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|Abstract I

Digital Twin (DT) is a digital representation of a machine, service, or production system that consists of
models, information, and data used to characterize properties, conditions, and behavior of the system.
Renewable energy integration will make future power plants more complex with addition of varieties of
Power-to-X technologies, Electrolysis to green hydrogen, onsite storage and transport of hydrogen, and
use of pure or blended hydrogen, etc. These future power plants need robust DT architecture to achieve
high Reliability, Availability and Maintainability at lower cost.
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Pressure traces used
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DT to simulate how a product (water pump) will perform 1n the real world, adapted from (Ferguson et al., 2017) Nuclear DT environment, (Patterson et al., 201 6)
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(3) sensor network

DT for fault diagnosis in distributed PV systems, (Jain et al., 2020)

Developed Digital Twin for power plants

DT using BIM Evaluation of Net Zero Energy Existing Buildings, (Kaewunruen et al., 2018)
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DT for smart manufacturing robotic cellular, (Vatankhah Barenji et al., 2020)
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The overall flowchart of the proposed power plant DT architecture.

IConcIusions I

d The present study also suggests the future directions for DT architecture development for power plants
and similar complex systems. The DT development needs real data and physical description of the overall
system with focus on each part of the system individually and on the overall connections. Algorithms that
are capable of predicting the dynamic behavior of the system with data-driven methods still need more
advanced development. Data-driven approach alone is not sufficient and a physics based (low order)
model DSM must be operated in tandem with the latest system parameters, to enhance and interpret the
results from the data driven process. Discrepancy between DSM and ADL, will require in-depth localized
off-line simulation (LDS). All five components of the proposed DT architecture, DSM, DSN, ADL, LDS and
System Genome, should be integrated to achieve a robust DT.

J Lastly, it was observed that research related to the importance of integration of energy systems cyber
security with DTs has not been reported in open literature (only couple studies listed in Table 2), which

makes this subject a priority for future research.

(S) off-line tool for
detailed simulation
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Power plant schematic, (Goyal et al., 2019).
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In advance prediction error in cooling steam pressure, (Goyal et al., 2019).

Unexpected change in the pressure of the cooling steam, (Goyal et al., 2019). The power generation failure — real-time measurement, (Goyal et al., 2019).
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