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We consider Bayesian estimation of the stress–strength reliability based on record values.
The estimators are derived under the squared error loss function in the one parameter as
well as two-parameter exponential distributions. The Bayes estimators are derived, in
some cases in closed form, and their performance is investigated in terms of their bias
and mean squared errors and compared with the maximum likelihood estimators. An illus-
trative example is given.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Let X1;X2; . . . be an infinite sequence of iid random variables. An observation Xj is called an upper record if it exceeds all
previous observations. In this paper, we shall consider Bayesian inference for the stress–strength reliability Pr Y < Xð Þ based
on upper records (or simply records) when X and Y have exponential distributions. Here the random variable Y denotes the
strength while X denotes the stress. In reliability engineering the system is still functioning as far as the stress does not ex-
ceed strength. The probability of this event is called the stress–strength reliability. Even though the name comes from engi-
neering, the application of this model extends to other fields. For example in medical science when Y and X denote the
lifetimes of patients under the control and treatment groups respectively, this probability is used as a measure of treatment
effectiveness. Other applications and motivations for this model may be found in [1]. Baklizi [2] has considered this model
and developed classical inference procedures for the stress–strength reliability in the one and two-parameter exponential
distribution. In a subsequent publication, Baklizi [3] has considered classical and Bayesian inference for this model in the
generalized exponential distribution. In this paper we shall consider Bayesian inference for Pr Y < Xð Þ in the one and two-
parameter exponential distribution assuming either common location parameters, common scale parameters or unrestricted
scale and location parameters. We have derived the Bayes estimators of the stress–strength reliability in all these cases and
compared them with the maximum likelihood estimators in terms of bias and mean squared error (MSE) using simulation
under a variety of experimental conditions.

In section we consider the one parameter case while the two parameter case is treated in Section 3. In Section 4 we de-
scribe a detailed simulation study carried out to investigate and compare the performance of the derived Bayes estimators
with the maximum likelihood estimator. An example is given in Section 5. Section 6 concludes the paper.
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2. Inference about Pr (Y<X) in the one parameter exponential distribution

There has been a lot of interest in the Bayesian estimation of the stress–strength reliability in the one parameter expo-
nential distribution. Enis and Geisser [4] considered this problem with conjugate gamma priors for the parameters of the
stress and strength distributions. The case of non-informative Jeffreys prior is treated in [1]. Jeevanad and Nair [5] have con-
sidered Bayesian estimation of the stress–strength reliability in the presence of spurious observations. Thompson and Basu
[6] have derived the reference and non- informative prior distributions for the estimation of the stress–strength reliability.

All these contributions deal with ordinary random samples from the parent populations. In this section we consider esti-
mation of the exponential stress–strength model based on record values. The probability density function of the one param-
eter exponential distribution is given by;
f xjrð Þ ¼ 1
r

e�x=r; x > 0; r > 0: ð1Þ
Let r0; r1; . . . ; rn be record values observed from the distribution of X � Exp r1ð Þ. Suppose also that s0; s1; . . . ; sm are the records
observed from the distribution of Y � Exp r2ð Þ independently from the first sample. The stress–strength reliability can be
shown to be equal to r1

r1þr2
[1]. The likelihood functions of r1 and r2 given r ¼ r0; . . . rnð Þ and s ¼ s0; . . . smð Þ respectively

are given by Arnold et al., [7];
L1 r1jrð Þ ¼ 1
rnþ1

1

e�rn=r1 ; 0 < r0 < r1 < . . . < rn; ð2Þ

L2 r2jsð Þ ¼ 1
rmþ1

2

e�sm=r2 ; 0 < s0 < s1 < . . . < sm; ð3Þ
The non-informative prior distributions for the scale parameters r1 and r2 are given respectively by (Carlin and Louis, 2000);
p1ðr1Þ ¼
1
r1

; r1 > 0; p2ðr2Þ ¼
1
r2

; r2 > 0: ð4Þ
Hence the posterior distribution of r1 given r is given by;
P�1 r1jrð Þ ¼ ðrnÞðnþ1Þe�rn=r1

Cðnþ 1Þrðnþ2Þ
1

; 0 < r0 < r1 < . . . < rn: ð5Þ
Similarly;
P�2 r2jsð Þ ¼ ðsmÞðmþ1Þe�sm=r2

Cðmþ 1Þrðmþ2Þ
2

; 0 < s0 < s1 < . . . < sm: ð6Þ
The Bayes estimator is the posterior mean of h ¼ PrðY < XÞ given by E hð Þ ¼ E r1
r1þr2

� �
. It may be approached as follows; from

(5) and (6) we see that r1 and r2 have inverted gamma posterior distributions. Using the relation between the gamma and
inverted gamma distributions we have rn=r1 � Gamma n;1ð Þ and sm=r2 � Gamma m;1ð Þ. It follows that 2rn=r1 � v2

2n and
2sm=r2 � v2

2m. Assuming that r1 and r2 are independent, the two chi-square random variables are independent, therefore
mr2rn
nr1sm

� F2n;2m. Note that the stress–strength reliability can be written as;
h ¼ r1

r1 þ r2
¼ 1

1þ r2=r1
¼ 1

1þ nsm=mrnð Þmr2rn=nr1sm
:

This shows that the distribution of h is that of 1
1þ nsm=mrnð ÞW1

where W1 � F2n;2m. This fact can be used to find the posterior mean,
perhaps by numerical methods. An approximate, closed form, expression for the posterior mean of h can be found using the
formulae given in [8]. Applying these formulae we obtained;
E hð Þ ffi 1þ n2sm

m n� 1ð Þrn

� ��1

þ n2 nþm� 1ð Þ
m n� 1ð Þ n� 2ð Þ

nsm

mrn

� �2

1þ n2sm

m n� 1ð Þrn

� ��3

: ð7Þ
If one is interested in an equal tailed 1� að Þ interval for h then the bounds of the intervals are;
1
1þ nsm=mrnð ÞF1�a=2;2n;2m

