
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

APPLYING VARIOUS MACHINE LEARNING METHODOLOGIES INTO THE

FINANCIAL MARKET

BY

MAHMOUD G. MESLEH

A Thesis Submitted to

the College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Electrical Engineering

 January 2022

© 2021 Mahmoud G. Mesleh. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the Thesis of

Mahmoud G. Mesleh defended on 28/11/2021.

Prof. Mustafa Serkan Kiranyaz

 Thesis/Dissertation Supervisor

Dr. Muhammad Chowdhury

 Committee Member

Approved:

Khalid Kamal Naji, Dean, College of Engineering

iii

ABSTRACT

MESLEH, MAHMOUD, G, Masters: January 2022, Masters of Science in Electrical

Engineering

Title: Applying Various Machine Learning Methodologies into the Financial Market

Supervisor of Thesis: Prof. Mustafa, Serkan, Kiranyaz.

 The modernization of the financial market, with the introduction of the internet,

made it easier for the average, everyday people, around the world to invest in the

plentiful trading assets in the market. This created a revolution, propelling the foreign

exchange market to be the most valuable and tradeable financial asset on the planet,

with a daily turnover that surpasses $6 Trillion. As a result, predicting the future price

can be very profitable, causing analysts and hedge funds to start a race toward searching

for the best tools or algorithm that allows them to be ahead of the competition. With

the introduction of faster and more powerful computers, the dream of automated,

lightning-fast trading became a reality. Studies believe that more than 60% of the total

traded volume in developed nations is performed by automated systems and algorithms.

 This thesis will investigate the claims by different studies that machine learning

algorithms can be used to accurately predict the future prices of the market. The thesis

chose the EUR/USD exchange rate, to study, as it is the most volatile asset and it has

the highest trading volume. Based on this, ten years of daily closing prices that included

many trading assets, such as currencies, indices, and commodities were collected to

study the effect of different trading assets on each other and understand the correlation

effect.

 The investigation starts with the use of linear regression techniques, including

iv

mean least-squares estimations and multiple linear regression, which failed to provide

sustainable results or achieve an accuracy above 60%. In addition to that, a support

vector machines model was built using a linear and a radial basis function kernel, where

the linear kernel model recorded an accuracy of 60% when predicting the future price

trend of the EUR/USD.

 Finally, the thesis dives into the use of artificial neural networks, in the form of

multi-layer perceptrons (MLPs), and long-short term memory (LSTMs). All forms of

artificial neural networks have failed to predict the future price trend when using one

day of previous closing prices as input. This has changed when an MLP regressor was

trained to use the previous closing price of 30 days to predict one day into the future.

This allowed the network to achieve accuracies that exceeded 80% when predicting the

future price trend.

v

DEDICATION

Женщине, которая изменила мою жизнь.

Я люблю тебя. И посвящаю это тебе.

Моей Оле

vi

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to Prof. Serkan Kiranyaz, who is my

supervisor for this thesis, for his immense support throughout this journey. His

support was overwhelming, and his guidance was the key behind all of the progress

made. I would like to extend my gratitude to my family and friends for their constant

support.

vii

TABLE OF CONTENTS

DEDICATION ... v

ACKNOWLEDGMENTS .. vi

LIST OF TABLES ... x

LIST OF FIGURES ... xii

Chapter 1: Introduction .. 1

1.1 Financial Analysis .. 2

1.1.1 Fundamental Analysis ... 2

1.1.2 Technical Analysis .. 3

1.2 Related Works .. 4

1.3 Motivation and Objectives ... 6

1.4 Thesis Outline .. 7

Chapter 2: Data Exploration .. 8

2.1 Data Collection ... 8

2.2 Data Preprocessing ... 9

2.2.1 Data Standardization .. 9

2.2.2 Data Normalization .. 9

2.2.3 Data Splitting and Evaluation Metrics... 9

2.3 Data Correlation ... 12

2.4 Data Visualization .. 13

viii

Chapter 3: Methodologies .. 16

3.1 Regression Analysis ... 16

3.1.1 Linear Regression .. 16

3.1.2 Least Mean Squares Estimation .. 17

3.1.3 Gradient Descent ... 18

3.2 Logistic Regression .. 19

3.3 Support Vector Regression (SVR) ... 21

3.4 Artificial Neural Networks ... 23

3.4.1 Multi-Layer Perceptrons (MLP) .. 26

3.4.2 Recurrent Neural Networks (RNNs) ... 30

3.4.3 Long-Short Term Memory (LSTM) .. 31

3.4.4 Hyperparameters Tuning ... 33

3.4.5 Short-Term Financial Data Prediction by Long-Term Regression 36

Chapter 4: Results and Discussion ... 37

4.1 Experimental Setup .. 37

4.1.1 Hardware and Software Specifications .. 37

4.1.2 Accuracy Calculations ... 37

4.2 Linear Regression Results .. 37

4.2.1 Simple Linear Regression Results ... 38

4.2.3 Multiple Linear Regression Results .. 40

ix

4.3 Support Vector Regression (SVR) Results .. 41

4.5 Results by Using ANNs ... 43

4.5.1 MLP Regression Results ... 43

4.5.2 MLP Classification Results ... 46

4.5.3 LSTM Regression Results ... 48

4.5.4 Expanded Results for MLP Regression ... 50

4.6 Applying MLP to Crude Oil (WTI) and Natural Gas (NATGAS) 52

4.7 Results Comparison.. 55

4.7.1 Time Complexity Analysis .. 56

Chapter 5: Conclusion and Future Work ... 57

References .. 59

x

LIST OF TABLES

Table 1. Different types of trading assets. ... 1

Table 2. Confusion Matrix structure. ... 10

Table 3. Price to binary conversion example. .. 14

Table 4. Different types of optimizers are used for evaluation. 33

Table 5. The different types of loss functions will be used to evaluate the regression

and classification problems. ... 34

Table 6. The different types of performance metric functions will be used to evaluate

the regression and classification problems. ... 34

Table 7. The different types of activation functions will be used to evaluate the

regression and classification problems. ... 36

Table 8. Hardware specification of the system used throughout the thesis 37

Table 9. Simple linear regression model RMSE, MAE, R2, and accuracy results,

including 10-fold CV R2 scores. .. 39

Table 10. Multiple linear regression model RMSE, MAE, R2, and accuracy results,

including 10-fold CV R2 scores. .. 40

Table 11. SVR (Linear and RBF) models RMSE, MAE, R2, and accuracy results,

including 10-fold CV R2 scores. .. 42

Table 12. MLP regression problem model, grid search selected parameters. 44

Table 13. MLP regression model RMSE, MAE, R2, and accuracy results, including 10-

fold CV R2 scores... 45

Table 14. MLP classification problem model, grid search selected parameters. 46

Table 15. MLP classification model accuracy, F1-score, and 10-fold CV accuracy. .. 47

Table 16. MLP classification model confusion matrix. ... 47

xi

Table 17. LSTM regression model hyperparameters were obtained using the grid search

system. ... 48

Table 18. LSTM regression model RMSE, MAE, R2, and accuracy results, including

10-fold CV R2 scores. .. 49

Table 19. Improved MLP model hyperparameters. ... 51

Table 20. The improved MLP regression model RMSE, MAE, R2, and accuracy results,

including 10-fold CV R2 scores. .. 52

Table 21. Hyperparameters of the MLP classifiers for NATGAS and WTI. 53

Table 22. NATGAS and WTI MLP classifiers confusion matrices. 54

Table 23. NATGAS and WTI MLP classifier training and testing set accuracies. 55

Table 24. Summary of the models used in the study. Showing the RMSE, MAE, R2,

Average CV R2, and accuracy. ... 55

Table 25. The time it took to produce an output for each model. 56

xii

LIST OF FIGURES

Figure 1. Price change of Platinum vs. RUB/USD. ... 2

Figure 2. Changes in the USD Index vs. The United States Conference Board Consumer

Confidence. .. 3

Figure 3. EUR/USD vs. 50 and 200 days moving averages. ... 4

Figure 4. Break down of the study dataset. .. 8

Figure 5. Dataset correlation heatmap. .. 13

Figure 6. EUR/USD distribution between buy/sell.. 15

Figure 7. The EUR/USD plotted against various assets/financial reports. 15

Figure 8. The process behind building a model. .. 16

Figure 9. Example of a linear regression model. ... 17

Figure 10. A flowchart showing the process of applying gradient descent. 19

Figure 11. Sigmoid function output. .. 20

Figure 12. An example of SVR applied on a dataset. .. 22

Figure 13. The structure of a biological neuron. .. 24

Figure 14. The basic structure of a Perceptron. ... 25

Figure 15. The basic structure of a multi-layer perceptron (MLP). 27

Figure 16. Unfolding the recurrent neural network (RNN). .. 30

Figure 17. Basic long-short term memory (LSTM) module. 31

Figure 18. The different gates inside an LSTM module. ... 32

Figure 19. The sliding window is used to construct the training and testing datasets. 36

Figure 20. EUR/USD joint plot against USD Index, USD/CAD, and RUB/USD. 38

Figure 21. Simple linear regression model of EUR/USD showing predicted vs. actual

price.. 39

xiii

Figure 22. Multiple linear regression model output against the actual value of

EUR/USD. ... 41

Figure 23. SVR kernels outputs vs. actual EUR/USD prices. 43

Figure 24. The MLP regression model training and testing loss plot, over the number

of iterations. ... 44

Figure 25. MLP regression model prediction plotted against the test set of EUR/USD

and both training and testing set. ... 45

Figure 26. The MLP classification model training and testing accuracy plot, over the

number of iterations. .. 47

Figure 27. LSTM regression model training and testing loss plot, over the number of

iterations. .. 49

Figure 28. LSTM regression model prediction plotted against the test set of EUR/USD

and both training and testing set. ... 50

Figure 29. The improved MLP regression model training and testing loss plot, over the

number of iterations. .. 51

Figure 30. The improved MLP regressor predicted output plotted against the EUR/USD

testing set. .. 52

Figure 31. MLP classification model training and testing loss plot, over the number of

iterations for NATGAS and WTI. ... 54

Figure 32. NATGAS and WTI MLP classifiers training vs. validation accuracies. 54

1

CHAPTER 1: INTRODUCTION

The financial market is a crucial pillar in today’s economy, with the foreign

exchange market (FOREX) having a daily trading volume of $6.6 Trillion. Investors in

the financial market range from multi-billion dollar hedge funds, banks, and

governments to everyday folks trying to invest some money into the stocks market, or

simply exchanging currency at the airport while on vacation [1].

