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ABSTRACT 

ALKHAYARIN, ABDULRAHMAN, Z., Masters : January : [2022:], 

Masters of Science in Computing 

Title: Intelligent Agent-Based 3D Simulation of Covid-19 for Analysis of Social 

Control Measures. 

Supervisor of Thesis: Dr. Osama, Halabi and Dr. Sarada Prasad, Dakua. 

The aim of this research is to model and simulate the recent and ongoing 

COVID-19 pandemic in terms of virus contagiousness among mixed groups of patients, 

carriers, and unaffected populations. The focus is on closed environments such as stores 

or schools that are typically ideal for the propagation of infectious pathogens. This 

research work utilizes real data from the State of Qatar to model and predict the 

behavior of COVID-19 as it spreads within human gatherings. 

This work proposes the infection model SEIP (Susceptible-Exposed-Infected-

Protected) developed to forecast the propagation of COVID-19 over time. The 

prediction model is applied to simulate different environments of human gatherings for 

the viral transmission under different biological factors. Applied machine-learning 

techniques based on reinforcement-learning algorithms trains smart agents who mimic 

the behavior of their human counterparts. Added 3D visualization, by harnessing the 

power of Unity 3D, further boosts the usability and appeal of the simulation. 

The resultant simulation is customizable and extendable to simulate a myriad of 

possible pandemic scenarios and evaluate different potential safety control measures. 

Ultimately, we aim to equip authorities with a powerful tool to aid in decision making 

about future spreading of the virus under different controllable lockdown scenarios. 
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CHAPTER 1: INTRODUCTION 

The SARS-CoV-2 virus, commonly known as COVID-19, has been rapidly and 

violently spreading all over the world. At the time of writing this research, COVID-19 

has affected more than 235 million people and caused more than 4 million deaths 

globally [1]. 

Consequently, governments all over the world have implemented several 

measures to restrain the propagation of the disease. Social control measures are the most 

utilized countermeasures, and they have achieved varying levels of success, depending 

on several environmental and social factors. Such factors may include imposing 

physical distancing, enforcing hygiene measures (such as wearing masks), and 

distributing vaccines doses among the population. Therefore, when implementing 

different social and safety control measures, it is of utmost importance to assess a priori 

the possible impacts of such measures before deploying them in the real world. 

Hence, motivated by the necessity to analyze such measures beforehand, we 

aim to support government entities and stakeholders with a framework for simulating 

the propagation of the virus under different scenarios. 

Thus, the ultimate objective of our research is to design and develop an 

integrated 3D environment for modeling and simulating the spread of COVID-19 

among a sample of human populations under various settings and conditions. We 

developed a customizable infection model for the purpose of computing the possibility 

of viral transmission while factoring in a myriad of configurable parameters and 

variables. We employed an agent-based modeling approach to simulate the crowd 

behavior within a shopping environment in our system. Reinforcement-learning 

methods are combined with our agent-based approach to build interacting and 
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intelligent agents. The overall simulation is augmented in a 3D space environment and 

implemented on top of Unity technology. 

Problem Statement and Research Questions 

The COVID-19 virus is propagating globally at a rapid rate while mutations of 

the virus occur periodically producing new variants in the process. Stakeholders are 

continuously applying social control measures to control the propagation of the virus 

among the populations. The effectiveness of control measures is dependent on several 

elements such as the adherence of people to those rules and the nature of the virus. 

Consequently, it is crucial for government entities to evaluate such control plans under 

different contexts and scenarios. In this research, we aim to develop a simulation 

environment for simulating the spread of COVID-19 within humans’ populations under 

in-door terrains when taking into account different social and human factors.   

Based on our problem statement we can formulate the following research 

questions: 

1. Given the nature of COVID-19, what kinds of biological infection models 

can appropriately describe the spreading phenomena when considering 

social aspects of the population?  

2. Which non-biological factors contribute most to the propagation of COVID-

19?  

3. In terms of simulating crowd behavior, how can we exploit machine-

learning techniques to produce computer bots that resemble real humans in 

terms of movement behavior within in-door environments?   

4. Which possible approaches we can follow to introduce crowd behavior 

simulation into a biological infection model in order to study the spreading 

under social scenarios?  
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5. When using 3D space, what possible advantages we can gain by using 3D 

space (instead of 2D) in terms of visualizing the spreading of a disease 

within human populations?  

Paper Structure 

We organize this research as follows: Chapter 2 will discuss background 

concepts relevant to the research. Chapter 3 surveys the literature on related and recent 

works in the field, along with our explaining contributions to the literature. Chapter 4 

explains our methodology that we followed in conducting this research. Chapter 5 will 

demonstrate the technical design of our solution. Chapter 6 presents the results of our 

work, along with analysis and discussion of those results. Chapter 7 evaluates some of 

the limitations of our work and possible future research directions. Chapter 8 will 

conclude our thesis. 

During the course of this research, the State of Qatar is the main target of our 

hypothesis and experiments. 
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CHAPTER 2: RELATED BACKGROUND 

In this chapter we will summaries some of the relevant background concepts 

relevant to our research and then present our final approach that we will follow during 

the rest of the research. We will start in the first subsection by introducing the biological 

infection model behind our research. Since we are concerned with controlling the 

spreading of COVID-19 within social measures, in the next subsection we will present 

the crowd-behavior model that we will utilize to simulate human gatherings.  

SIR Infection Model 

In the literature several models exist for modeling the spreading of infections 

among human populations. The most popular models are compartmental models, which 

divide the population into different compartments representing different stages of a 

disease. The simplest and most well-known compartment model is the SIR model, first 

proposed by Kermack and McKendrick [2]. This model divides the population into 

three disjointed groups such that each member of the populations can only occupy one 

such group at any given point. The groups are S = susceptible, representing people who 

have a chance of catching a disease; I = infected, representing people who are infected 

with the disease and have a certain probability of transmitting it to susceptible people; 

and R = recovered, representing people previously infected with the disease and now 

recovered from it. As shown in Figure 1, the model is implemented as a state diagram 

with probabilities Pi and Pr representing the probability of infecting a susceptible 

person and the probability of recovering from an infection, respectively. As shown in 

equations (1, 2, 3), the change over time of the population status is described as a set of 

ordinary differential equations (ODE): 
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𝑑𝑆

𝑑𝑡
=  −βSI                                                                                                        (1) 

𝑑𝐼

𝑑𝑡
=  βSI −  γI                                            (2) 

𝑑𝑅

𝑑𝑡
=  γI                                            (3) 

The three equations (1, 2, 3) describe the rate of changes per time for 

susceptible, infected and recovered individuals respectively. S, I, R denotes the total 

number of susceptible, infected and recovered individuals in the population 

respectively. The parameter β represents the probability of an infection while the 

parameter γ represents the recovery rate (patients are assumed to recover following 

constant recovery rate γ).  

Over the years, the SIR model has been extensively implemented and used to 

derive other models, such as the SIS (susceptible-infected-susceptible) model and the 

SEIR (susceptible-exposed-infected-recovered) model; SEIR adds the state exposed to 

represent infected individuals at a latent stage in which they may not show symptoms 

and may not transfer the virus to other people. 

The main strength of the SIR-based models lies in their simplicity and their 

extensibility. Such models are deterministic and can be solved analytically or 

numerically.  The main disadvantage of the compartmental models is that they ignore 

Figure 1. SIR Model 
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the individual characteristics of humans (such as age) and  deal with the population as 

one homogeneous unit. Those models output aggerated results that summarizes the 

whole population. However, the spreading of a pathogen can be influenced significantly 

by the individual characteristics of humans such as age or previous health records.  

Agent-Based Modeling 

Agent-based modeling (ABM) is a field of modeling that simulates a system as 

a set of interacting agents [3]. These agents are typically intelligent entities with 

decision-making capabilities that interact with other agents and with their environments 

based on predefined rules. 

At the individual level, agent-based systems are simply composed of agents that 

move and interact according to certain rules. Those rules could be predefined rules set 

initially such that the agent will follow them during the course of the simulation. In 

other scenarios, the agents may display more stochastic behaviors by introducing 

random elements in the implementation of the agents. Agent-based systems are 

relatively simple to implement. However, such simple schemes are excellent at 

generating global patterns in a system, modeling the temporal evolution of a system, 

and showing the emerged complex behaviors of the interacting agents [4]. 

In terms of virus spreading, ABM has been deployed successfully in several 

real-life scenarios to accurately simulate pandemic spreading and inform policy 

decisions. One such example is the work of Eisinger and Thulke, which used ABM to 

predict the spread of rabies among a population of foxes [3]. Compared to classical 

differential equations, which predict that at least 70% of the population need to be 

vaccinated to control the disease, ABM predicted that a much smaller ratio of 

vaccination is required, thus saving millions of European euros in the process [3]. As 
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will be demonstrated in the next chapter, most recent works in the field of pandemic 

simulation (including COVID19) deploy some sort of agent-based scheme. 