;
1

1þ nsm=mrnð ÞFa=2;2n;2m

� �
; ð8Þ
where Fc;2n;2m is the cth quantile of the F2n;2m distribution.
Sometimes interest is in the use of the conjugate family of prior distributions for r1 and r2. It is clear that the conjugate

family of distributions is the inverted Gamma family of distributions. The conjugate prior distribution for ri; i ¼ 1;2 is there-
fore given by;
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piðriÞ ¼
bai

i e�bi=ri

CðaiÞraiþ1
i

; ri > 0; ð9Þ
where ai and bi are parameters of the prior distribution of ri. It follows that the posterior distribution of r1 given r is
P�1ðr1jrÞ ¼
b1 þ rnð Þa1þnþ1e�

b1þrnð Þ
r1

Cða1 þ nþ 1Þrða1þnþ2Þ
1

; r1 > 0: ð10Þ
Similarly the posterior distribution of r2 is given by
P�2ðr2jsÞ ¼
b2 þ smð Þa2þmþ1e�

b2þsmð Þ
r2

Cða2 þmþ 1Þrða2þmþ2Þ
2

; r2 > 0: ð11Þ
Note that
rn þ b1ð Þ=r1jr � Gamma nþ a1;1ð Þ; ð12Þ

sm þ b2ð Þ=r2js � Gamma mþ a2;1ð Þ: ð13Þ
It follows that 2 rn þ b1ð Þ=r1 � v2
2 nþa1ð Þ and 2 sm þ b2ð Þ=r2 � v2

2 mþa2ð Þ. Therefore, and since r1 and r2 are assumed independent;
mþ a2ð Þ rn þ b1ð Þr2

nþ a1ð Þ sm þ b2ð Þr1
� F2 nþa1ð Þ;2 mþa2ð Þ. In this case we can write;
h ¼ r1

r1 þ r2
¼ 1

1þ r2=r1
¼ 1

1þ nþ a1ð Þ sm þ b2ð Þ
mþ a2ð Þ rn þ b1ð Þ

mþ a2ð Þ rn þ b1ð Þr2

nþ a1ð Þ sm þ b2ð Þr1

:

This shows that the distribution of h is that of 1

1þ
nþ a1ð Þ sm þ b2ð Þ
mþ a2ð Þ rn þ b1ð ÞW2

where W2 � F2 nþv1ð Þ;2 mþv2ð Þ. An equal tailed Bayesian

interval for h can be obtained as in (8). Let k ¼ 1þ nþ a1ð Þ2 sm þ b2ð Þ
mþ a2ð Þ nþ a1 � 1ð Þ rn þ b1ð Þ

 !�1

. An approximate, closed form, expres-

sion for the posterior mean of h using the formulae in [8] is given by;
E hð Þ ffi kþ nþ a1ð Þ2 nþ a1 þmþ a2 � 1ð Þ
mþ a2ð Þ nþ a1 � 1ð Þ nþ a1 � 2ð Þ

nþ a1ð Þ sm þ b2ð Þ
mþ a2ð Þ rn þ b1ð Þ

� �2

k3
: ð14Þ
3. Inference for Pr (X <Y) in the two-parameter exponential distribution

The probability density function of the two-parameter exponential distribution is given by;
f xjl;rð Þ ¼ 1
r

e�
x�l
r ; x > l; �1 < l <1; r > 0: ð15Þ
Let r0; r1; . . . ; rn be record values observed from Exp l1;r1
� 	

, and s0; s1; . . . ; sm be the records observed from Exp l2;r2
� 	

inde-
pendently from the first sample. Using standard arguments, one can show that [9,10];
h ¼ Pr Y < Xð Þ ¼
r1=r2

r1=r2þ1 e�ðl2�l1Þ=r1 ; l2 � l1 P 0

1� 1
r1=r2þ1 e�ðl1�l2Þ=r2 ; l2 � l1 < 0

:

(
ð16Þ
In the next subsections we shall consider the cases when the parameters are unrestricted and when either the location
parameters are equal or the scale parameters are equal.

3.1. The case of unrestricted scale and location parameters

When there are no restrictions on the scale or location parameters and with the independence between samples assump-
tion, the likelihood function of l1;l2;r1;r2

� 	
is given by;
L l1;l2;r1;r2jr; s
� 	

¼ 1
rnþmþ2 e� rn�l1ð Þ=r1� sm�l2ð Þ=r2 ;l1 < r0;l2 < s0;r1;r2 > 0: ð17Þ
The non-informative prior distributions of the location parameters are;
pðliÞ ¼ 1; �1 < li <1: ð18Þ
For the corresponding scale parameters we take the conjugate priors;
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pi rijlð Þ ¼ bai
i

C aið Þraiþ1
i

e�bi=ri ;ri > 0; i ¼ 1;2: ð19Þ
The posterior distribution of l1;l2;r1;r2
� 	

is therefore given by;
P� l1;l2;r1;r2jr; s
� 	

¼ c1
1

rnþa1þ2
1

e�ðrn�l1þb1Þ=r1
1

rmþa2þ2
2

e�ðsm�l2þb2Þ=r2 l1 < r0;l2 < s0; r1;r2 > 0: ð20Þ
The proportionality constant is given by;
c�1
1 ¼

Z s0

�1

Z r0

�1

Z 1

0

Z 1

0

1

rnþa1þ2
1

e�ðrn�l1þb1Þ=r1
1

rmþa2þ2
2

e�ðsm�l2þb2Þ=r2 dr1dr2dl1dl2

¼
Z r0

�1

Z 1

0

1
rnþa1þ2

1

e�ðrn�l1þb1Þ=r1 dr1dl1

Z s0

�1

Z 1

0

1
rmþa2þ2

2

e�ðsm�l2þb2Þ=r2 dr2dl2

¼
Z r0

�1

Cðnþ a1 þ 1Þ
rn � l1 þ b1

� 	nþa1þ1 dl1

Z s0

�1

Cðmþ a2 þ 1Þ
sm � l2 þ b2

� 	mþa2þ1 dl2 ¼
C nþ a1ð Þ

rn � r0 þ b1ð Þnþa1

C mþ a2ð Þ
sm � s0 þ b2ð Þmþa2

: ð21Þ
Therefore the posterior distribution can be written as;
P� l1;l2;r1;r2jr; s
� 	

¼ rn � r0 þ b1ð Þnþa1

C nþ a1ð Þrnþa1þ2
1

e�ðrn�l1þb1Þ=r1
sm � s0 þ b2ð Þmþa2

C mþ a2ð Þrmþa2þ2
2

e�ðsm�l2þb2Þ=r2 l1 < r0;l2

< s0; r1;r2 > 0: ð22Þ
The stress–strength reliability is given by;
h ¼ Pr Y < Xð Þ ¼
r1=r2

r1=r2þ1 e�ðl2�l1Þ=r1 ; l2 � l1 P 0

1� 1
r1=r2þ1 e�ðl1�l2Þ=r2 ; l2 � l1 < 0

;