Many experts believe that 60-70% of the trading volume in the financial market

of developed countries is automated algorithmic trading. Algorithmic trading was made

easier thanks to the computing power and communication technology developed over

time, in addition to having access to more data to train and evaluate trading models [2].

A list of commonly used tradeable assets can be found in Table 1.

Table 1. Different types of trading assets.

Asset Definition Examples

Equities/Stocks Ownership of a corporation is

offered for public trading

Apple (AAPL)

General Motors (GM)

Commodities Trading assets that include

agricultural, precious metals, etc...

West Texas Oil (WTI)

Gold Spots (XAU/USD)

Foreign Exchange

(FOREX)

Trading the difference of a base

currency against a basket of other

currencies

Euro against US Dollar

(EUR/USD)

US Dollar against Japanese

Yen (USD/JPY)

FOREX is the most commonly traded asset in the world, followed by stocks and

equities. As a result of such a huge volume, the problem of financial market analysis

becomes filtering all the noise, in addition to the stochastic nature of the market [3]. As

a result, experts started coming up with ways to try to understand the market and predict

future prices.

2

1.1 Financial Analysis

1.1.1 Fundamental Analysis

 In fundamental analysis, predictions are based on the study of the supply and

demand of the traded asset. In addition to that, the news, economical reports, interest

rates, correlation with other assets, and many other fundamentals are considered before

making a prediction. While compiling the dataset of the study, a correlation between

multiple assets was noted, as can be seen as follows, showing the price of Platinum

against the Russian Ruble vs. US Dollar (RUB/USD) exchange price.

Figure 1. Price change of Platinum vs. RUB/USD.

After further investigation, it was made clear that Russia is the second-largest

Platinum producer in the world [4], as a result, the Rubble exchange price greatly

affects the price of Platinum. In this case, a Platinum investor would look closely into

the Russian economy, and follow the economical reports that may affect the exchange

rate of the Ruble.

Another great example of fundamental analysis can be seen in Figure 2. The

United States Dollar Index, which measures the value of the United States Dollar

against other widely used currencies, is plotted against the United States Conference

3

Board Consumer Confidence, which is a monthly economic report that measures the

sentiments and confidence of consumers in the US market [5]. The proportional

relationship between the two variables can be seen as follows.

Figure 2. Changes in the USD Index vs. The United States Conference Board

Consumer Confidence.

1.1.2 Technical Analysis

 When using technical analysis, the analyst depends on indicators to predict the

trend of the asset in the future [6]. Indicators are based on mathematical models, ranging

from simple moving averages, weighted and exponential moving averages to more

complex mathematical model-based indicators such as the Ichimoku Cloud or

Fibonacci Retracements [7].

In a simple case study, the EUR/USD past data can be used to produce moving

averages (MA) over the 50 days (fast) and 200 days (slow) periods. A very widely used

trading strategy is simply going long when the slow MA crosses the fast (MA) upwards

and shorting when it is the other way around. Figure 3 shows an example of such a

trading strategy.

4

Figure 3. EUR/USD vs. 50 and 200 days moving averages.

 More complex trading strategies can yield accurate results by using different

indicators such as the Moving Average Convergence/Divergence (MACD) and the

Relative Strength Index (RSI) [8].

1.2 Related Works

 One of the earliest research into forecasting exchange rates is found to compare

time series and structural models of FOREX based on their out-of-sample forecasting

accuracy. The research has discovered that most linear models failed the random walk

test, and were not effective in predicting future prices [9]. Random walk test is a random

process, stochastic in nature, that in essence describes a path that comprises of random

steps in a mathematical space, a model would take, based upon the inputs it receives.

Since then, researchers have been trying to use linear and non-linear models to beat the

naïve random walk theory, some have proven it possible while others refuted and

proposed that it is not possible [1].

More complex linear and time-series models can be used to predict future prices,

in addition to polynomial-based non-linear models, which have shown some success

[10]. Autoregressive integrated moving average (ARIMA) models have also seen some

5

success recently, with the help of excess data available to regress upon, but they are

commonly used in less fluctuating trading assets, as a result, they tend to have a low

return on investment percentage compared to other models.

With the advent of Artificial Neural Networks (ANNs), many studies have been

conducted to forecast the future prices of stocks and other trading assets [11]. Most

recent studies commonly use the Recurrent Neural Networks (RNNs) variant, and the

long short-term memory (LSTM) model [12], they have been shown to achieve higher

accuracies even in a low timeframe (hours/minutes) [2]. Nonetheless, a simple ANN

model was proven effective in many short-term trading strategies, and in many

countries, applied to the United Kingdom banking sector to predict share prices yielded

results that are far better than traditional linear models [13]. Similar experiments were

carried on using ANNs, on the US stocks market.

The US market is known to be volatile, and highly responsive to news,

economical reports, and international events. This can prove to be a challenge for a

model to be robust enough to predict future prices, but advanced models have proven

to be able to overcome, in a way, the market noise [14]. The financial news and reports

cause the market to move, as a result, analyzing the impact of news articles on the stocks

market can provide an advantage toward predicting future price changes. Studies have

found success in analyzing the sentiment of news articles; thus understanding their

impact on the market ahead of sudden price changes [15].

The predictive powers of neural networks are not only limited to predicting the

price of stocks. Some success was found with the prediction process of commodities

[16], such as gold and oil [17]. The theory that artificial neural networks can detect the

correlation between the different assets to predict future prices has seen some results to

support such a claim, as with the help of tools, such as data mining, which is a technique

6

used to find correlation and patterns in large sets of data can be effective to train a

network to predict future prices [18].

Hybrid models that use different types of neural network architecture have seen

some success in recent years [19]. Commonly used hybrid models contain an LSTM

network to regress the data and produce an output using information produced from a

convolutional neural network (CNN) that processes the news or social media for

potential variables that might affect the price. However, this can still be achieved using

support vector machines (SVM) models, or other simpler alternative models, to process

news or social media posts for potential updates that might cause the price to change

[20]. Recent studies have also seen success in using hybrid systems to predict highly

volatile markets, like the cryptocurrency market. Bitcoin is considered one of the most

volatile trading assets in recent times, with a daily price rate of change that can exceed

25%. However, a hybrid system of a linear regression model and a decision tree

classifier [21] was able to predict prices with high accuracy [22].

A commonly used technique to boost the confidence of a system is to use model

enablement. A set of different models/architectures will be constructed to predict prices,

the system will choose the output, in this case, the market direction prediction,

depending on the majority voting. Using such a technique has produced an accuracy

upwards of 85% for commodities such as gold [23].

1.3 Motivation and Objectives

 The main goal of this thesis is to investigate the possibility of building a model

that predicts future prices. The focus will be aimed toward building a high-quality

dataset that includes various trading assets and economical reports, having such a data

set will help in understanding the correlation between the different assets and how the

prices are impacted by economical reports. Toward the end of the study, multiple

7

models will be created, both linear and non-linear, including different ANN models.

All the different models will be compared in terms of efficiency and accuracy

to conclude the viability of using such models to predict future prices. The biggest

obstacle in any financial forecasting research is the effect caused by economical reports

on the prices, including the news, political and environmental events. This is seen in

the unprecedented fluctuation in the global financial market as a result of the COVID-

19 pandemic.

However, the study would use such unforeseen events to measure the robustness

of the models, as the dataset used in this research spans over the past decade, including

the year 2020. The research would establish a baseline by using basic linear models,

these models would be compared to other more sophisticated non-linear models to

verify the effectiveness and robustness of such models. The study will dive into the

selection process behind choosing hyperparameters of the artificial neural networks,

and the effects of such parameters on the overall performance of the model.

1.4 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 will discuss data

exploration, in which the dataset that will be used throughout the study will be created,

divided into categories, and preprocessed. In Chapter 3, a comprehensive literature

review is conducted on the different concepts of models that will be created later in the

research. Chapter 4 will show the performance of different machine learning models,

and a comparison will be drawn between the different methodologies. Finally, Chapter

5 provides a conclusion that discusses the results obtained in prior chapters and provides

some insight toward the future direction of this study.

8

CHAPTER 2: DATA EXPLORATION

2.1 Data Collection

Historical data that is plentiful and high in quality is crucial to understand the

relationship between the different assets and build comprehensive and accurate models.

As a result, multiple data sources and stock exchanges platform were used to build the

dataset used in the research. The dataset used in this thesis starts from 1st of February

2010 up to 31st of December 2020, equating to 10 years’ worth of daily closing price

data. The dataset is broken into several categories, and an overview breakdown of the

dataset can be seen in Figure 4.

Figure 4. Break down of the study dataset.

9

2.2 Data Preprocessing

 Using different trading assets to perform modeling and analysis imposes a huge

problem when using raw data. Trading assets can vary in value, as a result, simple tasks

such as visualizing the data becomes impossible to do. To solve this, linear data scaling

is used in the form of data Normalization and Standardization.

2.2.1 Data Standardization

Standardization of the data is performed by applying Equation (1), where 𝜇

represents the mean, and 𝜎 represents the standard deviation of the variable 𝑋.

𝑋Standardized =
𝑋𝑣𝑎𝑙𝑢𝑒 − 𝜇

𝜎

(1)

As a result, the standardized data will be centered around a mean value of zero. This

allows the data to be easily displayed and plotted against other features that will have

different numerical ranges.

2.2.2 Data Normalization

Normalized data using Equation (2) will be scaled to a range from 0 to 1 [24].

𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 represent the biggest and smallest values in the dataset X respectively.

𝑋Normalized =
𝑋𝑣𝑎𝑙𝑢𝑒 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(2)

Normalization is commonly applied to data when the distribution is not a Gaussian

distribution, this can be efficient when the algorithm does not assume the distribution

of the dataset, such as in the case of artificial neural networks (ANNs).

2.2.3 Data Splitting and Evaluation Metrics

To unify the testing criteria for all the different methods used in the research,

the data is split into a training set (80%) and a testing set (20%).