Reinforcement Learning 

Reinforcement learning (RL) is a branch of machine learning that was invented 

in the early 1990s [5]. RL techniques are concerned with teaching intelligent agents 

how to make smart decisions within an environment. Unlike other machine-learning 

techniques, such as supervised learning (where agents learn from predefined labels or 

examples), in RL the agents interact directly with the environment by monitoring the 

environment and executing a set of actions accordingly to reach a predefined goal. By 

receiving appropriate rewards or penalties based on their actions, the agents learn to 

intelligently tackle the problem at hand using smart solutions. The agent may start with 

making random trial-and-error decisions and ending up with deploying optimal tactics 

to solve its problem. RL has been used in many fields, including AI in games, 

autonomous vehicles, and natural language processing. 

In our project we will depend on compartmental schemes based on SIR to model 

the probability of infection between humans. Within the topic of modeling COVID-19 

spreading, our main target would be evaluating social control measures under different 

scenarios. Therefore, it is crucial to model humans’ behaviors. For simulating social 

movement of humans’, we will utilize agent-based modeling to simulate the movement 

of humans inside an enclosed space. To further enhance the intelligence of our agents, 

we will exploit reinforcement-learning techniques in order to train agents that can 

mimic the behaviors of humans within closed spaces when taking into account social 

control measures.  

Our Approach 

In our project, we follow a hybrid approach combining stochastic ABM 

methodology with a compartmental infection model (based on SEIR) for simulating the 



  

8 

 

propagation of COVID-19 among humans. Compartmental models output macroscopic 

and aggregated results which can oversimplify the phenomena of infectious diseases. 

In reality, however, the distinct characteristics of agents, along with their behaviors and 

interaction, have enormous effects on the spreading of COVID-19 within a local 

population. Therefore, for a more informative description of COVID-19, it is crucial to 

model the viral transmission at the micro-level [6], at the level of local transmission 

between individuals. By employing stochastic models, we aim to closely mimic the 

real-life phenomena and produce more robust results. Despite those strengths, however, 

ABM may suffer from few issues. Mainly, the dynamic interactions of agents can lead 

to difficult-to-explain chaotic behavior, especially within stochastic models [7]. 

Consequently, the calibration of such model parameters is a challenging task, because 

the variation of a single parameter can have an unexplainable impact on the overall 

simulation results [7]. Therefore, we integrate a derivative of the SEIR model to lessen 

the impact of such stochastic factors and to help yield results that can be compared with 

real deployed compartmental models. 

For a more effective implementation of an agent-based solution, we utilize RL 

techniques to produce autonomous agents equipped with intelligent decision-making 

capabilities for communicating with their environment and with other agents. Our 

ultimate objective is mimicking the behaviors of human movements within an enclosed 

environments in the presence of diseases. By integrating RL, our agents will gradually 

learn to move within an environment in a more organic matter while taking into 

consideration the presence of a virus among the neighbors’ agents.  
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CHAPTER 3: RELATED WORK 

In this chapter we review some of the recent works in the field of epidemic 

simulation with extra care given to works that deploy agent-based techniques. At the 

end of the chapter we outline our contributions to the literature.  

Literature Review 

Hassanat et al. [8] attempted to simulate the spread of the virus in the Kingdom 

of Saudi Arabia (KSA), taking into consideration the people’s different movement 

behaviors and levels of hygiene compliance. The authors used the cities of Riyadh and 

Jeddah as simulation environments and scaled down the size and population densities 

of the cities to fit a simulation environment. The prediction model was verified using 

real infection data from KSA by comparing the output of the simulation against the 

historical real data within a set period. 

Moein et al. [9] criticized the accuracy of mathematical SIR models, which are 

based on a set of differential equations, in forecasting future trends of the pandemic. 

The authors presented a case study using Isfahan in Iran, where an SIR model was 

deployed to forecast infectious cases of COVID-19 under different levels of social 

distancing restrictions. None of the scenarios had output results that conformed to the 

actual pandemic statistics. 

In their work [3], Maziarz et al. discussed extensively the merit of using ABM 

for modeling the spread of COVID-19 from a theoretical and practical point of view. 

The authors presented an extensive argument in favor of ABM approaches compared 

with other differential equation models, and they advocate for the consideration of 

ABM as potential reasoning in the standard medical evidence hierarchies. Maziarz et 

al. argue that, although ABM does simplify certain real-world behaviors while 

discarding other features, the overall simulation still captures the core mechanisms of 



  

10 

 

the phenomena (the COVID-19 pandemic, in this case), provided that the model 

assumptions (e.g., incubation period, infection probabilities, reproductive number) are 

calibrated based on empirical studies. A modified version of AceMod (Australian 

Census-Based Epidemic Model)  tailored to the characteristics of the COVID-19 virus 

(which was used to model the viral infection in Australia) was used as a baseline 

scenario to demonstrate the benefits of using ABM simulations. 

Silva et al. [4] used an agent-based model to assess the economic effects of 

lockdown measures on the propagation of COVID-19 in Brazil. To model the spread 

of COVID-19 among the agents, Silva et al. argued that the SEIR model (susceptible-

exposed-infected-recovered) is superior to the traditional SIR model due to the presence 

of the incubation period in COVID-19. In this experiment, the agents represented real-

world entities (humans, households, businesses, governments) interacting in the 

presence of a contagious disease. The human agents were divided into different 

categories (employed, unemployed, and homeless), and their movements and behaviors 

were adjusted accordingly. The virus spreads when the distance between two human 

agents exceeds a certain minimum threshold based on an experimental contagion 

probability. Regarding the economic impacts, the economic environment was modeled 

as the transfer of wealth between the different agents involved in the simulation. People 

transfer wealth to business entities, and businesses use this wealth to pay employee 

salaries and government taxes. Governments then spend part of those taxes on health 

care institutes as part of the required expenses to run these hospitalization entities. 

Therefore, people’s spending patterns are directly related to their mobility, which is 

affected by the lockdown measures, resulting in a lower number of transactions. The 

authors simulated several lockdown scenarios, ranging from partial lockdown measures 

to complete lockdown measures. 
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Chang et al. [10] used a highly modified version of AceMod calibrated with 

empirical COVID-19 parameters to assess different outbreak mitigation strategies 

across Australia, including home quarantine, school closures, and forcible social 

distancing measures. AceMod is a discrete-time and stochastic agent-based modeling 

system originally deployed in Australia in 2016 to simulate complex outbreak 

scenarios. AceMod consists of 24 million human agents, each with varying 

characteristics (age, gender, medical history) and social interaction behaviors within 

different contexts (households, schools, workplaces). Each scenario runs on a 12-hour 

cycle (representing day/night), where the infection spreads based on proximity and 

infection rate parameters. 

Yang et al. [11] used a modified SEIR model that includes inbound and 

outbound parameters representing the flow of susceptible and exposed individuals 

across China. As a data source, the authors utilized official SARS statistics from 2003 

and recalibrated the parameters (incubation, transmission, fatality) to account for the 

COVID-19 dynamics. The SARS data was used as a training set to train a recurrent 

neural network based on long short-term memory (LSTM) to forecast the spread of the 

epidemic in several provinces. 

Guo et al. [12] designed a simulation of the outbreak of a respiratory disease 

within a military camp using a stochastic spread model. Within this model, the authors 

investigated the correlation between the attack rate and various epidemiological 

parameters (R0, time of isolation, onset to isolation, and immunization rate). As an 

outcome of their work, the authors argued that a stochastic model is superior to 

traditional SEIR models because these traditional models assume the homogeneity of 

certain epidemiological inputs (e.g., contact rates), which does not realistically 

represent real-world phenomena. 
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In their work, Yang et al. [13] simulated an outbreak of influenza in Eemnes in 

the Netherlands to appraise the efficacy of various control measures. Their modeling 

approach was based on the Individual Space-Time Activity-Based Model (ISTAM), 

which is a novel bottom-up agent-based environment for mimicking epidemics among 

individuals at a fine space-time scale. The key concept of ISTAM is the activity bundle, 

which represents a spatial context where certain social interactions may occur. The 

activity bundle may represent households, schools, or shopping malls. The experiment 

simulates the infection among people existing within the same bundle, as well as people 

moving between different activity bundles. 

In their paper, Chumachenko et al. [14] simulated an outbreak of the syphilis 

pathogen in Ukraine within an agent-based modeling environment. The key novelty of 

this work was splitting the infected state (I) of the SIR model into further sub-states 

(latent, primary, secondary, and tertiary) to represent the subsequent sub-states of the 

infected individuals. 

Wong et al. [15] implemented a simulation of hepatitis C infection in Canada 

using a parallelized computing method based on a parallel sliding region algorithm 

(SRA). The outbreak simulation environment was the province of Saskatchewan and 

consisted of 45 interconnected sub-regions that were processed in parallel using 

multiple CPU threads. Two experiments were conducted to assess the effects of 

parallelizing the simulation process. One experiment utilized sliding region algorithm 

and the other processed the entire population simultaneously. The incidence rates were 

close enough between the different simulations, while the computing resources (e.g., 

computation time, memory consumption) were greatly optimized when applying SRA 

to the simulation. 
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Tabataba et al. [16] integrated beam filtering with an agent-based model to 

forecast the spreading of Ebola infections. The authors proposed an efficient particle 

filtering methodology called Smart Beam Particle Filtering (SBPF) in order to 

accurately calibrate the initial assumptions of the epidemic model (e.g., transmission 

rate, incubation period). At each time step of the simulation, the previous cycle’s state 

vector (i.e., model parameters) and the observed values were used to predict the new 

state vector, which was then fed into the agent-based model to simulate the epidemic 

spread in the next simulation cycle. 

