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ABSTRACT 

MESLEH, MAHMOUD, G, Masters: January 2022, Masters of Science in Electrical 

Engineering 

Title: Applying Various Machine Learning Methodologies into the Financial Market 

Supervisor of Thesis: Prof. Mustafa, Serkan, Kiranyaz. 

 The modernization of the financial market, with the introduction of the internet, 

made it easier for the average, everyday people, around the world to invest in the 

plentiful trading assets in the market. This created a revolution, propelling the foreign 

exchange market to be the most valuable and tradeable financial asset on the planet, 

with a daily turnover that surpasses $6 Trillion. As a result, predicting the future price 

can be very profitable, causing analysts and hedge funds to start a race toward searching 

for the best tools or algorithm that allows them to be ahead of the competition. With 

the introduction of faster and more powerful computers, the dream of automated, 

lightning-fast trading became a reality. Studies believe that more than 60% of the total 

traded volume in developed nations is performed by automated systems and algorithms. 

 This thesis will investigate the claims by different studies that machine learning 

algorithms can be used to accurately predict the future prices of the market. The thesis 

chose the EUR/USD exchange rate, to study, as it is the most volatile asset and it has 

the highest trading volume. Based on this, ten years of daily closing prices that included 

many trading assets, such as currencies, indices, and commodities were collected to 

study the effect of different trading assets on each other and understand the correlation 

effect. 

 The investigation starts with the use of linear regression techniques, including 
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mean least-squares estimations and multiple linear regression, which failed to provide 

sustainable results or achieve an accuracy above 60%. In addition to that, a support 

vector machines model was built using a linear and a radial basis function kernel, where 

the linear kernel model recorded an accuracy of 60% when predicting the future price 

trend of the EUR/USD. 

 Finally, the thesis dives into the use of artificial neural networks, in the form of 

multi-layer perceptrons (MLPs), and long-short term memory (LSTMs). All forms of 

artificial neural networks have failed to predict the future price trend when using one 

day of previous closing prices as input. This has changed when an MLP regressor was 

trained to use the previous closing price of 30 days to predict one day into the future. 

This allowed the network to achieve accuracies that exceeded 80% when predicting the 

future price trend. 
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CHAPTER 1: INTRODUCTION 

The financial market is a crucial pillar in today’s economy, with the foreign 

exchange market (FOREX) having a daily trading volume of $6.6 Trillion. Investors in 

the financial market range from multi-billion dollar hedge funds, banks, and 

governments to everyday folks trying to invest some money into the stocks market, or 

simply exchanging currency at the airport while on vacation [1]. 

Many experts believe that 60-70% of the trading volume in the financial market 

of developed countries is automated algorithmic trading. Algorithmic trading was made 

easier thanks to the computing power and communication technology developed over 

time, in addition to having access to more data to train and evaluate trading models [2]. 

A list of commonly used tradeable assets can be found in Table 1. 

 

Table 1. Different types of trading assets. 

Asset Definition Examples 

Equities/Stocks Ownership of a corporation is 

offered for public trading 

Apple (AAPL) 

General Motors (GM) 

Commodities Trading assets that include 

agricultural, precious metals, etc... 

West Texas Oil (WTI) 

Gold Spots (XAU/USD) 

Foreign Exchange 

(FOREX) 

Trading the difference of a base 

currency against a basket of other 

currencies 

Euro against US Dollar 

(EUR/USD) 

US Dollar against Japanese 

Yen (USD/JPY) 

 

FOREX is the most commonly traded asset in the world, followed by stocks and 

equities. As a result of such a huge volume, the problem of financial market analysis 

becomes filtering all the noise, in addition to the stochastic nature of the market [3]. As 

a result, experts started coming up with ways to try to understand the market and predict 

future prices. 
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1.1 Financial Analysis 

1.1.1 Fundamental Analysis 

 In fundamental analysis, predictions are based on the study of the supply and 

demand of the traded asset. In addition to that, the news, economical reports, interest 

rates, correlation with other assets, and many other fundamentals are considered before 

making a prediction. While compiling the dataset of the study, a correlation between 

multiple assets was noted, as can be seen as follows, showing the price of Platinum 

against the Russian Ruble vs. US Dollar (RUB/USD) exchange price. 

 

 

Figure 1. Price change of Platinum vs. RUB/USD. 

 

After further investigation, it was made clear that Russia is the second-largest 

Platinum producer in the world [4], as a result, the Rubble exchange price greatly 

affects the price of Platinum. In this case, a Platinum investor would look closely into 

the Russian economy, and follow the economical reports that may affect the exchange 

rate of the Ruble. 

Another great example of fundamental analysis can be seen in Figure 2. The 

United States Dollar Index, which measures the value of the United States Dollar 

against other widely used currencies, is plotted against the United States Conference 
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Board Consumer Confidence, which is a monthly economic report that measures the 

sentiments and confidence of consumers in the US market [5]. The proportional 

relationship between the two variables can be seen as follows. 

 

 

Figure 2. Changes in the USD Index vs. The United States Conference Board 

Consumer Confidence. 

 

1.1.2 Technical Analysis 

 When using technical analysis, the analyst depends on indicators to predict the 

trend of the asset in the future [6]. Indicators are based on mathematical models, ranging 

from simple moving averages, weighted and exponential moving averages to more 

complex mathematical model-based indicators such as the Ichimoku Cloud or 

Fibonacci Retracements [7]. 

In a simple case study, the EUR/USD past data can be used to produce moving 

averages (MA) over the 50 days (fast) and 200 days (slow) periods. A very widely used 

trading strategy is simply going long when the slow MA crosses the fast (MA) upwards 

and shorting when it is the other way around. Figure 3 shows an example of such a 

trading strategy. 
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Figure 3. EUR/USD vs. 50 and 200 days moving averages. 

  

 More complex trading strategies can yield accurate results by using different 

indicators such as the Moving Average Convergence/Divergence (MACD) and the 

Relative Strength Index (RSI) [8]. 

1.2 Related Works 

 One of the earliest research into forecasting exchange rates is found to compare 

time series and structural models of FOREX based on their out-of-sample forecasting 

accuracy. The research has discovered that most linear models failed the random walk 

test, and were not effective in predicting future prices [9]. Random walk test is a random 

process, stochastic in nature, that in essence describes a path that comprises of random 

steps in a mathematical space, a model would take, based upon the inputs it receives. 

Since then, researchers have been trying to use linear and non-linear models to beat the 

naïve random walk theory, some have proven it possible while others refuted and 

proposed that it is not possible [1]. 

More complex linear and time-series models can be used to predict future prices, 

in addition to polynomial-based non-linear models, which have shown some success 

[10]. Autoregressive integrated moving average (ARIMA) models have also seen some 
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success recently, with the help of excess data available to regress upon, but they are 

commonly used in less fluctuating trading assets, as a result, they tend to have a low 

return on investment percentage compared to other models.  

With the advent of Artificial Neural Networks (ANNs), many studies have been 

conducted to forecast the future prices of stocks and other trading assets [11]. Most 

recent studies commonly use the Recurrent Neural Networks (RNNs) variant, and the 

long short-term memory (LSTM) model [12], they have been shown to achieve higher 

accuracies even in a low timeframe (hours/minutes) [2]. Nonetheless, a simple ANN 

model was proven effective in many short-term trading strategies, and in many 

countries, applied to the United Kingdom banking sector to predict share prices yielded 

results that are far better than traditional linear models [13]. Similar experiments were 

carried on using ANNs, on the US stocks market. 

The US market is known to be volatile, and highly responsive to news, 

economical reports, and international events. This can prove to be a challenge for a 

model to be robust enough to predict future prices, but advanced models have proven 

to be able to overcome, in a way, the market noise [14]. The financial news and reports 

cause the market to move, as a result, analyzing the impact of news articles on the stocks 

market can provide an advantage toward predicting future price changes. Studies have 

found success in analyzing the sentiment of news articles; thus understanding their 

impact on the market ahead of sudden price changes [15]. 

The predictive powers of neural networks are not only limited to predicting the 

price of stocks. Some success was found with the prediction process of commodities 

[16], such as gold and oil [17]. The theory that artificial neural networks can detect the 

correlation between the different assets to predict future prices has seen some results to 

support such a claim, as with the help of tools, such as data mining, which is a technique 
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used to find correlation and patterns in large sets of data can be effective to train a 

network to predict future prices [18]. 

Hybrid models that use different types of neural network architecture have seen 

some success in recent years [19]. Commonly used hybrid models contain an LSTM 

network to regress the data and produce an output using information produced from a 

convolutional neural network (CNN) that processes the news or social media for 

potential variables that might affect the price. However, this can still be achieved using 

support vector machines (SVM) models, or other simpler alternative models, to process 

news or social media posts for potential updates that might cause the price to change 

[20]. Recent studies have also seen success in using hybrid systems to predict highly 

volatile markets, like the cryptocurrency market. Bitcoin is considered one of the most 

volatile trading assets in recent times, with a daily price rate of change that can exceed 

25%. However, a hybrid system of a linear regression model and a decision tree 

classifier [21] was able to predict prices with high accuracy [22]. 

A commonly used technique to boost the confidence of a system is to use model 

enablement. A set of different models/architectures will be constructed to predict prices, 

the system will choose the output, in this case, the market direction prediction, 

depending on the majority voting. Using such a technique has produced an accuracy 

upwards of 85% for commodities such as gold [23]. 

1.3 Motivation and Objectives 

 The main goal of this thesis is to investigate the possibility of building a model 

that predicts future prices. The focus will be aimed toward building a high-quality 

dataset that includes various trading assets and economical reports, having such a data 

set will help in understanding the correlation between the different assets and how the 

prices are impacted by economical reports. Toward the end of the study, multiple 
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models will be created, both linear and non-linear, including different ANN models.  

