
QATAR UNIVERSITY 

COLLEGE OF ENGINEERING 

MACHINE LEARNING TECHNIQUES FOR MOTOR GEAR FAULT DETECTION AND 

DIAGNOSIS 

BY 

ULA MUTASIM HIJAWI 

 

 

 

 

 

 

 
 
 

A Thesis Submitted to  

the College of Engineering 

in Partial Fulfillment of the Requirements for the Degree of      

Master of Science in Electrical Engineering  

 
 
 
 
 

 January  2022 

 

© 2021 Ula Mutasim Hijawi. All Rights Reserved. 



  

ii 

 

COMMITTEE PAGE 

 

The members of the Committee approve the Thesis of 

Ula Mutasim Hijawi defended on 21/11/2021. 

 

 
 

Dr. Mustafa Serkan Keranas 

 Thesis Supervisor 
 
 

  
Dr. Ridha Hamila 

 Thesis Co-Supervisor 
 
 

 
Dr. Faouzi Alaya Cheikh  

Committee Member 
 
 

 
Dr. Devrim Unal 

Committee Member 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved: 

 
Khalid Kamal Naji, Dean, College of Engineering    



  

iii 

 

ABSTRACT 

HIJAWI, ULA, Masters : January : 2022, Masters of Science in Electrical Engineering  

Title: Machine Learning Techniques for Motor Gear Fault Detection and Diagnosis 

Supervisor of Thesis: Prof. Mustafa, Serkan, Kiranyaz. 

Many industrial facilities, amongst others, are very sensitive to any sudden 

hazards that can be expensive and resource-costly; therefore, they should be monitored 

over the day. In this work, new Machine Learning (ML)-based solutions are explored, 

with an emphasis on compact neural networks methods, for monitoring sensitive 

equipment using different data measurement types collected from condition monitoring 

sensors. Consequently, the proposed thesis work tackles a challenging topic that solves 

problems of high interest to the academic and industrial engineering community. ML 

algorithms have been thoroughly employed to build numerous structural damage 

detection systems and Structural Health Maintenance (SHM). ML-based techniques for 

facility condition monitoring are investigated and presented in a comparative analysis.  

Using convolutional layers, network parameters are greatly decreased in 

Convolutional Neural Networks (CNNs) by local connectivity and exchanging weights, 

which comprise a group of kernels with a limited receptive area, unlike a typical neural 

network with a complete connection through each node.   

Training of conventional, deep 2-Dimensional (2D) CNNs requires an intensive 

process in order to obtain an appropriate generalization capacity. This typically 

involves large-scale datasets, which in turn raises the computational issues 

considerably. One-Dimensional (1D) CNNs, on the other hand, have recently been 

proposed in many 1D signal processing applications, including gear condition 
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monitoring. They have recently been designed to overcome these disadvantages by 

working directly and more effectively on 1D signals. 

Nevertheless, CNNs involve homogenous configurations that entirely rely on 

the linear neuron model. It is evident that, in many complex problems, the required 

learning performance can only be achieved by deep CNNs with immense complexity. 

Self-Organized Operational Neural Networks (Self-ONNs), however, are recently 

introduced to overcome the drawback of the convolutional neurons targeting a greatly 

complex and nonlinear solution space. With minimum level of complexity of the 

network and least data to train, Self-ONNs can model multi-modal and sophisticated 

functions and boost diversity by involving heterogeneity with a flexible set of operators 

that can be optimized. 

In this study, the design and implementation of compact 1D CNNs, as well as 

Self-ONNs targeting gear cracking fault detection and diagnosis are explored for three 

different sensor types: acoustic, current, and vibration. It is shown that the presented 

contribution can detect cracking fault occurrences as well as diagnose the fault severity 

condition. The proposed approach can effectively deal with limited training data 

acquired in a physical motor setup designed for this study. The performance of the 

system is continuously evaluated twice; over 1D CNNs and Self-ONNs, in terms of 

predetermined metrics for validation on real current, vibration, and acoustic signals 

collected at a lab in Qatar University. The results indicate to the outstanding 

performance of Self-ONNs in contrast to 1D CNNs in challenging problems among the 

three signal types for gear fault detection and level percentage diagnosis. Moreover, 

further analysis indicates the fastest detection of the first-time occurrence of a faulty 

frame that can be achieved.  
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The proposed thesis topic presents a social, health, economic, and 

environmental impact, in addition to scientific and academic dissemination. It is also 

aligned with different priority themes of Qatar’s national priority research themes. 
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CHAPTER 1: INTRODUCTION 

Protection and efficiency are essential considerations for manufacturing 

activities. Rotating machines are critical instruments employed in many sectors, yet 

they are vulnerable to damage due to difficult working environments and lengthy 

running durations. Failures of spinning machines can be observed as quickly as 

possible in order to avoid critical injury and abrupt stoppage in machine activity [1]. 

Failures contribute to disruptions in operations and, consequently, major economic 

losses. Examples of rotating machine components include pumps, bearing, gears, 

blades, motors, shafts, and engines. 

Mechanical devices, e.g., wind turbines, aero-engines, aircraft, vehicles, and 

mining machines, utilize gearboxes widely in the transfer of speed and electricity [2]. 

However, when operating constantly in a hard-working setting, the gearboxes are 

highly vulnerable to numerous failures. When a fault occurs in the main machinery 

during service, odd features or device instability may lead to long downtimes, 

improved preservation losses, economic losses, or even loss of life. For example, 

transmission loss is one of the most important causes of wind turbine damage, and the 

efficiency of transmission networks is a significant concern for the wind industry. The 

error-diagnostic technique in the transmission method has been a popular field of 

study in recent years. While the gearbox is intact, false alarms may occur due to 

considerable noise or the complicated nature of the gearbox. It is therefore critical that 

the diagnostic device fails to efficiently minimize noise and abstract error.  

Overall, the earlier servicing is maintained, the more effective and less costly it 

will be. In the study of engines, specialists determine whether a divergence from the 

usual state can contribute to restoration, or even replacement, as depicted from Figure 

1 [3]. 
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Figure 1. Typical machinery lifecycle. Adapted from [3]. 