Coefficient of Determination (R2): The results throughout this study will be

measured using the R2 score. The score is used to measure the amount of variance in

10

the dependent variable that is produced as a prediction from a mathematical model

using statistically independent variables. The R2 test helps to show how much of the

total variance of the test dataset is explained by the model. Equation (3) is used to

produce the R2 score of a model.

𝑅2 = 1 −
∑ (𝑦𝑖

𝐴𝑐𝑡𝑢𝑎𝑙
− 𝑦𝑖

𝑀𝑜𝑑𝑒𝑙
)
2

𝑖

∑ (𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

− 𝑦̅ 𝐴𝑐𝑡𝑢𝑎𝑙)
2

𝑖

(3)

where 𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

 is the example from the dataset which will be used as the target value of

the model, and 𝑦𝑖
𝑀𝑜𝑑𝑒𝑙

 represent the corresponding output using the model, and 𝑦̅
𝐴𝑐𝑡𝑢𝑎𝑙

is the mean value of the target dataset. Normally, the value of R2 ranges from 0 to 1, with

a value of 1 indicating that changes in one variable can be perfectly explained by a

discrepancy in a second variable.

 Confusion Matrix (CM): used to describe the performance of a classification

model [25]. The matrix is built as seen in Table 2.

Table 2. Confusion Matrix structure.

 Predicted False Predicted True

Actual False True Negative (TN) False Positive (FP)

Actual True False Negative (FN) True Positive (TP)

 True positives and negatives describe the case where the model predicted a true

or false value correctly. Where false positives and negatives correspond to the case

where the model incorrectly identifies a false value as true, or, a true value as false.

 Accuracy: is used to produce an error rate percentage, indicating the rate at

which the model can predict outputs correctly. It can be calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
∗ 100

(4)

 Precision: is used to measure the ratio of true positive outputs of the model's

11

overall predictions. It can be calculated:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(5)

 Recall: is used to measure the ratio of true positives produced by the model,

compared to the total number of positive class items in the dataset. It can be calculated

as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(6)

 F1-Score: is another measure of a classifier model’s accuracy, it combines both

precision and recall to evaluate the model performance. It can be calculated as:

 Cross-Entropy (CE): is used as a loss function to evaluate a classification model.

(N) is the total number of training examples.

𝐶𝐸 =
1

𝑁
∑𝑦𝑖

𝐴𝑐𝑡𝑢𝑎𝑙
log (𝑦𝑖

𝑀𝑜𝑑𝑒𝑙

𝑁

𝑖

+ (1 − 𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

))log (1 − 𝑦𝑖
𝑀𝑜𝑑𝑒𝑙

)

(8)

 Mean Absolute Percentage Error (MAPE): is a statistical accuracy

measurement for data forecasting. MAPE is calculated using Equation (9), where N is

the size of the dataset.

𝑀𝐴𝑃𝐸 =
100

𝑁
∑

|𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

− 𝑦𝑖
𝑀𝑜𝑑𝑒𝑙

|

𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

𝑁

𝑖

(9)

 Mean Root Square Error (RMSE): This is a commonly used error validation

metric, and it is used to evaluate the performance of a regression model compared to

the actual output [13]. Equation (10) is used to calculate the RMSE.

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖
𝑀𝑜𝑑𝑒𝑙

− 𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

)
2𝑁

𝑖

𝑁

(10)

Mean Absolute Error (MAE): is a measurement of error that is used to evaluate

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(7)

12

the performance of the model, it is calculated as follows:

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖

𝑀𝑜𝑑𝑒𝑙
− 𝑦𝑖

𝐴𝑐𝑡𝑢𝑎𝑙
|

𝑁

𝑖=1

(11)

Mean Squared Error (MSE): is another measurement of error, it is calculated as

follows:

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖

𝑀𝑜𝑑𝑒𝑙
− 𝑦𝑖

𝐴𝑐𝑡𝑢𝑎𝑙
)
2

𝑁

𝑖=1

(12)

2.3 Data Correlation

Correlation is a measurement of statistical association, it can help in identifying

if a linear relationship exists between two variables. It is calculated as follows:

𝑥̅ =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

(13)

𝑦̅ =
1

𝑁
∑𝑦𝑖

𝑁

𝑖=1

(14)

𝑠𝑥 =
1

𝑁
∑(𝑥 − 𝑥̅)2

𝑁

𝑖=1

(15)

𝑠𝑦 =
1

𝑁
∑(𝑦 − 𝑦̅)2

𝑁

𝑖=1

(16)

 𝐶𝑥,𝑦 = ∑
(𝑥 − 𝑥̅)2(𝑦 − 𝑦̅)2

(𝑠𝑥𝑠𝑦)

𝑁

𝑖=1

(17)

The correlation coefficient (𝐶𝑥,𝑦) requires calculating the mean (𝑥̅, 𝑦̅) and the standard

deviation (𝑠𝑥, 𝑠𝑦) of both variables (𝑥, 𝑦). This was applied to calculate the correlation

across the variables in the dataset, as illustrated in Figure 5.

13

Figure 5. Dataset correlation heatmap.

2.4 Data Visualization

 To better understand the dataset, and the effect of the different features on a

specific trading asset the following methodology has been followed. The initial step

14

was to pick a trading asset from the dataset to predict future prices or trends. In this

study, (EUR/USD) was chosen as it is the most volatile trading asset and it produces

the highest trading volume.

 The price of (EUR/USD) was converted into a binary output. This was done by

comparing the closing price of the current day to the future closing price of the next

day in the dataset, and converting the value into 1 if the price is going to increase for

the next day, or 0 for the opposite. An example can be seen in Table 3.

Table 3. Price to binary conversion example.

EUR/USD EUR/USD Next Day EUR/USD Next Day Binary

1.3929 1.3963 1

1.3963 1.3899 0

1.3899 1.3736 0

1.3736 1.3664 0

1.3664 1.3653 0

Furthermore, the distribution of the binary conversion was displayed between

price increase (value of 1) and price decrease (value of 0). The result can be seen in

Figure 6, in which a count plot shows a near 50-50 even distribution.

15

Figure 6. EUR/USD distribution between buy/sell.

The correlation between instruments can be visually inspected as shown in

Figure 7. In this example, the EUR/USD is plotted against the trading assets and

financial reports that produce the highest correlation value. These assets will be used as

inputs to the different models that will be developed in this study.

Figure 7. The EUR/USD plotted against various assets/financial reports.

16

CHAPTER 3: METHODOLOGIES

3.1 Regression Analysis

 Regression analysis is used to describe the relationship between a set of

variables in the form of a mathematical model. Regression analysis is used in numerous

applications and it is considered the most commonly used statistical technique [26].

 In a regression problem, the main goal is to use the available data to produce a

model that minimizes the error of the model's predicted output with the truth output.

Figure 8 illustrates the basic approach for building a regression model.

Figure 8. The process behind building a model.

 The regression model is built using the information learned from the input

variables, known as features, to product predictions for the output variable, known as

the target.

3.1.1 Linear Regression

 The linear regression model is formulated as in Equation (18), where 𝜃0

represents the bias (or intercept term) in the model, and 𝜃1 is the weight. This model is

also referred to as the simple linear regression model [27].

17

𝑦(𝑥1) = 𝜃0 + 𝜃1𝑥1 (18)

 where adding more variables, as terms of (x) increase the complexity, in which

the model will be regressed on a higher dimension. This model is called Multiple Linear

Regression [28]. An example of such a model with two input variables can be seen in

Equation (19).

𝑦(𝑥1, 𝑥2) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 (19)

The 𝜃𝑛 term determines the weight of the term 𝑥𝑛 toward the output of the model.

Figure 9 illustrates an example of applying a linear model to fit a dataset.

Figure 9. Example of a linear regression model.

3.1.2 Least Mean Squares Estimation

 To estimate the unknown parameters seen in Equation (18), an approach known

as the least mean squares (LMS) is used. This is done by defining a cost function 𝐽(𝜃),

which is constructed in Equation (20). The cost function is used to measure the

18

closeness of the predicted value of the model, 𝑦𝑚𝑜𝑑𝑒𝑙, compared to the actual output in

the training data set, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙. The main goal is to minimize the error between the model

and the actual training data. This is done by minimizing the value of cost function 𝐽(𝜃),

where N is the number of training data.

𝐽(𝜃) =
1

2𝑁
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖)

)2

𝑁

𝑖=1

(20)

3.1.3 Gradient Descent

 Gradient descent is a powerful and commonly used optimization algorithm. It

is used to minimize the cost function iteratively. This is performed by taking the

derivative of the cost function 𝐽(𝜃) and minimizing the error of the partial derivative

term of the cost function
𝜕

𝜕𝜃𝑗
𝐽(𝜃) [27]. This is expressed in Equations (21) and (22).

The term 𝑦𝑚𝑜𝑑𝑒𝑙(𝑥
(𝑖)) represents the model output using input from the training

dataset.

𝑗 = 0,
𝜕

𝜕𝜃0
𝐽(𝜃0, 𝜃1) =

1

𝑁
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖))

𝑁

𝑖=1

(21)

𝑗 = 1,
𝜕

𝜕𝜃1
𝐽(𝜃0, 𝜃1) =

1

𝑁
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖))

𝑁

𝑖=1

(𝑥(𝑖))

(22)

where 𝑥(𝑖) and 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖)

 are the input and target output from the training dataset,

respectively. Gradient descent uses a learning rate parameter α. This parameter dictates

the sensitivity of the algorithm, as it affects the magnitude of the steps that the GD

applies each iteration. The process is performed over many iterations for 𝜃0, 𝜃1 as

shown in Equations (23) and (24) until both converge. Convergence occurs when the

gradient calculated in (21) and (22) vanishes.

19

𝜃0 = 𝜃0 − 𝛼 [
1

𝑚
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖))

𝑁

𝑖=1

]

(23)

𝜃1 = 𝜃1 − 𝛼 [
1

𝑚
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖))(𝑥(𝑖))

𝑁

𝑖=1

]
(24)

A flow chart, simplifying the process of gradient descent is illustrated in Figure 10.

Figure 10. A flowchart showing the process of applying gradient descent.

3.2 Logistic Regression

 Logistic regression is used to solve classification problems. In the most basic

case, a dataset would have two potential outputs, for example, a true or a false output,

this results in a classification problem with two classes. The model is used to predict

such output based on a probabilistic function. A commonly used function is the sigmoid

20

function, in which the output ranges between [0,1], expressed in Equation (25).