In their work, Nakamura et al. [17] investigated the exponential growth of the 

complexity of agent-based simulations caused by the massive number of states the 

system can occupy, which represent the possible combinations of the infection states of 

the all the individuals in the experiment. In Nakamura et al.’s paper, the ABM method 

is modeled as a Markov process where the possible system configurations are 

represented by the different combination of infection states of the agents. The authors 

proposed two extended and computationally efficient methods based on the Markov 

process (Markov-Sym) and Monte Carlo (MC-Sym), respectively, that employ 

symmetry-based techniques to reduce the size of the transition matrix Tˆ (i.e., 

expressing the probability of transience between one system state to another). 

In his work, Zhang [18] discussed the pitfalls of the traditional modeling of the 

spatial environments in agent-based simulations, which are usually implemented using 

a grid of discrete cells. Zhang argued that such spatial environments are limited to 

simulating a disease in closed or restricted spaces. Additionally, Zhang argued that grid-

based systems are poor for representing public transportation carriers (such as buses 

and metros), which are ideal environments for spreading infectious diseases. Zhang 

proposed a new spatial model to organize “physical containers” in a hierarchal manner, 
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where each container can be composed recursively into smaller containers. 

Additionally, Zhang proposed the concept of “movable physical containers,” which 

represent crowded mobile vehicles where infectious contacts can take place. 

Cuevas [19] explored the relationship between the mobility of humans and the 

probability of catching COVID-19 infection using ABS methodology within the 

context of indoor facilities. In this work, the probability of movement and infection rate 

are not set sectionally by dividing the population into distinct homogeneous groups 

based on age, for example; rather, these probabilities are completely controlled 

individually per agent in order to provide a detailed picture regarding the spread of 

COVID-19. 

Hackl and Dubernet [2] used the MATSim framework to implement a large-

scale simulation of an influenza pandemic within urban areas. In order to validate the 

proposed model, a numerical test was first run with varying model inputs in order to 

calibrate the model parameters, such as infection rate. Next, the calibrated parameters 

were used to simulate a seasonal influenza propagation in 2016–2017. The result was a 

good approximation of the real events considering the simplifications involved. 

Kasaie et al. [20] designed a model to simulate the pandemic of tuberculosis 

using an agent-based methodology. One of the key aspects of their work was 

investigating the propagation of diseases when considering different layers of social 

networks, including households, neighborhoods, and local communities. 

Zhang et al. [21] tackled the problem of modeling pandemics using agent-based 

methodology by adding a microscopic public transport infrastructure (e.g., buses and 

metros) to assess the effect of such systems on the infection rate within a large-scale 

metropolitan environment (Beijing, in this case). Different social groups of individuals 

(children, adults, elders) can choose to board a public transporter to reach different 
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destinations based on their daily schedules, such as going to school or work. Within a 

public transporter, healthy agents may catch infections from other infectious 

individuals. 

Bobashev et al. [22] developed a hybrid epidemic model combining agent-based 

methodology with compartmental equation-based techniques (EBM). The key 

motivation behind this approach was to reduce the intensive computing time required 

by ABM by taking advantage of the relative simplicity of EBM under specific 

conditions. The simulation starts as a pure agent-based simulation (using a number of 

susceptible and infected individuals), and once the number of infections exceeds a 

configurable threshold, the simulation switches to a pure equation-based approach. The 

underlying justification for this hybrid approach is the assumption that, as the number 

of infected patients gets large enough, the overall dynamic of the disease spreading can 

be captured using compartmental methods, while providing adequate estimations in 

comparison with pure agent-based approaches. 

Perrin and Ohsaki [23] presented a parallel approach for handling large-scale 

simulations of pandemics by combining an agent-based model with a social-network 

generation model. This hybrid model starts by generating a social network representing 

social contacts between agents, such as friends or family members, and the social 

network is modeled as a network graph where nodes represent agents and edges 

represent social links. To further optimize the performance of the simulation, the 

authors implemented parallel computing techniques to generate smaller sub-networks 

simultaneously before joining the sub-networks to produce the global social network. 

Next, they used the social network as an input in an agent-based environment to 

simulate disease propagation. Similar to social network modeling, parallelism was 

employed by running local simulations representing neighbors on separated clusters of 
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nodes. The novelty of this approach is that it provides a formal model of close social 

contacts between agents and models casual contacts in which both types of contacts are 

crucial in spreading an infectious pathogen. 

Our Contributions 

In terms of infection modeling, several  works in the field depend on the SIR 

model or one of its derivatives. However, there is some lack of research that consider 

the status of vaccinated humans in their infection model, especially in recent works that 

deal with COVID-19.   Given the increasing rate of vaccinations around the world, we 

argue that it is critical to consider the vaccination in our models to produce more 

accurate results. Therefore, we apply the SEIR model to derive the SEIP model. in this 

model, the R status is generalized to the P status representing all protected individuals. 

The word protected is a general term that refers to individuals who are immune to the 

virus because of a previous infection or vaccination, or from any other possible causes. 

Most of the recent works that discuss the spread of COVID-19 do not factor vaccination 

status into their calculation. However, a major part of our objective is to evaluate social 

control measures beforehand where the percentage of vaccinated people within a 

society can have major impact on the planning of such measures. Strict control 

measures can be softened in societies with high rates of vaccination. A major difference 

between the protected people within our model and the recovered population in the 

standard SEIR model, is the addition of partial immunity. In SEIP the immunity of an 

agent could be partial, in which case, a protected agent may get infected again 

depending on the level of immunity or efficacy of a vaccine. Each agent may have 

different immunity level depending on the source of immunity (recovering from an 

infection or by consuming vaccine doses) and the type of vaccine they consumed.  
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Additionally, the propagation of COVID-19 is a complex phenomenon that is 

shaped by a diversity of elements. Therefore, in the design of our model we incorporate 

a set of novel environmental, biological, and social elements, some of which we believe 

were never considered in similar works 

From the literature survey, we can see that employing ABM is a common 

approach for simulating crowd behaviors. In agent-based simulations, the individual 

characteristics of the agents are critical when describing the transmission of the virus 

among human agents. One of the major shortcomings we encountered is the simplicity 

found within the implementation of agents. Many of the related works depend on static 

predefined rules to engineer the behaviors of their agents. Even works that use more 

stochastic models are still quite limited in terms of emulating real-life humans within 

crowd behaviors. To further improve the efficiency and effectiveness of crowd behavior 

in comparison with similar projects, we focused on incorporating machine-learning 

algorithms in our simulation. We utilized reinforcement-learning techniques when 

developing the agents for the ultimate purpose of constructing smart and competent 

agents. Within the context of our system, the term ‘smart’ refers to the ability of a 

computer agent to emulate its human counterpart in a reasonable manner. By integrating 

reinforcement-learning we aim to teach our agents how to mimic real humans’ 

behaviors in terms of movement and interaction. As will be discussed in more details 

later in the methodology and implementation sections, our agents will learn to  properly 

mimic real humans by observing the environment and receiving appropriate rewards 

according to their actions. In this sense, our agents will use minimum set of predefined 

behavioral rules.  

Furthermore, in our analysis of the literature we found that most of the related 

simulation efforts are constrained to 2D agents within 2D grids. We argue that the 
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integration of a 3D plane can have positive effects on the visual and functional aspects 

of a simulation. Adding a 3D plane empowers us to properly visual objects and 

environments in terms of height, width, and depth. Functionality-wise, the integration 

of a 3D space support emulating extra scenarios that are difficult to simulate effectively 

within a 2D grid (such as navigating within stairs for example). Hence, we utilize the 

Unity platform [24] to provide an integrated 3D simulation environment for predicting 

and visualizing possible spreading of COVID-19 when considering a variety of 

infection and social factors. 

Based on our proposed contributions, the next chapters will discuss the various 

aspects of the methodology of our research and the design of our system.  
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CHAPTER 4: METHODOLOGY 

Simulation Environment 

Our simulation environment resembles a grocery store where visitors or 

shoppers represent the agents. Such places are expected to be crowded with people 

buying items and traversing the store within narrow aisles, making them ideal 

environments for emulating the spread of a pandemic among a human population.  

Simulation Agents 

The agents of this simulation represent humans with shopping capabilities who 

navigate through a grocery store, pick up items, and line up in queues to pay for their 

items. Additionally, the agents are trained to honor social and safety control measures 

as set by the store policies. We used machine-learning techniques (based on 

reinforcement-learning algorithms) to properly train intelligent shopping agents to 

mimic the behavior of humans within shopping stores. In our agents’ model, the agents 

observe the enclosed shopping environment as well as neighboring agents. Based on 

those observations, an agent makes proper decisions or actions regarding navigation 

and shopping, and the agent receives appropriate rewards based on its conformance 

with the desired shopping behavior. Similarly, the agent is penalized accordingly when 

engaging in undesired behaviors. In the context of our research. the term ‘desired 

behavior’ refers to realistically emulating behaviors of human within shopping 

environments. Unlike other fields such as games where a super-agent is desirable, our 

agents will be relatively smart to the extent it is appropriate to mimic the intelligence 

of real humans.  