(

which can be written as;
h ¼ r1

r1 þ r2
e�ðl2�l1Þ=r1 Il2Pl1

þ 1� r2

r1 þ r2
e�ðl1�l2Þ=r2

� �
Il2<l1

ð23Þ
The Bayes estimator of the stress–strength reliability is given by the posterior expectation;
E hð Þ ¼ c�1
1

Z s0

�1

Z r0

�1

Z 1

0

Z 1

0

1

rnþa1þ2
1

e�ðrn�l1þb1Þ=r1
1

rmþa2þ2
2

e�ðsm�l2þb2Þ=r2

� r1

r1 þ r2
e�ðl2�l1Þ=r1 Il2Pl1

þ 1� r2

r1 þ r2
e�ðl1�l2Þ=r2

� �
Il2<l1

� �
dl1dl2dr1dr2: ð24Þ
It seems that the above integrals do not have closed form, however they can be computed numerically. Alternatively we can
use Monte Carlo methods as follows; the posterior distribution can be written as the product of the following two indepen-
dent posteriors;
P�1 l1;r1jr
� 	

¼ nþ a1ð Þ rn � r0 þ b1ð Þnþa1

Cðnþ a1 þ 1Þrnþa1þ2
1

e�ðrn�l1þb1Þ=r1 ; l < r0;r1 > 0;

P�2 l2;r2js
� 	

¼ mþ a2ð Þ sm � s0 þ b2ð Þmþa2

Cðmþ a2 þ 1Þrmþa2þ2
2

e�ðsm�l2þb2Þ=r2 ; l < s0;r2 > 0:
It follows that the conditional distributions of ri given li are given by;
P�1 r1jl1; r
� 	

¼ 1
Cðnþ a1 þ 1Þrnþa1þ2

1

e�ðrn�l1þb1Þ=r1 ; l < r0; r1 > 0; ð25Þ

P�2 r2jl2; s
� 	

¼ 1

Cðmþ a2 þ 1Þrmþa2þ2
2

e�ðsm�l2þb2Þ=r2 ; l < s0;r2 > 0: ð26Þ
With marginal distributions of li given by;
P�1 l1jr
� 	

¼ nþ a1ð Þ rn � r0 þ b1ð Þnþa1

rn � l1 þ b1

� 	nþa1þ1 ; l1 < r0; ð27Þ
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P�2 l2js
� 	

¼ mþ a2ð Þ sm � s0 þ b2ð Þmþa2

sm � l2 þ b2

� 	mþa2þ1 ; l2 < s0: ð28Þ
Therefore we can directly generate l1;1 and l2;1 using the marginal posteriors given in (27) and (28) respectively. Using these
values we can generate r1;1 and r2;1 directly using the conditional posteriors given in (25) and (26). Using these values we
can calculate h1 using (23). The posterior mean of h can be estimated accurately by repeating this procedure a sufficient num-
ber of times, say M, and then using the mean of h1; . . . ; hM as an estimate of h. This procedure will be used in the simulation
study later to investigate and compare the performance of the Bayes estimator with the maximum likelihood estimator ob-
tained by inserting the MLEs of l1;l2;r1;r2

� 	
in (23) and utilizing the invariance property of maximum likelihood estima-

tors. These MLEs are given by l̂1 ¼ r0; l̂2 ¼ s0; r̂1 ¼ rn � r0ð Þ=nþ 1 and r̂2 ¼ sm � s0ð Þ=mþ 1 [7].

3.2. The case of common location parameters

Bai and Hong [11] discussed point and interval estimation of h ¼ Pr Y < Xð Þ. They derived two types of approximate inter-
vals. Later, Baklizi [12] considered several types of asymptotic, approximate and bootstrap intervals and compared them
using simulation techniques. Baklizi and El-Masri [13] considered shrinkage estimation of the stress–strength reliability
in the two-parameter exponential distribution with common location while [14] constructed tests and confidence intervals
based on the generalized variable approach. These efforts are all based on ordinary simple random samples from the stress
and strength variables. Here we will discuss inference based on record values. Assuming that l1 ¼ l2 ¼ l, the expression for
h in this case reduces from (16) to;
h ¼ Pr Y < Xð Þ ¼ r1

r1 þ r2
: ð29Þ
Let r0; r1; . . . ; rn be upper record values observed from Exp l;r1ð Þ and let s0; s1; . . . ; sm be the upper records observed from
Exp l;r2ð Þ independently from the first sample. The likelihood function of l;r1;r2ð Þ is given by;
L l;r1;r2jr; sð Þ ¼ 1
rnþ1

1

e�ðrn�lÞ=r1
1

rmþ1
2

e�ðsm�lÞ=r2 ;min r0; s0ð Þ > l; r1;r2 > 0: ð30Þ
The non-informative prior distribution of the location parameter is given by;
pðlÞ ¼ 1; �1 < l <1: ð31Þ
The conjugate prior distributions of the scale parameters are;
pi rijlð Þ ¼ bai
i

C aið Þraiþ1
i

e�bi=ri ; ri > 0; i ¼ 1;2: ð32Þ
Using standard Bayesian arguments, the posterior distribution of l;r1;r2ð Þ is given by;
P�ðl;r1;r2jr; sÞ ¼ c2
1

rnþa1þ2
1

e�ðrn�lþb1Þ=r1
1

rmþa2þ2
2

e�ðsm�lþb2Þ=r2 ; ð33Þ
where
c�1
2 ¼

Z minðr0 ;s0Þ

�1

Z 1

0

Z 1

0

1
rnþa1þ2

1

e�ðrn�lþb1Þ=r1
1

rmþa2þ2
2

e�ðsm�lþb2Þ=r2dr1dr2dl

¼
Z minðr0 ;s0Þ

�1

Cðnþ a1 þ 1Þ
ðrn � lþ b1Þ

ðnþa1þ1Þ
Cðmþ a2 þ 1Þ

ðsm � lþ b2Þ
ðmþa2þ1Þ dl: ð34Þ
The Bayes estimator of the stress–strength reliability is given by;
EðhÞ ¼ E
r1

r1 þ r2

� �
: ð35Þ
It appears that a closed form expression for this posterior expectation is not possible, therefore we need to approximate or
estimate it. A possibility is to estimate it using Monte Carlo methods. To generate observations from this complicated pos-
terior we consider the following approach. The conditional posterior probability distributions of the scale parameters r1 and
r2 given the common location parameter l and the data are given by;
P�1ðr1jl; r; sÞ ¼
ðb1 þ rn � lÞnþa1þ1e�ðb1þrn�lÞ=r1