All the different models will be compared in terms of efficiency and accuracy 

to conclude the viability of using such models to predict future prices. The biggest 

obstacle in any financial forecasting research is the effect caused by economical reports 

on the prices, including the news, political and environmental events. This is seen in 

the unprecedented fluctuation in the global financial market as a result of the COVID-

19 pandemic. 

However, the study would use such unforeseen events to measure the robustness 

of the models, as the dataset used in this research spans over the past decade, including 

the year 2020. The research would establish a baseline by using basic linear models, 

these models would be compared to other more sophisticated non-linear models to 

verify the effectiveness and robustness of such models. The study will dive into the 

selection process behind choosing hyperparameters of the artificial neural networks, 

and the effects of such parameters on the overall performance of the model. 

1.4 Thesis Outline 

The rest of the thesis is organized as follows: Chapter 2 will discuss data 

exploration, in which the dataset that will be used throughout the study will be created, 

divided into categories, and preprocessed. In Chapter 3, a comprehensive literature 

review is conducted on the different concepts of models that will be created later in the 

research. Chapter 4 will show the performance of different machine learning models, 

and a comparison will be drawn between the different methodologies. Finally, Chapter 

5 provides a conclusion that discusses the results obtained in prior chapters and provides 

some insight toward the future direction of this study.   
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CHAPTER 2: DATA EXPLORATION 

2.1 Data Collection 

Historical data that is plentiful and high in quality is crucial to understand the 

relationship between the different assets and build comprehensive and accurate models. 

As a result, multiple data sources and stock exchanges platform were used to build the 

dataset used in the research. The dataset used in this thesis starts from 1st of February 

2010 up to 31st of December 2020, equating to 10 years’ worth of daily closing price 

data. The dataset is broken into several categories, and an overview breakdown of the 

dataset can be seen in Figure 4. 

 

 

Figure 4. Break down of the study dataset. 
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2.2 Data Preprocessing 

 Using different trading assets to perform modeling and analysis imposes a huge 

problem when using raw data. Trading assets can vary in value, as a result, simple tasks 

such as visualizing the data becomes impossible to do. To solve this, linear data scaling 

is used in the form of data Normalization and Standardization. 

2.2.1 Data Standardization 

Standardization of the data is performed by applying Equation (1), where 𝜇 

represents the mean, and 𝜎 represents the standard deviation of the variable 𝑋. 

𝑋Standardized =
𝑋𝑣𝑎𝑙𝑢𝑒 − 𝜇

𝜎
 

(1) 

As a result, the standardized data will be centered around a mean value of zero. This 

allows the data to be easily displayed and plotted against other features that will have 

different numerical ranges. 

2.2.2 Data Normalization 

Normalized data using Equation (2) will be scaled to a range from 0 to 1 [24]. 

𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 represent the biggest and smallest values in the dataset X respectively. 

𝑋Normalized =
𝑋𝑣𝑎𝑙𝑢𝑒 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

(2) 

Normalization is commonly applied to data when the distribution is not a Gaussian 

distribution, this can be efficient when the algorithm does not assume the distribution 

of the dataset, such as in the case of artificial neural networks (ANNs). 

2.2.3 Data Splitting and Evaluation Metrics 

To unify the testing criteria for all the different methods used in the research, 

the data is split into a training set (80%) and a testing set (20%). 

Coefficient of Determination (R2): The results throughout this study will be 

measured using the R2 score. The score is used to measure the amount of variance in 
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the dependent variable that is produced as a prediction from a mathematical model 

using statistically independent variables. The R2 test helps to show how much of the 

total variance of the test dataset is explained by the model. Equation (3) is used to 

produce the R2 score of a model. 

𝑅2 = 1 −
∑ (𝑦𝑖

𝐴𝑐𝑡𝑢𝑎𝑙
− 𝑦𝑖

𝑀𝑜𝑑𝑒𝑙
)
2

𝑖

∑ (𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

− 𝑦̅ 𝐴𝑐𝑡𝑢𝑎𝑙)
2

𝑖

 

(3) 

where 𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

 is the example from the dataset which will be used as the target value of 

the model, and 𝑦𝑖
𝑀𝑜𝑑𝑒𝑙

 represent the corresponding output using the model, and 𝑦̅ 
𝐴𝑐𝑡𝑢𝑎𝑙

 

is the mean value of the target dataset. Normally, the value of R2 ranges from 0 to 1, with 

a value of 1 indicating that changes in one variable can be perfectly explained by a 

discrepancy in a second variable. 

 Confusion Matrix (CM): used to describe the performance of a classification 

model [25]. The matrix is built as seen in Table 2. 

 

Table 2. Confusion Matrix structure. 

   Predicted False Predicted True 

Actual False True Negative (TN) False Positive (FP) 

Actual True False Negative (FN) True Positive (TP) 

 

 True positives and negatives describe the case where the model predicted a true 

or false value correctly. Where false positives and negatives correspond to the case 

where the model incorrectly identifies a false value as true, or, a true value as false. 

 Accuracy: is used to produce an error rate percentage, indicating the rate at 

which the model can predict outputs correctly. It can be calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
∗ 100 

(4) 

 Precision: is used to measure the ratio of true positive outputs of the model's 
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overall predictions. It can be calculated: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

(5) 

 Recall: is used to measure the ratio of true positives produced by the model, 

compared to the total number of positive class items in the dataset. It can be calculated 

as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(6) 

 F1-Score: is another measure of a classifier model’s accuracy, it combines both 

precision and recall to evaluate the model performance. It can be calculated as: 

 Cross-Entropy (CE): is used as a loss function to evaluate a classification model. 

(N) is the total number of training examples. 

𝐶𝐸 =
1

𝑁
∑𝑦𝑖

𝐴𝑐𝑡𝑢𝑎𝑙
log (𝑦𝑖

𝑀𝑜𝑑𝑒𝑙

𝑁

𝑖

+ (1 − 𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

))log (1 − 𝑦𝑖
𝑀𝑜𝑑𝑒𝑙

) 

(8) 

 Mean Absolute Percentage Error (MAPE): is a statistical accuracy 

measurement for data forecasting. MAPE is calculated using Equation (9), where N is 

the size of the dataset. 

𝑀𝐴𝑃𝐸 =
100

𝑁
∑

|𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

− 𝑦𝑖
𝑀𝑜𝑑𝑒𝑙

|

𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

𝑁

𝑖

 

(9) 

 Mean Root Square Error (RMSE): This is a commonly used error validation 

metric, and it is used to evaluate the performance of a regression model compared to 

the actual output [13]. Equation (10) is used to calculate the RMSE. 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖
𝑀𝑜𝑑𝑒𝑙

− 𝑦𝑖
𝐴𝑐𝑡𝑢𝑎𝑙

)
2𝑁

𝑖

𝑁
 

(10) 

Mean Absolute Error (MAE): is a measurement of error that is used to evaluate 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(7) 
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the performance of the model, it is calculated as follows: 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖

𝑀𝑜𝑑𝑒𝑙
− 𝑦𝑖

𝐴𝑐𝑡𝑢𝑎𝑙
|

𝑁

𝑖=1

 

(11) 

Mean Squared Error (MSE): is another measurement of error, it is calculated as 

follows: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖

𝑀𝑜𝑑𝑒𝑙
− 𝑦𝑖

𝐴𝑐𝑡𝑢𝑎𝑙
)
2

𝑁

𝑖=1

 

(12) 

2.3 Data Correlation 

Correlation is a measurement of statistical association, it can help in identifying 

if a linear relationship exists between two variables. It is calculated as follows: 

𝑥̅ =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 

(13) 

𝑦̅ =
1

𝑁
∑𝑦𝑖

𝑁

𝑖=1

 

(14) 

𝑠𝑥 =
1

𝑁
∑(𝑥 − 𝑥̅)2

𝑁

𝑖=1

 

(15) 

𝑠𝑦 =
1

𝑁
∑(𝑦 − 𝑦̅)2

𝑁

𝑖=1

 

(16) 

 𝐶𝑥,𝑦 = ∑
(𝑥 − 𝑥̅)2(𝑦 − 𝑦̅)2

(𝑠𝑥𝑠𝑦)

𝑁

𝑖=1

 

(17) 

The correlation coefficient ( 𝐶𝑥,𝑦) requires calculating the mean (𝑥̅, 𝑦̅) and the standard 

deviation (𝑠𝑥, 𝑠𝑦) of both variables (𝑥, 𝑦). This was applied to calculate the correlation 

across the variables in the dataset, as illustrated in Figure 5. 
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Figure 5. Dataset correlation heatmap. 

 

2.4 Data Visualization 

 To better understand the dataset, and the effect of the different features on a 

specific trading asset the following methodology has been followed. The initial step 
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was to pick a trading asset from the dataset to predict future prices or trends. In this 

study, (EUR/USD) was chosen as it is the most volatile trading asset and it produces 

the highest trading volume. 

 The price of (EUR/USD) was converted into a binary output. This was done by 

comparing the closing price of the current day to the future closing price of the next 

day in the dataset, and converting the value into 1 if the price is going to increase for 

the next day, or 0 for the opposite. An example can be seen in Table 3. 

 

Table 3. Price to binary conversion example. 

EUR/USD EUR/USD Next Day EUR/USD Next Day Binary 

1.3929 1.3963 1 

1.3963 1.3899 0 

1.3899 1.3736 0 

1.3736 1.3664 0 

1.3664 1.3653 0 

 

Furthermore, the distribution of the binary conversion was displayed between 

price increase (value of 1) and price decrease (value of 0). The result can be seen in 

Figure 6, in which a count plot shows a near 50-50 even distribution. 
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Figure 6. EUR/USD distribution between buy/sell. 