As shown in Figure 2, at a high level, the simulation proceeds as follows: 

1. Shoppers or agents enter the store from one of the entrances. Some of the 

agents will be infected with COVID-19 and will spread the virus in the store. 
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2. Each shopper will have a shopping list and will start to navigate the store 

and pick up items from this list. The behavior of picking up items will be 

assumed to be uniform among different shoppers. 

3. Once shoppers finish picking up items from their shopping list, they will 

search for a checkout counter to pay for their items. If an available counter 

is found, the agent will occupy it; otherwise, the agent will navigate the store 

randomly and visit random shopping points until a counter becomes free. 

4. Finally, the shopper will exit the store through one of the store exits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Simulation Flow 
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Infection Model 

Infection Stages Scheme 

 

In the implementation of our infection mechanism, we utilized the well-known 

SEIR model to derive the new model, SEIP, as visualized by Figure 3. When a healthy 

person in susceptible status S contacts an infected person I, this person may move into 

the asymptotic exposed status E. An exposed person will eventually start to show 

symptoms and reach fully infected status I (after a certain incubation period) where they 

start to infect other humans. Similarly, after a certain amount of time (based on a certain 

recovery rate). an infected person will either recover or die. The incubation period and 

recovery rate are outside the scope of our research so they will not be included in our 

calculations. The P status in our model stands for “protected” and comprises people 

who are resistant to the virus either because they have recovered from a previous 

infection or because they have been vaccinated. In our model, a protected individual 

can still catch the virus based on a probability Ppe but with a smaller chance than a 

susceptible person (Ppe < Pse). As will be explained shortly, the probability of infecting 

a protected individual is based on the efficacy of a vaccine. For protected people, our 

research will focus mainly on vaccinated agents; therefore, from now on, we will use 

the terms “vaccinated” and “protected” interchangeably to refer to the same concept. 

The term “healthy” will refer to all types of agents who can catch an infection (both 

susceptible and protected/vaccinated in this case). We will not deal with “death” status 

in this paper, as our focus is mainly on the rate of infection. One important point to 

consider is that for a person to be classified as completely vaccinated, they need to 

receive at least two vaccines doses. We will assume that the majority of people who 

receive one dose, will continue to receive a second one. Therefore, when dealing with 
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the total number of vaccine doses within a period, we will divide the number of doses 

by 2 to obtain the number of vaccinated people within this period.  

 

 

 

 

Infection Formula and Parameters 

At the simplest level, the spread of COVID-19 occurs when an infected person 

I encounters a healthy individual H where an infection probability function PI(H, I) is 

computed to determine the chance of infection. In reality, the possibility of exposure is 

dependent on a myriad of factors, including human-controllable factors (e.g., physical 

distance and mask usage), as well as biological factors related to the mechanism of the 

pathogen. In this research, we analyzed several possible parameters and classified them 

into the following categories: 

1. Biological parameters B: parameters related to the nature of the pathogen, 

such as the severity of the virus and the required physical distance for an 

infection to occur. 

Figure 3. SEIP Model 
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2. Human-social parameters S: parameters related to the behavior of human 

agents within the simulation, such as the respect of social distance and usage 

of safety measures. 

3. Environmental parameters E: parameters related to the global simulation 

environment, such as initial number of infected individuals and size of the 

simulation space. 

Table 1 summarizes the parameters we collected in our experiments, and in the 

following paragraphs we briefly explain those parameters. 

 

Table 1. List of Simulation Parameters 

Parameter Abbreviation  Category 

Simulation area size Area Environmental 

Simulation max. time STmax Environmental 

Total number of agents Ta Environmental 

Number of infected agents Ia Environmental 

Number of vaccinated agents Va Environmental 

Number of open counters Copen Environmental 

Social distance adherence ratio SDr Human-Social 

Respect social distance Flagsd Human-Social 

Hygiene measures adherence HMr Human-Social 

Respect hygiene measures Flaghm Human-Social  

Number of shopping points Csp Human-Social 

Distance between 2 agents D Human-Social 

Is agent vaccinated? Flagv Human-Social 

Max. infection distance Dmax Biological 
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Parameter Abbreviation  Category 

Infection probability at zero distance IPzero Biological 

Infection probability at max. distance IPmax Biological 

Angle flag Flaga Biological 

Angle factor AF Biological 

Min. vaccine efficacy VEmin Biological 

Max. vaccine efficacy VEmax Biological 

Min. face protection efficacy FPmin Biological 

Max. face protection efficacy FPmax Biological 

Min. face viral reduction FVRmin Biological 

Max. face viral reduction FVRmax Biological 

Surface-spreading flag Flagss Biological 

Surface-lingering probability SLP Biological 

Surface transmission probability STP Biological 

 

Area refers to the size of the simulation space in m2. STmax indicates the 

maximum time in seconds after which the simulation will terminate. Ta, Ia, Va 

represents the total number of agents, total number of infected agents, and total number 

of vaccinated agents within the simulation, respectively. Copen refers to the number of 

open counters available for checkout. 

The bit parameter Flagsd indicates whether an agent respects the recommended 

minimum social distance or not (0 = no, 1 = yes). This flag is affected by another 

parameter, SDr, which determines the average percentage of agents who keep physical 

distances when interacting. Similarly, HMr signifies the ratio of agents who honor 

hygiene safety measures (wearing face masks in our research), which in turn affects the 
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hygiene flag Flaghm. Csp controls, on average, how many store shelves an agent will 

stop at to pick up items (as determined by the size of the shopping list). D refers to the 

distance between a healthy agent and an infected one. The last flag, Flagv, indicates 

whether the agent is vaccinated or not. 

Dmax refers to the maximum distance in which the virus can be transmitted 

between two persons. The distance between two agents D must be <= Dmax for an 

infection to happen. IPzero and IPmax represents the probability of infection when D = 0 

(two agents are very close to each other) and D = Dmax, respectively. Intuitively, the 

chance of an infection is inversely proportional to the distance; therefore, IPmax <= 

IPzero. As the two agents get closer and closer to each other, the probability of infection 

increases. The variable Flaga controls whether to take into consideration the angle 

between agents when calculating the overall infection probability. Our assumption is 

that there is a higher possibility of infection when two agents are facing each other than 

if they are facing in different directions. AF controls the effect of the angle on the final 

probability. 

The variables VEmin and VEmax refer to the lower and upper efficacy of the 

vaccine against new infections if the agent is properly vaccinated. We will assume that 

given a particular COVID-19 variant, the efficacy of the vaccine against this variant 

will remain constant over time.  

The variables FPmin and FPmax refer to the lower and upper protection capacities 

of a mask against COVID-19 transmission, respectively, when worn by healthy 

persons. FVRmin and FVRmax refer to lower and upper viral load reduction of a mask 

when worn by an infected individual. We decided to model the factors related to mask 

protection and vaccines as ranges of values rather than singular discrete values because 



  

26 

 

we found high variance in the reported values in the literature [25], [26]. Therefore, 

estimating a singular value would be challenging. 

The last three parameters deal with the spreading of COVID-19 through 

aerosols and on solid surfaces. Based on recent research by Doremalen et al. [27], the 

virus can linger on surfaces for six-seven hours and then be transmitted to a healthy 

agent who comes into contact with it. Flagss controls the consideration of the individual-

surface spread within the simulation, while parameters SLP and STP control surface-

lingering and transmission probabilities, respectively. SLP deals with the lingering of 

the virus on a surface, while SLP deals with the virus infecting a healthy agent who 

comes into contact with an infected surface. 

Initially, we considered adding the parameter Age to study the spread of 

COVID-19 among different age groups. However, based on our findings [28], age 

seems to have no major effect on the probability of infection. Age has a bigger effect 

on the probabilities of hospitalization and death, which are not relevant to our project. 

Therefore, we decided to ignore age in our calculations. 

Based on the above parameters, we can derive the final formula to calculate the 

probability of infection when a healthy agent encounters an infected one PI,H. This 

probability depends on multiple inner factors. First, we define Dr as the ratio of the 

distance between agents D to the overall maximum infection distance Dmax. Next, we 

define the base probability Po(H, I) as follows:  

𝑃 𝑜
= 𝐼𝑃𝑧𝑒𝑟𝑜 ∗ (1 − 𝐷𝑟) + 𝐼𝑃𝑚𝑎𝑥 ∗ 𝐷𝑟                                               (4)  

Equation (4) interpolates the probability of infection based on the probability of 

infection at min distance (IPzero) D0 and probability of infection at max distance Dmax 

(IPmax). When the distance between two agents = maximum infection distance Dmax, the 
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final probability Po = IPmax. Likewise, when Dr approaches zero, P0 will converge to 

IPzero.  