Cðnþ a1 þ 1Þra1þnþ2
1

; r1 > 0; ð36Þ

P�2 r2jl; r; sð Þ ¼ b2 þ sm � lð Þa2þmþ1e�ðb2þsm�lÞ=r2

Cðmþ a2 þ 1Þra2þmþ2
2

; r2 > 0: ð37Þ
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It follows that the posterior distribution of l satisfies
P� ljr; sð Þ / b1 þ rn � lð Þ�ðnþa1þ1Þ b2 þ sm � lð Þ�ðmþa2þ1Þ
; l < min r0; s0ð Þ: ð38Þ
The Bayes estimates may be obtained (estimated) using the following Monte Carlo algorithm;

(1) Generate l1 from P� ljr; sð Þ given by (38) using some version of the Metropolis algorithm.
(2) Generate r1;1 and r2;1 from P�1 r1jl1; r; s

� 	
and P�2 r2jl1; r; s

� 	
given by (36) and (37) respectively and calculate

h1 ¼ r1;1
r1;1þr2;1

.
(3) Repeat steps 1 and 2 (MÞ times to get h1; . . . ; hM .
(4) Calculate Ê hjr; sð Þ ¼

PM
i¼1hi=M ¼ �h.

If we consider the non-informative prior distributions for the scale parameters given by;
pi rið Þ ¼
1
ri
; ri > 0; i ¼ 1;2: ð39Þ
The posterior distribution will be obtained in a similar manner as before, specifically;
P� l;r1;r2jr; sð Þ / 1
rnþ2

1

e�ðrn�lÞ=r1
1

rmþ2
2

e�ðsm�lÞ=r2 : ð40Þ
The conditional posterior probability distributions of the scale parameters r1 and r2 given the common location parameter l
and the data are given by;
P�1 r1jl; r; sð Þ ¼ rn � lð Þnþ1e� rn�lð Þ=r1

Cðnþ 1Þrnþ2
1

; r1 > 0; ð41Þ

P�2 r2jl; r; sð Þ ¼ sm � lð Þmþ1e�ðsm�lÞ=r2

Cðmþ 1Þrmþ2
2

; r2 > 0: ð42Þ
It follows that the posterior distribution of l satisfies
P� ljr; sð Þ / rn � lð Þ�ðnþ1Þ sm � lð Þ�ðmþ1Þ
; l < min r0; s0ð Þ: ð43Þ
Approximate Bayes estimates may be obtained using the same Monte Carlo algorithm given before. The proportionality con-
stant in (43) is very complicated and difficult to obtain. In order to generate values of the l from (43), we need to use an
algorithm which did not require the knowledge of the proportionality constant. The ‘‘asymmetric’’ proposal distribution used
here is;
q lð Þ ¼ n rn � lð Þ�ðnþ1Þ
; l < rn:
This distribution is similar in shape to the target distribution. It has heavier tails than the target distribution and is easy to
generate samples from it. Note that the proposal distribution does not depend the current value of lðtÞ hence we have the
‘‘Independence Sampler’’. The algorithm is as follows;

(1) Set t ¼ 0. Choose a starting value lð0Þ, which is an arbitrary point satisfying P� lð0Þjr; s
� 	

> 0.
(2) Generate lnew using the proposal distribution q lð Þ.

(3) Calculate the quantity r ¼min
P� lnew jr;sð Þ=q lnewð Þ
P� lðtÞ jr;sð Þ=q lðtÞð Þ ;1

� �
.

(4) Generate u from the uniform distribution U 0;1ð Þ.
(5) Set lðtþ1Þ ¼ lnew if u < r, otherwise set lðtþ1Þ ¼ lðtÞ.
(6) Repeat steps 2 – 5 until we obtain the desired number of samples.

In the simulations we will investigate and compare this estimator with the maximum likelihood estimator obtained by
inserting the MLEs of l;r1;r2ð Þ in 29. These MLEs are given by; l̂ ¼min r0; s0ð Þ; r̂1 ¼ rn � l̂ð Þ=nþ 1 and r̂2 ¼ sm � l̂ð Þ=mþ 1.

3.3. The case of a common scale parameter

Gupta and Gupta [15] obtained the maximum likelihood estimator (MLE), the minimum variance unbiased estimator
(MVUE), and a Bayes estimator of h in case of different location parameters and a common scale parameter. Ivshin [16] con-
sidered this problem with known scale parameters and obtained the MVUE of the stress–strength reliability and the MVUE of
the variance of the reliability estimator. The above authors considered simple random samples, here we will consider the
case of records.

Assume that r1 ¼ r2 ¼ r, the expression for h ¼ Pr X < Yð Þ reduces to;
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h ¼ Pr X < Yð Þ ¼
1� 1

2 e�ðl2�l1Þ=r; l2 � l1 P 0
1
2 e�ðl1�l2Þ=r; l2 � l1 < 0

:

(
ð44Þ
Let r0; r1; . . . ; rn be the record values observed from Exp l1;r
� 	

, the two-parameter exponential distribution. Suppose that
s0; s1; . . . ; sm are the records observed from Exp l2;r

� 	
independently from the first sample. The likelihood function of

l1;l2;r
� 	

is given by;
L l1;l2;rjr; s
� 	

¼ 1
rnþmþ2 e�ðrn�l1þsm�l2Þ=r;l1 < r0;l2 < s0; r > 0: ð45Þ
Assuming constant prior distributions of the location parameters;
piðliÞ ¼ 1; �1 < li <1; i ¼ 1;2: ð46Þ
The conjugate prior distribution of the scale parameter is given by;
p rjl1;l2

� 	
¼ ba

C að Þraþ1 e�b=r; r > 0: ð47Þ
This gives
p l1;l2;r
� 	

¼ ba

C að Þraþ1 e�b=r;�1 < l1;l2 <1; r > 0: ð48Þ
Combining the likelihood function with this prior distribution we obtain the posterior probability distribution of l1;l2;r
� 	

as;
P� l1;l2;rjr; s
� 	

/ e� bþrn�l1þsm�l2ð Þ=r

raþnþmþ3 ; l1 < r0; l2 < s0; r > 0: ð49Þ
The constant of proportionality is given by;
c�1
3 ¼