 

The correlation between instruments can be visually inspected as shown in 

Figure 7. In this example, the EUR/USD is plotted against the trading assets and 

financial reports that produce the highest correlation value. These assets will be used as 

inputs to the different models that will be developed in this study. 

 

 

Figure 7. The EUR/USD plotted against various assets/financial reports. 
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CHAPTER 3: METHODOLOGIES 

3.1 Regression Analysis 

 Regression analysis is used to describe the relationship between a set of 

variables in the form of a mathematical model. Regression analysis is used in numerous 

applications and it is considered the most commonly used statistical technique [26]. 

 In a regression problem, the main goal is to use the available data to produce a 

model that minimizes the error of the model's predicted output with the truth output. 

Figure 8 illustrates the basic approach for building a regression model. 

 

 

Figure 8. The process behind building a model. 

 

 The regression model is built using the information learned from the input 

variables, known as features, to product predictions for the output variable, known as 

the target. 

3.1.1 Linear Regression 

 The linear regression model is formulated as in Equation (18), where 𝜃0 

represents the bias (or intercept term) in the model, and 𝜃1 is the weight. This model is 

also referred to as the simple linear regression model [27]. 
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𝑦(𝑥1) = 𝜃0 + 𝜃1𝑥1 (18) 

 where adding more variables, as terms of (x) increase the complexity, in which 

the model will be regressed on a higher dimension. This model is called Multiple Linear 

Regression [28]. An example of such a model with two input variables can be seen in 

Equation (19). 

𝑦(𝑥1, 𝑥2) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 (19) 

The 𝜃𝑛 term determines the weight of the term 𝑥𝑛 toward the output of the model. 

Figure 9 illustrates an example of applying a linear model to fit a dataset. 

 

 

Figure 9. Example of a linear regression model. 

 

3.1.2 Least Mean Squares Estimation 

 To estimate the unknown parameters seen in Equation (18), an approach known 

as the least mean squares (LMS) is used. This is done by defining a cost function 𝐽(𝜃), 

which is constructed in Equation (20). The cost function is used to measure the 
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closeness of the predicted value of the model, 𝑦𝑚𝑜𝑑𝑒𝑙, compared to the actual output in 

the training data set, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙. The main goal is to minimize the error between the model 

and the actual training data. This is done by minimizing the value of cost function 𝐽(𝜃), 

where N is the number of training data. 

𝐽(𝜃) =
1

2𝑁
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖)

)2

𝑁

𝑖=1

 

(20) 

3.1.3 Gradient Descent 

 Gradient descent is a powerful and commonly used optimization algorithm. It 

is used to minimize the cost function iteratively. This is performed by taking the 

derivative of the cost function 𝐽(𝜃) and minimizing the error of the partial derivative 

term of the cost function 
𝜕

𝜕𝜃𝑗
𝐽(𝜃) [27]. This is expressed in Equations (21) and (22). 

The term 𝑦𝑚𝑜𝑑𝑒𝑙(𝑥
(𝑖)) represents the model output using input from the training 

dataset. 

𝑗 = 0,
𝜕

𝜕𝜃0
𝐽(𝜃0, 𝜃1) =

1

𝑁
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖) )

𝑁

𝑖=1

 

(21) 

𝑗 = 1,
𝜕

𝜕𝜃1
𝐽(𝜃0, 𝜃1) =

1

𝑁
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖) )

𝑁

𝑖=1

(𝑥(𝑖)) 

(22) 

where 𝑥(𝑖) and 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖)

 are the input and target output from the training dataset, 

respectively. Gradient descent uses a learning rate parameter α. This parameter dictates 

the sensitivity of the algorithm, as it affects the magnitude of the steps that the GD 

applies each iteration. The process is performed over many iterations for 𝜃0, 𝜃1 as 

shown in Equations (23) and (24) until both converge. Convergence occurs when the 

gradient calculated in (21) and (22) vanishes. 
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𝜃0 = 𝜃0 − 𝛼 [
1

𝑚
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖) )

𝑁

𝑖=1

] 

(23) 

𝜃1 = 𝜃1 − 𝛼 [
1

𝑚
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖) )(𝑥(𝑖))

𝑁

𝑖=1

] 
(24) 

A flow chart, simplifying the process of gradient descent is illustrated in Figure 10. 

 

 

Figure 10. A flowchart showing the process of applying gradient descent. 

 

3.2 Logistic Regression 

 Logistic regression is used to solve classification problems. In the most basic 

case, a dataset would have two potential outputs, for example, a true or a false output, 

this results in a classification problem with two classes. The model is used to predict 

such output based on a probabilistic function. A commonly used function is the sigmoid 
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function, in which the output ranges between [0,1], expressed in Equation (25). 

𝑦 =
1

1 + 𝑒−𝑥
 

(25) 

The Sigmoid function in a range of [−10,10] is plotted in Figure 11. 

 

 

Figure 11. Sigmoid function output. 

 

 The output of the sigmoid function is a probabilistic prediction, a threshold can 

be used to classify the output based on the given data [25]. The model ℎ𝜃(𝑥) uses the 

sigmoid function to produce a probabilistic output value bounded between 0 ≤

ℎ𝜃(𝑥) ≤ 1, where ℎ𝜃(𝑥) is modeled as follows: 

ℎ𝜃(𝑥) = 𝑔(𝜽𝑻𝒙) =
1

1 + 𝑒−𝜽𝑻𝒙
 

(26) 

 The dot product of the model’s parameter vector 𝜽 and the input vector 𝒙 is 

evaluated by the sigmoid function. The probability that the output is equal to 1, given 

𝒙, and parametrized by 𝜽 is produced as follows: 

𝑃(𝑦 = 1|𝑥; 𝜃) = ℎ𝜃(𝑥) (27) 

Alternatively, the probability of producing an output of zero, classified as false is as 
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follows. 

𝑃(𝑦 = 0|𝑥; 𝜃) = 1 − 𝑃(𝑦 = 1|𝑥; 𝜃) (28) 

The cost function 𝐽(𝜃) is expressed in Equation (29). 

𝐽(𝜃) =
1

𝑁
∑𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥𝑖

𝑁

𝑖

), 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖) ) 

(29) 

where the term 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖)

 corresponds to the (ith) target output in the training dataset [29]. 

The cost conditions are defined as follows. 

𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥), 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖) ) = {

− log(ℎ𝜃(𝑥)) , 𝑖𝑓 𝑦 = 1

− log(1 − ℎ𝜃(𝑥)) , 𝑖𝑓 𝑦 = 0
 

(30) 

Substituting the terms into Equation (29) produces the following cost function, which 

can be used to apply gradient descent optimization to minimize the error of the cost 

function. 

𝐽(𝜃) =
1

𝑁
[∑𝑦𝑎𝑐𝑡𝑢𝑎𝑙

(𝑖) log (ℎ𝜃(𝑥𝑖)) + (1 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖) )log (1 − ℎ𝜃(𝑥𝑖))  

𝑁

𝑖

] 

(31) 

Taking the partial derivative of the cost function in Equation (31) is shown as follows: 

𝜕

𝜕𝜃𝑗
𝐽(𝜃𝑗) =

1

𝑁
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖) )

𝑁

𝑖=1

, 𝑓𝑜𝑟 𝑗 = 0 

(32) 

𝜕

𝜕𝜃𝑗
𝐽(𝜃𝑗) =

1

𝑁
∑(𝑦𝑚𝑜𝑑𝑒𝑙(𝑥

(𝑖)) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖) )

𝑁

𝑖=1

(𝑥(𝑖)), 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 (𝑛 + 1) 

(33) 

where the term n is the number of input variables (features), and 𝑗 indexes the parameter 

𝜃. The parameters can be updated using gradient descent as shown previously in 

Equations (23) and (24) until convergence. 

3.3 Support Vector Regression (SVR) 

 Similar to the least mean square regression, where a model is fitted to produce 

an output with a minimized error. SVR uses a more complex algorithm that takes this 
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a step further [30]. The example in Figure 12 shows data points that represent the 

predicted values of a model, 𝑦𝑚𝑜𝑑𝑒𝑙. The blue line is the target data, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙. The two 

dashed lines represent the boundaries of the SVR model, drawn a distance of 𝜀 away 

from the target dataset. 

 The parameter 𝜀 should be set and can be later optimized to produce more 

accurate results from the SVR model. The error calculations of the SVR consider 

exclusively the data points outside the boundary lines, as the area inside the boundaries 

is considered as a tolerance margin [31]. 

 

 

Figure 12. An example of SVR applied on a dataset. 

 

The terms ξ and ξ∗ represent the distance between the boundary lines and the 

predicted values that fall outside the tolerance margin. The SVR model and boundaries 

can be represented as follows: 
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𝑦𝑚𝑜𝑑𝑒𝑙 = 𝑓(𝑥) = 〈𝝎, 𝒙〉 + 𝑏 = ∑𝝎𝑖𝒙𝑖 + 𝑏

𝑁

𝑖=1

 

(34) 

𝑦𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 〈𝝎, 𝒙〉 + 𝑏 + 𝜀  (35) 

𝑦𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 〈𝝎, 𝒙〉 + 𝑏 − 𝜀  (36) 

where N is the number of data samples, 𝒙𝑖 is the ith training example, 𝝎 is the 

learned weight vector, and the term b represents the bias. To train an SVR model, the 

following has to be solved. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
‖𝜔‖2 + 𝐶 ∑ξ𝑖 + ξ𝑖

∗

𝑁

𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑦𝑎𝑐𝑡𝑢𝑎𝑙

(𝑖) − 〈𝝎, 𝒙𝑖〉 − 𝑏 ≤ 𝜀 + ξ𝑖

< 𝝎, 𝒙𝑖 > +𝑏 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
(𝑖) ≤ 𝜀 + ξ𝑖

∗

, 𝐶 > 0  

(37) 

The parameter 𝐶 is used as a constraint to control the penalty imposed on the prediction 

outputs that fall outside the boundaries, this can help in preventing the model from over-

fitting. 