Next, we need to consider the effect of the angle ∠ between the agents on the 

overall probability if the angle Flaga is set to 1 (consider the angle in the calculation as 

mentioned previously when discussing the model parameters). P1 denotes the new 

infection probability given the angle flag Flaga, angle factor AF, and base probability 

P0. 

 𝑃1 =  𝑃 𝑜
+  𝑃 𝑜

∗ 𝐹𝑙𝑎𝑔𝑎 ∗  𝐴𝐹 ∗
(∠ −90°)

90°
                                                          (5) 

This equation maximizes the probability when two agents are facing each other 

(Angle = 0) and minimize it when the two agents are looking in opposite directions 

(Angle =180).  

The next factor to consider is the effect of a vaccine Vfactor if the healthy agent 

is vaccinated. 

𝑃2 =  𝑃1 ∗ (1 − 𝐹𝑙𝑎𝑔 𝑣 ∗ 𝑅(𝑉𝐸𝑚𝑖𝑛, 𝑉𝐸𝑚𝑎𝑥))                                                (6) 

The terms R() refer to a function that generates a random number in a certain 

range: in this case, the lower and upper values of the vaccine’s efficacy. If the healthy 

agent is unvaccinated, P2 = P1 (from the previous step).  

The final critical factor is the effect of the face mask Ffactor if worn by either 

agent. 

𝑃3 = 𝑃2 ∗ (1 − 𝐹𝑙𝑎𝑔ℎ𝑚(𝐻) ∗  𝑅(𝐹𝑃𝑚𝑖𝑛, 𝐹𝑃𝑚𝑎𝑥)) 

                ∗  (1 − 𝐹𝑙𝑎𝑔ℎ𝑚(𝐼) ∗ 𝑅(𝐹𝑉𝑅𝑚𝑖𝑛,  𝐹𝑉𝑅𝑚𝑎𝑥))                            (7) 

Flaghm(H) and Flaghm(I) refer to the hygiene statuses of the healthy and infected 

agents, respectively. The final probability is PI,H = P3. If none of the agents wear a mask, 
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P3 = P2 (from the previous step). Similarly, if only one agent is not wearing a mask, the 

corresponded term in the equation (7) will default = 0. 

As discussed previously on page 22, we also consider the probability of 

individual to surface viral transmission. Therefore, we will define two extra 

probabilities: PI,S is the probability of spreading the virus from an infected individual I 

to a solid surface S, as given by equation (8). 

𝑃𝐼,𝑆 = 𝑆𝐿𝑃 ∗ (1 − 𝐹𝑙𝑎𝑔
ℎ𝑚

(𝐼) ∗ 𝑅(𝐹𝑉𝑅𝑚𝑖𝑛,  𝐹𝑉𝑅𝑚𝑎𝑥))                (8)              

We can see that PI,S depends on the surface-lingering probability SLP and the 

viral reduction efficacy of a mask worn by the infected agent. 

The second probability PH,S, given by equation (9), deals with the transmission 

of the pathogen from a contaminated surface S to a healthy agent H. This probability is 

dependent on the surface transmission probability STP, as well as on the hygiene and 

vaccination status of the healthy agent. 

𝑃𝐼,𝑆 = 𝑆𝑇𝑃 ∗ ((1 − 𝐹𝑙𝑎𝑔 𝑣 ∗ 𝑅(𝑉𝐸𝑚𝑖𝑛, 𝑉𝐸𝑚𝑎𝑥))                                                               

                         ∗  (1 − 𝐹𝑙𝑎𝑔ℎ𝑚(𝐻) ∗ 𝑅(𝐹𝑃𝑚𝑖𝑛,  𝐹𝑃𝑚𝑎𝑥))    (9) 

 

Dataset 

The main dataset used in this research (pulled from [29]) consists of the daily 

COVID-19 statistics published by the Ministry of Public Health in Qatar, which spans 

the period from 2020-03-14 to 2021-09-10. The most relevant statistics for our research 

are as follows: 

 Date 

 Daily number of new positive cases (DNP) 

 Daily number of new tests (DNT) 

 Daily number of new vaccine doses (DNV) 
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 Total number of administered vaccine doses (TV) 

We preprocessed the dataset to compute the daily infection rate (DIR) and the 

total vaccine rate (TVR) in Qatar based on the following formulas, respectively: 

𝐷𝐼𝑅 % =
𝐷𝑁𝑃

𝐷𝑁𝑇
∗ 100                                                                                         (10) 

𝑇𝑉𝑅 =
𝑇𝑉∗0.5

2572198
                                                                                                     (11) 

As discussed in the infection stages scheme section, vaccination rate refers to 

people who receive at least two vaccine doses. Therefore, TVR represents the rate of 

getting two doses.  

We assume that the ratio of new positive cases to new tests will provide 

approximation of the ratio of new infected people in Qatar. The number 2,572,198 in 

the second equation represents the total population of Qatar [30]. We divided the total 

number of vaccine doses by 2 because most people receive two vaccine doses over a 

period. 

Simulation Algorithm Procedure 

Based on the previous sections, we have developed a general pseudo-algorithm 

that describes the overall simulation workflow, as shown in Figure 4. 

The algorithm takes as an input a list of configuration parameters P and outputs 

a list of simulation results R (e.g., the infection rate % and total simulation time). The 

simulation starts by executing the procedure initSimulation to prepare the environment, 

such as by creating an initial number of shoppers and preparing the counters. 

At each time step of the simulation, new agents enter the shop via 

enterShoppers, and all agents are instructed via the procedure doAction() to perform 

associated actions, such as moving around the store or picking up items. For each 

infected agent, the simulation finds all susceptible and protected neighbors within the 
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distance Dmax. For each neighbor agent, a probability of infection is calculated, and if 

the probability is satisfied, the agent status is updated to “exposed.” 

At the end of each time step, some agents exit the store via exitShoppers, and 

the statuses of all checkout counter queues are updated. Once the elapsed time of the 

simulation exceeds the maximum allowed time STmax, the simulation stops and returns 

the results of the simulation R. 

 

  

Figure 4. Simulation Algorithm Pseudo-Code 
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CHAPTER 5: IMPLEMENTATION 

Simulation Technology 

We used the Unity [24] engine for developing our simulation and used C# as 

our language. Unity is a cross-platform game engine used for developing 3D games. It 

is an ideal choice for running computer simulations since it encapsulates most of the 

components required for building 3D graphic simulations, such as physics engines, 

collision detection, navigation mechanism, and 3D visualizations. Within the Unity 

sandbox, we utilized the ML-Agents package for programming the agents’ behaviors. 

ML-Agents [31] provides capabilities for transforming any Unity game environment 

into a learning environment where game objects (or agents) can be trained using various 

training algorithms, such as reinforcement learning and imitation learning. Essentially, 

ML-Agents is an excellent toolkit for teaching intelligent agents complex behaviors. In 

the context of our research, our goal is to utilize the ML-Agents toolkit for 

programming agents with shopping behaviors that mimic real-life human shoppers. 

The preprocessing, analyzing, and manipulating of the dataset and results are 

done using the R language within RStudio [32]. 

Base Implementation 

We built our simulation on top of the Unity Grocery Store Simulation project 

[33], which is an open-source project built by the Unity team to demonstrate how Unity 

can power complex computer simulations. This project simulates COVID-19 

propagation within a grocery store among a population of human shoppers. We extend 

this project to implement our infection model and customize the behavior of intelligent 

agents using machine learning. In the next few sections, we will discuss some of the 

implementation details and enhancements we added to the project. 

Figure 5 shows a high-level architecture of the complete solution and depicts 

the different layers of the solution. The simulation is built on top of the Unity engine, 
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which houses the essential components of the infrastructure, such as collision detection, 

physical rendering, and game controls. The essence of the simulation is implemented 

through the simulation core layer. The core layer oversees setting up and terminating 

the simulation environments and managing the set of shopping agents. The layer of the 

shopping agents encompasses the collection of agents deployed by the simulation core 

within the environment. Each agent captures a set of properties expressing their social 

and health statuses, as well as an ML-Agents brain encapsulating the intelligent 

decision-making capabilities of the agent. The last component is the infection model, 

which implements the necessary logic of computing the infection spreading. This 

component is independent from the Unity engine framework and is initialized and 

queried by the core layer to find the probabilities of infection among the different 

agents. In the next few sections, we will discuss in detail the various layers, starting 

with the core layer. 
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Simulation Core Layer 

Waypoints Graph 

The movement system within the store is powered by an implementation of a 

waypoints graph [34]. 

Figure 6 displays an example of the waypoints graph that consists of a set of 

waypoints or nodes (indicated by cyan squares) connected by edges (indicated by cyan 

arrows). The waypoints are classified into entrance nodes (indicated by green squares 

and only have outward-facing edges), exit nodes (indicated by red squares and only 

have inward-facing edges), and regular intermediate nodes (cyan squares). Among the 

regular nodes, a few nodes are annotated as “Registers” to indicate that those nodes 

Figure 5. System Architecture 



  

34 

 

represent checkout queues where an agent must wait for the queue to finish before 

proceeding. Within this graph, an agent can traverse the store in any of the four 

directions (up, down, left, right) along any of the connected nodes. 