 

Thus, initially, an unused machine is considered at the guaranteed phase, where 

failure cannot be completely excluded, although it is reasonably uncommon and may 

normally be tracked back to manufacturing faults. Targeted measures by adequately 

qualified service members can only begin in the following process of interval 

maintenance. This involves regular repairs done regardless of the state of the 

equipment at regular intervals. If the age of the system gets mature, the state 

monitoring process is reached. Faults can be predicted from this point forward. Figure 

1 indicates the illustrated six changes: (1) beginning with adjustments in the ultrasonic 

spectrum; (2) accompanied by vibrations; (3) by means of a lubricant examination; 

(4) a minor rise in temperature; (5) the first symptoms of an outstanding malfunction 

may be observed until the real failure happens in the form of perceivable noise; and 
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(6) the generation of heat. 

1.1 Background  

Through the exponential advancement of information systems, Artificial 

Intelligence (AI) approaches are prevailingly utilized in a multitude of systems to 

support data analysis. However, current model-based experiments on electrical rolling 

devices and rotating machinery encounter problems in the evaluation of wellbeing due 

to noise-ridden, dynamic environments [4]. 

Recently, the most popular machine learning systems employed in fault 

detection and diagnosis approaches include Deep Neural Networks (DNN), 

Convolutional Neural Networks (CNN), the Boltzmann Restricted Machines (RBM), 

Stacked Autoencoders (SAE), and the Deep Belief Networks (DBN). Condition 

control of the machinery elements, such as gears, may be viewed as a pattern 

identification challenge that has been effectively resolved by intelligent diagnostic 

methods. According to current literature, condition monitoring, in general, consists of 

four steps: data collection, extraction, selection, and classification of features. 

CNNs are widely used active learning models with applications 

in computer vision, voice recognition, and fault detection [5].  

Conventional two-dimensional (2D) CNNs were successfully used for 

recognizing 2D signals, e.g., images and video frames [6], growing to be the de-facto 

method for numerous applications over vast data repositories. Although, 2D CNNs, 

particularly those with deep architectures, exhibit, first, high computational 

complexity. Thus, 2D CNNs cannot be ideal for error detection when handling one-

dimensional (1D) signals in the absence of specialized hardware. In addition, the 

training of deep CNNs demands a large supply of training data in order to obtain an 

appropriate generalization capacity [6]. When deep 2D networks are trained over 

limited datasets, overfitting can easily occur, which significantly reduces the 
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generalization capability of the network. Compact 1D CNN models are designed in 

order to overcome those disadvantages to effectively execute on 1D signals [7], 

showing computationally light and reliable results in several real-time monitoring 

applications.  

It is worth noticing that, on the other hand, traditional neural networks are based 

on a homogenous structure with a neuron that can only perform linear transformations 

(e.g., linear weighted sum or linear convolution). When highly complex, nonlinear 

problems are encountered, such traditional network architectures manifest varying or 

unsatisfactory performance levels, and therefore, the desired diversity and learning 

performance can only be achieved with the deep CNNs given high depth and 

complexity [8]. Recently introduced as an innovative network model, Self-organized 

Operational Neural Networks (Self-ONNs) are devised in order to overcome 

drawbacks of conventional CNNs by enabling neurons to use any desired nonlinear 

operator, expanding diversity and learning capacity for greatly sophisticated, multi-

modal functions with minimum computational complexity and data needed for 

training [8]. 

In this work, a detailed investigation is conducted using compact 1D CNNs as 

well as Self-ONNs, not only on the gear fault detection but also diagnosis aiming at 

the classification of different fault severity levels. Particularly, the core objective of 

the presented work is the evaluation of the system’s performance over Self-ONNs 

against 1D CNNs, and to find out the most (and the least) suitable signal type for gear 

fault diagnosis among current, vibration, and acoustic signal types. 

1.2 Thesis Objectives 

In order to carry out the investigation on the different signal types for gear fault 

diagnosis over 1D CNN and Self-ONNs, the core objectives of the presented work are 

summarized as follows: 
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1. Introducing a novel benchmark dataset encapsulating three types of raw sensed 

signal types: current, vibration, and acoustic signals. 

2. Introducing a comprehensive investigation over different signal types for gear 

fault detection and severity diagnosis, which ranks the signal types with respect to the 

diagnosis accuracy and inference time for detection.  

3. Proposing a solution that is not restricted to only detecting real-time gear fault 

occurrences, but also classifies the Cracking Level Percentage (CLP) to predict the 

fault severity.  

4. Investigating the system’s performance over compact 1D CNNs, as well as on 

Self-ONNs, for the three signal types via several diagnosis performance metrics. 

5. Determining the signal type yielding the highest diagnosis performance and the 

fastest diagnosis time. 

1.3 Thesis Outline 

The rest of this thesis is organized as follows: Chapter 2 reviews recent ML 

techniques for machinery fault detection, with a focus on gear faults. Chapter 3 

presents the methodology of the proposed gear fault diagnosis system over 1D CNNs 

and Self-ONNs, as well as the datasets employed. Chapter 4 reports experimental 

results with a discussion on the limitations and best practices. Chapter 5 concludes the 

thesis report with final remarks. 
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CHAPTER 2: MACHINE LEARNING TECHNIQUES FOR MACHINERY FAULT 

DIAGNOSIS  

This section summarizes recent work that involves machine learning 

techniques, particularly compact models for machinery fault detection, with a focus on 

gear fault diagnosis (GFD).  

 

2.1. Machine Learning for Machinery Fault Detection 

In the research study proposed in [9], past implementations of ML for 

mechanical system failure have focused on historical data, restricting the use of 

components with an extended service duration. Besides, reported failure evidence is 

seldom valid for the particular conditions. The work directly tackles these problems for 

roller bearings that has race faults by producing data based on high-fidelity roller 

simulations of bearing dynamics, which are employed to train and test ML models. 

