identified a new challenge in
scrambled face recognition originated from the need for
biometric verification in emerging IoT applications, and
developed a salience-aware face recognition scheme that can
work with chaotic patterns in the scrambled domain. In our
method, we conjectured that scrambled facial recognition
could generate a new problem in which “many manifolds”
need to be discovered for discriminating these chaotic signals,
and we proposed a new ensemble approach — Many-Kernel
Random Discriminant Analysis (MK-RDA) for scrambled
face recognition. We also incorporated a salience-aware
strategy into the proposed ensemble method to handle chaotic
facial patterns in the scrambled domain, where random
selection of features is biased towards semantic components
via salience modelling. In our experiments, the proposed
MK-RDA was tested rigorously on three standard human face
datasets. The experimental results successfully validated that
the proposed scheme can effectively handle chaotic signals
and drastically improve the recognition accuracy, making our
method a promising candidate for emerging IoT applications.

REFERENCES

[11 A. Singh, S. Karanam, and D. Kumar, “Constructive learning for
human-robot interaction,” IEEE Potentials, vol. 32, no. 4, pp. 13-19,
Jul. 2013.

[2] D. Jayatilake, T. Isezaki, Y. Teramoto, K. Eguchi, and K. Suzuki, “Robot
assisted physiotherapy to support rehabilitation of facial paralysis,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 3, pp. 644—653, May 2014.

[3] D. McDuft, R. E. Kaliouby, and R. W. Picard, “Crowdsourcing facial
responses to online videos,” IEEE Trans. Affective Comput., vol. 3, no. 4,
pp. 456468, Fourth Quarter 2012.

[4] S. Fleck and W. Strasser, “Smart camera based monitoring system
and its application to assisted living,” Proc. IEEE, vol. 96, no. 10,
pp- 1698-1714, Oct. 2008.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 8, AUGUST 2016

[5] A. Melle and J.-L. Dugelay, “Scrambling faces for privacy protection
using background self-similarities,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Oct. 2014, pp. 6046-6050.

[6] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft, “Privacy-preserving face recognition,” in Proc. 9th Int. Symp.
Privacy Enhancing Technol. (PETS), 2009, pp. 235-253.

[7] T. Honda, Y. Murakami, Y. Yanagihara, T. Kumaki, and T. Fujino,
“Hierarchical =~ image-scrambling ~ method  with  scramble-level
controllability for privacy protection,” in Proc. IEEE 56th Int. Midwest
Symp. Circuits Syst. (MWSCAS), Aug. 2013, pp. 1371-1374.

[8] A. Erdélyi, T. Barat, P. Valet, T. Winkler, and B. Rinner, “Adaptive
Cartooning for Privacy Protection in Camera Networks,” in Proc.
11th IEEE Int. Conf. Adv. Video Signal Based Surveill., Aug. 2014,
pp. 44-49.

[9] F. Dufaux and T. Ebrahimi, “Scrambling for Video Surveillance with
Privacy,” in Proc. Conf. Comput. Vis. Pattern Recognit. Workshop,
Washington, DC, USA, 2006, pp. 106-110.

[10] F. Dufaux, “Video scrambling for privacy protection in video
surveillance: Recent results and validation framework,” Proc. SPIE,
vol. 8063, Jul. 2011, Art. no. 806302.

[11] T. Winkler and B. Rinner, “Security and privacy protection in visual
sensor networks: A survey,” ACM Comput. Surv., vol. 47, no. 1, 2014,
Art. no. 2.

[12] Y. Wang and T. Li, “Study on Image Encryption Algorithm Based on
Arnold Transformation and Chaotic System,” in Proc. Int. Conf. Intell.
Syst. Design Eng. Appl., Oct. 2010, pp. 449-451.

[13] Z. Tang and X. Zhang, “Secure image encryption without size limitation
using arnold transform and random strategies,” J. Multimedia, vol. 6,
no. 2, pp. 202-206, Apr. 2011.

[14] Y. Rahulamathavan, R. C.-W. Phan, J. A. Chambers, and D. J. Parish,
“Facial expression recognition in the encrypted domain based on local
Fisher discriminant analysis,” IEEE Trans. Affective Comput., vol. 4,
no. 1, pp. 83-92, Jan./Mar. 2013.

[15] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” /[EEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 2, pp. 210-227, Feb. 2009.