In this scheme, two points, wp1, wp2, are assumed to be connected if the 

following criteria are satisfied: 

1. A path P(wp1, wp2) exists between the two nodes (distance D(wp1, wp2) ≠ 

∞). 

2. D(wp1, wp2) <= DwpMax. The parameter DwpMax indicates the maximum 

allowed distance between any two pairs of nodes. By default, this variable 

is set to ∞, indicating that any node can connect to any other node in the 

graph. 

3. The angle between the two nodes ∠(wp1, wp2) must be within a certain 

configurable threshold AwpMax. 

4. There must not be any intermediate obstacles between the two nodes, such 

as shopping shelves. 

In our implementation, an agent enters the simulation randomly through one of 

the entrances. The list of shopping items comprises a list of random intermediate regular 

nodes that an agent must traverse before moving to the cash registers. The agent finishes 

the experiment by exiting using one of the exits nodes. At every point in the simulation, 

the number of shoppers <= Ta (the maximum allowed number of agents.) 

 



  

35 

 

 

 

Simulation Environment 

The environment is a 3D map of an imaginary grocery store with shopping 

shelves, aisles, and checkout counters. Figure 7 displays a screenshot of the map.   

One important point to consider is that we are using a 1:1 scale in our 

simulation; therefore, a volume of m3 in the real world translates into one unit in the 

game world (x = 1, y = 1, z = 1). 

 

Figure 6. Graph of Waypoint Nodes 
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Store Camera 

To implement the simulation, we developed a fully controllable 3D camera to better 

visualize the simulation at different angles and zoom levels; Figures 8 and 9 depict 

some different viewpoints. 

 

 

 

 

 

 

 

 

 

Figure 7. 3D Virtual Store 

Figure 8. Top View Camera Figure 9. First-Person View Camera 
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Checkout Queue 

The simulation queue component of our model emulates real-life billing for 

items at checkout stations. The number of available open counters is configured through 

the variable Copen, discussed previously in the Methodology chapter. When shoppers 

complete their shopping list, they search for a vacant counter. If an available counter is 

found, the shopper enters the queue; otherwise, the shopper roams the simulation 

randomly until an available queue is found. Figure 10 is a screenshot from the system 

depicting queues of agents at different checkout counters. 

 

 

 

 

 

 

 

 

 

 

Simulation GUI 

Finally, a GUI screen is provided for controlling all the different simulation 

parameters, as demonstrated in Figure 11. 

 

Figure 10. Checkout Queue 
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Infection Model 

The shoppers in the simulation assume different colors based on their health or 

infection status (Susceptible Exposed, Infected, Vaccinated). Blue indicates 

susceptible, yellow indicates exposed, red indicates infected, and green indicates 

vaccinated. As explained before in the Methodology, an infection occurs based on a 

probability function when a healthy shopper gets close to an infected one within 

distance Dmax. Within the context of the Unity engine, this probability is calculated once 

per frame per second. At each frame, a sphere or OverlapSphere [35] with radius Dmax 

encompasses each infected agent. All healthy agents within this sphere have a chance 

of becoming exposed. Figures 12 and 13 demonstrate the infection behavior. Agent A1 

is in the center of a circle with radius Dmax surrounding several agents. All agents 

outside the sphere are ignored. For each of the inner healthy agents, an infection 

probability is computed. At the next frame, Agents A2 and A4 get infected and move 

Figure 11. Parameter Configuration GUI 
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into the exposed category, while the rest of the healthy agents manage to survive this 

frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Agent A1 Infection Sphere (Before Infection) 

Figure 13. Agent A1 Infection Sphere (After Infection) 
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Shopping Agents Layer 

The final component of the simulation is the agents layer encompassing the 

shoppers in our virtual store. The shoppers are visualized as spherical 3D objects with 

different colors illustrating different infection statuses. In addition to a healthy status, 

each shopper is also associated with other configurable real-life properties such as 

speed of movement, wearing of masks, and respecting of social distances. Those 

variables directly affect the spread of COVID-19. 

As discussed in the subsection Waypoints Graph), the shoppers navigate 

through the store by means of a grid of waypoint nodes. A shopper arrives at the store 

using one of the entrance nodes, travels throughout several intermediate nodes 

(denoting shelves of goods), and exits using an exit node. In the base implementation 

of the solution, the shopper’s trip around the store is determined beforehand when the 

shopper is first deployed to the environment. Using the nodes graph, the simulation core 

generates a path of nodes starting with a random entrance, passing through a list of 

intermediate goals ordered by distance, and ending with a random exit. The shopper 

follows this path with a constant speed until the end of the trip [34]. 

In our customization of the project, we re-engineered the movement system to 

harness the capabilities of the Unity ML-Agents package [31]. As discussed in the 

Methodology, we depended mainly on reinforcement learning to train our agents. The 

overall process is performed in two phases: training phase and inference phase. In the 

training phase, the agent is deployed to a smaller training environment to learn shopping 

behavior, with the overall goal of maximizing the received rewards. In the inference 

phase, the agent is equipped with a functional brain and is thus deployed to the real 

simulation environment. In the next few sections, we will discuss some of the details 

regarding the training of the agent. 
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Training Settings 

We utilize proximal policy optimization (PPO) in our reinforcement-learning 

implementation. Table 2 presents some of the key configurations in our 

implementation, based on default toolkit configurations from [36]: 

 

Table 2. RL Training Configuration 

Parameter Value 

Trainer Type PPO 

Max. Steps 5,000,000 

Time Horizon 64 

Learning Rate 0.0003 

Learning Rate Schedule Linear 

Hidden Units 64 

Number of Layers 2 

Batch Size 64 

Buffer Size 12,000 

Beta 0.001 

Epsilon 0.3 

Lambda 0.99 

Number of Epochs 3 
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Environments 

The agent will train within a grocery store environment to learn properly a 

shopping behavior. For the sake of speeding up the training process, the training will 

be done in a smaller environment. We aim to train the agent in an environment-

independent manner. 

Goals 

The shopper agent will work on maximizing two subsequent goals: 

1. Navigating the nodes graph with efficiency: The agent needs to learn to 

navigate the graph along a path with start and end nodes without prior 

knowledge of the graph. 

2. Completing the shopping list: After training to achieve the first goal, agents 

should be able to go over all the nodes indicated by the shopping list and 

arrive at the checkout counter to pay for their items. 

 

Observations 

To properly observe the environment, each agent is equipped with two 

RayPerception Sensors [37]. The first sensor RPSenv is environment-specific and is 

responsible for monitoring the surrounding environment, mainly the nearest waypoint 

nodes. When an agent needs to move to a new position, the sensor is used to search for 

nodes connected to the current position and avoid choosing directions with dead ends. 

The second sensor RPSagt is agent-specific and is responsible for monitoring the other 

agents. If an agent is parameterized to respect social distance (Flagsd = 1), this sensor 

is utilized to search for empty waypoints (i.e., no agent is currently associated with 

those points). If no available waypoint is found, the agent waits indefinitely in its 

current position until one is found. Figure 14 illustrates the different rays, where red 

rays indicate RPSenv, and green rays indicate RPSagt. 
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Actions 

The agent decides randomly to navigate to a neighbor’s node by selecting a 

movement direction from an array of possible directions (forward, backward, left, 

right). If the selected direction leads to a dead end (i.e., no node is connected to this 

direction), the agent selects a “wait” action and requests a new action from the brain. 

Similarly, if the selected node is occupied and the agent is set to respect social distance 

(Flagsd = 1), the agent will also wait until the brain issues a new action. This process is 

repeated until a valid direction is found. Figures 15, 16, and 17 depict the different 

possible scenarios: In scenario A, the agent selects the action “forward” and navigates 

successfully to the northern node. In scenario B, the agent chooses the action “right,” 

but because no node exists to the right, the agent waits until the next cycle to try a new 

direction. In scenario C, the blue agent selects the action “left”, but the left node is 

Figure 14. Agent Sensors 
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occupied by the orange agent, so the blue agent requests another decision from the 

brain. 

Rewards 

Based on the goals, observations, and actions of the agent, we can design our 

rewards scheme accordingly. We will reward our agent for successfully navigating the 

store and satisfying the shopping goals. Likewise, we will punish the agent for reaching 

dead ends and colliding with other agents. The full reward scheme is provided in Table 

3. The rewards values were selected arbitrarily based on the difficulty and frequently 

of a task. Selecting a valid direction is considered an easy and frequent task therefore 

we reward the agent with small value (0.2). On the other hand, finishing all the shopping 

list is assumed to be a considerably challenging task, so a big reward is handed for 

completing it.  