𝑦 =
1

1 + 𝑒−𝑥

(25)

The Sigmoid function in a range of [−10,10] is plotted in Figure 11.

Figure 11. Sigmoid function output.

 The output of the sigmoid function is a probabilistic prediction, a threshold can

be used to classify the output based on the given data [25]. The model ℎ𝜃(𝑥) uses the

sigmoid function to produce a probabilistic output value bounded between 0 ≤

ℎ𝜃(𝑥) ≤ 1, where ℎ𝜃(𝑥) is modeled as follows:

ℎ𝜃(𝑥) = 𝑔(𝜽𝑻𝒙) =
1

1 + 𝑒−𝜽𝑻𝒙

(26)

 The dot product of the model’s parameter vector 𝜽 and the input vector 𝒙 is

evaluated by the sigmoid function. The probability that the output is equal to 1, given

𝒙, and parametrized by 𝜽 is produced as follows:

𝑃(𝑦 = 1|𝑥; 𝜃) = ℎ𝜃(𝑥) (27)

Alternatively, the probability of producing an output of zero, classified as false is as

21

follows.

𝑃(𝑦 = 0|𝑥; 𝜃) = 1 − 𝑃(𝑦 = 1|𝑥; 𝜃) (28)

The cost function 𝐽(𝜃) is expressed in Equation (29).

𝐽(𝜃) =
1

𝑁
∑𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥𝑖

𝑁

𝑖

), 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖))

(29)

where the term 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖)

 corresponds to the (ith) target output in the training dataset [29].

The cost conditions are defined as follows.

𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥), 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖)) = {

− log(ℎ𝜃(𝑥)) , 𝑖𝑓 𝑦 = 1

− log(1 − ℎ𝜃(𝑥)) , 𝑖𝑓 𝑦 = 0

(30)

Substituting the terms into Equation (29) produces the following cost function, which

can be used to apply gradient descent optimization to minimize the error of the cost

function.

𝐽(𝜃) =
1

𝑁
[∑𝑦𝑎𝑐𝑡𝑢𝑎𝑙

(𝑖) log (ℎ𝜃(𝑥𝑖)) + (1 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖))log (1 − ℎ𝜃(𝑥𝑖))

𝑁

𝑖

]

(31)

Taking the partial derivative of the cost function in Equation (31) is shown as follows:

𝜕

𝜕𝜃𝑗
𝐽(𝜃𝑗) =

1

𝑁
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖))

𝑁

𝑖=1

, 𝑓𝑜𝑟 𝑗 = 0

(32)

𝜕

𝜕𝜃𝑗
𝐽(𝜃𝑗) =

1

𝑁
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖))

𝑁

𝑖=1

(𝑥(𝑖)), 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 (𝑛 + 1)

(33)

where the term n is the number of input variables (features), and 𝑗 indexes the parameter

𝜃. The parameters can be updated using gradient descent as shown previously in

Equations (23) and (24) until convergence.

3.3 Support Vector Regression (SVR)

 Similar to the least mean square regression, where a model is fitted to produce

an output with a minimized error. SVR uses a more complex algorithm that takes this

22

a step further [30]. The example in Figure 12 shows data points that represent the

predicted values of a model, 𝑦𝑚𝑜𝑑𝑒𝑙. The blue line is the target data, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙. The two

dashed lines represent the boundaries of the SVR model, drawn a distance of 𝜀 away

from the target dataset.

 The parameter 𝜀 should be set and can be later optimized to produce more

accurate results from the SVR model. The error calculations of the SVR consider

exclusively the data points outside the boundary lines, as the area inside the boundaries

is considered as a tolerance margin [31].

Figure 12. An example of SVR applied on a dataset.

The terms ξ and ξ∗ represent the distance between the boundary lines and the

predicted values that fall outside the tolerance margin. The SVR model and boundaries

can be represented as follows:

23

𝑦𝑚𝑜𝑑𝑒𝑙 = 𝑓(𝑥) = 〈𝝎, 𝒙〉 + 𝑏 = ∑𝝎𝑖𝒙𝑖 + 𝑏

𝑁

𝑖=1

(34)

𝑦𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 〈𝝎, 𝒙〉 + 𝑏 + 𝜀 (35)

𝑦𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 〈𝝎, 𝒙〉 + 𝑏 − 𝜀 (36)

where N is the number of data samples, 𝒙𝑖 is the ith training example, 𝝎 is the

learned weight vector, and the term b represents the bias. To train an SVR model, the

following has to be solved.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
‖𝜔‖2 + 𝐶 ∑ξ𝑖 + ξ𝑖

∗

𝑁

𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑦𝑎𝑐𝑡𝑢𝑎𝑙

(𝑖) − 〈𝝎, 𝒙𝑖〉 − 𝑏 ≤ 𝜀 + ξ𝑖

< 𝝎, 𝒙𝑖 > +𝑏 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖) ≤ 𝜀 + ξ𝑖

∗

, 𝐶 > 0

(37)

The parameter 𝐶 is used as a constraint to control the penalty imposed on the prediction

outputs that fall outside the boundaries, this can help in preventing the model from over-

fitting.

3.4 Artificial Neural Networks

 The three main components that make up the human nervous system are

receptors, effectors, and the central nervous system. Stimuli affecting the human body

are translated by receptors in the form of electrical impulses. These signals are

transmitted by the brain into the central nervous system to produce a physical response.

The building block of a neural system is a neuron.

 The structure of a biological neuron is illustrated in Figure 13. It consists of a

cell body that receives the incoming signal from other neurons through dendrites. The

output signal of a neuron is transmitted through a nerve fiber, known as an axon. The

axon branches into other interconnected axons that lead to other neurons in the network

[32].

24

Figure 13. The structure of a biological neuron.

The cell body of a neuron (Soma) is in charge of processing the incoming input

signals, and the decision of what neuron should send an output signal. Neurons typically

receive multiple input signals from their dendritic trees. The case of whether a neuron

sends an output signal depends on the weighted sum of all the received input signals.

This process is decided in the soma, and the output signal of the neuron is transmitted

through the axon to other neurons in the network.

The artificial neuron is known as a perceptron. It is the basic unit in an artificial

neural network (ANN), which is made up of multiple perceptrons. The inner workings

of an artificial neuron imitate that of a biological neuron. The perceptron takes the

weighted input sum and produces an output, that is based on a mathematical activation

function.

ANNs not only share the name with biological neuron networks, but they also

share a similar structure and mechanism. ANNs were created as learning algorithms

that mimic how the mammal neural system learns and analyzes. ANNs have been

25

around since the 1940s but they went through phases of interest that diminished after

some time [33].

 Using ANNs was inconvenient and inefficient in the past as a result of low

computational power and lack of quality data, but with the boom in technological

advancement witnessed every year, and the use of the Internet to store and transmit

data, in addition to newer more complex ANNs architecture being discovered made

neural networks a crucial part in today's development projects [1].

Applications of ANNs are used by everyone daily, such as a music application

learning its user's taste to suggest similar picks, spam e-mail detection, and

classification, or facial recognition technology currently used in phones. The structure

of an artificial neuron, which is known as a perceptron is illustrated in Figure 14.

Figure 14. The basic structure of a Perceptron.

 In the perceptron, each input is multiplied by a weight value, then a summation

with a bias value is performed. The result is then passed into an activation function, Z,

which outputs the value Y, as the output of the neuron [34]. The output of an artificial

neuron is expressed in Equation (38).

26

𝑌 = 𝑍(∑𝑤𝑖𝑥𝑖 + 𝑏

𝑁

𝑖=1

)

(38)

where the input X, and weights W, are in the following form, and 𝑛 is the number of

input features.

A few unique characteristics of ANNs include:

1- ANNs can learn complex tasks.

2- ANNs ease the process of constructing a model with a large number of

inputs/outputs.

3- The cooperative behavior of the artificial neurons in the network defines its

computational power, and no individual artificial neuron carries precise

information.

3.4.1 Multi-Layer Perceptrons (MLP)

 MLPs consist of feed-forward and fully connected layers made up of

perceptrons, resulting in a more complex network. An example of the structure of an

MLP can be seen in Figure 15.

𝑿 =

[

𝑥1

𝑥2

𝑥3

⋮
𝑥𝑛]

,𝑾 = [𝑤1 𝑤2 𝑤3 … 𝑤𝑛]

(39)

27

Figure 15. The basic structure of a multi-layer perceptron (MLP).

Similar to the ANN structure shown earlier in Equation (38), the output of the MLP in

Figure 15 is found to be the following:

𝑌 = 𝑍 [[𝑍(𝑌11𝑊11
2) + 𝑍(𝑌21𝑊21

2)] + 𝑏3]
(40)

 For the network to learn, the first step starts with initializing the network

parameters randomly. The next step is forward propagation (FP), which involves

passing the training dataset items from the input throughout the output. The loss (error)

between the actual and target (truth) output is computed.

Next, the error is back-propagated from the output layer through the entire

network, and back to the first hidden layer of the MLP. During the process of

backpropagation (BP), the sensitivities of the different weights and biases on the

network are iteratively optimized. The combined process of forward-propagation,

28

backpropagation, and updating the network parameters is iterated until convergence,

i.e., the sensitivities start to vanish in each layer of the network. The forward

propagation (FP) from layer 𝑙 − 1 to 𝑙 can be expressed as follows:

𝑦𝑘
𝑙 = 𝑍(𝑥𝑘

𝑙) = 𝑥𝑘
𝑙 = 𝜃𝑘

𝑙 + ∑𝑤𝑖𝑘
𝑙−1𝑦𝑖

𝑙−1

𝑁

𝑖=1

(41)

where 𝑦𝑘
𝑙 is the output, 𝑥𝑘

𝑙 is the input of the kth neuron in layer l, of the kth neuron in

layer l, 𝑤𝑖𝑘
𝑙−1 is the weight between the ith neuron in the previous layer to the kth layer

in the current layer and 𝑍 is the activation function of the kth neuron, respectively. One

of the commonly used loss functions is MSE which is expressed in Equation (42), where

𝑦𝑖
𝐿 is the actual output and 𝑌𝑖 is the target output from the training set.