Following, a number of ML methodologies are compared and contrasted. From there, 

the authors devise the Nearest-Neighbor Dynamic Time Warping (NNDTW) for fault 

identification as a parameter-free method for detecting faults. Two new 

implementations of ML algorithms for error recognition are proposed in this work.  

They do not depend on statistical features; rather CNNs and NNDTW applied to angle 

synchronous averaging are seen to equal or outperform statistical feature-based 

classifiers. The novel implementation of NNDTW is of particular importance because 

new data can be used without re-training the algorithm and can provide better insight 

into the fault mechanism when it finds the most comparable simulation. The suggested 

technique can be extended to any (pseudo) cyclo-stationary defect in a spinning 

machine, and, on a broader scale, simulation evidence can enhance ML in industrial 

condition monitoring applications. 

In [10], a novel Deep Learning (DL)-based method, named Deep Output Kernel 
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Learning, is devised to perform a collective diagnostic of multiple fault forms. By 

following Multi-Layer Extreme Learning Machine (ML-ELM), the work uses 

autoencoders for adaptive feature extraction, and then employs the selected deep 

features to create an output kernel regularizer function. Following optimization, the 

matrix of the output kernel is attained, which is used to construct the final diagnostic 

model via combining the multiple outputs of the proposed classifier. The experimental 

findings of the Case Western Reserve University (CWRU) and Intelligent Maintenance 

Systems (IMS) datasets indicate that, relative to a popular approach and eight standard 

ML-driven diagnostic approaches, the system is proven to effectively boost fault 

diagnosis precision at a reasonable latency. 

Moreover, in [11], the authors pursued wavelet-based extraction for ball 

bearings’ fault diagnosis using spalls that are localized on independent bearing 

elements. Hence, a number of requirements needed for both algorithmic training and 

testing, namely statistical, are determined through the Minimum Shannon Entropy 

Criterion wavelet technique. Following, the authors selected seven separate base 

wavelets for the analysis, where the complex Morlet wavelets achieved the best results 

from the raw vibration wavelet coefficients. Also, three AI methods are used for the 

detection of faults, two of them are supervised, i.e., vector assistance, vector 

quantization, while the third is unsupervised, namely self-organizing maps. Results of 

fault classification indicate that Support Vector Machine (SVM) achieved relatively 

superior performance compared to the other techniques. The findings demonstrate the 

possible use of these AI approaches to establish successful maintenance methods to 

deter catastrophic failures and reduce operational costs. 

In [12], a systematic research is performed considering different diagnostic 

approaches by using ML for the identification of small bearing defects (hole and 
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scratch). This research seeks to explain the disparity between the diagnostic approach 

and its usefulness in the identification of IM-bearing defects, which is done using Fast 

Fourier Transform (FFT) and corresponding derived features are employed for training. 

Depending on the required application and use case, the diagnostic tool can be chosen 

from the sample.  

In [13], the authors proposed a novel fault diagnostic technique for Rolling-

Element Bearing (REB) based upon a specialized fuzzy sliding mode observer. Next, 

the Laguerre based AutoRegressive with eXogenous input (ARX-Laguerre) algorithm 

is proposed to model bearings in noisy, unpredictable environments. Comparatively, 

the ARX-Laguerre technique uses a fuzzy algorithm to improve the precision of the 

device modeling. Following, a traditional sliding mode observer is used for addressing 

issues of fault prediction for devices with high instability, e.g., the spinning devices. 

Consequently, the employed observer adaptively boosts reliability, versatility, and 

precision of approximating roller bearing faults. Finally, the machine learning method, 

named Decision Tree (DT), adapts to the threshold values used in this analysis for 

problems of fault detection and fault recognition, where the feasibility of the proposed 

approach is verified through the freely accessible CWRU Vibration Dataset. 

In [14], a statistical hybrid motor-current bearing fault detection technique is 

proposed, where the Genetic Algorithm (GA) hand in hand with a DL model are 

employed. In the first position, the mathematical characteristics are derived from 

current signals. Following, features are reduced using the GA, resulting in three 

separate classification algorithms, i.e., K-Nearest Neighbors (KNN), DTs, and Random 

Forests (RF), which are employed to detect bearing faults. Using a fusion of classifiers 

results in precision enhancement and lighter computational load. Results indicate that 

the accuracy of the three classifiers is more than 97%, where the feasibility of the 
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devised model is compared against other previously introduced strategies. 

With a general intelligent diagnostic approach consisting of the four steps: data 

collection, feature extraction, feature selection, and feature classification, Z. Lei et al. 

[15], for instance, have proposed the Domain Adaptation-Multiscale Mixed Domain 

Feature (DA-MMDF) method to target bearings under Polytropic Working Conditions 

(PWC). This method achieves complete, fault-sensitive, and adaptive feather extraction 

with high computational efficiency unlike other methods, in which either only one 

domain or several domains of a single scale, is employed for feature extraction. The 

proposed method outstands others in that, despite their adaptive feature extraction 

ability, are incapable of interpreting features. In particular, it employs the GS_XGBoost 

module to interpret the significance and the sensitivity of the extracted features, at the 

same time, and sort them. This is achieved with the simultaneous diagnosis of cross-

domain fault by the domain adaptive module.  

Similarly, Z. Huang et al. [16] introduced the Multi-source Dense Adaptation 

Adversarial Network (MDAAN) for fault diagnoses under PWC considering multi-

source information fusion and facilitating sufficient utilization of inherent labels 

throughout the classification process. In their proposal, frequency spectra of the 

vibration signals are leveraged for the best utilization of data information using 

convolutional deep feature extraction and fusion.  

Further, in the work of L. C. Brito et al. [17], an isolation forest based 

unsupervised model is employed for bearing fault detection. The technique utilizes 

vibration signals as input. Also, dimensionality reduction has been applied to increase 

model compactness as well performance.  

A time-frequency based bearing fault detection and diagnosis system is 

introduced by W.-B. Zoungrana et al. [18]. The described method analyzes sensor 
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vibration signals and detect abnormalities as well as recognize fault level (e.g., 

ordinary, degraded, and faulty).  