Z 1

0

Z s0

�1

Z r0

�1

e� bþrn�l1þsm�l2ð Þ=r

raþnþmþ3 dl1dl2dr ¼
Z 1

0

Z s0

�1

e� bþrn�r0þsm�l2ð Þ=r

raþnþmþ2 dl2dr ¼
Z 1

0

e� bþrn�r0þsm�s0ð Þ=r

raþnþmþ1 dr

¼ C aþ nþmð Þ
bþ rn � r0 þ sm � s0ð ÞðaþnþmÞ :
Therefore
P l1;l2;rjr; s
� 	

¼ bþ rn � r0 þ sm � s0ð ÞðaþnþmÞ

C aþ nþmð Þ
e� bþrn�l1þsm�l2ð Þ=r

raþnþmþ3 ; l1 < r0; l2 < s0; r > 0: ð50Þ
The Bayes estimator ĥ is the posterior expectation of h ¼ 1� 1
2 e�ðl2�l1Þ=r

� 	
Il2>l1

þ 1
2 e�ðl1�l2Þ=rIl2<l1

. This expectation is given
by;
ĥ ¼
Z 1

0

Z s0

�1

Z r0

�1
1� 1

2
e�ðl2�l1=rÞ

� �
Il2>l1

þ 1
2

e�ðl1�l2Þ=rIl2<l1

� �
c3

e� bþrn�l1þsm�l2ð Þ=r

raþnþmþ3 dl1dl2dr; ð51Þ
Note that this expression can be written as;
ĥ ¼
Z 1

0

Z s0

�1

Z r0

�1
Il2>l1

c3
e� bþrn�l1þsm�l2ð Þ=r

raþnþmþ3 dl1dl2dr�
Z 1

0

Z s0

�1

Z r0

�1

1
2

e�ðl2�l1Þ=rIl2>l1
c3

e� bþrn�l1þsm�l2ð Þ=r

raþnþmþ3 dl1dl2dr

þ
Z 1

0

Z s0

�1

Z r0

�1

1
2

e�ðl1�l2Þ=rIl2<l1
c3

e� bþrn�l1þsm�l2ð Þ=r

raþnþmþ3 dl1dl2dr

¼ c3 I1 �
1
2

I2 � I3ð Þ
� �

;

where;
I1 ¼
Z 1

0

Z s0

�1

Z r0

�1
Il2>l1

e� bþrn�l1þsm�l2ð Þ=r

raþnþmþ3 dl1dl2dr; I2 ¼
Z 1

0

Z s0

�1

Z r0

�1
Il2>l1

e� bþrn�2l1þsmð Þ=r

raþnþmþ3 dl1dl2dr;

I3 ¼
Z 1

0

Z s0

�1

Z r0

�1
Il2<l1

e� bþrn�2l2þsmð Þ=r

raþnþmþ3 dl1dl2dr:
We have two cases to consider;
Case 1: r0 < s0.
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The integrals are obtained as follows;
I1 ¼
Z 1

0

Z r0

�1

Z s0

l1

e� bþrn�l1þsm�l2ð Þ=r

raþnþmþ3 dl2dl1dr ¼
Z 1

0

Z r0

�1

e� bþrn�l1þsm�s0ð Þ=r

raþnþmþ2 � e� bþrn�2l1þsmð Þ=r

raþnþmþ2 dl1dr

¼
Z 1

0

e� bþrn�r0þsm�s0ð Þ=r

raþnþmþ1 � e� bþrn�2r0þsmð Þ=r

2raþnþmþ1 dr ¼ C aþ nþmð Þ
bþ rn � r0 þ sm � s0ð Þaþnþm �

C aþ nþmð Þ
2 bþ rn � 2r0 þ smð Þaþnþm ;

I2 ¼
Z 1

0

Z r0

�1

Z s0

l1

e� bþrn�2l1þsmð Þ=r

raþnþmþ3 dl2dl1dr ¼
Z 1

0

Z r0

�1
s0 � l1

� 	 e� bþrn�2l1þsmð Þ=r

raþnþmþ3 dl1dr

¼
Z 1

0
s0 � r0ð Þ e

� bþrn�2r0þsmð Þ=r

2raþnþmþ2 þ e� bþrn�2r0þsmð Þ=r

4raþnþmþ1 dr ¼ s0 � r0ð ÞC aþ nþmþ 1ð Þ
2 bþ rn � 2r0 þ smð Þaþnþmþ1 þ

C aþ nþmð Þ
4 bþ rn � 2r0 þ smð Þaþnþm :

I3 ¼
Z 1

0

Z r0

�1

Z l1

�1

e� bþrn�2l2þsmð Þ=r

raþnþmþ3 dl2dl1dr ¼
Z 1

0

Z r0

�1

e� bþrn�2l1þsmð Þ=r

2raþnþmþ2 dl1dr ¼
Z 1

0

e� bþrn�2r0þsmð Þ=r

4raþnþmþ1 dr

¼ C aþ nþmð Þ
4 bþ rn � 2r0 þ smð ÞðaþnþmÞ :
Therefore;
ĥ ¼ bþ rn � r0 þ sm � s0ð Þðaþnþm

C aþ nþmð Þ

C aþnþmð Þ
bþrn�r0þsm�s0ð Þaþnþm � C aþnþmð Þ

2 bþrn�2r0þsmð Þaþnþm

� 1
2

s0�r0ð ÞC aþnþmþ1ð Þ
2 bþrn�2r0þsmð Þaþnþmþ1

� �
8<
:

9=
;

¼ 1� bþ rn � r0 þ sm � s0ð ÞðaþnþmÞ

2 bþ rn � 2r0 þ smð Þaþnþm � aþ nþmð Þ s0 � r0ð Þ bþ rn � r0 þ sm � s0ð ÞðaþnþmÞ

4 bþ rn � 2r0 þ smð Þaþnþmþ1 : ð52Þ
Case 2: s0 < r0
I1 ¼
Z 1

0

Z s0

�1

Z s0

l1

e� bþrn�l1þsm�l2ð Þ=r

raþnþmþ3 dl2dl1dr ¼
Z 1

0

Z s0

�1

e� bþrn�l1þsm�s0ð Þ=r

raþnþmþ2 � e� bþrn�2l1þsmð Þ=r

raþnþmþ2 dl1dr

¼
Z 1

0

e� bþrn�2s0þsmð Þ=r

raþnþmþ1 � e� bþrn�2s0þsmð Þ=r

2raþnþmþ1

� �
dr ¼

Z 1

0

e� bþrn�2s0þsmð Þ=r

2raþnþmþ1 dr ¼ C aþ nþmð Þ
2 bþ rn � 2s0 þ smð Þaþnþm ;