𝐽 =
1

2
∑(𝑦𝑖

𝐿 − 𝑌𝑖)

𝑁

𝑖=1

(42)

The weight and bias sensitivities are computed as follows:

𝜕𝐽

𝜕𝑤𝑖𝑘
𝑙−1 =

𝜕𝐽

𝜕𝑥𝑘
𝑙

𝜕𝑥𝑘
𝑙

𝜕𝑤𝑖𝑘
𝑙−1 =

𝜕𝐽

𝜕𝑥𝑘
𝑙 𝑦𝑖

𝑙−1
(43)

𝜕𝐽

𝜕𝜃𝑘
𝑙 =

𝜕𝐽

𝜕𝑥𝑘
𝑙

𝜕𝑥𝑘
𝑙

𝜕𝜃𝑘
𝑙 =

𝜕𝐽

𝜕𝑥𝑘
𝑙

(44)

A dependency is revealed between the sensitivities and the partial derivative of the loss

with respect to the input of the neuron, 𝑥𝑘
𝑙 . This derivative,

𝜕𝐽

𝜕𝑥𝑘
𝑙 is known as delta error

of the neuron (δ𝑘
𝑙 =

𝜕𝐽

𝜕𝑥𝑘
𝑙). At the output layer, it can be directly be computed as follows:

δ𝑘
𝑙 =

𝜕𝐽

𝜕𝑥𝑘
𝑙 =

𝜕𝐽

𝜕𝑦𝑘
𝑙 𝑍′(𝑥𝑘

𝑙) = (𝑦𝑘
𝑙 − 𝑌𝑘) ∙ 𝑍′(𝑥𝑘

𝑙)
(45)

Using the chain rule of partial derivatives, the backpropagation of the delta errors can

be expressed as follows:

29

δ𝑘
𝑙 = 𝑍′(𝑥𝑘

𝑙) ∑ δ𝑖
𝑙+1𝑤𝑘𝑖

𝑙

𝑁𝑙+1

𝑖=1

(46)

 When the delta errors are back-propagated and parameter sensitivities are

computed for all neurons in the network, they can be cumulated for a certain number

of items in the train set. This is called “mini-batch” and its size can vary between 1 to

the number of items in the train set. If a mini-batch size is 1, then it is called “online”

learning and if it is equivalent to the size of the train set, it is called “batch” learning.

There are several optimization methods such as Stochastic Gradient Descent (SGD)

[34], SGD with momentum, AdaDelta [35], and Adam [36]. The most basic optimizer

is SGD which can be expressed as follows:

𝑤𝑖𝑘
𝑙 = 𝑤𝑖𝑘

𝑙 − 𝛼
𝜕𝐽

𝜕𝑤𝑖𝑘
𝑙−1

(47)

𝜃𝑘
𝑙 = 𝜃𝑘

𝑙 − 𝛼
𝜕𝐽

𝜕𝜃𝑘
𝑙

(48)

 This process will continue until the parameters converge to an optimal value

that minimizes the output error of the model, compared to the target output of the

training dataset. The backpropagation algorithm to train the MLP network can be

expressed in the following steps:

1. Building the network by selecting the number of hidden layers and neurons in

each layer.

2. Randomly initializing the network parameters (weights and biases).

3. Using the testing dataset to apply forward propagation through the network.

4. Computing the error between the network output and the targets from the testing

dataset.

5. Computing the delta errors of the output layer.

6. Computing the delta errors starting from last the hidden layer until the input

30

layer.

7. Computing the parameter sensitivities (derivatives).

8. Applying an optimization method to update the weights and biases accordingly.

9. Repetition of steps 3 through 8 for each example in the training dataset.

3.4.2 Recurrent Neural Networks (RNNs)

 Feedforward networks, for example, MLPs, produce outputs that are assumed

to be independent of the inputs of the network. This can be inefficient when the input

data is made up of sequences, for example, words or time-series-based data such as the

stock market prices [37].

 This is where RNNs have an advantage because of having a feedback

mechanism, known as the hidden state. A general structure of the RNN structure folded

and unfolded can be seen in Figure 16.

Figure 16. Unfolding the recurrent neural network (RNN).

 The hidden state (st) is known as the memory of the network that depends on

the previous layer's hidden state, in addition to the input of the current layer, resulting

in Equation (49).

31

𝑠𝑡 = 𝑍(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1) (49)

 The vanishing gradient problem appears when the backpropagation algorithm

propagates back through the RNN, passing through all the neurons in the network to

update the weights. The cost function computed at deeper layers in the network will be

used to update the weights of the shallower layers in the network. The problem is

encountered when the gradient that has been calculated in deeper networks is multiplied

back through earlier weights in the network, causing the gradient to slowly dimmish

throughout the network layers.

 The factor at which the gradient diminishes through an RNN is known as Wrec.

It causes two potential problems. When the value of Wrec is small, the RNN suffers

from the vanishing gradient problem. Contrary, when the value is large, the network

experiences the exploding gradient problem [33]. This problem may cause the RNN to

consume a long time to converge while training or fail to converge in some cases.

3.4.3 Long-Short Term Memory (LSTM)

 As a variant of RNNs, LSTM has the advantage of being able to forget irrelevant

information, this helps the network overcome the vanishing gradient problem. The

LSTM structure can be seen in Figure 17.

Figure 17. Basic long-short term memory (LSTM) module.

32

 Where Ct is known as the memory cell, and ht is the output of the LSTM module.

The input Xt is manipulated through the module's different states. The multiplication

and addition operations can be used as valves to decide how much of the input

information the memory can remember or forget. LSTM module contains three

different gates, the input, forget and output gates, simplified in Figure 18.

Figure 18. The different gates inside an LSTM module.

 As shown in Figure 18, the multiplication gate in the LSTM module allows the

layer to accumulate and access information over a longer period, which overcomes the

problem of vanishing gradient that may cause the network to forget the initial input.

Information stored in the cell will be overwritten by new information coming from the

network only if the gate activation changes to one [33], causing the gate to open. The

equations corresponding to each gate are as follows:

𝑖𝑡 = 𝑍(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), 𝑖𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 (50)

𝑓
𝑡
= 𝑍(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), 𝑓𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 (51)

𝑜𝑡 = 𝑍(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), 𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 (52)

where the value of the cell state (Ct) is found using Equations (53)(54), the term 𝐶̃𝑡 is

the initial cell state.

33

𝐶̃𝑡 = 𝑍(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (53)

𝐶𝑡 = 𝑓
𝑡
∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (54)

Finally, the output of the LSTM module is found using equation (55).

ℎ𝑡 = 𝑜𝑡 ∗ 𝑍(𝐶𝑡) (55)

3.4.4 Hyperparameters Tuning

 The main problem with ANNs is the fact that they require many

hyperparameters to be tuned for the desired learning performance. This would be a

challenge as applying the trial-and-error methodology can be time-consuming.

 In this study, a grid search system was created with a pre-defined list of

recommended hyperparameters, based on previous studies. The system shuffles and

tests all the possible combinations of hyperparameters against their output accuracy and

R2 score. These are the parameters used in tuning the neural networks throughout this

research, divided into classification and regression problems.

3.4.4.1 Optimizers

 Choosing the right optimizer can be important for faster convergence in BP and

a better generalization. The results of this research are divided into classification and

regression tasks. The evaluated optimizers are presented in Table 4.

Table 4. Different types of optimizers are used for evaluation.

Classification Regression

Adam [36] Adam [36]

AdaDelta [35] SGD [34]

3.4.4.2 Loss Functions

 Loss functions are used by the optimization algorithm to repeatedly estimate the

error of the model. The optimizer will update the parameters of the network

34

accordingly, to produce a lower error in the next iteration.

Table 5. The different types of loss functions will be used to evaluate the regression

and classification problems.

Classification Regression

Binary Crossentropy (8) Mean Absolute Error (11)

Mean Squared Error (12) Mean Squared Error (12)

3.4.4.3 Performance Metrics

 Performance metrics are used to test the model performance. They are applied

to the model after the training process, using the testing dataset as input for the model,

to measure the performance on unseen data.

Table 6. The different types of performance metric functions will be used to evaluate

the regression and classification problems.

Classification Regression

Binary Crossentropy (8) Mean Absolute Percentage Error (9)

Accuracy (4) Mean Squared Error (12)

3.4.4.4 Activation Functions

 In an ANN, each node contains an activation function that alters the input to

produce an output. The output can be linear or non-linear depending on the type of

activation function. The grid search system was used to evaluate the activation

functions presented in

Table 7.

• Rectified Linear Unit (ReLU): ReLU is a commonly used piecewise linear

function as expressed in Eq. (56). It produces a non-zero output only if the input

is positive; otherwise, the function will produce zero as the output. The function

is commonly used due to its computational efficiency.

35

𝑍(𝑥) = {
𝑥 𝑥 > 0
0 𝑥 ≤ 0

}
(56)

• Exponential Linear Unit (ELU): Unlike other activation functions, the ELU

activation function contains a positive factor within it, allowing it to converge

faster and produce more accurate results. As in (57), it can produce negative and

positive outputs, making it possible to use in the input layer.

𝑍(𝑥) = {
𝑥 𝑥 > 0

𝛼(𝑒𝑧 − 1) 𝑥 ≤ 0
}

(57)

• Hyperbolic Tangent (Tanh): As expressed in (58), Tanh shares its non-linearity

with the sigmoid function, but it has the advantage of being zero-centered.

Recently it became a very popular choice for an output layer activation function

as it produces a stronger gradient. The main problem with such a function is the

problem of vanishing gradient, which can cause the model to fail from

converging.

𝑍(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

(58)

• Scaled Exponential Linear Unit (SELU): Similar to ELU, the main difference

is that the result is multiplied by a scaling factor that is used to help in improving

the training time and allows the model to converge faster.

𝑍(𝑥) = {
𝜆𝑥 𝑥 > 0

𝜆𝛼(𝑒𝑧 − 1) 𝑥 ≤ 0
}

(59)

• Swish: Similar to the sigmoid function, the main difference is the addition of a

scaling factor that helps the model converge faster.

𝑍(𝑥) =
𝑥

1 + 𝑒−𝛽𝑥
 (60)

36

Table 7. The different types of activation functions will be used to evaluate the

regression and classification problems.

Classification Regression

Relu Elu

Tanh Relu

Sigmoid Selu

Swish Tanh

3.4.5 Short-Term Financial Data Prediction by Long-Term Regression

 To produce the learning and prediction data inputs for the models, a moving

window has been created. The learning and prediction window’s size and the number

of segmentation from the original dataset are the hyperparameters to be set to some

practical values in advance. An illustration of this is in Figure 19.