[16] C. Shan, S. Gong, and P. McOwan, “Facial expression recognition based
on local binary patterns: A comprehensive study,” Image Vis. Comput.,
vol. 27, no. 6, pp. 803-816, 2009.

[17] P. Liu, S. Han, Z. Meng, and Y. Tong, “Facial expression
recognition via a boosted deep belief network,” in Proc. CVPR, 2014,
pp. 1805-1812.

[18] D. Chen, X. Cao, F. Wen, and J. Sun, “Blessing of dimensionality:
High-dimensional feature and its efficient compression for face
verification,” in Proc. Comput. Vis. Pattern Recognit. (CVPR), 2013,
pp. 3025-3032.

[19] P. Perakis, G. Passalis, T. Theoharis, and 1. A. Kakadiaris, “3D facial
landmark detection under large yaw and expression variations,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1552-1564,
Jul. 2013.

[20] S. Taheri, V. M. Patel, and R. Chellappa, “Component-based recognition
of faces and facial expressions,” IEEE Trans. Affective Comput., vol. 4,
no. 4, pp. 360-371, Oct./Dec. 2013.

[21] R.-L. Hsu and A. K. Jain, “Semantic face matching,” in Proc. IEEE Int.
Conf. Multimedia Expo, Aug. 2002, pp. 145-148.

[22] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance
models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6,
pp. 681-685, Jun. 2001.

[23] B. A. Draper, K. Baek, M. Bartlett, and J. Beveridge, “Recognizing
faces with PCA and ICA,” Comput. Vis. Image Understand., vol. 91,
nos. 1-2, pp. 115-137, 2003.

[24] A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 23, no. 2, pp. 228-233, Feb. 2001.

[25] M. H. Yang, “Kernel eigenfaces vs. kernel Fisherfaces: Face recognition
using kernel methods,” in Proc. Int. Conf. Autom. Face Gesture
Recognit., 2002, p. 215.

[26] B. Tenenbaum, V. Silva, and J. Langford, “A global geometric
framework for nonlinear dimensionality,” Science, vol. 290, no. 5500,
pp. 2319-2323, 2000.

[27] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323-2326,
2000.

[28] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in Proc. Adv. Neural Inf. Process. Syst.,
2001, p. 14.



JIANG et al.: FACE RECOGNITION IN THE SCRAMBLED DOMAIN VIA SALIENCE-AWARE ENSEMBLES OF MANY KERNELS

[29] X. He, S. Yan, Y. Hu, P. Niyogi, and H. J. Zhang, “Face recognition
using Laplacianfaces,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 3, pp. 328-340, Mar. 2005.

X. He, D. Cai, and P. Niyogi, “Tensor subspace analysis,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), vol. 18. Vancouver, BC, Canada,
Dec. 2005, pp. 499-506.

D. P. Foster, S. M. Kakade, and T. Zhang, “Multi-view dimensionality
reduction via canonical correlation analysis,” TTI-C, Chicago, IL, USA,
Tech. Rep. TTI-TR-2008-4, 2008.

C. Hegde, M. Wakin, and R. Baraniuk, “Random projections for
manifold learning,” in Proc. NIPS, 2008, pp. 641-648.

C. Hou, C. Zhang, and Y. Wu, “Multiple view semi-supervised
dimensionality reduction,” Pattern Recognit., vol. 43, no. 3, pp. 720-730,
2010.

T. Xia, D. Tao, T. Mei, and Y. Zhang, “Multiview spectral embedding,”
IEEE Trans. Syst, Man, Cybern. B, Cybern., vol. 40, no. 6,
pp. 1438-1446, Dec. 2010.

Y. Han, F. Wu, D. Tao, J. Shao, Y. Zhuang, and J. Jiang, “Sparse
unsupervised dimensionality reduction for multiple view data,” [EEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 10, pp. 1485-1496,
Oct. 2012.

Y. Y. Lin, T. L. Liu, and C. S. Fuh, “Multiple kernel learning for
dimensionality reduction,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 6, pp. 1147-1160, Jun. 2011.

A. Zien and C. S. Ong, “Multiclass multiple kernel learning,” in Proc.
24th Int. Conf. Mach. Learn., 2007, pp. 1191-1198.

R. Jiang and D. Crookes, “Deep salience: Visual salience modeling via
deep belief propagation,” in Proc. AAAI, Quebec City, QC, Canada,
Jul. 2014, pp. 2773-2779.