The details of individual features and drawbacks of the aforementioned related 

work of ML-based techniques for machinery fault detection are summarized in Table 

1. 

 

Table 1. Summary of Related Work for Machine Learning-Based Techniques for 

Machinery Fault Detection. 

Work ML Method Signal Type Application Features Drawbacks 

[9] Nearest-

Neighbor 

Dynamic 

Time 

Warping 

(NNDTW) 

Vibration Bearing fault 

diagnosis 

Parameter-

free model. 

 

Model 

developed on 

simulations. 

[10] Deep Output 

Kernel 

Learning 

Vibration Bearing fault 

diagnosis 

Uses 

autoencoder

s for 

adaptive 

feature 

extraction. 

Does not 

classify fault 

severity.   

 

[11] Wavelet-

based 

extraction 

Vibration Bearing fault 

diagnosis 

Uses 

localized 

spalls on 

independent 

bearing 

elements. 

Uses 

multiple 

algorithms 

for fault 

detection. 

 

 

 

 

Does not 

classify fault 

severity.   
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Work ML Method Signal Type Application Features Drawbacks 

[12] Fast Fourier 

Transform 

Current Bearing fault 

detection of 

induction 

motors 

Uses 

multiple 

algorithms 

for fault 

detection. 

Focused on 

detecting 

only minor 

faults and 

requires big 

data for high 

performance. 

[13] Advanced 

machine 

learning 

observer 

Vibration Rolling 

element 

bearing 

Uses 

multiple 

algorithms 

for fault 

detection, 

including 

fuzzy 

sliding 

observer.  

Detection 

under 

variable 

conditions. 

Minimal 

information 

on fault 

severity 

classification. 

[14] Hybrid 

genetic 

algorithm DL 

model 

Current Bearing fault 

detection of 

induction 

motors 

Employs 

classifier 

fusion. 

Does not 

classify fault 

severity.   

 

[15] Domain 

Adaptation-

Multiscale 

Mixed 

Domain 

Feature (DA-

MMDF) 

Vibration Bearing fault 

diagnosis for 

Polytropic 

Working 

Conditions 

(PWC) 

Relatively 

high 

computation

al 

efficiency. 

Tested 

under 

variable 

speed and 

load 

conditions. 

Employs 

manual 

parameter 

tuning.  

Does not 

classify fault 

severity. 

[16] Multi-source 

Dense 

Adaptation 

Adversarial 

Network 

(MDAAN) 

Vibration Bearing fault 

diagnosis for 

Polytropic 

Working 

Conditions 

(PWC) 

 

Employs 

transfer 

learning 

Does not 

classify fault 

severity. 
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As has been preceded in Section 2.1 and Section 1.1, and as will be discussed 

in the following section, AI approaches have been commonly utilized in many systems 

to support fault detection of rotating machinery maintenance, which has largely grabbed 

the attention of recent research. As illustrated in Figure 2, a broad range of popular ML 

systems employed in fault detection and diagnosis systems has been reviewed in the 

literature, including the Boltzmann Restricted Machine (RBM), the Deep belief 

Network (DBN), and the Deep Neural Network (DNN), Stacked Autoencoder (SAE), 

Support Vector Machine (SVM), Convolutional Neural Network (CNN), Random 

Forests (RF), K-Nearest Neighbors (KNN), etc.  

 

Work ML Method Signal Type Application Features Drawbacks 

[17] Isolation 

forest 

Vibration Bearing fault 

diagnosis 

Employs 

dimensional

ity 

reduction  

Does not 

classify fault 

severity.  

[18] Time-

frequency 

Vibration Bearing fault 

diagnosis 

Detects the 

operation 

modes: 

normal, 

degraded, 

and faulty. 

Does not 

classify fault 

severity. 
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Figure 2. Some of the reviewed Machine Learning techniques for Machinery Fault 

Detection. 

 

As will be noticed in the following section, and amongst of the reviewed 

techniques in the literature, it is evident that CNNs are widely used as active learning 

models with applications in fault detection [5]. Several researchers have recently 

attempted to use deep 2D CNNs to diagnose faults in bearings and gears. It is noted, 

however, that 2D CNNs, particularly those with deep architectures or of large-scale 

datasets, exhibit high computational complexity [6]. Thus, 2D CNNs cannot be ideal 

for error detection when handling 1D signals without special hardware or requiring 

large training data to obtain an appropriate generalization capacity of the network [6]. 

Moreover, when deep 2D networks are trained over limited datasets, overfitting can 

easily occur. On the other hand, compact 1D CNN models have been designed to 

overcome these disadvantages to run directly and more effectively on 1D signals. They 

showed high-speed and reliable results in several real-time monitoring applications.  
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2.2 ANN-Based Methods for Gear Fault Detection 

Considering machine fault diagnoses, numerous signal processing techniques 

are extensively focused on the extraction of fault characteristics [19]. Widely employed 

Artificial Neural Networks (ANNs) techniques of signal processing aim to suppress the 

noise for the detection of fault characteristics. Compared to commonly utilized signal 

processing techniques, Stochastic Resonance (SR) can take advantage of signal noise 

in order to recover characteristics, and hence faults. Consequently, extensive usage has 

been made of fault-specific extraction and system fault identification. 

Rapid recognition of faults of gears has become a major difficulty, since 

transmission faults exist mainly at the microstructure or also at the material stage, yet 

such results can solely be observed indirectly at the machine. So, the gear fault 

diagnostic device’s performance is highly dependent on the classifier’s feature [20]. 

While a lot of research attention has been devoted to recent approaches focusing on 

DNNs with feature extractions that are adaptive, they typically involve a significant 

collection of data for training. 

Accordingly, failures in planetary gearboxes may contribute to injuries, 

downtime, not to mention expensive, regular maintenance requirements. To tackle such 

issues, Motor Current Signal Analysis (MCSA) are introduced as non-intrusive means 

for identifying defects in rotating machinery. Various DNN-based diagnostic 

approaches have been published, offering efficient methods to analyze vast volumes of 

data and generate reliable diagnostic reports, with near real-time performance. 