Figure 19. The sliding window is used to construct the training and testing datasets.

 Each candle in the exemplary figure displays the price of one day, the learning

and prediction windows are set to be 8 and 4 days, respectively, representing one

segment. The moving window will slide through the specified number of segmentation

to create a learning set of 8 days of the previous price, which is used by the model to

produce a prediction 4 days into the future.

37

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Experimental Setup

4.1.1 Hardware and Software Specifications

 The study was conducted on Python (v3.7) using Keras (v2.4.3) and

TensorFlow (v2.0) APIs to construct, train and evaluate all the models produced in this

thesis. The hardware configuration of the machine is as follows:

Table 8. Hardware specification of the system used throughout the thesis

CPU Intel Core i7-6700k @ 4.00-GHz

GPU Nvidia GTX 1080 Ti with 10-GB

RAM 32-GB

4.1.2 Accuracy Calculations

 The most crucial element when forecasting a financial asset is correctly

predicting the future price trend. Predicting the future direction of the price, going up

or down, is quantified in the form of accuracy in this study.

 This is calculated by producing a prediction from the model, this prediction is

compared against the target future price. If the future price is above the current day

price, meaning the price should increase, then the current day price is compared again

with the model predicted price. If the model future prediction shows an increase in the

price, then this is stored, as a correct prediction.

 In the case where the model is incorrect, this is also stored, but as a false

prediction. The same logic is applied, in reverse, for the downward trend case. This

process is computed for all the examples in the dataset, and the accuracy is calculated

by applying Equation (4).

4.2 Linear Regression Results

 After compiling and experimenting on the dataset, interesting relationships have

38

been discovered between the different trading assets. Examples of such relationships

are illustrated in Figure 20, where the joint plot of EUR/USD is constructed against the

three assets that produce the highest correlation coefficient, as deduced from Figure 5.

Such relationships will be explored by building simple and multiple linear regression

models to investigate the effectiveness of using highly correlated features to predict the

future price of EUR/USD.

Figure 20. EUR/USD joint plot against USD Index, USD/CAD, and RUB/USD.

4.2.1 Simple Linear Regression Results

The simple linear regression model was constructed using USD Index as the

input. The input and output were created using the moving window to train and test the

model. A shift of one day was implemented, as a result, the model is constructed to use

the closing price of each day as input, to predict the closing price of the next day. The

data are then split into 80% and 20% for training and testing respectively. The linear

regression model is expressed as follows:

𝐸𝑈𝑅/𝑈𝑆𝐷 = 2.418 − 0.0134 ∗ 𝑈𝑆𝐷 𝐼𝑛𝑑𝑒𝑥 (61)

 The model is applied to the testing and training set to produce the RMSE, MAE,

R2, and accuracy. In addition to the 10-fold cross-validation results produced using the

39

model to evaluate the R2 score, shown in Table 9.

Table 9. Simple linear regression model RMSE, MAE, R2, and accuracy results,

including 10-fold CV R2 scores.

 Test set Train set

RMSE 0.015 0.025

MAE 0.012 0.020

R2 0.812 0.951

Accuracy (%) 50.053

10-fold CV R2 scores

1 2 3 4 5 6 7 8 9 10 Average

0.824 0.746 -1.383 -0.363 0.962 0.245 0.948 0.595 0.443 0.896 0.391

 Analyzing the results found in Table 9, the simple linear regression model

shows an average R2 score of (0.391) caused by the inconsistent performance of the

model on the different segments of the CV set. The model produced an accuracy of

(50.053%), meaning that the model fails to predict future trends of EUR/USD price for

the next day. The results of the simple linear regression model will be used as a baseline

to compare the performance of other models. The model prediction is plotted against

the actual value of EUR/USD in Figure 21.

Figure 21. Simple linear regression model of EUR/USD showing predicted vs. actual

price.

40

4.2.3 Multiple Linear Regression Results

 The model is constructed using the three input features seen in Figure 20. Using

USD Index, USD/CAD, and RUB/USD the model is found in Equation (62) and the

results are extrapolated in Table 10.

𝐸𝑈𝑅/𝑈𝑆𝐷 = 2.379 − 0.019 ∗ 𝑈𝑆𝐷 𝐼𝑛𝑑𝑒𝑥 + 0.401 ∗ 𝑈𝑆𝐷/𝐶𝐴𝐷 + 1.477

∗ 𝑅𝑈𝐵/𝑈𝑆𝐷

(62)

Table 10. Multiple linear regression model RMSE, MAE, R2, and accuracy results,

including 10-fold CV R2 scores.

 Test set Train set

RMSE 0.009 0.020

MAE 0.007 0.016

R2 0.932 0.968

Accuracy (%) 49.982

10-fold CV R2 scores

1 2 3 4 5 6 7 8 9 10 Average

0.883 0.816 -0.414 0.336 0.950 -0.356 0.836 0.809 0.609 0.957 0.542

 Similar to the results obtained using the simple linear regression model in Table

9, the multiple linear regression results in Table 10 shows inconsistency in the 10-fold

CV R2 scores, averaging to a value of (0.542). This is an improvement of +28% over

the simple linear regression average R2 score. The results, however, show the model's

inability to predict the future direction of the EUR/USD, with an accuracy of

(49.982%). The model output is plotted against the actual EUR/USD prices in Figure

22.

41

Figure 22. Multiple linear regression model output against the actual value of

EUR/USD.

4.3 Support Vector Regression (SVR) Results

 The SVR model was built using two kernels, linear and radial basis function

(RBF). Linear SVR kernel is commonly used when the data can be linearly separated,

it can also be efficient when a large number of features is used to create a model.

Another commonly used kernel is the radial basis function (RBF), where the function

computes the inner product of two projected vectors, using a radial-based

transformation [34].

 The implementation of the model required applying Equation (1) on the training

and testing datasets, to standardize the data before fitting the model. The USD Index is

used as the model input. The output was prepared using the moving window, the closing

price of the current day is used to predict the price of EUR/USD for the next day. Table

11 shows the results obtained from both linear and RBF SVR kernels.

42

Table 11. SVR (Linear and RBF) models RMSE, MAE, R2, and accuracy results,

including 10-fold CV R2 scores.

 Linear SVR Kernel RBF SVR Kernel

 Test set Train set Test set Train set

RMSE 0.008 0.007 0.016 0.007

MAE 0.006 0.006 0.008 0.005

R2 0.942 0.950 0.879 0.957

Accuracy (%) 61.425 56.406

10-fold CV R2 scores

Linear SVR Kernel

1 2 3 4 5 6 7 8 9 10 Average

0.815 0.766 -0.115 0.015 0.971 0.646 0.966 0.657 0.552 0.918 0.619

RBF SVR Kernel

1 2 3 4 5 6 7 8 9 10 Average

0.822 0.297 0.851 -1.685 0.96 0.376 0.961 0.696 0.892 0.939 0.511

 The SVR results seen in Table 11 shows an improvement of the average 10-fold

CV R2 score by 37% for the linear kernel, and by 23% with the RBF kernel, over the

simple linear regression model, seen in Table 9.

 The most significant change, compared to the previous model's performances,

was in terms of future trend prediction accuracy. The SVR linear kernel model scored

61% accuracy, and 56% for the RBF kernel model. The two SVR model predictions are

plotted against the actual EUR/USD testing set, illustrated in Figure 23. The increase

in performance of the linear kernel over RBF can be explained by its ability to perform

better in linear separation.

43

Figure 23. SVR kernels outputs vs. actual EUR/USD prices.

4.5 Results by Using ANNs

 The construction of ANNs requires the selection of many hyperparameters. This

process is made easier using the grid search system to find the parameters that produce

the best results.

4.5.1 MLP Regression Results

 To build the MLP model, the input was set to be the current day closing price

of EUR/USD, USD Index, and USD/CAD. The target output has been constructed using

the moving window, training the network to predict one day into the future. The grid

44

search system was implemented to find the hyperparameters.

 The best model is found to have the parameters shown in Table 12. Training the

MLP network with the selected hyperparameters took 172 seconds to complete. The

training and validation losses are plotted over the number of iterations, displayed in

Figure 24.

Table 12. MLP regression problem model, grid search selected parameters.

Hyperparameter Selected parameters for the regression MLP model

Optimizer Adam

Loss function MeanAbsoluteError

Metric function MeanSquaredError

Batch size 1

Number of iterations 100 epochs

Input layer Input size = 3, number of neurons = 3, activation

function = Selu

Hidden layer Number of neurons = 50, activation function = Selu

Output layer Output size = 1, number of neurons = 1, activation

function = elu

Number of trainable

parameters

263

Figure 24. The MLP regression model training and testing loss plot, over the number

of iterations.

45

 The output results in Table 13 show an extraordinary improvement of the 10-

fold CV average R2 score by 60% over the simple linear regression model. The MLP

scored a consistent R2 score above 0.9 across all CV sets, which all previous models

failed to achieve. However, the MLP model scored a future trend prediction accuracy

of (52%), which translates to the fact that the model fails to identify the next-day trend

direction accurately. The predicted output of the model, based on the testing set is

plotted in Figure 25.

Table 13. MLP regression model RMSE, MAE, R2, and accuracy results, including

10-fold CV R2 scores.

 Test set Train set

RMSE 0.008 0.011

MAE 0.007 0.009

R2 0.945 0.990

Accuracy (%) 52.404

10-fold CV R2 scores

1 2 3 4 5 6 7 8 9 10 Average R2

0.941 0.937 0.950 0.946 0.978 0.988 0.990 0.990 0.991 0.992 0.970

Figure 25. MLP regression model prediction plotted against the test set of EUR/USD

and both training and testing set.

46

4.5.2 MLP Classification Results

 The MLP classification model is built to predict the future direction of the

EUR/USD. This is done by constructing a learning dataset that uses the current day

closing price of the EUR/USD, USD Index, and USD/CAD as inputs, and interpolating

an output that predicts the next day closing price direction of the EUR/USD. The model

will have two classification categories, the closing price will be higher than the current

day closing price, or lower.