3.4 Artificial Neural Networks 

 The three main components that make up the human nervous system are 

receptors, effectors, and the central nervous system. Stimuli affecting the human body 

are translated by receptors in the form of electrical impulses. These signals are 

transmitted by the brain into the central nervous system to produce a physical response. 

The building block of a neural system is a neuron. 

 The structure of a biological neuron is illustrated in Figure 13. It consists of a 

cell body that receives the incoming signal from other neurons through dendrites. The 

output signal of a neuron is transmitted through a nerve fiber, known as an axon. The 

axon branches into other interconnected axons that lead to other neurons in the network 

[32]. 
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Figure 13. The structure of a biological neuron. 

 

The cell body of a neuron (Soma) is in charge of processing the incoming input 

signals, and the decision of what neuron should send an output signal. Neurons typically 

receive multiple input signals from their dendritic trees. The case of whether a neuron 

sends an output signal depends on the weighted sum of all the received input signals. 

This process is decided in the soma, and the output signal of the neuron is transmitted 

through the axon to other neurons in the network. 

The artificial neuron is known as a perceptron. It is the basic unit in an artificial 

neural network (ANN), which is made up of multiple perceptrons. The inner workings 

of an artificial neuron imitate that of a biological neuron. The perceptron takes the 

weighted input sum and produces an output, that is based on a mathematical activation 

function. 

ANNs not only share the name with biological neuron networks, but they also 

share a similar structure and mechanism. ANNs were created as learning algorithms 

that mimic how the mammal neural system learns and analyzes. ANNs have been 
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around since the 1940s but they went through phases of interest that diminished after 

some time [33]. 

 Using ANNs was inconvenient and inefficient in the past as a result of low 

computational power and lack of quality data, but with the boom in technological 

advancement witnessed every year, and the use of the Internet to store and transmit 

data, in addition to newer more complex ANNs architecture being discovered made 

neural networks a crucial part in today's development projects [1]. 

Applications of ANNs are used by everyone daily, such as a music application 

learning its user's taste to suggest similar picks, spam e-mail detection, and 

classification, or facial recognition technology currently used in phones. The structure 

of an artificial neuron, which is known as a perceptron is illustrated in Figure 14. 

 

 

Figure 14. The basic structure of a Perceptron. 

 

 In the perceptron, each input is multiplied by a weight value, then a summation 

with a bias value is performed. The result is then passed into an activation function, Z, 

which outputs the value Y, as the output of the neuron [34]. The output of an artificial 

neuron is expressed in Equation (38). 
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𝑌 = 𝑍(∑𝑤𝑖𝑥𝑖 + 𝑏

𝑁

𝑖=1

) 

(38) 

where the input X, and weights W, are in the following form, and 𝑛 is the number of 

input features. 

A few unique characteristics of ANNs include: 

1- ANNs can learn complex tasks. 

2- ANNs ease the process of constructing a model with a large number of 

inputs/outputs. 

3- The cooperative behavior of the artificial neurons in the network defines its 

computational power, and no individual artificial neuron carries precise 

information. 

3.4.1 Multi-Layer Perceptrons (MLP) 

 MLPs consist of feed-forward and fully connected layers made up of 

perceptrons, resulting in a more complex network. An example of the structure of an 

MLP can be seen in Figure 15.   

 

𝑿 =

[
 
 
 
 
𝑥1

𝑥2

𝑥3

⋮
𝑥𝑛]

 
 
 
 

,𝑾 = [𝑤1 𝑤2 𝑤3 … 𝑤𝑛] 

(39) 
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Figure 15. The basic structure of a multi-layer perceptron (MLP). 

 

Similar to the ANN structure shown earlier in Equation (38), the output of the MLP in 

Figure 15 is found to be the following: 

𝑌 = 𝑍 [[𝑍(𝑌11𝑊11
2) + 𝑍(𝑌21𝑊21

2)] + 𝑏3] 
(40) 

 For the network to learn, the first step starts with initializing the network 

parameters randomly. The next step is forward propagation (FP), which involves 

passing the training dataset items from the input throughout the output. The loss (error) 

between the actual and target (truth) output is computed. 

Next, the error is back-propagated from the output layer through the entire 

network, and back to the first hidden layer of the MLP. During the process of 

backpropagation (BP), the sensitivities of the different weights and biases on the 

network are iteratively optimized. The combined process of forward-propagation, 
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backpropagation, and updating the network parameters is iterated until convergence, 

i.e., the sensitivities start to vanish in each layer of the network. The forward 

propagation (FP) from layer 𝑙 − 1 to 𝑙 can be expressed as follows:  

𝑦𝑘
𝑙 = 𝑍(𝑥𝑘

𝑙 ) = 𝑥𝑘
𝑙 = 𝜃𝑘

𝑙 + ∑𝑤𝑖𝑘
𝑙−1𝑦𝑖

𝑙−1

𝑁

𝑖=1

 

(41) 

where 𝑦𝑘
𝑙  is the output, 𝑥𝑘

𝑙   is the input of the kth neuron in layer l,  of the kth neuron in 

layer l,   𝑤𝑖𝑘
𝑙−1 is the weight between the ith neuron in the previous layer to the kth layer 

in the current layer and 𝑍 is the activation function of the kth neuron, respectively.  One 

of the commonly used loss functions is MSE which is expressed in Equation (42), where 

𝑦𝑖
𝐿 is the actual output and 𝑌𝑖 is the target output from the training set. 

𝐽 =
1

2
∑(𝑦𝑖

𝐿 − 𝑌𝑖)

𝑁

𝑖=1

 

(42) 

The weight and bias sensitivities are computed as follows: 

𝜕𝐽

𝜕𝑤𝑖𝑘
𝑙−1 =

𝜕𝐽

𝜕𝑥𝑘
𝑙

𝜕𝑥𝑘
𝑙

𝜕𝑤𝑖𝑘
𝑙−1 =

𝜕𝐽

𝜕𝑥𝑘
𝑙 𝑦𝑖

𝑙−1 
(43) 

𝜕𝐽

𝜕𝜃𝑘
𝑙 =

𝜕𝐽

𝜕𝑥𝑘
𝑙

𝜕𝑥𝑘
𝑙

𝜕𝜃𝑘
𝑙 =

𝜕𝐽

𝜕𝑥𝑘
𝑙  

(44) 

A dependency is revealed between the sensitivities and the partial derivative of the loss 

with respect to the input of the neuron,  𝑥𝑘
𝑙 . This derivative, 

𝜕𝐽

𝜕𝑥𝑘
𝑙  is known as delta error 

of the neuron (δ𝑘
𝑙 =

𝜕𝐽

𝜕𝑥𝑘
𝑙 ). At the output layer, it can be  directly be computed as follows: 

δ𝑘
𝑙 =

𝜕𝐽

𝜕𝑥𝑘
𝑙 =

𝜕𝐽

𝜕𝑦𝑘
𝑙 𝑍′(𝑥𝑘

𝑙 ) = (𝑦𝑘
𝑙 − 𝑌𝑘) ∙ 𝑍′(𝑥𝑘

𝑙 ) 
(45) 

Using the chain rule of partial derivatives, the backpropagation of the delta errors can 

be expressed as follows: 
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δ𝑘
𝑙 = 𝑍′(𝑥𝑘

𝑙 ) ∑ δ𝑖
𝑙+1𝑤𝑘𝑖

𝑙

𝑁𝑙+1

𝑖=1

 

(46) 

 When the delta errors are back-propagated and parameter sensitivities are 

computed for all neurons in the network, they can be cumulated for a certain number 

of items in the train set. This is called “mini-batch” and its size can vary between 1 to 

the number of items in the train set. If a mini-batch size is 1, then it is called “online” 

learning and if it is equivalent to the size of the train set, it is called “batch” learning. 

There are several optimization methods such as Stochastic Gradient Descent (SGD) 

[34], SGD with momentum, AdaDelta [35], and Adam [36]. The most basic optimizer 

is SGD which can be expressed as follows:   

𝑤𝑖𝑘
𝑙 = 𝑤𝑖𝑘

𝑙 − 𝛼
𝜕𝐽

𝜕𝑤𝑖𝑘
𝑙−1 

(47) 

𝜃𝑘
𝑙 = 𝜃𝑘

𝑙 − 𝛼
𝜕𝐽

𝜕𝜃𝑘
𝑙      

(48) 

 This process will continue until the parameters converge to an optimal value 

that minimizes the output error of the model, compared to the target output of the 

training dataset. The backpropagation algorithm to train the MLP network can be 

expressed in the following steps: 

1. Building the network by selecting the number of hidden layers and neurons in 

each layer. 

2. Randomly initializing the network parameters (weights and biases). 

3. Using the testing dataset to apply forward propagation through the network. 

4. Computing the error between the network output and the targets from the testing 

dataset. 

5. Computing the delta errors of the output layer. 

6. Computing the delta errors starting from last the hidden layer until the input 
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layer. 

7. Computing the parameter sensitivities (derivatives). 

8. Applying an optimization method to update the weights and biases accordingly. 

9. Repetition of steps 3 through 8 for each example in the training dataset. 

3.4.2 Recurrent Neural Networks (RNNs) 

 Feedforward networks, for example, MLPs, produce outputs that are assumed 

to be independent of the inputs of the network. This can be inefficient when the input 

data is made up of sequences, for example, words or time-series-based data such as the 

stock market prices [37]. 