 

Table 3. Agent Action Rewards Scheme 

Action Reward 

Selecting a valid direction 0.2 

Reaching a dead end -0.1 

Selecting an occupied node -0.1 

Finishing a shopping objective 1 

Finishing the shopping list 10 
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Figure 15. Agent Decisions, Scenario A 

Figure 16. Agent Decisions, Scenario B 

Figure 17. Agent Decisions, Scenario C 
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Results 

To speed up the learning process, we deployed 10 agents to our learning 

environment (approximately 7% of the total number of agents 150 that will be used 

later in our final experiments) . For this research we allowed the agents to train for eight 

hours, after which we assessed the performance of the agent to be satisfactory. The final 

outputs of the training per agent per episode are highlighted in Figures 16 and 17. For 

both figures, the x-axis represents the number of elapsed training steps, where the peak 

is 800,000 steps (= 8 hours). Figure 18 shows the cumulative rewards per episode. The 

overall trend of the rewards represents a positive increase until exceeding 70 at the 

peak. Figure 19 displays the average episode length. In ML-Agents terminology, the 

episode length corresponds to the number of decisions (or steps) the agent took before 

completing its goal or ending the episode if the agent failed completely to learn. We 

can see that the episode length is constantly fluctuating at around 320 steps. This 

fluctuation can be attributed to the manner we are conducting the training. As explained 

previously, at the start of each episode, the agent is initialized with a random list of 

shopping nodes and asked to visit each node before stopping at a checkout queue. 

Consequently, when the generated shopping points are uniformly distributed across the 

store, we expect the agent to take a long time before reaching the target. Likewise, when 

condensed and closer nodes are chosen, the agent can finish its task quicker. Hence, the 

episode length oscillates considerably, which represents the randomness of our training 

scheme. 
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Figure 18. Cumulative Rewards Per Episode 

Figure 19. Training Episode Lengths 
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CHAPTER 6: RESULTS AND DISCUSSION 

Model Validation 

Validating the model was a challenging task due to the complex nature of 

COVID-19. Virus propagation is affected by a complex combination of parameters, 

many of which are still not well understood or are unknown. Additionally, the stochastic 

nature of our agent-based modeling further boosts the complexity of the problem. 

We approached the problem from the angle of calibrating the parameters to 

produce simulations that approximate real-life statistics. The main criteria to maximize 

in the simulation are the simulation infection rate SIR%, expressed as follows: 

𝑆𝐼𝑅% =
𝐸𝑐

𝐸𝑐+𝑆𝑐+𝑉𝑐
∗ 100                         (12) 

Where Ec, Sc, and Vc are the total number of new exposed agents, susceptible 

agents, and vaccinated agents, respectively. Each simulation corresponds to one real-

life day of shopping; therefore, the SIR model is validated against the daily infection 

rate (DIR) of Qatar (see Methodology chapter for the calculations). We will compare 

our implementation against a subset of the dataset. We decided to select the first and 

last week of the dataset as comparison points. The first week represents the beginning 

of the pandemic in Qatar, so the number of cases is slowly growing. The last week 

represents a steady stage where the pandemic growth is relatively stable, largely owing 

to the vaccination campaign conducted by the Ministry of Public Health. The 

parameters and results vary considerably between the first and last weeks; therefore, 

we will be content if we can develop a model that satisfies the results of both weeks 

within certain acceptable criteria. For a more realistic implementation, we decided to 

create a simulation store that roughly approximates a real grocery store in terms of size 

and number of visitors. We based our virtual store on Qatar Family Food Center (FFC) 

[38]. The supermarket chain spans five stores totaling 220,000 feet2; on average, each 
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store is 44,000 feet2 or 4,088 m2. Therefore, we designed our store area to fit a size of 

72 × 56 (4,032 m2). In terms of visitors, the FFC accepts 130,000 visitors weekly across 

all five stores. On average we expect each store to accept 150 visitors per hour per day 

(130,000 weekly = 18,571 daily = 3,714 visitors per store = 150 visitors per store per 

hour). Qatar has a policy regarding the maximum number of allowed visitors which is 

handled implicitly in our model by the variable Ta (maximum number of agents). A 

shortcoming of our work is that we are assuming a uniform number of visitors among 

different days and different hours of a day which is not very realistic assumption to 

take. However, we still claim that the final results of the simulation could approximate 

the actual results responsibly.  

Error Measures 

In evaluating our model, root mean squared error (RMSE), as given in the 

equation, is our main error measure: 

𝑅𝑀𝑆𝐸 = √
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑖)2𝑛

𝑖=1

𝑁
    (13) 

Where Actuali is the actual infection rate DIR% for day i and Simulatedi is the 

simulated infection rate SIR for day i. We selected RMSE as our error indicator since 

it outputs results with the same measurement unit as our target variables (infection rate 

%); hence it is easier to interpret. For minimizing the error rate, our target criteria would 

be achieving a root mean squared error of ± 5%. 

Calibrated Model Parameters 

The list of parameters representing the base model is presented in Table 4. The 

base parameters are a mix of arbitrary assumptions and parameters taken from the 

literature. The main parameters we need to calibrate are IPzero and IPmax (related to the 

infection probability between two individuals) and SLP and STP (related to the 
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infection probability through surfaces). The parameters Ta and Va are independent 

variables that will be set individually at the start of each simulation. 

Table 4. Model Base Parameters 

Parameter Base Value Reason 

Simulation area size - Area 72 × 56 FFC Average [38] 

Simulation max. time - STmax 36 min Assumption 

Total number of agents - Ta 150 FFC Average [38] 

Total number of infected - Ia Variable  

Total number of vaccinated - Va Variable  

Number of open counters - Copen 9 Assumption 

Social distance adherence ratio - SDr 80% Assumption 

Hygiene measures adherence - HMr 80% Assumption 

Number of shopping points - Csp 16 Assumption 

Max. infection distance - Dmax 1.5 meters Recommended in [39] 

Max Infection probability - IPzero 0.04 Calibrated 

Min Infection probability - IPmax 0.02 Calibrated 

Angle flag - Flaga True Assumption 

Angle factor - AF 0.05 Assumption 

Min. vaccine efficacy - VEmin 0.75 [26] 

Max. vaccine efficacy - VEmax 0.91 [26] 

Min. face protection efficacy - FPmin 0.45 [25] 

Max. face protection efficacy - FPmax 0.97 [25] 

Min. face viral reduction - FVRmin 0.25 [25] 

Max. face viral reduction - FVRmax 0.25 [25] 



  

51 

 

  

The simulation size area and the total number of agents Ta are based on the 

approximated values of family food center [38], as explained in the previous section. 

The number of checkout counters is set to 9, and the number of items in the shopping 

list is set to 16. The angle factor is set as a constant value of 0.05. The exposure distance 

is set to 1.5 meters based on the recommendation of the Ministry of Public Health [39]. 

In terms of safety measures, 80% of the population are assumed to respect social 

distancing and hygiene measures based on the regulations of the State of Qatar. Ideally, 

it should be 100%, but we set both at 80% to take into account people who do not 

respect those measures. 

The factors related to the efficacy of vaccines (VEmin–VEmax) and face masks 

(FPmin–FPmax and FVRmin–FVRmax) are pulled from the literature [26], [25], 

respectively. 

In order to calibrate the main parameters (IPzero and IPmax), the simulation is 

configured with the base parameters and initialized with different values of infection 

probabilities until an acceptable result is found that closely fits the first and the last 

weeks of the real data (as explained in the previous section). The two parameters SLP 

and STP are set relative to IPzero and IPmax such that they equal 10% of the two variables 

IPzero and IPmax, respectively. 

 

Parameter Base Value Reason 

Surface-spreading flag - Flagss True [27] 

Surface-lingering probability - SLP 0.004 Calibrated 

Surface transmission probability - STP 0.002 Calibrated 
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After running the simulation several times to arrive at the base values for IPzero 

and IPmax, we simulated the spreading of the virus on each day of the selected two 

weeks. For each day, we varied the values of the parameters Ta and Va to take into 

consideration the average number of infected and vaccinated agents in the past three 

days. Table 5 presents the results of our validation.  

 

Table 5. Validation Results 

Day Week # Real Value Forecasted Value 

2020-03-17 Week 1 1.7% 7.3% 

2020-03-18 Week 1 3.1% 5.3% 

2020-03-19 Week 1 1.4% 2.2% 

2020-03-20 Week 1 2.2% 3.0% 

2020-03-21 Week 1 2.5% 2.5% 

2020-03-22 Week 1 2.6%n 3.1% 

2020-03-23 Week 1 1.4% 2.6% 

2021-09-04 Week 2 0.6% 0.2% 

2021-09-05 Week 2 0.6% 0.3% 

2021-09-06 Week 2 0.7% 0.3% 

2021-09-07 Week 2 0.6% 0.5% 

2021-09-08 Week 2 0.6% 0.5% 

2021-09-09 Week 2 0.5% 0.2% 

2021-09-10 Week 2 0.5% 0.6% 

RMSE 1.68 
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From Table 5, we can see that the RMSE equals 1.68, which is within our 

acceptable criteria. Figure 20 visualizes the predictions. 

 

 

Sensitivity Analysis 

After validating our model, we conducted a sensitivity analysis to assess the 

effect of each major parameter on the overall infection rate. Figure 21 is a tornado 

diagram demonstrating the sensitivity of 12 major parameters. In this experiment we 

assumed a base scenario of 100 people shopping in a store, in which 20 people are 

infected and 20 are vaccinated. Each shopper is allowed to pass by 16 shopping points 

and pay their bill at one of five operational checkout counters, and 50% of the shoppers 

are expected to follow social distancing and hygiene guidelines. The efficacies of the 

vaccines and mask protections are all set to 50%. The result of this configuration is an 

infection rate of 30%, as represented by the center of the tornado graph. 