 The input and output datasets are then split into training and testing, with a size

of 80% and 20% respectively. The input data are then standardized using Equation (1)

before passing it through the MLP classification model for training. The model

hyperparameters are obtained by selecting the grid search system's best result, seen in

Table 14. Training the model consumed an estimated time of 141 seconds. The training

and testing accuracies are plotted over the total number of iterations in Figure 26.

Table 14. MLP classification problem model, grid search selected parameters.

Hyperparameter Selected parameters for the classification MLP

model

Optimizer AdaDelta

Loss function binary_crossentropy

Metric function accuracy

Batch size 1

Number of iterations 300 epochs

Input layer Input size = 3, number of neurons = 3, activation

function = tanh

Hidden layer Number of neurons = 20, activation function = elu

Output layer Output size = 1, number of neurons = 1, activation

function = sigmoid

Number of trainable

parameters

113

47

Figure 26. The MLP classification model training and testing accuracy plot, over the

number of iterations.

 The testing dataset is applied to the model to test the performance. Table 15

displays the accuracy, F1-score, in addition to the 10-fold CV accuracy across both

datasets. The model results show the inability of the model to produce accurate results,

as the future predictions appear to be random when the input is one day of closing

prices. The confusion matrix in Table 16 supports this conclusion.

Table 15. MLP classification model accuracy, F1-score, and 10-fold CV accuracy.

 Test set Train set

Accuracy (%) 48.596 52.435

F1 score 0.383 0.522

10-fold CV Accuracy (%)

Average

Accuracy (%) 1 2 3 4 5 6 7 8 9 10

47.183 47.535 48.474 48.679 50.211 50.234 50.150 50 50.273 49.964 49.271

Table 16. MLP classification model confusion matrix.

 Test set Train set

 Predicted False Predicted True Predicted False Predicted True

Actual False 186 96 603 537

Actual True 197 91 547 592

48

4.5.3 LSTM Regression Results

 To build the LSTM model, hyperparameters were selected based on the best

results obtained through the grid search system. LSTM model training proved to be the

most time-consuming, out of all the previously used models. Training the model with

the hyperparameters shown in Table 17 consumed an estimated time of 1266 seconds.

An identical input structure to the MLP model was implemented.

 Using the current day closing price of EUR/USD, USD Index, and USD/CAD

to predict the next day's EUR/USD closing price. Input data were split into 80% and

20% training and testing sets, respectively. The data were standardized before being

passed to the model, using Equation (1). The model training and testing losses

throughout the entirety of the iterations are plotted in Figure 27.

Table 17. LSTM regression model hyperparameters were obtained using the grid

search system.

Hyperparameter Selected parameters for the regression LSTM model

Optimizer SGD

Loss function MeanSquaredError

Metric function MeanAbsolutePercentageError

Batch size 1

Number of iterations 100 epochs

Input layer Input size = (3,3), number of neurons = 3, activation

function = linear

1st hidden layer Number of neurons = 30, activation function = tanh

2nd hidden layer Number of neurons = 15, activation function = tanh

Output layer Output size = 1, number of neurons = 1, activation

function = relu

Number of trainable

parameters

6,916

49

Figure 27. LSTM regression model training and testing loss plot, over the number of

iterations.

 Similar to the MLP model results, the LSTM model achieved an improvement

of 59% over the average R2 score, when compared to the simple linear regression. The

model had a constant R2 score higher than 0.9 across all the 10-fold CV sets. However,

the model still fails to accurately predict the next-day trend, achieving a very poor

accuracy of 49%. The results are shown in Table 18. The LSTM regression model

testing set output is plotted against the EUR/USD in Figure 28.

Table 18. LSTM regression model RMSE, MAE, R2, and accuracy results, including

10-fold CV R2 scores.

 Test set Train set

RMSE 0.008 0.012

MAE 0.006 0.009

R2 0.947 0.988

Accuracy (%) 49.649

10-fold CV R2 scores

1 2 3 4 5 6 7 8 9 10 Average R2

0.951 0.932 0.941 0.941 0.976 0.986 0.988 0.989 0.989 0.989 0.968

50

Figure 28. LSTM regression model prediction plotted against the test set of

EUR/USD and both training and testing set.

4.5.4 Expanded Results for MLP Regression

 The results displayed in Table 13 for the MLP regression model, Table 15 for

the MLP classification model, and Table 18 for the LSTM regression model, indicate

that the neural network fails to learn the price direction pattern using only one of the

previous prices as input. As a result, the moving window was expanded to enclose 30

days for learning and predict one day into the future. This arrangement produces 2819

segmentation on the data set.

 Data will be divided into 80% and 20% training and testing sets respectively.

The grid search system was used on the MLP regression model, as it is 86% faster to

train than LSTM. Time consumption is crucial because the system was constructed to

have 3 hidden layers with a wider range of hyperparameters, resulting in 5700 different

possible combinations for the MLP model. The selected hyperparameters by the grid

search system are shown in Table 19. The model training and testing losses throughout

the entirety of the iterations are plotted in Figure 29.

51

Table 19. Improved MLP model hyperparameters.

Hyperparameter Selected parameters for the regression MLP

model

Optimizer SGD

Loss function MeanSquaredError

Metric function MeanAbsolutePercentageError

Batch size 1

Number of iterations 150 epochs

Input layer Input size = 90 number of neurons = 90, activation

function = tanh

1st hidden layer Number of neurons = 100, activation function = tanh

2nd hidden layer Number of neurons = 50, activation function = tanh

3rd hidden layer Number of neurons = 100, activation function = tanh

Output layer Output size = 1, number of neurons = 1, activation

function = elu

Number of trainable

parameters

27,541

Figure 29. The improved MLP regression model training and testing loss plot, over

the number of iterations.

 The results of the improved model are shown in Table 20. The model produced

an average R2 score improvement of 57% over the simple linear regression model 10-

fold CV sets, and a decrease of 7% when compared to the MLP regressor in Table 13.

However, the improved model was 83% successful in identifying and predicting the

next day's closing price direction. This is an improvement of 40% over most of the

52

previous model’s prediction accuracies, which, other than the SVR models, were shown

to be random. The predicted output of the model is plotted against the actual value of

the EUR/USD in Figure 30, showing the effectiveness of the model to accurately

predict the future direction of the EUR/USD closing price.

Table 20. The improved MLP regression model RMSE, MAE, R2, and accuracy

results, including 10-fold CV R2 scores.

 Test set Train set

RMSE 0.011 0.008

MAE 0.007 0.005

R2 0.867 0.995

Accuracy (%) 83.500

10-fold CV R2 scores

1 2 3 4 5 6 7 8 9 10 Average R2

0.991 0.948 0.899 0.575 0.978 0.989 0.738 0.984 0.377 0.891 0.901

Figure 30. The improved MLP regressor predicted output plotted against the

EUR/USD testing set.

4.6 Applying MLP to Crude Oil (WTI) and Natural Gas (NATGAS)

 Similar to the previously constructed MLP classifier, the hyperparameters were

selected using the grid search algorithm. The best result for crude oil (WTI) was seen

53

using 60 days moving window in addition to using the RUB/USD as an input feature

to the neural network. Natural gas (NATGAS) produced the highest accuracy using 30

days moving window. The hyperparameters of each model are seen in the following

table. This resulted in the figures below showing the model training and testing losses

throughout the entirety of the iterations for both trading assets.

Table 21. Hyperparameters of the MLP classifiers for NATGAS and WTI.

Hyperparameter Selected parameters for

NATGAS MLP classifier

model

Selected parameters for

WTI MLP classifier

model

Optimizer Adam Adam

Loss function SquaredHinge SquaredHinge

Metric function Accuracy BinaryAccuracy

Batch size 32 32

Number of iterations 500 epochs 500 epochs

Input layer Input size = 30 number of

neurons = 30, activation

function = linear

Input size = 120, number

of neurons = 120,

activation function = relu

1st hidden layer Number of neurons = 37,

activation function = tanh

Number of neurons = 150,

activation function = linear

2nd hidden layer Number of neurons = 22,

activation function = tanh

Number of neurons = 90,

activation function = linear

3rd hidden layer Number of neurons = 15,

activation function = tanh

Number of neurons = 60,

activation function = linear

4th hidden layer Number of neurons = 7,

activation function = tanh

Number of neurons = 30,

activation function = linear

Output layer Output size = 1, number of

neurons = 1, activation

function = relu

Output size = 1, number of

neurons = 1, activation

function = sigmoid

Number of trainable

parameters

3,378 53,581

54

Figure 31. MLP classification model training and testing loss plot, over the number of

iterations for NATGAS and WTI.

 Based on the newly constructed models, the models produced results that

exceeded 70% accuracy on both the training and testing sets. Such results can be seen

in the following table and figure.

Figure 32. NATGAS and WTI MLP classifiers training vs. validation accuracies.

Table 22. NATGAS and WTI MLP classifiers confusion matrices.

NATGAS Test set Train set

 Predicted False Predicted True Predicted False Predicted True

Actual False 17 1 34 0

Actual True 7 4 8 32

WTI Test set Train set

 Predicted False Predicted True Predicted False Predicted True

Actual False 5 1 19 0

Actual True 2 7 6 7

55

Table 23. NATGAS and WTI MLP classifier training and testing set accuracies.

 NATGAS WTI

Testset Accuracy (%) 72.41 80.00

Trainset Accuracy (%) 87.69 81.25

4.7 Results Comparison

 Using the data collected during the study, a comparison has been drawn to

exhibit the performance differences between the models. Table 24 shows the scoring of

each model based on the testing set of the EUR/USD.

Table 24. Summary of the models used in the study. Showing the RMSE, MAE, R2,

Average CV R2, and accuracy.

Model RMSE MAE R2 Average CV R2 Accuracy (%)

Simple Linear

Regression

0.015 0.012 0.812 0.391 50.053

Multiple Linear

Regression

0.009 0.007 0.932 0.542 49.982

SVR Linear Kernel 0.008 0.006 0.942 0.619 61.425

SVR RBF Kernel 0.016 0.008 0.879 0.511 56.406

MLP Regressor 0.008 0.007 0.945 0.970 52.404

LSTM Regressor 0.008 0.006 0.947 0.968 49.649

Improved MLP

Regressor

0.011 0.007 0.867 0.901 83.500

 The results show that using one day of previous closing prices, regardless of the

number of features, leads to random future direction predictions. SVR models displayed

potential, as both scored higher than any model, except the improved MLP. The

significant performance of the improved MLP shows that the network failed to learn

when it was given only one day, to interpret patterns. But when given 30 days of

previous prices, the network was able to learn and produce considerably accurate future

predictions for the price direction.