I2 ¼
Z 1

0

Z s0

�1

Z s0

l1

e� bþrn�2l1þsmð Þ=r

raþnþmþ3 dl2dl1dr ¼
Z 1

0

Z s0

�1
s0 � l1

� 	 e� bþrn�2l1þsmð Þ=r

raþnþmþ3 dl1dr

¼
Z 1

0

Z s0

�1

e� bþrn�2l1þsmð Þ=r

2raþnþmþ2 dl1dr ¼
Z 1

0

e� bþrn�2s0þsmð Þ=r

4raþnþmþ1 dr ¼ C aþ nþmð Þ
4 bþ rn � 2s0 þ smð Þaþnþm ;

I3 ¼
Z 1

0

Z s0

�1

Z r0

l2

e� bþrn�2l2þsmð Þ=r

raþnþmþ3 dl1dl2dr ¼
Z 1

0

Z s0

�1
r0 � l2

� 	 e� bþrn�2l2þsmð Þ=r

raþnþmþ3 dl2dr

¼
Z 1

0
r0 � s0ð Þ e

� bþrn�2s0þsmð Þ=r

2raþnþmþ2 drþ
Z 1

0

Z s0

�1

e� bþrn�2l2þsmð Þ=r

2raþnþmþ2 dl2dr

¼
Z 1

0
r0 � s0ð Þ e

� bþrn�2s0þsmð Þ=r

2raþnþmþ2 þ e� bþrn�2s0þsmð Þ=r

4raþnþmþ1 dr

¼ r0 � s0ð Þ C aþ nþmþ 1ð Þ
2 bþ rn � 2s0 þ smð Þaþnþmþ1 þ

C aþ nþmð Þ
4 bþ rn � 2s0 þ smð Þaþnþm :
Therefore, in this case, the Bayes estimator in this case is given by;
ĥ ¼ bþ rn � r0 þ sm � s0ð ÞðaþnþmÞ

C aþ nþmð Þ
C aþ nþmð Þ

2 bþ rn � 2s0 þ smð Þaþnþm þ
r0 � s0ð ÞC aþ nþmþ 1ð Þ

4 bþ rn � 2s0 þ smð Þaþnþmþ1

" #

¼ bþ rn � r0 þ sm � s0ð ÞðaþnþmÞ

2 bþ rn � 2s0 þ smð Þaþnþm þ r0 � s0ð Þ aþ nþmð Þ bþ rn � r0 þ sm � s0ð ÞðaþnþmÞ

4 bþ rn � 2s0 þ smð Þaþnþmþ1 : ð53Þ
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Combining (52) and (53), the Bayes estimator is given by;
Table 1
Biases,
two par

n

5
5
5

5
5
5

5
5
5

10
10
10

10
10
10

10
10
10

15
15
15

15
15
15

15
15
15
ĥ ¼
bþrn�r0þsm�s0ð ÞðaþnþmÞ

2 bþrn�2s0þsmð Þaþnþm þ r0�s0ð Þ aþnþmð Þ bþrn�r0þsm�s0ð ÞðaþnþmÞ

4 bþrn�2s0þsmð Þaþnþmþ1 ; s0 < r0

1� bþrn�r0þsm�s0ð ÞðaþnþmÞ

2 bþrn�2r0þsmð Þaþnþm � aþnþmð Þ s0�r0ð Þ bþrn�r0þsm�s0ð ÞðaþnþmÞ

4 bþrn�2r0þsmð Þaþnþmþ1 ; r0 < s0:

8><
>: ð54Þ
If we consider the non-informative prior distribution for the common scale parameter given by; p rð Þ ¼ 1
r ; r > 0, then using

similar calculations we obtain the Bayes estimator of the stress–strength reliability as;
ĥ ¼
rn�r0þsm�s0ð ÞðnþmÞ

2 rn�2s0þsmð Þnþm þ r0�s0ð Þ nþmð Þ rn�r0þsm�s0ð ÞðnþmÞ

4 rn�2s0þsmð Þnþmþ1 ; s0 < r0

1� rn�r0þsm�s0ð ÞðnþmÞ

2 rn�2r0þsmð Þnþm � nþmð Þ s0�r0ð Þ rn�r0þsm�s0ð ÞðnþmÞ

4 rn�2r0þsmð Þnþmþ1 ; r0 < s0

:

8><
>: ð55Þ
This estimator is compared with maximum likelihood estimator obtained by inserting the MLEs of l1;l2;r
� 	

in (44). These
MLEs are given by; l̂1 ¼ r0; l̂2 ¼ s0 and r̂ ¼ rn�r0þsm�s0

nþmþ2 .
4. A simulation study and the results

We have designed a simulation study to investigate the performance of the Bayes estimators derived in this paper and to
compare them with other estimators suggested in the literature. The main focus is on point estimation of the stress–strength
reliability h ¼ Pr Y < Xð Þ. We have considered four cases for the distributions of the stress and strength variables, that is,
when both have;
mean squared errors, and the relative efficiency of the Bayes estimator to the maximum likelihood estimator in the one parameter and the unrestricted
ameter cases.

The one parameter exponential case The unrestricted two-parameter exponential case

Bias MSE REff Bias MSE REff

m h MLE Bayes MLE Bayes MLE Bayes MLE Bayes

5 0.5 0.0002 �0.0204 0.0234 0.0190 1.2300 0.0017 0.0031 0.1139 0.0553 2.0591
5 0.7 �0.0129 �0.0504 0.0177 0.0179 0.9898 0.0727 �0.0637 0.0770 0.0493 1.5608
5 0.9 �0.0137 �0.0481 0.0049 0.0080 0.6154 0.0645 �0.1439 0.0129 0.0472 0.2739

10 0.5 �0.0115 �0.0106 0.0173 0.0147 1.1724 �0.0162 0.0209 0.1040 0.0526 1.9779
10 0.7 �0.0216 �0.0342 0.0148 0.0138 1.0693 0.0552 �0.0534 0.0758 0.0481 1.5775
10 0.9 �0.0158 �0.0309 0.0040 0.0050 0.8060 0.0629 �0.1409 0.0128 0.0454 0.2822

15 0.5 �0.0134 �0.0053 0.0157 0.0136 1.1526 �0.0333 0.0213 0.1061 0.0557 1.9046
15 0.7 �0.0224 �0.0265 0.0132 0.0120 1.1021 0.0505 �0.0472 0.0756 0.0478 1.5832
15 0.9 �0.0172 �0.0261 0.0038 0.0043 0.8944 0.0621 �0.1401 0.0122 0.0454 0.2690