However, most modern techniques focus on detecting faults through vibration-based 

signals. The authors in [21] performed research on the diagnostic faults in planetary 

gears through pre-processing existing signals as well as utilizing DNN-based systems. 

Compared with related techniques, the merits of the approach are shown by the usage 

of laboratory results, which include significant measuring signals representing various 
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health problems under varying loading configurations.  

In several industrial applications, gears are considered as one of the most critical 

elements of a mechanical piece of machinery, especially transmission devices. Also, 

gear pitting faults may trigger failure, which may result in safety and financial 

catastrophes, and therefore, gears should be regularly diagnosed, which is commonly 

carried out using raw vibration signal [22]. Accordingly, the work of [23] suggested a 

novel approach called Augmented Deep Sparse Auto-encoder (ADSAE), which is 

employed for gear pitting fault diagnosis with minimum data. Such approach creatively 

incorporates a deep, sparse autoencoder algorithm, where the efficacy is validated by 

examining six variants of gear pitting environments. Results show promising rise in 

both the generalization and robustness of the network with very high precision. 

The authors in [24] analyzed gear states using linear and nonlinear techniques. 

The linear methods are Pareto maps, biplots, key angles, while nonlinear techniques 

include curvilinear component analysis, assuming that the manifolds of the given class 

are well-differentiated and compact enough. Therefore, a shallow neural network is 

utilized, rather than a deep one. Preliminary results support the authors’ claim and 

compare it with the other published approaches.  

In the work of [25], a method of diagnosis of gear loss was proposed based on 

the extraction of a numerical low-cost hybrid handcrafted feature collection, namely 

the Mel-Frequency Cepstral Coefficient (MFCC) and the Gamma Tone Cepstral 

Coefficient (GTCC), which are momentarily derived from vibration data with errors of 

a temporal type. Thus, a Long Short-Term Memory (LSTM) classifier is employed due 

to its merits in processing time-series data. A ten-fold cross-validation is applied to two 

separate data sets, with findings demonstrating that successful implementation of the 

classifier for the identification of gear defects. Nevertheless, only one 1D signal type is 
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addressed in their work for gear fault detection. Moreover, the datasets used in this 

study are of restricted sizes. 

Furthermore, a new approach for detecting faults in gear pitting was introduced 

in [26]. The presented system was built upon a deep, sparse autoencoder, where the 

approach incorporates dictionary learning through a sparsely encoded network of auto-

encoders. Sparse dictionary coding is used as an extraction tool for system malfunction 

diagnosis. The provided method utilizes a stacked auto-encoder network to conduct 

dictionary learning for raw vibration data automatic feature extraction, which are 

applied to locate gear pitting faults. Results reported on vibration signals are obtained 

from a number of tests on gearboxes’ gears and compared to the current DL techniques. 

Moreover, X. Wang et al. [27] proposed another bearing fault diagnosis that is 

dependent on fusing vibration and acoustic signals and extracting the features from the 

resulting fused data using 1D CNNs. This is done to achieve higher robustness with 

respect to other methods based on a single-modal sensor.  

On the other hand, X. Li et al. [28] have targeted early gear pitting faults in 

mixed operating conditions using the vibration signal at different speeds. In the 

proposed method, the number of network parameters is reduced by leveraging channel 

convolution with point-by-point convolution. To achieve this, the method implements 

a separable convolution with a residual connection network identifying the study’s 

significance in contrast to other related work.  

Also, Yao et al. [29] presented a DL-based gear fault diagnostic approach 

focused on sound signal analysis for gear faults. By building up a CNN, namely with 

end-to-end architecture, both raw time and frequency domain signals can be used as 

input. In addition, a multi-channel audio sensing may be combined with the CNN 

without the need for an additional fusion technique. The obtained experimental findings 
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indicate that the proposed approach has much better efficiency in the diagnosis of gear 

loss relative to other conventional gear fault diagnostic approaches involving function 

engineering. An open-access sound signal database for the diagnostic of gear fault is 

also published. However, both studies [26] and [29] address only one signal type for 

gear fault detection. 

There are certain limitations and drawbacks of the aforementioned studies. All 

of them were proposed on a single type of signal. Some of them exhibit high 

computational complexity; a challenge that confronts real-time applications, and others 

involve datasets that are usually limited in size leading to unreliable methods. Finally, 

most of them are only fault detectors and cannot grade the severity of the fault. The 

details of individual features and drawbacks of the prior art are encapsulated in Table 

2. 

Table 2. Summary Of Prior Art For ANN-based Gear Fault Detection. 

Work ML Method Signal Type Application Features Drawbacks 

[20] Transfer 

learning 

and Deep 

CNN 

Vibration Gearbox 

fault 

diagnosis 

Requires 

minimal 

training. 

No pre-

processing 

required. 

Fault severity 

analysis. 

High 

computational 

complexity 

and requires 

special 

hardware.  

[21] DNN Gear 

rotational 

speed 

Planetary 

gear fault 

diagnosis 

Verified using 

seven large 

datasets from 

the planetary 

gearboxes. 

Designed for 

industrial 

applications. 

Requires 

extensive 

training time 

and high 

computational 

complexity.   
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Work ML Method Signal Type Application Features Drawbacks 

[22] CNN Acoustic 

emission  

Aerospace 

gear pitting 

fault 

analysis 

No frequency 

analysis 

required. 

Includes sparse 

autoencoder. 

Not 

optimized for 

complex gear 

pitting faults.  

 

[23] Enhanced 

deep sparse 

autoencoder 

(ADSAE) 

Vibration Aerospace 

gear pitting 

fault 

analysis 

Employs data 

augmentation. 

 

High 

computational 

complexity. 

[24] Linear and 

nonlinear 

techniques 

Vibration, 

torque, 

acoustic 

pressure 

and 

electrical 

current. 

Induction 

Machine 

gear fault 

detection 

Extensive 

comparison 

between deep 

and shallow 

methods. Uses 

data from 

different 

sensors 

Does not 

classify fault 

severity. Not 

optimized for 

complex gear 

faults. 