56

4.7.1 Time Complexity Analysis

 Throughout this thesis, the one-day time frame was used to train, test, and

predict the closing price/direction of an instrument for the next day. Time complexity

is used to quantify the efficiency of an algorithm in terms of the time it takes for such

an algorithm to produce an output. The following Table 25 was constructed based on

the models used in the thesis, where it displays the time it takes each model to output a

prediction.

Table 25. The time it took to produce an output for each model.

Model Elapsed Time (Seconds)

Simple Linear Regression 0.0035

Multiple Linear Regression 0.0050

SVR Linear Kernel 0.0052

SVR RBF Kernel 0.0187

MLP Regressor 0.2062

Improved MLP Regressor 0.5074

LSTM Regressor 1.2691

 As expected, the elapsed time increase as the model used to produce predictions

becomes more complex. However, because the timeframe is selected to be relatively

high (1-day), the elapsed time is rendered negligible as the prediction is made for the

next 24-hours closing price. In the case of using lower timeframes (5-min, 1-min, 1-

sec, etc...) the time complexity becomes crucial as such delays can render the model

obsolete if it is unable to produce predictions promptly.

57

CHAPTER 5: CONCLUSION AND FUTURE WORK

The research aim of this thesis was to dive into the different methods of machine

learning to achieve accurate future predictions of financial assets. The majority of the

time was spent on collecting, exploring, and building a proper dataset, that included a

variety of trading assets and economical reports. During the data exploration stage, it

was found that most trading assets show correlation with each other, which was shown

to be true when different assets were plotted against highly correlated counterparts, and

shown to move accordingly and share price changes.

This study has started with establishing a baseline, which was done by modeling

the EUR/USD price using various regression models. Starting with linear models that

showed very low R2 scores and failed to achieve accuracy levels higher than 50%.

Furthermore, the research explored support vector regression models (SVR) with two

kernels. Both linear and RBF kernels have proven to be candidates for further study, as

the linear kernel scored an accuracy above 60%.

 As the final stage of this study, the focus is particularly drawn on using ANNs.

With both MLP and LSTM models being created, trained, and optimized. Choosing and

refining the network's hyperparameters have proven to be a challenge, as small changes

in some parameters can greatly affect the results of the model. The main problem faced

during the study was the exceptionally long time needed to train LSTM networks,

which resulted in worse models than MLPs, and this can be due to the limited

parameters tested and explored. The use of 30 days of previous closing prices to predict

one day into the future has proven successful. The MLP trained network has produced

a future price trend prediction accuracy that exceeded 80%, which is a rate that was not

seen before, in any of the models.

The study has shown that there is a possibility for ANNs and non-linear models

58

to be used to predict financial asset prices. Future work will explore the outcome of

using different assets, including more features and expanding the combination of

hyperparameters. Lower prediction window time-frames are an important aspect to

explore in the future, as the possibility of predicting the prices of the next 1 hour, 30

minutes, or 5 minutes might also be a viable option.

59

REFERENCES

[1] L. Yu, S. Wang and K. K. Lai, Foreign-exchange-rate forecasting with artificial

neural networks, New York: Springer, 2011.

[2] S. Zhelev and D. R. Avresky, "Using LSTM neural network for time Series

predictions in financial markets," 2019 IEEE 18th International Symposium on

Network Computing and Applications (NCA), 2019.

[3] A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj and A. Iosifidis,

"Using deep learning to detect price change indications in financial markets,"

2017 25th European Signal Processing Conference (EUSIPCO), 2017.

[4] U. G. S. (USGS), "Mineral Commodity Summaries 2020," U.S. Geological

Survey, Washington, 2020.

[5] M. El Alaoui, E. Bouri and N. Azoury, "The Determinants of the U.S. Consumer

Sentiment: Linear and Nonlinear Models," International Journal of Financial

Studies, 2020.

[6] D. Van den Poel, C. Chesterman, M. Koppen and M. Ballings, "Equity price

Direction prediction for day trading: Ensemble classification using technical

analysis indicators with interaction effects," 2016 IEEE Congress on

Evolutionary Computation (CEC), 2016.

[7] J. J. Murphy, Technical analysis of the financial markets: a comprehensive guide

to trading methods and applications, Paramus, NJ: New York Institute of Finance,

1999.

[8] W. Lertyingyod and N. Benjamas, "Stock price trend prediction using artificial

neural Network techniques: Case Study: THAILAND stock exchange," 2016

International Computer Science and Engineering Conference (ICSEC), 2016.

60

[9] R. Meese and K. S. Rogoff, "Empirical exchange Rate models of the

SEVENTIES : Are any fit to survive?," International Finance Discussion Paper,

vol. 1981, no. 184, pp. 1-51, 1981.

[10] S. Tiwari, A. Bharadwaj and S. Gupta, "Stock price prediction using data

analytics," 2017 International Conference on Advances in Computing,

Communication and Control (ICAC3), 2017.

[11] R. Y. Nivetha and C. Dhaya, "Developing a prediction model for stock analysis,"

2017 International Conference on Technical Advancements in Computers and

Communications (ICTACC), 2017.

[12] Z. Yeze and W. Yiying, "Stock price prediction based on information entropy and

artificial neural network," 2019 5th International Conference on Information

Management (ICIM), 2019.

[13] E. Turkedjiev, M. Angelova and K. Busawon, "Validation of artificial neural

network model for share price uk banking sector short-term trading," 2013 UKSim

15th International Conference on Computer Modelling and Simulation, 2013.

[14] Z. Zhang, Y. Shen, G. Zhang, Y. Song and Y. Zhu, "Short-term prediction for

opening price of stock market based On self-adapting Variant PSO-Elman neural

network," 2017 8th IEEE International Conference on Software Engineering and

Service Science (ICSESS), 2017.

[15] I. M. Kaya and M. E. Karsligil, "Stock price prediction using financial news

articles," 2010 2nd IEEE International Conference on Information and Financial

Engineering, 2010.

[16] C. Wang and Q. Gao, "High and low Prices prediction of SOYBEAN futures with

LSTM neural network," 2018 IEEE 9th International Conference on Software

61

Engineering and Service Science (ICSESS), 2018.

[17] K. A. Manjula and P. Karthikeyan, "Gold price prediction using ensemble based

machine learning techniques," 2019 3rd International Conference on Trends in

Electronics and Informatics (ICOEI), 2019.

[18] A. Vohra, N. Pandey and S. Khatri, "Decision making support system for

prediction of prices in agricultural commodity," 2019 Amity International

Conference on Artificial Intelligence (AICAI), 2019.

[19] M. R. Vargas, C. E. dos Anjos, L. G. Bichara and G. A. Evsukoff, "Deep Leaming

for stock market prediction using technical indicators and financial news articles,"

2018 International Joint Conference on Neural Networks (IJCNN), 2018.

[20] Y. Wang and Y. Wang, "Using social media mining technology to assist in price

prediction of stock market," 2016 IEEE International Conference on Big Data

Analysis (ICBDA), 2016.

[21] N. I. Nwulu, "A decision trees approach to oil price prediction," 2017

International Artificial Intelligence and Data Processing Symposium (IDAP),

2017.

[22] K. Rathan, S. V. Sai and T. S. Manikanta, "Crypto-Currency price prediction

using decision tree and regression techniques," 2019 3rd International

Conference on Trends in Electronics and Informatics (ICOEI), 2019.

[23] P. K. Mahato and V. Attar, "Prediction of gold and silver stock price using

ensemble models," 2014 International Conference on Advances in Engineering

& Technology Research (ICAETR - 2014), 2014.

[24] A. Samarawickrama and T. Fernando, "A recurrent neural network approach in

predicting daily stock prices an application to the Sri LANKAN stock market,"

62

2017 IEEE International Conference on Industrial and Information Systems

(ICIIS), 2017.

[25] S. Ravikumar and P. Saraf, "Prediction of stock prices using machine learning

(regression, classification) algorithms," 2020 International Conference for

Emerging Technology (INCET), 2020.

[26] M. A. Golberg and H. A. Cho, Introduction to regression analysis, Southampton:

WIT Press, 2005.

[27] S. Chatterjee and J. S. Simonoff, Handbook of regression analysis, Hoboken, NJ:

John Wiley & Sons, 2013.

[28] D. C. Montgomery, E. A. Peck and G. G. Vining, Introduction to linear regression

analysis, Oxford: Wiley-Blackwell, 2013.

[29] J. Gong and S. Sun, "A new approach of stock price prediction based on logistic

regression model," 2009 International Conference on New Trends in Information

and Service Science, 2009.

[30] D. Basak, S. Pal and D. Patranabis, "Support Vector Regression," Neural

Information Processing – Letters and Reviews, vol. 11, 2007.

[31] T. Kleynhans, M. Montanaro, A. Gerace and C. Kanan, "Predicting Top-of-

Atmosphere THERMAL RADIANCE USING Merra-2 atmospheric data with

deep learning," Remote Sensing, vol. 9, no. 11, p. 1133, 2017.

[32] A. I. Galuškin, Neural networks theory, Berlin: Springer, 2010.

[33] A. Graves, Supervised sequence labelling with recurrent neural networks,

Springer, 2014.

[34] M. Awad and R. Khanna, Efficient Learning Machines Theories, Concepts, and

Applications for Engineers and System Designers, Berkeley, CA: Apress, 2015.

63

[35] J. Duchi, E. Hazan and Y. Singer, "Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization," Journal of Machine Learning Research,

no. 12, pp. 2121-2159, 2011.

[36] D. . P. Kingma and B. . L. Jimmy, "ADAM: A METHOD FOR STOCHASTIC

OPTIMIZATION," ICLR 2015, 2015.

[37] B. Jeevan, E. Naresh, P. B. kumar and P. Kambli, "Share price prediction using

machine learning technique," 2018 3rd International Conference on Circuits,

Control, Communication and Computing (I4C), 2018.

[38] A. K. Sirohi, P. K. Mahato and A. Vahida, "Multiple kernel learning for stock

price direction prediction," 2014 International Conference on Advances in

Engineering & Technology Research (ICAETR - 2014), 2014.