5 0.5 0.0102 �0.0223 0.0175 0.0147 1.1902 0.0266 �0.0140 0.1049 0.0543 1.9297
5 0.7 �0.0016 �0.0479 0.0123 0.0137 0.8925 0.0919 �0.0809 0.0695 0.0524 1.3275
5 0.9 �0.0064 �0.0431 0.0029 0.0057 0.5064 0.0713 �0.1661 0.0106 0.0546 0.1936

10 0.5 �0.0013 �0.0124 0.0120 0.0107 1.1194 0.0003 0.0009 0.0964 0.0528 1.8263
10 0.7 �0.0064 �0.0271 0.0087 0.0089 0.9760 0.0791 �0.0680 0.0661 0.0491 1.3471
10 0.9 �0.0071 �0.0237 0.0021 0.0029 0.7084 0.0697 �0.1644 0.0102 0.0535 0.1917

15 0.5 �0.0034 �0.0071 0.0100 0.0091 1.1031 �0.0099 0.0038 0.0953 0.0529 1.7998
15 0.7 �0.0109 �0.0227 0.0077 0.0076 1.0057 0.0695 �0.0693 0.0664 0.0499 1.3302
15 0.9 �0.0083 �0.0187 0.0018 0.0023 0.8016 0.0659 �0.1665 0.0107 0.0549 0.1955

5 0.5 0.0131 �0.0235 0.0163 0.0139 1.1747 0.0378 �0.0172 0.1027 0.0531 1.9331
5 0.7 0.0022 �0.0471 0.0106 0.0124 0.8560 0.0991 �0.0872 0.0665 0.0531 1.2514
5 0.9 �0.0033 �0.0405 0.0023 0.0048 0.4712 0.0732 �0.1725 0.0101 0.0573 0.1769

10 0.5 0.0059 �0.0096 0.0101 0.0090 1.1163 0.0070 �0.0050 0.0959 0.0538 1.7838
10 0.7 �0.0025 �0.0259 0.0071 0.0075 0.9436 0.0858 �0.0760 0.0628 0.0500 1.2566
10 0.9 �0.0056 �0.0228 0.0016 0.0024 0.6706 0.0709 �0.1686 0.0100 0.0554 0.1813

15 0.5 0.0012 �0.0066 0.0081 0.0075 1.0871 �0.0004 �0.0010 0.0934 0.0529 1.7645
15 0.7 �0.0062 �0.0205 0.0058 0.0059 0.9709 0.0793 �0.0745 0.0637 0.0501 1.2718
15 0.9 �0.0050 �0.0159 0.0012 0.0016 0.7635 0.0701 �0.1675 0.0101 0.0549 0.1846
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(a) The one parameter exponential distribution.
(b) The two-parameter exponential distribution with unrestricted location and scale parameters.
(c) The two-parameter exponential distribution with common location parameters.
(d) The two-parameter exponential distribution with common scale parameters

In each of these cases we used the sample sizes as all combinations of n ¼ 5;10;15 and m ¼ 5;10;15. The true values of the
stress–strength reliability are chosen as h ¼ 0:5;0:7;0:9. By the symmetry of X and Your results extends to the corresponding
values of h below 0.5. In each of the four cases above, the parameters of the stress and strength distributions are chosen to
obtain the desired value of h. Our simulations are based on 5000 replications for each simulation run. In cases where Bayes-
ian estimators are computed using Markov Chain Monte Carlo methods we used 2000 replications to estimate the desired
posterior expectation. The Bayes estimators developed in this paper under non-informative priors are compared with the
corresponding maximum likelihood estimators. The comparison is in terms of the bias and mean squared error of the esti-
mators. The relative efficiency of the MLE to the Bayes estimator is calculated as the MSE of the MLE divided by the MSE of
the Bayes estimator and it is calculated in the columns labeled REff in Tables 1 and 2.

The results are given in Tables 1 and 2. Concerning the performance of the estimators in terms of bias, it appears that in
most cases the Bayes estimators are more biased for small sample sizes or for very high values of the stress–strength reli-
ability, otherwise the bias performance is similar to that of the MLE or even better. An exception is for the case of exponential
distributions with a common scale parameter where it appears that the Bayes estimator consistently have higher bias.

The MSE performance of the estimators is clear, the Bayes estimators have smaller MSE unless the true value of the
stress–strength reliability is very high, in which case the MLE has better performance. This can be seen very clearly from
the column representing the relative efficiency of the Bayes estimator to the MLE. A possible justification for this is that
the Bayes estimator is more biased in such situations which contribute significantly to the MSE.
Table 2
Biases, mean squared errors, and the relative efficiency of the bayes estimator to the maximum likelihood estimator in the two parameter case, common
location or common scale.

Two-parameter exponential with Common Location Two-parameter exponential with Common Scale

Bias MSE REff Bias MSE REff

n m h MLE Bayes MLE Bayes MLE Bayes MLE Bayes

5 5 0.5 �0.0031 �0.0027 0.0274 0.0206 1.3269 0.0014 0.0012 0.1056 0.0563 1.8759
5 5 0.7 �0.0039 �0.0274 0.0210 0.0178 1.1808 �0.0655 �0.1088 0.0962 0.0603 1.5940
5 5 0.9 0.0015 �0.0255 0.0042 0.0056 0.7541 �0.0696 �0.1592 0.0518 0.0549 0.9437

5 10 0.5 �0.0240 �0.0011 0.0212 0.0166 1.2817 0.0015 0.0014 0.0956 0.0540 1.7723
5 10 0.7 �0.0206 �0.0200 0.0164 0.0132 1.2408 �0.0684 �0.1061 0.0923 0.0616 1.4994
5 10 0.9 �0.0097 �0.0211 0.0037 0.0040 0.9138 �0.0760 �0.1507 0.0558 0.0561 0.9939

5 15 0.5 �0.0361 �0.0048 0.0190 0.0146 1.3027 �0.0044 �0.0040 0.0924 0.0538 1.7186
5 15 0.7 �0.0335 �0.0237 0.0162 0.0126 1.2843 �0.0767 �0.1101 0.0923 0.0631 1.4624
5 15 0.9 �0.0133 �0.0191 0.0036 0.0036 1.0038 �0.0781 �0.1468 0.0554 0.0563 0.9838

10 5 0.5 0.0289 0.0054 0.0207 0.0159 1.2984 0.0046 0.0039 0.0966 0.0545 1.7730
10 5 0.7 0.0231 �0.0160 0.0143 0.0130 1.1007 �0.0666 �0.1066 0.0921 0.0618 1.4891
10 5 0.9 0.0110 �0.0187 0.0026 0.0038 0.6950 �0.0774 �0.1518 0.0562 0.0568 0.9894