 This is where RNNs have an advantage because of having a feedback 

mechanism, known as the hidden state. A general structure of the RNN structure folded 

and unfolded can be seen in Figure 16. 

 

 

Figure 16. Unfolding the recurrent neural network (RNN). 

 

 The hidden state (st) is known as the memory of the network that depends on 

the previous layer's hidden state, in addition to the input of the current layer, resulting 

in Equation (49). 
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𝑠𝑡 = 𝑍(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1) (49) 

 The vanishing gradient problem appears when the backpropagation algorithm 

propagates back through the RNN, passing through all the neurons in the network to 

update the weights. The cost function computed at deeper layers in the network will be 

used to update the weights of the shallower layers in the network. The problem is 

encountered when the gradient that has been calculated in deeper networks is multiplied 

back through earlier weights in the network, causing the gradient to slowly dimmish 

throughout the network layers. 

 The factor at which the gradient diminishes through an RNN is known as Wrec. 

It causes two potential problems. When the value of Wrec is small, the RNN suffers 

from the vanishing gradient problem. Contrary, when the value is large, the network 

experiences the exploding gradient problem [33]. This problem may cause the RNN to 

consume a long time to converge while training or fail to converge in some cases. 

3.4.3 Long-Short Term Memory (LSTM) 

 As a variant of RNNs, LSTM has the advantage of being able to forget irrelevant 

information, this helps the network overcome the vanishing gradient problem. The 

LSTM structure can be seen in Figure 17. 

 

Figure 17. Basic long-short term memory (LSTM) module. 
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 Where Ct is known as the memory cell, and ht is the output of the LSTM module. 

The input Xt is manipulated through the module's different states. The multiplication 

and addition operations can be used as valves to decide how much of the input 

information the memory can remember or forget. LSTM module contains three 

different gates, the input, forget and output gates, simplified in Figure 18. 

 

 

Figure 18. The different gates inside an LSTM module. 

 

 As shown in Figure 18, the multiplication gate in the LSTM module allows the 

layer to accumulate and access information over a longer period, which overcomes the 

problem of vanishing gradient that may cause the network to forget the initial input. 

Information stored in the cell will be overwritten by new information coming from the 

network only if the gate activation changes to one [33], causing the gate to open. The 

equations corresponding to each gate are as follows: 

𝑖𝑡 = 𝑍(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), 𝑖𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 (50) 

𝑓
𝑡
= 𝑍(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), 𝑓𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 (51) 

𝑜𝑡 = 𝑍(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), 𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 (52) 

where the value of the cell state (Ct) is found using Equations (53)(54), the term 𝐶̃𝑡 is 

the initial cell state. 
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𝐶̃𝑡 = 𝑍(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (53) 

𝐶𝑡 = 𝑓
𝑡
∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (54) 

Finally, the output of the LSTM module is found using equation (55). 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑍(𝐶𝑡) (55) 

3.4.4 Hyperparameters Tuning 

 The main problem with ANNs is the fact that they require many 

hyperparameters to be tuned for the desired learning performance. This would be a 

challenge as applying the trial-and-error methodology can be time-consuming. 

 In this study, a grid search system was created with a pre-defined list of 

recommended hyperparameters, based on previous studies. The system shuffles and 

tests all the possible combinations of hyperparameters against their output accuracy and 

R2 score. These are the parameters used in tuning the neural networks throughout this 

research, divided into classification and regression problems. 

3.4.4.1 Optimizers 

 Choosing the right optimizer can be important for faster convergence in BP and 

a better generalization. The results of this research are divided into classification and 

regression tasks. The evaluated optimizers are presented in Table 4. 

 

Table 4. Different types of optimizers are used for evaluation. 

Classification Regression 

Adam [36] Adam [36] 

AdaDelta [35] SGD [34] 

 

3.4.4.2 Loss Functions 

 Loss functions are used by the optimization algorithm to repeatedly estimate the 

error of the model. The optimizer will update the parameters of the network 
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accordingly, to produce a lower error in the next iteration. 

 

Table 5. The different types of loss functions will be used to evaluate the regression 

and classification problems. 

Classification Regression 

Binary Crossentropy (8) Mean Absolute Error (11) 

Mean Squared Error (12) Mean Squared Error (12) 

 

3.4.4.3 Performance Metrics 

 Performance metrics are used to test the model performance. They are applied 

to the model after the training process, using the testing dataset as input for the model, 

to measure the performance on unseen data. 

 

Table 6. The different types of performance metric functions will be used to evaluate 

the regression and classification problems. 

Classification Regression 

Binary Crossentropy (8) Mean Absolute Percentage Error (9) 

Accuracy (4) Mean Squared Error (12) 

 

3.4.4.4 Activation Functions 

 In an ANN, each node contains an activation function that alters the input to 

produce an output. The output can be linear or non-linear depending on the type of 

activation function. The grid search system was used to evaluate the activation 

functions presented in  

Table 7. 

• Rectified Linear Unit (ReLU): ReLU is a commonly used piecewise linear 

function as expressed in Eq. (56). It produces a non-zero output only if the input 

is positive; otherwise, the function will produce zero as the output. The function 

is commonly used due to its computational efficiency. 
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𝑍(𝑥) = {
𝑥           𝑥 > 0
0           𝑥 ≤ 0

} 
(56) 

• Exponential Linear Unit (ELU): Unlike other activation functions, the ELU 

activation function contains a positive factor within it, allowing it to converge 

faster and produce more accurate results. As in (57), it can produce negative and 

positive outputs, making it possible to use in the input layer. 

𝑍(𝑥) = {
𝑥           𝑥 > 0

𝛼(𝑒𝑧 − 1)           𝑥 ≤ 0
} 

(57) 

• Hyperbolic Tangent (Tanh): As expressed in (58), Tanh shares its non-linearity 

with the sigmoid function, but it has the advantage of being zero-centered. 

Recently it became a very popular choice for an output layer activation function 

as it produces a stronger gradient. The main problem with such a function is the 

problem of vanishing gradient, which can cause the model to fail from 

converging. 

𝑍(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(58) 

• Scaled Exponential Linear Unit (SELU): Similar to ELU, the main difference 

is that the result is multiplied by a scaling factor that is used to help in improving 

the training time and allows the model to converge faster. 

𝑍(𝑥) = {
𝜆𝑥           𝑥 > 0

𝜆𝛼(𝑒𝑧 − 1)           𝑥 ≤ 0
} 

(59) 

• Swish: Similar to the sigmoid function, the main difference is the addition of a 

scaling factor that helps the model converge faster. 

𝑍(𝑥) =
𝑥

1 + 𝑒−𝛽𝑥
 (60) 
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Table 7. The different types of activation functions will be used to evaluate the 

regression and classification problems. 

Classification Regression 

Relu Elu 

Tanh Relu 

Sigmoid Selu 

Swish Tanh 

 

3.4.5 Short-Term Financial Data Prediction by Long-Term Regression 

 To produce the learning and prediction data inputs for the models, a moving 

window has been created. The learning and prediction window’s size and the number 

of segmentation from the original dataset are the hyperparameters to be set to some 

practical values in advance. An illustration of this is in Figure 19. 

 

Figure 19. The sliding window is used to construct the training and testing datasets. 

 

 Each candle in the exemplary figure displays the price of one day, the learning 

and prediction windows are set to be 8 and 4 days, respectively, representing one 

segment. The moving window will slide through the specified number of segmentation 

to create a learning set of 8 days of the previous price, which is used by the model to 

produce a prediction 4 days into the future.  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Experimental Setup 

4.1.1 Hardware and Software Specifications 

 The study was conducted on Python (v3.7) using Keras (v2.4.3) and 

TensorFlow (v2.0) APIs to construct, train and evaluate all the models produced in this 

thesis. The hardware configuration of the machine is as follows: 

 

Table 8. Hardware specification of the system used throughout the thesis 

CPU Intel Core i7-6700k @ 4.00-GHz 

GPU Nvidia GTX 1080 Ti with 10-GB 

RAM 32-GB 

 

4.1.2 Accuracy Calculations 

 The most crucial element when forecasting a financial asset is correctly 

predicting the future price trend. Predicting the future direction of the price, going up 

or down, is quantified in the form of accuracy in this study.  

 This is calculated by producing a prediction from the model, this prediction is 

compared against the target future price. If the future price is above the current day 

price, meaning the price should increase, then the current day price is compared again 

with the model predicted price. If the model future prediction shows an increase in the 

price, then this is stored, as a correct prediction.  

 In the case where the model is incorrect, this is also stored, but as a false 

prediction. The same logic is applied, in reverse, for the downward trend case. This 

process is computed for all the examples in the dataset, and the accuracy is calculated 

by applying Equation (4). 

4.2 Linear Regression Results 

 After compiling and experimenting on the dataset, interesting relationships have 
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been discovered between the different trading assets. Examples of such relationships 

are illustrated in Figure 20, where the joint plot of EUR/USD is constructed against the 

three assets that produce the highest correlation coefficient, as deduced from Figure 5. 

Such relationships will be explored by building simple and multiple linear regression 

models to investigate the effectiveness of using highly correlated features to predict the 

future price of EUR/USD. 

 

 

Figure 20. EUR/USD joint plot against USD Index, USD/CAD, and RUB/USD. 