[25] Gamma 

Tone 

Cepstral 

Coefficient 

(GTCC) 

and Mel-

Frequency 

Cepstral 

Coefficient 

(MFCC) 

Vibration Gearbox 

fault 

detection 

Long Short-

Term Memory 

(LSTM) is 

employed. 

Does not 

classify fault 

severity. Does 

not address 

variant signal 

types. Not 

optimized for 

complex gear 

faults. 

[26] Deep sparse 

autoencoder 

Vibration Gearbox 

fault 

detection 

Does not 

require 

supervised 

parameter 

tuning. 

Does not 

classify fault 

severity. Does 

not address 

variant signal 

types. 

[27] 1D-CNN 

data fusion 

Acoustic 

and 

Vibration 

Bearing 

fault 

diagnosis 

 

Multi-sensor 

data fusion with 

visualization 

analysis. 

 

Does not 

classify fault 

severity. 
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2.3 Self-Organized Operational Neural Networks (Self-ONNs) 

Operational Neural Networks (ONNs), recently pioneered as an advancement 

to conventional CNNs, especially in highly complex and deep networks, where a 

generalized model is needed to elevate the classification performance. Heterogeneous 

by nature, ONNs can learn quite complex models using the least network complexity 

and data [8]. 

In order to attain maximum heterogeneity and boost computational efficiency, 

Self-Organized ONNs (Self-ONNs) have recently been proposed [30]. Self-ONNs are 

equipped with generative neurons to optimize operators during training, with 

experimental results signifying its prime performance in terms of training and 

computational efficiency, compared with conventional ONNs and CNNs. 

A viable application of ONNs is medical image analysis. Devecioglu et al. 

Work ML Method Signal Type Application Features Drawbacks 

[28] 1D 

separable 

convolution 

Vibration Early gear 

pitting 

faults 

Multi gear 

speed analysis 

in varying 

conditions. 

Optimized 

network 

parameters 

using point-by-

point 

convolution. 

Does not 

classify fault 

severity. 

[29] CNN Acoustic Gearbox 

fault 

detection 

Can process 

data without 

manual 

configuration. 

Accompanied 

by sound signal 

dataset. 

Does not 

classify fault 

severity. Does 

not address 

variant signal 

types. 

Requires 

additional 

1D 2D 

conversions.    
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proposed a compact Self-ONN-based glaucoma detector from digital early fundus 

images [31]. Compared with the performance of CNNs on three datasets, the proposed 

technique excelled in terms of accuracy and computational efficiency. It is also worth 

noting that Self-ONNs relied on limited training to create the classification model, 

achieving a performance climb of approximately 8-12% F1-score compared to the 

conventional and deep CNN counterparts. 

Moreover, electrocardiogram (ECG) classification is a topic of popular 

discussion, and novel methods have been put into practice to boost performance beyond 

the state-of-the-art. Henceforth, a Self-ONN-based ECG classifier is proposed to 

overcome existing challenges [32]. With its self-organization nature, Self-ONNs excel 

over conventional ONNs and 1D CNNs through its novel operator search function to 

optimize for the most suitable operator. Using the least amount of training data, the 

proposed classifier produced superior results compared to conventional techniques. 

Moreover, Kiranyaz et al. proposed a robust signal peak detection on Holter ECG with 

the use of Self-ONNs, achieving a higher computation efficiency and superior detection 

results on the China Physiological Signal Challenge-2020 (CPSC) dataset compared 

against deep CNN implementations [33].  

On a similar note to this report’s work, an early bearing fault detection and 

diagnosis system is developed based on 1D Self-ONNs [34]. By enhancing the learning 

performance of its CNN counterpart, the authors’ solution provided a real-time 

computational performance. The proposed technique is also tested on the NSF/IMS 

bearing vibration dataset and benchmarked against conventional diagnosis techniques. 

2.4 Core Concepts  

From a biological standpoint, linear first-order models of living neurons 

inspired artificial neurons used in traditional ANNs [35]. Biological learning is 

primarily conducted at the neuronal stage of the human nervous system. Every neuron 
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can handle electric signals as per three operations: receiving signals by synaptic 

connections from other neurons; the pooling of the processed output at the soma of the 

nucleus; and the activation of the final signal at the Axon hillock. 

2.4.1 Two-Dimensional CNNs  

 Conventional 2D deep CNNs have gradually been the predominant technique 

used in various Computer Vision (CV) and DL applications. They are highly complex 

and data-hungry ML paradigms. Figure 3 overviews the structure of 2D CNNs. 

 

 

Figure 3. Overview of 2D CNN. 

 

Unlike a typical neural network with a complete connection through each node, 

a CNN greatly decreases the number of the parameters in the network via local 

connectivity and exchanging weights using convolutional layers, which comprises a 

group of kernels with a limited receptive area. Each kernel passes through the input 

volume, executing the convolution process.  

2.4.2 One-Dimensional CNNs  

Alternatively, the 1D variant of CNNs, namely 1D CNNs, has recently been 

proposed for several applications over 1D signal repositories [35]-[39]. 1D CNNs can 

be desirable to their 2D equivalents due to their lower computational complexity. 

Compact 1D CNNs generally require fewer parameters, do not require high 

computational resources (can use CPU effectively), and can achieve real-time results 
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in low-cost applications [35]. In the meanwhile, kernel parameters stay constant to 

manage the free parameters amount. Hence, for a convolutional layer in the 𝑙𝑡ℎ layer, 

the 1D forward propagation computation is depicted as follows [35]: 

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 + ∑ 𝑐𝑜𝑛𝑣1𝐷(𝑤𝑘𝑖
𝑙−1, 𝑠𝑖

𝑙−1)

𝑁𝑙−1

𝑖=1

(1) 

where 𝑥𝑘
𝑙   is denoted as the input 𝑏𝑘

𝑙 ,  refers to as the bias of the 𝑘𝑡ℎ neuron at layer 𝑙, 

𝑠𝑖
𝑙−1  is the output of the 𝑖𝑡ℎ neuron at layer 𝑙 − 1, 𝑤𝑘𝑖

𝑙−1 is the kernel from 

the 𝑖𝑡ℎ neuron at layer 𝑙 − 1 to the 𝑘𝑡ℎ  neuron at layer 𝑙. 𝑐𝑜𝑛𝑣1𝐷 is utilized to 

perform 1D convolution. 