Figure 20. Validation Results 
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From this point onwards, we varied each of the 12 parameters to study the effect 

on the overall infection rate. The left side of the graph represents the minimum infection 

rate caused by one particular parameter, while the right-side value represents the 

maximum value. Going from green to pink represents a positive correlation with the 

infection rate, while going from pink to green represents a negative correlation. 

Table 6 presents the ranges of values used in our sensitivity analysis. 

 

Table 6. Sensitivy Analysis Parameter Ranges 

Parameter Min. Value Max. Value Base Value 

Ta 50 200 100 

Ia 10 40 20 

Va 10 40 20 

Copen 1 9 5 

Csp 4 32 16 

Dmax 0.5 3.0 1.5 

SDr 0% 100% 50% 

HMr 0% 100% 50% 

VEmin–VEmax 0.1 0.9 0.5 

FPmin–FPmax 0.1 0.9 0.5 

FLRmin–FLRmax 0.1 0.9 0.5 

  

 

From Figure 21, we can observe the following interesting points: 

1. The parameter that most affects the infection rate is the range of infection 

probabilities (IPzero–IPmax). This is quite an intuitive result. 
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2. The numbers of infected and vaccinated people are crucial to the overall 

infection rate. Again, this is an expected result. 

3. The number of open checkout counters has inverse correlation with the 

infection rate. Few open checkout counters lead to more congested queuing 

within small areas, which leads to more spreading of the virus. Interestingly, 

the effect of the number of open counters is asymmetrical: increasing the 

number of counters from one to five greatly reduces the infection rate, but 

further increasing the number of open checkouts has a negligible effect. One 

possible explanation for this is that a minimum of five checkouts is enough 

to satisfy a store containing 100 shoppers. 

4. The number of shopping points seems to have the opposite relation with the 

number of open counters. When the shoppers visit a small number of shelves 

(Csp <= 8), the infection rate is greatly reduced. However, the effect is 

greatly diminished after passing 16 shopping points. Our theory is that most 

of the infection occurs after some time within the simulation, when more 

people entered the store. When the size of the shopping list is small, people 

spend less time in the store; therefore, there is less chance of encountering 

each other. 

5. The exposure distance has small but symmetrical inverse correlation with 

the infection rate. This is an expected result. 

6. Increasing the percentage of social distance adherence and face mask 

adherence from 0% to 50% can greatly reduce the infection rate, as 

expected. Surprisingly, further increase of social distance adherence has less 

impact. For face masks, however, going from 50% to 100% adherence 

continues to greatly reduce the infection rate. 
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7. As expected, the efficacy of vaccines and masks have significant impact on 

the infection rate. 

 

 

 

 

Evaluation of Safety Measures 

The final target of our data analysis is the effect of combining safety measures 

on the overall infection rate. In this section, we conducted two main experiments that 

will be presented in the next few subsections. 

Experiment 1: Analysis of Social and Hygiene Measures 

The first experiment analyzes the effect of social-distancing and hygiene 

measures on the overall infection rate. In this experiment, we use a store with 100 

shoppers in which 25 shoppers are infected. The number of vaccinated is set to zero, as 

we need to focus on only the safety measures. We use different combinations of 

percentages for the values of social-distance and face mask adherence. We vary each 

Figure 21. Sensitivity Analysis 
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value of social-distance and face mask adherence by 0%, 25%, 50%, 75%, and 100%. 

The rest of the parameters are set according to the base values previously calibrated in 

the model validation section. 

Figure 22 presents the results of our analysis, where the different colored bands 

represent different levels of infection severity: green, yellow, and red represent low, 

medium, and high severity, respectively. The x-axis represents social-distance 

adherence levels, and the five colored lines represent hygiene levels. From this figure, 

we can see that enforcing social-distance and face mask adherence of 50% will reduce 

the overall infection rate from 76% to 34% (> 50% reduction). 

 

 

 

Experiment 2: Infected vs Vaccinated 

The second experiment studies the efficacy of the current vaccines against 

different COVID-19 variants. This experiment has two dependent main objectives. The 

first objective is to study the minimum number of vaccinations needed to avoid cases 

of high severity, where a 30% infection rate represents the maximum threshold for 

avoiding such danger zones when taking into consideration different infection levels. 

Figure 22. Safety Measures vs Infection Rate 
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The second objective of the experiment is to study the minimum percentage of 

vaccinations needed to reach a safe state (infection % <= 30%) when taking into 

consideration different COVID-19 variants. 

In our research we assume the existence of four new COVID-19 variants. We 

represent these variants by altering the probabilities of infection (IPzero and IPmax). 

Those variants are completely imaginary with arbitrary probabilities. The aim is to 

study vaccination strategies under hypothetical new mutations. Table 7 presents the 

probability values of the four different variants. 

 

Table 7. COVID-19 Variants 

Variant IPzero IPmax 

1 0.06 0.04 

2 0.08 0.06 

3 0.1 0.08 

4 0.2 0.1 

 

 

 

As in the first experiment, this experiment uses a store housing 100 shoppers. 

The number of infected people is varied within 25%, 50%, and 75%. The number of 

vaccinated is varied within 0%, 25%, 50%, and 75%. 

Figures (23, 24, 25, and 26) present bubble charts representing the outcome of 

our experiments for each of the imaginary COVID-19 variants. In each of these graphs, 

the x-axis depicts the percentage of infected people, while the y-axis depicts the 

percentage of vaccinated people. In the graphs, green bubbles represent safe conditions 
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(infection % <= 30), while red bubbles represent danger zones. For the variants 1 to 3, 

we can reach a safe state if at least 75% of the population are vaccinated. For variant 4, 

our system predicts that the current vaccines could be ineffective in stabilizing the 

pandemic if the percentage of infected people reached 25%. 
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Figure 23. COVID-19 Variant 1 Results 

 

Figure 24. COVID-19 Variant 2 Results 
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Figure 25. COVID-19 Variant 3 Results 

 

Figure 26. COVID-19 Variant 4 Results 
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CHAPTER 7: LIMITATIONS AND FUTURE WORKS 

In this chapter we will discuss some of the limitations of our project and explore 

different directions to further extend the implementation. 

Scientific Infection Model 

The COVID-19 pandemic is complex and is manifested as a sophisticated 

combination of social and biological parameters. In this paper, we tackled the problem 

from a computing point of view; therefore, we had to make many assumptions in 

calibrating our model. Further model optimization using more scientific data analysis 

will lead to more accurate results. 

Organic Movement System 

The manner in which our agents navigate the store is limited to rectilinear 

movements because of the grid-of-nodes system we depend on for path finding. In real-

life, however, shoppers move much more freely in a chaotic manner. One possible 

approach to implement more organic movement patterns is to integrate the NavMesh 

API [40], which presents functionalities for implementing more organic navigable 

zones and efficient path-finding methods. 

Realistic Queuing System 

The queuing component of our system is quite simple. First, it is limited in 

length to only four people, and second, the shoppers line up in a completely linear 

manner. In reality, the agents may queue in a more random way, especially when taking 

into consideration social distancing. Similarly, the distance between the shoppers in a 

queue is currently fixed, but in reality, the distance could vary depending on different 

store policies. 

Varied Simulation Environments 

The simulation is constrained to a small grocery store, but in reality, COVID-

19 can spread rapidly in other closed spaces, such as schools, airports, and 
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transportation facilities. The solution can be extended to such simulation environments. 

Additionally, it would be informative to validate our infection model and agent 

movements against other environments and test whether the overall results are still 

satisfactory. 

COVID-19 Variants and Vaccine Types 

It would be educational to study the spread of different COVID-19 variants, as 

these variants require different model parameters. Similarly, it is crucial to compare the 

efficacy of the different vaccine types. Ultimately, we should study the effectiveness of 

the different vaccines against new virus variants to derive the best possible vaccination 

plans.  

Simulation Visualization 

Our project is currently limited to 3D models and animations. To improve 

visualization, we would like to import more realistic 3D models of human agents and 

use smoother animations. Similarly, it would be enlightening to integrate more realistic 

3D environments—perhaps we could even mirror a real grocery store. 
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CHAPTER 8: CONCLUSION 

In this research we offered an intelligent agent-based environment for 

simulating the spreading of COVID-19 among humans in the State of Qatar. We 

proposed the SEIP model as an extension of the SIR model to capture a more realistic 

picture of the pandemic. For more accurate estimations, the model was calibrated with 

a variation of novel parameters to better describe the phenomena of COVID-19. In 

terms of agent modeling, we followed a machine-learning approach and employed 

reinforcement-learning techniques to teach intelligent shopping behaviors and to infer 

optimal decisions. Smart shopping agents were developed using the ML-Agents toolkit, 

which is the Unity implementation of reinforcement-learning algorithms. The 

developed infection model and the smart agents were integrated using the Unity 

platform to design a 3D environment where the crowd behavior of shoppers and 

propagation of COVID-19 were controlled and visualized in real-time. We validated 

our model and parameters against real historical data from Qatar and derived different 

possible safety plans. 
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