 

4.2.1 Simple Linear Regression Results 

The simple linear regression model was constructed using USD Index as the 

input. The input and output were created using the moving window to train and test the 

model. A shift of one day was implemented, as a result, the model is constructed to use 

the closing price of each day as input, to predict the closing price of the next day. The 

data are then split into 80% and 20% for training and testing respectively. The linear 

regression model is expressed as follows: 

𝐸𝑈𝑅/𝑈𝑆𝐷 = 2.418 − 0.0134 ∗ 𝑈𝑆𝐷 𝐼𝑛𝑑𝑒𝑥 (61) 

 The model is applied to the testing and training set to produce the RMSE, MAE, 

R2, and accuracy. In addition to the 10-fold cross-validation results produced using the 
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model to evaluate the R2 score, shown in Table 9. 

 

Table 9. Simple linear regression model RMSE, MAE, R2, and accuracy results, 

including 10-fold CV R2 scores. 

 Test set Train set 

RMSE 0.015 0.025 

MAE 0.012 0.020 

R2 0.812 0.951 

Accuracy (%) 50.053 

10-fold CV R2 scores 

1 2 3 4 5 6 7 8 9 10 Average 

0.824 0.746 -1.383 -0.363 0.962 0.245 0.948 0.595 0.443 0.896 0.391 

 

 Analyzing the results found in Table 9, the simple linear regression model 

shows an average R2 score of (0.391) caused by the inconsistent performance of the 

model on the different segments of the CV set. The model produced an accuracy of 

(50.053%), meaning that the model fails to predict future trends of EUR/USD price for 

the next day. The results of the simple linear regression model will be used as a baseline 

to compare the performance of other models. The model prediction is plotted against 

the actual value of EUR/USD in Figure 21. 

 

 

Figure 21. Simple linear regression model of EUR/USD showing predicted vs. actual 

price. 
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4.2.3 Multiple Linear Regression Results 

 The model is constructed using the three input features seen in Figure 20. Using 

USD Index, USD/CAD, and RUB/USD the model is found in Equation (62) and the 

results are extrapolated in Table 10. 

𝐸𝑈𝑅/𝑈𝑆𝐷 = 2.379 − 0.019 ∗ 𝑈𝑆𝐷 𝐼𝑛𝑑𝑒𝑥 + 0.401 ∗ 𝑈𝑆𝐷/𝐶𝐴𝐷 + 1.477

∗ 𝑅𝑈𝐵/𝑈𝑆𝐷 

(62) 

 

Table 10. Multiple linear regression model RMSE, MAE, R2, and accuracy results, 

including 10-fold CV R2 scores. 

 Test set Train set 

RMSE 0.009 0.020 

MAE 0.007 0.016 

R2 0.932 0.968 

Accuracy (%) 49.982 

10-fold CV R2 scores 

1 2 3 4 5 6 7 8 9 10 Average 

0.883 0.816 -0.414 0.336 0.950 -0.356 0.836 0.809 0.609 0.957 0.542 

 

 Similar to the results obtained using the simple linear regression model in Table 

9, the multiple linear regression results in Table 10 shows inconsistency in the 10-fold 

CV R2 scores, averaging to a value of (0.542). This is an improvement of +28% over 

the simple linear regression average R2 score. The results, however, show the model's 

inability to predict the future direction of the EUR/USD, with an accuracy of  

(49.982%). The model output is plotted against the actual EUR/USD prices in Figure 

22. 
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Figure 22. Multiple linear regression model output against the actual value of 

EUR/USD. 

 

4.3 Support Vector Regression (SVR) Results 

 The SVR model was built using two kernels, linear and radial basis function 

(RBF). Linear SVR kernel is commonly used when the data can be linearly separated, 

it can also be efficient when a large number of features is used to create a model. 

Another commonly used kernel is the radial basis function (RBF), where the function 

computes the inner product of two projected vectors, using a radial-based 

transformation [34]. 

 The implementation of the model required applying Equation (1) on the training 

and testing datasets, to standardize the data before fitting the model. The USD Index is 

used as the model input. The output was prepared using the moving window, the closing 

price of the current day is used to predict the price of EUR/USD for the next day. Table 

11 shows the results obtained from both linear and RBF SVR kernels. 
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Table 11. SVR (Linear and RBF) models RMSE, MAE, R2, and accuracy results, 

including 10-fold CV R2 scores. 

 Linear SVR Kernel RBF SVR Kernel 

 Test set Train set Test set Train set 

RMSE 0.008 0.007 0.016 0.007 

MAE 0.006 0.006 0.008 0.005 

R2 0.942 0.950 0.879 0.957 

Accuracy (%) 61.425 56.406 

10-fold CV R2 scores 

Linear SVR Kernel 

1 2 3 4 5 6 7 8 9 10 Average 

0.815 0.766 -0.115 0.015 0.971 0.646 0.966 0.657 0.552 0.918 0.619 

RBF SVR Kernel 

1 2 3 4 5 6 7 8 9 10 Average 

0.822 0.297 0.851 -1.685 0.96 0.376 0.961 0.696 0.892 0.939 0.511 

 

 The SVR results seen in Table 11 shows an improvement of the average 10-fold 

CV R2 score by 37% for the linear kernel, and by 23% with the RBF kernel, over the 

simple linear regression model, seen in Table 9. 

 The most significant change, compared to the previous model's performances, 

was in terms of future trend prediction accuracy. The SVR linear kernel model scored 

61% accuracy, and 56% for the RBF kernel model. The two SVR model predictions are 

plotted against the actual EUR/USD testing set, illustrated in Figure 23. The increase 

in performance of the linear kernel over RBF can be explained by its ability to perform 

better in linear separation. 
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Figure 23. SVR kernels outputs vs. actual EUR/USD prices. 

 

4.5 Results by Using ANNs 

 The construction of ANNs requires the selection of many hyperparameters. This 

process is made easier using the grid search system to find the parameters that produce 

the best results. 

4.5.1 MLP Regression Results 

 To build the MLP model, the input was set to be the current day closing price 

of EUR/USD, USD Index, and USD/CAD. The target output has been constructed using 

the moving window, training the network to predict one day into the future. The grid 
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search system was implemented to find the hyperparameters.  

 The best model is found to have the parameters shown in Table 12. Training the 

MLP network with the selected hyperparameters took 172 seconds to complete. The 

training and validation losses are plotted over the number of iterations, displayed in 

Figure 24. 

 

Table 12. MLP regression problem model, grid search selected parameters. 

Hyperparameter Selected parameters for the regression MLP model 

Optimizer Adam 

Loss function MeanAbsoluteError 

Metric function MeanSquaredError 

Batch size 1 

Number of iterations 100 epochs 

Input layer Input size = 3, number of neurons = 3, activation 

function = Selu 

Hidden layer Number of neurons = 50, activation function = Selu 

Output layer Output size = 1, number of neurons = 1, activation 

function = elu 

Number of trainable 

parameters 

263 

 

 

Figure 24. The MLP regression model training and testing loss plot, over the number 

of iterations. 

 



  

45 

 

 The output results in Table 13 show an extraordinary improvement of the 10-

fold CV average R2 score by 60% over the simple linear regression model. The MLP 

scored a consistent R2 score above 0.9 across all CV sets, which all previous models 

failed to achieve. However, the MLP model scored a future trend prediction accuracy 

of (52%), which translates to the fact that the model fails to identify the next-day trend 

direction accurately. The predicted output of the model, based on the testing set is 

plotted in Figure 25. 

 

Table 13. MLP regression model RMSE, MAE, R2, and accuracy results, including 

10-fold CV R2 scores. 

 Test set Train set 

RMSE 0.008 0.011 

MAE 0.007 0.009 

R2 0.945 0.990 

Accuracy (%) 52.404 

10-fold CV R2 scores 

1 2 3 4 5 6 7 8 9 10 Average R2 

0.941 0.937 0.950 0.946 0.978 0.988 0.990 0.990 0.991 0.992 0.970 

 

 

Figure 25. MLP regression model prediction plotted against the test set of EUR/USD 

and both training and testing set. 
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4.5.2 MLP Classification Results 

 The MLP classification model is built to predict the future direction of the 

EUR/USD. This is done by constructing a learning dataset that uses the current day 

closing price of the EUR/USD, USD Index, and USD/CAD as inputs, and interpolating 

an output that predicts the next day closing price direction of the EUR/USD. The model 

will have two classification categories, the closing price will be higher than the current 

day closing price, or lower. 

 The input and output datasets are then split into training and testing, with a size 

of 80% and 20% respectively. The input data are then standardized using Equation (1) 

before passing it through the MLP classification model for training. The model 

hyperparameters are obtained by selecting the grid search system's best result, seen in 

Table 14. Training the model consumed an estimated time of 141 seconds. The training 

and testing accuracies are plotted over the total number of iterations in Figure 26. 

 

Table 14. MLP classification problem model, grid search selected parameters. 

Hyperparameter Selected parameters for the classification MLP 

model 

Optimizer AdaDelta 

Loss function binary_crossentropy 

Metric function accuracy 

Batch size 1 

Number of iterations 300 epochs 

Input layer Input size = 3, number of neurons = 3, activation 

function = tanh 

Hidden layer Number of neurons = 20, activation function = elu 

Output layer Output size = 1, number of neurons = 1, activation 

function = sigmoid 

Number of trainable 

parameters 

113 
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Figure 26. The MLP classification model training and testing accuracy plot, over the 

number of iterations. 

 

 The testing dataset is applied to the model to test the performance. Table 15 

displays the accuracy, F1-score, in addition to the 10-fold CV accuracy across both 

datasets. The model results show the inability of the model to produce accurate results, 

as the future predictions appear to be random when the input is one day of closing 

prices. The confusion matrix in Table 16 supports this conclusion. 

 

Table 15. MLP classification model accuracy, F1-score, and 10-fold CV accuracy. 