 The algorithm for back-propagation (BP) is expressed as follows: The back 

propagating error begins from the output Multi-Layer Perceptron (MLP) layer. Let us 

assume 𝑙 = 1 for the input layer and assume 𝑙 = 𝐿 for the output layer. Let 𝑁𝐿 be the 

number of classes in the dataset and so, for an input vector 𝑝, and its target and output 

vectors, 𝒕𝒑 and [𝑦1
𝐿 , ⋯ , 𝑦𝑁𝐿

𝐿 ]′ respectively.  Henceforth, in the output layer for the 

input 𝑝; the Mean-Squared Error (MSE), 𝐸𝑝,  can be defined as: 

𝐸𝑝 = MSE (𝒕𝒑, [𝑦1
𝐿 , ⋯ , 𝑦𝑁𝐿

𝐿 ]′) = ∑(𝑦𝑖
𝐿 − 𝑡𝑖

𝑝)
2

𝑁𝐿

𝑖=1

 (2) 

To differentiate 𝐸𝑝 by every parameter in the network, the delta error, ∆𝑘
𝑙 =

∂𝐸

∂𝑥𝑘
𝑙  

should be found, we can use the chain-rule: 

∂𝐸

∂𝑤𝑖𝑘
𝑙−1

= ∆𝑘
𝑙 𝑦𝑖

𝑙−1           and                  
∂𝐸

∂𝑏𝑘
𝑙

= ∆𝑘
𝑙  (3) 

Thus, from the 1st MLP layer to the last CNN layer, a process of scalar BP is 

carried out as: 
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∂𝐸

∂𝑠𝑘
𝑙 = ∆𝑠𝑘

𝑙 = ∑
∂𝐸

∂𝑥𝑖
𝑙+1

∂𝑥𝑖
𝑙+1

∂𝑠𝑘
𝑙

𝑁𝑙+1

𝑖=1

= ∑ ∆𝑖
𝑙+1

𝑁𝑙+1

𝑖=1

𝑤𝑘𝑖
𝑙  (4) 

Once the 1st BP is done from the subsequent layer, l+1, to the current layer, l, 

then the BP can be executed for the input delta of the CNN layer l, ∆𝑖
𝑙. Let a map of 

zero-order up-sampled be: us𝑘
𝑙 = up(𝑠𝑘

𝑙 ), then the delta error can be computed as: 

 ∆𝑘
𝑙 =

∂𝐸

∂𝑦𝑘
𝑙

∂𝑦𝑘
𝑙

∂𝑥𝑘
𝑙 =

∂𝐸

∂us𝑘
𝑙

∂us𝑘
𝑙

∂𝑦𝑘
𝑙 𝑓′(𝑥𝑘

𝑙 ) = up(∆𝑠𝑘
𝑙 )𝛽 𝑓′(𝑥𝑘

𝑙 ) (5) 

where 𝛽 = (𝑠𝑠)−1. So, the BP of the delta error (∆𝑠𝑘
𝑙

Σ
← ∆𝑖

𝑙+1) can be defined as 

∆𝑠𝑘
𝑙 = ∑ 𝑐𝑜𝑛𝑣1𝐷𝑧 (∆𝑖

𝑙+1, 𝑟𝑒𝑣(𝑤𝑘𝑖
𝑙 ))

𝑁𝑙+1

𝑖=1

 (6) 

where 𝑟𝑒𝑣( ) is employed to reverse the array and 𝑐𝑜𝑛𝑣1𝐷𝑧( ) is used to carry out a 

zero-padding 1D convolution process. Hence, the weight and bias sensitivities are be 

defined as: 

∂𝐸

∂𝑤𝑖𝑘
𝑙 = 𝑐𝑜𝑛𝑣1𝐷(𝑠𝑘

𝑙 , ∆𝑖
𝑙+1)     and      

∂𝐸

∂𝑏𝑘
𝑙 = ∑ ∆𝑘

𝑙 (𝑛)

𝑛

 (7) 

As weight and bias sensitivities are calculated, biases and weights with the 

learning factor, 𝜀, can be updated as: 

𝑤𝑖𝑘
𝑙−1(𝑡 + 1) = 𝑤𝑖𝑘

𝑙−1(𝑡) − 𝜀
∂𝐸

∂𝑤𝑖𝑘
𝑙−1      and      𝑏𝑘

𝑙 (𝑡 + 1) = 𝑏𝑘
𝑙 (𝑡) − 𝜀

∂𝐸

∂𝑏𝑘
𝑙  (8) 

 Figure 4 depicts the structure of 1D CNNs. In this work, compared to the 

reviewed literature, a technical investigation is carried out using compact 1D CNNs, 

not only for gear fault detection, but also gear fault diagnosis with the classification of 

different severity levels on current signals, vibration signals, and acoustic signals. 
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Figure 4. Overview of 1D CNN. 

 

2.4.3 Self-Organized ONNs (Self-ONNs) 

CNNs, as a derivative of Multi-Layer Perceptrons (MLPs), correspond to one 

specific operator set model: multiplication for the nodal operator, summation for the 

pooling operator, and sigmoid for the activation function. As illustrated in Figure 5 

(left), this transformation is repeated in all neurons in all layers in the network, making 

the network homogenous and linear, whereas the networks in biological neural systems 

are heterogenous; highly diverse, and almost all the time nonlinear. Therefore, a 

homogeneous network architecture is considered as a major disadvantage encountered 

in CNNs, as they impose the exact same linear neuron model in all kernel connections. 

This, however, does not represent the heterogeneity property of the actual biological 

neural systems, which constitutes variant types of neurons. Such immature models can 

be adequate for a relatively straightforward linear solution space, nevertheless, their 

performance degrades with a nonlinear solution space of high complexity [8], [30].  
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Figure 5. An illustration of the nodal operations in the kernels of the 𝑘𝑡h CNN (left), 

ONN (middle), and Self-ONN (right) neurons at layer 𝑙 [30]. 