10 10 0.5 0.0016 0.0015 0.0130 0.0110 1.1813 �0.0036 �0.0027 0.0915 0.0531 1.7248
10 10 0.7 �0.0003 �0.0144 0.0094 0.0086 1.0864 �0.0757 �0.1112 0.0911 0.0629 1.4490
10 10 0.9 0.0003 �0.0139 0.0019 0.0024 0.8098 �0.0773 �0.1456 0.0555 0.0554 1.0033

10 15 0.5 �0.0067 0.0013 0.0106 0.0091 1.1591 �0.0030 �0.0033 0.0907 0.0535 1.6960
10 15 0.7 �0.0086 �0.0137 0.0081 0.0074 1.1010 �0.0657 �0.1002 0.0885 0.0609 1.4537
10 15 0.9 �0.0032 �0.0120 0.0016 0.0019 0.8753 �0.0780 �0.1438 0.0534 0.0539 0.9907

15 5 0.5 0.0363 0.0050 0.0200 0.0154 1.2964 0.0065 0.0059 0.0926 0.0537 1.7255
15 5 0.7 0.0301 �0.0140 0.0124 0.0114 1.0952 �0.0683 �0.1049 0.0871 0.0592 1.4704
15 5 0.9 0.0138 �0.0166 0.0022 0.0032 0.6868 �0.0722 �0.1430 0.0511 0.0523 0.9775

15 10 0.5 0.0090 0.0010 0.0111 0.0096 1.1611 0.0023 0.0021 0.0911 0.0539 1.6913
15 10 0.7 0.0070 �0.0119 0.0073 0.0070 1.0528 �0.0713 �0.1064 0.0884 0.0611 1.4460
15 10 0.9 0.0037 �0.0112 0.0014 0.0017 0.7906 �0.0739 �0.1399 0.0506 0.0513 0.9860

15 15 0.5 0.0004 0.0004 0.0085 0.0076 1.1254 �0.0045 �0.0035 0.0895 0.0536 1.6689
15 15 0.7 0.0024 �0.0076 0.0060 0.0056 1.0635 �0.0739 �0.1061 0.0892 0.0627 1.4233
15 15 0.9 0.0003 �0.0092 0.0012 0.0014 0.8551 �0.0797 �0.1432 0.0552 0.0556 0.9916
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Both the MLE and the Bayes estimator have larger values of the MSE for true values of the stress–strength reliabil-
ity around 0.5 and it decreases as the true value approaches the extremes. As for the effect of sample size, it is antic-
ipated that the bias and MSE of both estimators are less for larger sample sizes and this supported by the simulation
results.
5. An illustrative example

We simulated the records data from one parameter exponential distributions with n ¼ 4; m ¼ 4;r1 ¼ 1 and r2 ¼ 0:1111
with the true value of the stress–strength reliability being 0.9. The simulated records are, r4 ¼ 2:4101, and s4 ¼ 0:4843. Using
this data we found that r̂1 ¼ rn

nþ1 ¼ 0:482; r̂2 ¼ sm
mþ1 ¼ 0:0969 and therefore the MLE of the stress–strength reliability is

ĥ ¼ r̂1
r̂1þr̂2

¼ 0:8327. The corresponding Bayes estimator is found using Monte Carlo methods and it is given by 0.7882.

Now assume that the same records used above were generated from two-parameter exponential distributions with unre-
stricted location and scale parameters. The records data given earlier in addition to the first record in each sample are
r0 ¼ 0:6065; s0 ¼ 0:3179; r4 ¼ 2:4101, and s4 ¼ 0:4843. Therefore, l̂1 ¼ r0 ¼ 0:6065; l̂2 ¼ s0 ¼ 0:3179; r̂1 ¼ rn�r0

nþ1 ¼
0:3607; r̂2 ¼ sm�s0

mþ1 ¼ 0:0333 and therefore the MLE of the stress–strength reliability is

ĥ ¼ r̂1
r̂1þr̂2

e�ðl̂2�l̂1Þ=r̂1 Il̂2Pl̂1
þ 1� r̂2

r̂1þr̂2
e�ðl̂1�l̂2Þ=r̂2

� �
Il̂2<l̂1

¼ 0:9999. The corresponding Bayes estimator is obtained using the

Monte Carlo procedure described after Eq. (28) and it is found to be 0.7760.
If we consider the same records as being generated from two-parameter exponential distributions with common location,

the records data are r0 ¼ 0:6065; s0 ¼ 0:3179; r4 ¼ 2:4101 and s4 ¼ 0:4843. The parameter estimates are given by
l̂ ¼min r0; s0ð Þ = 0.3179, r̂1 ¼ rn�l̂

nþ1 ¼ 0:4278; r̂2 ¼ sm�l̂
mþ1 ¼ 0:0427 and therefore the MLE of the stress–strength reliability is

R̂ ¼ r̂1
r̂1þr̂2

¼ 0:9093. The corresponding Bayes estimator found using the simulation algorithm described after Eq. (38) and
is found to be 0.8823.

We note here that this example mainly shows how the calculations are carried out. For comparison between the per-
formance of the different estimator, it is dependent on the true value of the parameter as explained in the simulation
study.

6. Conclusions

In this paper we have derived Bayes estimators based on record values for the stress–strength reliability when the stress
and the strength variables follow the one parameter as well as the two-parameter exponential distributions. In the two
parameter case we have considered the cases when the parameters unrestricted, when the location parameter is common
or when the scale parameter is common. Except for the common scale parameter case, the Bayes estimators are not in closed
form and numerical integration or Monte Carlo methods are needed. Under non-informative prior distributions, we have
investigated their performance and compared them with the MLE. We found that the Bayes estimators generally perform
better when the true value of the stress–strength reliability is not close to the extremes (0 or 1), while near the extremes
the MLE is better. We found that the reason for this is the bias performance of the Bayes estimators which tend to be rela-
tively highly biased near the extremes. Depending on the nature of the specific application, one can determine to use the
Bayes estimator or the MLE. This is because in some applications like those in the medical sciences, values near 0.5 are most
important while in other fields, like reliability engineering, very high values of the stress–strength reliability are most
important.

This paper is concerned mainly with point estimation. Another very important problem is the construction of interval
estimators for the stress–strength reliability based on record values in the one and two-parameter exponential distribution.
While some of these intervals are already developed in this paper and in [2], other competing approaches are possible and
currently under investigation by the author.
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