 Test set Train set 

Accuracy (%) 48.596 52.435 

F1 score 0.383 0.522 

10-fold CV Accuracy (%)  

Average 

Accuracy (%) 1 2 3 4 5 6 7 8 9 10 

47.183 47.535 48.474 48.679 50.211 50.234 50.150 50 50.273 49.964 49.271 

 

Table 16. MLP classification model confusion matrix. 

 Test set Train set 

 Predicted False Predicted True Predicted False Predicted True 

Actual False 186 96 603 537 

Actual True 197 91 547 592 
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4.5.3 LSTM Regression Results 

 To build the LSTM model, hyperparameters were selected based on the best 

results obtained through the grid search system. LSTM model training proved to be the 

most time-consuming, out of all the previously used models. Training the model with 

the hyperparameters shown in Table 17 consumed an estimated time of 1266 seconds. 

An identical input structure to the MLP model was implemented. 

 Using the current day closing price of EUR/USD, USD Index, and USD/CAD 

to predict the next day's EUR/USD closing price. Input data were split into 80% and 

20% training and testing sets, respectively. The data were standardized before being 

passed to the model, using Equation (1). The model training and testing losses 

throughout the entirety of the iterations are plotted in Figure 27.  

 

Table 17. LSTM regression model hyperparameters were obtained using the grid 

search system. 

Hyperparameter Selected parameters for the regression LSTM model 

Optimizer SGD 

Loss function MeanSquaredError 

Metric function MeanAbsolutePercentageError 

Batch size 1 

Number of iterations 100 epochs 

Input layer Input size = (3,3), number of neurons = 3, activation 

function = linear 

1st hidden layer Number of neurons = 30, activation function = tanh 

2nd hidden layer Number of neurons = 15, activation function = tanh 

Output layer Output size = 1, number of neurons = 1, activation 

function = relu 

Number of trainable 

parameters 

6,916 
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Figure 27. LSTM regression model training and testing loss plot, over the number of 

iterations. 

 

 Similar to the MLP model results, the LSTM model achieved an improvement 

of 59% over the average R2 score, when compared to the simple linear regression. The 

model had a constant R2 score higher than 0.9 across all the 10-fold CV sets. However, 

the model still fails to accurately predict the next-day trend, achieving a very poor 

accuracy of 49%. The results are shown in Table 18. The LSTM regression model 

testing set output is plotted against the EUR/USD in Figure 28. 

 

Table 18. LSTM regression model RMSE, MAE, R2, and accuracy results, including 

10-fold CV R2 scores. 

 Test set Train set 

RMSE 0.008 0.012 

MAE 0.006 0.009 

R2 0.947 0.988 

Accuracy (%) 49.649 

10-fold CV R2 scores 

1 2 3 4 5 6 7 8 9 10 Average R2 

0.951 0.932 0.941 0.941 0.976 0.986 0.988 0.989 0.989 0.989 0.968 
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Figure 28. LSTM regression model prediction plotted against the test set of 

EUR/USD and both training and testing set. 

 

4.5.4 Expanded Results for MLP Regression 

 The results displayed in Table 13 for the MLP regression model, Table 15 for 

the MLP classification model, and Table 18 for the LSTM regression model, indicate 

that the neural network fails to learn the price direction pattern using only one of the 

previous prices as input. As a result, the moving window was expanded to enclose 30 

days for learning and predict one day into the future. This arrangement produces 2819 

segmentation on the data set.  

 Data will be divided into 80% and 20% training and testing sets respectively. 

The grid search system was used on the MLP regression model, as it is 86% faster to 

train than LSTM. Time consumption is crucial because the system was constructed to 

have 3 hidden layers with a wider range of hyperparameters, resulting in 5700 different 

possible combinations for the MLP model. The selected hyperparameters by the grid 

search system are shown in Table 19. The model training and testing losses throughout 

the entirety of the iterations are plotted in Figure 29. 
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Table 19. Improved MLP model hyperparameters. 

Hyperparameter Selected parameters for the regression MLP 

model 

Optimizer SGD 

Loss function MeanSquaredError 

Metric function MeanAbsolutePercentageError 

Batch size 1 

Number of iterations 150 epochs 

Input layer Input size = 90 number of neurons = 90, activation 

function = tanh 

1st hidden layer Number of neurons = 100, activation function = tanh 

2nd hidden layer Number of neurons = 50, activation function = tanh 

3rd hidden layer Number of neurons = 100, activation function = tanh 

Output layer Output size = 1, number of neurons = 1, activation 

function = elu 

Number of trainable 

parameters 

27,541 

  

 

Figure 29. The improved MLP regression model training and testing loss plot, over 

the number of iterations. 

 

 The results of the improved model are shown in Table 20. The model produced 

an average R2 score improvement of 57% over the simple linear regression model 10-

fold CV sets, and a decrease of 7% when compared to the MLP regressor in Table 13. 

However, the improved model was 83% successful in identifying and predicting the 

next day's closing price direction. This is an improvement of 40% over most of the 
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previous model’s prediction accuracies, which, other than the SVR models, were shown 

to be random. The predicted output of the model is plotted against the actual value of 

the EUR/USD in Figure 30, showing the effectiveness of the model to accurately 

predict the future direction of the EUR/USD closing price. 

 

Table 20. The improved MLP regression model RMSE, MAE, R2, and accuracy 

results, including 10-fold CV R2 scores. 

 Test set Train set 

RMSE 0.011 0.008 

MAE 0.007 0.005 

R2 0.867 0.995 

Accuracy (%) 83.500 

10-fold CV R2 scores 

1 2 3 4 5 6 7 8 9 10 Average R2 

0.991 0.948 0.899 0.575 0.978 0.989 0.738 0.984 0.377 0.891 0.901 

 

 

Figure 30. The improved MLP regressor predicted output plotted against the 

EUR/USD testing set. 

 

4.6 Applying MLP to Crude Oil (WTI) and Natural Gas (NATGAS) 

 Similar to the previously constructed MLP classifier, the hyperparameters were 

selected using the grid search algorithm. The best result for crude oil (WTI) was seen 
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using 60 days moving window in addition to using the RUB/USD as an input feature 

to the neural network. Natural gas (NATGAS) produced the highest accuracy using 30 

days moving window. The hyperparameters of each model are seen in the following 

table. This resulted in the figures below showing the model training and testing losses 

throughout the entirety of the iterations for both trading assets. 

 

Table 21. Hyperparameters of the MLP classifiers for NATGAS and WTI. 

Hyperparameter Selected parameters for 

NATGAS MLP classifier 

model 

Selected parameters for 

WTI MLP classifier 

model 

Optimizer Adam Adam 

Loss function SquaredHinge SquaredHinge 

Metric function Accuracy BinaryAccuracy 

Batch size 32 32 

Number of iterations 500 epochs 500 epochs 

Input layer Input size = 30 number of 

neurons = 30, activation 

function = linear 

Input size = 120, number 

of neurons = 120, 

activation function = relu 

1st hidden layer Number of neurons = 37, 

activation function = tanh 

Number of neurons = 150, 

activation function = linear 

2nd hidden layer Number of neurons = 22, 

activation function = tanh 

Number of neurons = 90, 

activation function = linear 

3rd hidden layer Number of neurons = 15, 

activation function = tanh 

Number of neurons = 60, 

activation function = linear 

4th hidden layer Number of neurons = 7, 

activation function = tanh 

Number of neurons = 30, 

activation function = linear 

Output layer Output size = 1, number of 

neurons = 1, activation 

function = relu 

Output size = 1, number of 

neurons = 1, activation 

function = sigmoid 

Number of trainable 

parameters 

3,378 53,581 
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Figure 31. MLP classification model training and testing loss plot, over the number of 

iterations for NATGAS and WTI. 

 

 Based on the newly constructed models, the models produced results that 

exceeded 70% accuracy on both the training and testing sets. Such results can be seen 

in the following table and figure. 

 

 

Figure 32. NATGAS and WTI MLP classifiers training vs. validation accuracies. 

  

Table 22. NATGAS and WTI MLP classifiers confusion matrices. 

NATGAS Test set Train set 

 Predicted False Predicted True Predicted False Predicted True 

Actual False 17 1 34 0 

Actual True 7 4 8 32 

WTI Test set Train set 

 Predicted False Predicted True Predicted False Predicted True 

Actual False 5 1 19 0 

Actual True 2 7 6 7 
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Table 23. NATGAS and WTI MLP classifier training and testing set accuracies. 

 NATGAS WTI 

Testset Accuracy (%) 72.41 80.00 

Trainset Accuracy (%) 87.69 81.25 

 

4.7 Results Comparison 

 Using the data collected during the study, a comparison has been drawn to 

exhibit the performance differences between the models. Table 24 shows the scoring of 

each model based on the testing set of the EUR/USD. 

 

Table 24. Summary of the models used in the study. Showing the RMSE, MAE, R2,  

Average CV R2, and accuracy. 

Model RMSE MAE R2 Average CV R2 Accuracy (%) 

Simple Linear 

Regression 

0.015 0.012 0.812 0.391 50.053 

Multiple Linear 

Regression 

0.009 0.007 0.932 0.542 49.982 

SVR Linear Kernel 0.008 0.006 0.942 0.619 61.425 

SVR RBF Kernel 0.016 0.008 0.879 0.511 56.406 

MLP Regressor 0.008 0.007 0.945 0.970 52.404 

LSTM Regressor 0.008 0.006 0.947 0.968 49.649 

Improved MLP 

Regressor 

0.011 0.007 0.867 0.901 83.500 

 

 The results show that using one day of previous closing prices, regardless of the 

number of features, leads to random future direction predictions. SVR models displayed 

potential, as both scored higher than any model, except the improved MLP. The 

significant performance of the improved MLP shows that the network failed to learn 

when it was given only one day, to interpret patterns. But when given 30 days of 

previous prices, the network was able to learn and produce considerably accurate future 

predictions for the price direction. 
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4.7.1 Time Complexity Analysis 

 Throughout this thesis, the one-day time frame was used to train, test, and 

predict the closing price/direction of an instrument for the next day. Time complexity 

is used to quantify the efficiency of an algorithm in terms of the time it takes for such 

an algorithm to produce an output. The following Table 25 was constructed based on 

the models used in the thesis, where it displays the time it takes each model to output a 

prediction.  

