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1. INTRODUCTION RESEARCH SIGNIFICANCE

RESEARCH PROBLEM

Predicting metro ridership is an essential requirement for
efficient metro operation and management.

The dependence of metro ridership on the land use densities
entails a need for an accurate predictive model.

The state of Qatar recently introduced the metro and a new
mode of transport, which required a sufficient planning tool
for its optimal use.

AIM & OBJECTIVES

* Propose a novel ensemble ML model that predicts short-term metro
ridership based on land use densities.

The main aim of this research is to develop a novel machine
learning (ML) based model to predict the metro station

ride.rship utilizing the land use densities in the vicinity of metro Propose applicable model for urban planners and transportation
stations. operators for optimal land use allocation to maximize metro ridership
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2. METHODS & MATERIALS
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Figure 3 Feature importance analysis based on gradient tree boosting
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Figure 1 Methodology Flowchart

3. KEY FINDINGS

Given the investigated features, the predictive capabilities of the models in terms of the
MAPE, RMSE, and R? demonstrate that:

* The Gradient Tree Boosting model has the highest prediction capability,
E * Followed by Extremely Randomized Trees. Among all models,
N  Random Forest showed the least predictive performance.
U Table 1 Models Predictive Performance
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WEB-BASED APPLICATION
etine theinput features | y | 4. CONCLUSION & RECOMMENDATIONS

Education facility and land use density (EFLU)

0.08 8.99

ormentat i e 6 The proposed model can be used by planning and operation authorities in their processes:
B/ | : * to plan the land use around metro stations,

Mixed use (MU)

« predict the transit demand from those plans in order to achieve the optimal use of the
transit system.

»#=  Machine Lea « predict ridership for newly planned developments based on land use densities.

Open space and recreation (OSRLU)
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Residential land use (RLU)

_ . Moreover, the proposed web-based application can easily be used by planners and
researchers to investigate the key factors in determining metro ridership.

User defined variables
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Recommendations for the future work

future study is recommended to focus on special circumstances such as the weekends,
o Predicted Total Ridershi o e . . .
rediciad Tolaliidership hourly variation, and special events that affect metro ridership.

Transportation land use (TLU)
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