T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and
expression (PIE) database,” in Proc. IEEE Int. Conf. Autom. Face
Gesture Recognit., May 2002, pp. 46-51.

M. J. Lyons, J. Budynek, and S. Akamatsu, “Automatic classification of
single facial images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 21,
no. 12, pp. 1357-1362, Dec. 1999.

N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, “Attribute and
Simile Classifiers for Face Verification,” in Proc. IEEE 12th Int. Conf.
Comput. Vis. (ICCV), Sep./Oct. 2009, pp. 365-372.

G. B. Huang, V. Jain, and E. Learned-Miller, “Unsupervised joint
alignment of complex images,” in Proc. Int. Conf. Comput. Vis. (ICCV),
Oct. 2007, pp. 1-8.

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Richard Jiang received the Ph.D. degree in
computer science from Queen’s University Belfast,
Belfast, U.K., in 2008.

He has been with Brunel University,
Loughborough University, Swansea University,
the University of Bath, and the University of
Sheffield since 2008. He joined Northumbria
in 2013. He is currently a Lecturer with the
Department of Computer Science and Digital
Technologies, Northumbria University, Newcastle
upon Tyne, U.K. He has authored or coauthored
over 40 publications. His current research interests include Artificial
Intelligence, Man—-Machine Interaction, Visual Forensics, and Biomedical
Image Analysis. His research has been funded by EPSRC, BBSRC, TSB,
EU FP, and industry funds.

Somaya Al-Maadeed received the Ph.D. degree in computer science from the
University of Nottingham, Nottingham, U.K., in 2004. She has been a Visiting
Fellow with Northumbria University, Newcastle upon Tyne, U.K., since 2012.
She is currently with the Department of Computer Science and Engineering,
Qatar University, Doha, Qatar, as an Assistant Professor, where she is
involved in research on biometrics, writer identification, image processing,
and document analysis. She has authored around 40 papers. She is a member
of different international computer science committees. She has been awarded
a number of grants. Her team received the Best Performance Award in
the 2011 International Conference on Document Analysis and Recognition’s
Signature Verification Competition and Music Scores Competition.

1817

Ahmed Bouridane received the Ingenieur d’Etat
degree in electronics from the Ecole Nationale
Polytechnque of Algiers, Algeria, in 1982,
the M.Phil. degree in electrical engineering (VLSI
design for signal processing) from the University
of Newcastle-Upon-Tyne, U.K., in 1988, and the
Ph.D. degree in electrical engineering (computer
v vision) from the University of Nottingham, U.K.,
in 1992.

#' ‘& He was a Research Developer in telesurveillance
o : and access control applications, from 1992 to 1994.
In 1994, he joined Queen’s University Belfast, Belfast, U.K., initially as
a Lecturer in computer architecture and image processing and then as
a Reader in computer science. He became a Professor of Image Engineering
and Security with Northumbria University, Newcastle, U.K., in 2009.
He has authored or coauthored over 200 publications. His research interests
are in imaging for forensics and security, biometrics, homeland security,
image/video watermarking, and cryptography.

Danny Crookes received the B.Sc. degree in
mathematics and computer science, and the
Ph.D. degree in computer science from Queen’s
University Belfast in 1977 and 1980, Belfast, U.K.

He became a Professor of Computer Engineering
with Queen’s University Belfast, in 1993, and he was
the Head of Computer Science from 1993 to 2002,
where he is currently the Director of Research for
Speech, Image and Vision Systems with the Institute
of Electronics, Communications and Information
Technology. He has authored over 220 scientific
papers in journals and international conferences. His current research
interests include the use of novel architectures (GPUs and FPGAs) for high
performance speech and image processing. He is also involved in projects
in automatic shoeprint recognition, speech separation and enhancement, and
medical imaging.

M. Emre Celebi received the B.Sc. degree in
computer engineering from Middle East Technical
University, Ankara, Turkey, in 2002, and the
M.Sc. and Ph.D. degrees in computer science
and engineering from the University of Texas at
Arlington, Arlington, TX, USA, in 2003 and 2006,
respectively.

He is currently a Professor with the Department
of Computer Science, University of Central
Arkansas, Conway, AR, USA. He has authored over
130 articles in journals and conference proceedings.
His current research interests include image processing and analysis. His
recent research is funded by grants from the National Science Foundation.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