 

Table 25. The time it took to produce an output for each model. 

Model Elapsed Time (Seconds) 

Simple Linear Regression 0.0035 

Multiple Linear Regression 0.0050 

SVR Linear Kernel 0.0052 

SVR RBF Kernel 0.0187 

MLP Regressor 0.2062 

Improved MLP Regressor 0.5074 

LSTM Regressor 1.2691 

 

 As expected, the elapsed time increase as the model used to produce predictions 

becomes more complex. However, because the timeframe is selected to be relatively 

high (1-day), the elapsed time is rendered negligible as the prediction is made for the 

next 24-hours closing price. In the case of using lower timeframes (5-min, 1-min, 1-

sec, etc...) the time complexity becomes crucial as such delays can render the model 

obsolete if it is unable to produce predictions promptly. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

The research aim of this thesis was to dive into the different methods of machine 

learning to achieve accurate future predictions of financial assets. The majority of the 

time was spent on collecting, exploring, and building a proper dataset, that included a 

variety of trading assets and economical reports. During the data exploration stage, it 

was found that most trading assets show correlation with each other, which was shown 

to be true when different assets were plotted against highly correlated counterparts, and 

shown to move accordingly and share price changes. 

This study has started with establishing a baseline, which was done by modeling 

the EUR/USD price using various regression models. Starting with linear models that 

showed very low R2 scores and failed to achieve accuracy levels higher than 50%. 

Furthermore, the research explored support vector regression models (SVR) with two 

kernels. Both linear and RBF kernels have proven to be candidates for further study, as 

the linear kernel scored an accuracy above 60%. 

 As the final stage of this study, the focus is particularly drawn on using ANNs. 

With both MLP and LSTM models being created, trained, and optimized. Choosing and 

refining the network's hyperparameters have proven to be a challenge, as small changes 

in some parameters can greatly affect the results of the model. The main problem faced 

during the study was the exceptionally long time needed to train LSTM networks, 

which resulted in worse models than MLPs, and this can be due to the limited 

parameters tested and explored. The use of 30 days of previous closing prices to predict 

one day into the future has proven successful. The MLP trained network has produced 

a future price trend prediction accuracy that exceeded 80%, which is a rate that was not 

seen before, in any of the models. 

The study has shown that there is a possibility for ANNs and non-linear models 
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to be used to predict financial asset prices. Future work will explore the outcome of 

using different assets, including more features and expanding the combination of 

hyperparameters. Lower prediction window time-frames are an important aspect to 

explore in the future, as the possibility of predicting the prices of the next 1 hour, 30 

minutes, or 5 minutes might also be a viable option. 

  



  

59 

 

REFERENCES  

[1]  L. Yu, S. Wang and K. K. Lai, Foreign-exchange-rate forecasting with artificial 

neural networks, New York: Springer, 2011.  

[2]  S. Zhelev and D. R. Avresky, "Using LSTM neural network for time Series 

predictions in financial markets," 2019 IEEE 18th International Symposium on 

Network Computing and Applications (NCA), 2019.  

[3]  A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj and A. Iosifidis, 

"Using deep learning to detect price change indications in financial markets," 

2017 25th European Signal Processing Conference (EUSIPCO), 2017.  

[4]  U. G. S. (USGS), "Mineral Commodity Summaries 2020," U.S. Geological 

Survey, Washington, 2020. 

[5]  M. El Alaoui, E. Bouri and N. Azoury, "The Determinants of the U.S. Consumer 

Sentiment: Linear and Nonlinear Models," International Journal of Financial 

Studies, 2020.  

[6]  D. Van den Poel, C. Chesterman, M. Koppen and M. Ballings, "Equity price 

Direction prediction for day trading: Ensemble classification using technical 

analysis indicators with interaction effects," 2016 IEEE Congress on 

Evolutionary Computation (CEC), 2016.  

[7]  J. J. Murphy, Technical analysis of the financial markets: a comprehensive guide 

to trading methods and applications, Paramus, NJ: New York Institute of Finance, 

1999.  

[8]  W. Lertyingyod and N. Benjamas, "Stock price trend prediction using artificial 

neural Network techniques: Case Study: THAILAND stock exchange," 2016 

International Computer Science and Engineering Conference (ICSEC), 2016.  



  

60 

 

[9]  R. Meese and K. S. Rogoff, "Empirical exchange Rate models of the 

SEVENTIES : Are any fit to survive?," International Finance Discussion Paper, 

vol. 1981, no. 184, pp. 1-51, 1981.  

[10]  S. Tiwari, A. Bharadwaj and S. Gupta, "Stock price prediction using data 

analytics," 2017 International Conference on Advances in Computing, 

Communication and Control (ICAC3), 2017.  

[11]  R. Y. Nivetha and C. Dhaya, "Developing a prediction model for stock analysis," 

2017 International Conference on Technical Advancements in Computers and 

Communications (ICTACC), 2017.  

[12]  Z. Yeze and W. Yiying, "Stock price prediction based on information entropy and 

artificial neural network," 2019 5th International Conference on Information 

Management (ICIM), 2019.  

[13]  E. Turkedjiev, M. Angelova and K. Busawon, "Validation of artificial neural 

network model for share price uk banking sector short-term trading," 2013 UKSim 

15th International Conference on Computer Modelling and Simulation, 2013.  

[14]  Z. Zhang, Y. Shen, G. Zhang, Y. Song and Y. Zhu, "Short-term prediction for 

opening price of stock market based On self-adapting Variant PSO-Elman neural 

network," 2017 8th IEEE International Conference on Software Engineering and 

Service Science (ICSESS), 2017.  

[15]  I. M. Kaya and M. E. Karsligil, "Stock price prediction using financial news 

articles," 2010 2nd IEEE International Conference on Information and Financial 

Engineering, 2010.  

[16]  C. Wang and Q. Gao, "High and low Prices prediction of SOYBEAN futures with 

LSTM neural network," 2018 IEEE 9th International Conference on Software 



  

61 

 

Engineering and Service Science (ICSESS), 2018.  

[17]  K. A. Manjula and P. Karthikeyan, "Gold price prediction using ensemble based 

machine learning techniques," 2019 3rd International Conference on Trends in 

Electronics and Informatics (ICOEI), 2019.  

[18]  A. Vohra, N. Pandey and S. Khatri, "Decision making support system for 

prediction of prices in agricultural commodity," 2019 Amity International 

Conference on Artificial Intelligence (AICAI), 2019.  

[19]  M. R. Vargas, C. E. dos Anjos, L. G. Bichara and G. A. Evsukoff, "Deep Leaming 

for stock market prediction using technical indicators and financial news articles," 

2018 International Joint Conference on Neural Networks (IJCNN), 2018.  

[20]  Y. Wang and Y. Wang, "Using social media mining technology to assist in price 

prediction of stock market," 2016 IEEE International Conference on Big Data 

Analysis (ICBDA), 2016.  

[21]  N. I. Nwulu, "A decision trees approach to oil price prediction," 2017 

International Artificial Intelligence and Data Processing Symposium (IDAP), 

2017.  

[22]  K. Rathan, S. V. Sai and T. S. Manikanta, "Crypto-Currency price prediction 

using decision tree and regression techniques," 2019 3rd International 

Conference on Trends in Electronics and Informatics (ICOEI), 2019.  

[23]  P. K. Mahato and V. Attar, "Prediction of gold and silver stock price using 

ensemble models," 2014 International Conference on Advances in Engineering 

& Technology Research (ICAETR - 2014), 2014.  

[24]  A. Samarawickrama and T. Fernando, "A recurrent neural network approach in 

predicting daily stock prices an application to the Sri LANKAN stock market," 



  

62 

 

2017 IEEE International Conference on Industrial and Information Systems 

(ICIIS), 2017.  

[25]  S. Ravikumar and P. Saraf, "Prediction of stock prices using machine learning 

(regression, classification) algorithms," 2020 International Conference for 

Emerging Technology (INCET), 2020.  

[26]  M. A. Golberg and H. A. Cho, Introduction to regression analysis, Southampton: 

WIT Press, 2005.  

[27]  S. Chatterjee and J. S. Simonoff, Handbook of regression analysis, Hoboken, NJ: 

John Wiley & Sons, 2013.  

[28]  D. C. Montgomery, E. A. Peck and G. G. Vining, Introduction to linear regression 

analysis, Oxford: Wiley-Blackwell, 2013.  

[29]  J. Gong and S. Sun, "A new approach of stock price prediction based on logistic 

regression model," 2009 International Conference on New Trends in Information 

and Service Science, 2009.  

[30]  D. Basak, S. Pal and D. Patranabis, "Support Vector Regression," Neural 

Information Processing – Letters and Reviews, vol. 11, 2007.  

[31]  T. Kleynhans, M. Montanaro, A. Gerace and C. Kanan, "Predicting Top-of-

Atmosphere THERMAL RADIANCE USING Merra-2 atmospheric data with 

deep learning," Remote Sensing, vol. 9, no. 11, p. 1133, 2017.  
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