 

Although there are several studies in the literature that attempt to overcome this 

drawback, none address the core problem. To model the true models of biological 

neurons, ONNs [8] have been recently proposed. They apply the same operator set to 

all neurons within the same hidden layer, but not necessarity summation for the pooling 

operator or multiplication for the nodal operator, making it a heterogeneous and non-

linear network model that outstands CNNs in many challenging learning problems.  

Adopting the core concept of Generalized Operational Perceptrons (GOPs), 

ONNs have been developed to present a heterogeneous network model that incorporates 

diversity found in biological neural networks and outperforms conventional MLPs 

failing in many challenging problems. Furthermore, ONNs can be established by 

determining the most suitable operator sets to be used in the entire set of neurons of the 

hidden layers. If the optimal operator set in an ONN is found to be multiplication for 

the nodal operator, summation for the pooling operator, and sigmoid for the activation 

function, then the homogenous ONN model is identical to that of a CNN model. 

Therefore, ONNs do not cancel CNNs, but they extend the exclusive usage of 

convolutions in a hidden layer. ONNs, consequently, are considered as a superset of 
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CNNs sharing the core concept of the heterogeneous nature of GOPs and learning 

complex and multi-modal spaces by facilitating higher diversity with training data.  

Although an ONN outstands a CNN in maximizing the learning performance, it 

is still limited by two certain drawbacks. First, as shown in Figure 5 (middle), it still 

exhibits limited heterogeneity due to the usage of a single operator set for all neurons 

in a hidden layer. Second, it is also limited by a fixed set of operators (the nodal 

operators) that are specified in a predefined operator set library containing standard 

functions [30]. 

To address this limitation, further optimization is facilitated by the recently 

proposed Self-organized ONNs (Self-ONNs) with generative neurons [30]. Owing to 

their generative neurons, Self-ONNs do not need an in-advance fixed library set of 

operators, as they self-organize the network without searching for the optimal nodal 

operator during training. As illustrated in Figure 5 (right), first, Self-ONNs can 

approximate the optimal nonlinear or linear nodal operator, such that every neuron can 

create any suitable composition of operators including linear, sinusoids, exponential, 

hyperbolic, etc. Therefore, a nodal operator can be a composite function, and not 

necessarity a standard function, that is of a certain order refered to as the 𝑄𝑡ℎ  order, so 

they don’t need to search in the operator set library in advance. Second, this is done for 

every kernel element and for every kernel connection, in contrary to applying the same 

nodal operator for all neurons within the same hidden layer as in ONNs.  

Therefore, a generative-neuron can be defined as a neuron having a composite 

nodal-operator created freely at training. Consequently, a Self-ONN may organize its 

nodal operators automatically with nodal operator functions optimized to achieve the 

optimum learning performance. For instance, CNN and ONN neurons include static 

nodal operators for their corresponding kernels, whereas the generative neuron has the 
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flexibility to become any desired nodal function at each connection element. Such 

functionality provides a significant deal of versatility, allowing for the synthesis of any 

nodal operator function as needed. Also, this training technique propagates errors back 

via the Self-ONN’s operational layers to be able to generate the suitable nodal 

functions.  

Hence, Self-ONNs significantly maximize the generalization capacity and 

expand diversity of the network. It is noteworthy to mention that Self-ONNs can 

accomplish similar, and in most cases, greater performance compared with the 

analogous ONNs with higher computing efficiency, whereas when contrasted with 

CNNs, the performance difference is even more recognizable when Self-ONNs are 

employed. 

Overall, conventional CNNs, like MLPs, utilize the traditional model of linear 

neurons; yet impose two structural constraints: (a) kernel restricted connections and (b) 

weight sharing, and so the linear weighted sum for MLPs is transformed into the 

convolution process utilized at CNNs. Conversely, ONNs adopt the fundamental 

concept of GOPs, and therefore, extend the nodal and pool operators' exclusive use of 

linear convolutions in neurons. The input map of the 𝑘𝑡ℎ neuron in the current layer, 

𝑥𝑘
𝑙 , is generated by pooling the final output mappings, 𝑦𝑖

𝑙−1, of the previous layer 

neurons operated with their corresponding kernels, 𝑤𝑘𝑖
𝑙 , as follows: 

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 + ∑ 𝑜𝑝𝑒𝑟2𝐷(𝑤𝑘𝑖
𝑙 , 𝑦𝑖

𝑙−1, ′𝑁𝑜𝑍𝑒𝑟𝑜𝑃𝑎𝑑′)

𝑁𝑙−1

𝑖=1

(9) 

𝑥𝑘
𝑙 (𝑚, 𝑛)|(0,0)

(𝑀−1,𝑁−1)
= 𝑏𝑘

𝑙 + ∑ (𝑃𝑘
𝑙 [

Ψ𝑘
𝑙 (𝑤𝑘𝑖

𝑙 (0,0), 𝑦𝑖
𝑙−1(𝑚, 𝑛)) , … ,

Ψ𝑘
𝑙 (𝑤𝑘𝑖

𝑙 (𝑟, 𝑡), 𝑦𝑖
𝑙−1(𝑚 + 𝑟, 𝑛 + 𝑡), … ), … 

])

𝑁𝑙−1

𝑖=1

 

When examining the above equation carefully, it is evident that the pool 

operator is a summation, i.e., 𝑃𝑘
𝑙 = 𝛴, and the fact  that the nodal operator is linear, 
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𝛹𝑘𝑖
𝑙 (𝑦𝑖

𝑙−1(𝑚, 𝑛), 𝑤𝑘𝑖
𝑙 (𝑟, 𝑡)) = 𝑤𝑘𝑖

𝑙 (𝑟, 𝑡)𝑦𝑖
𝑙−1(𝑚, 𝑛), for every neuron, then the produced 

ONN is both homogeneous and identical to a CNN, verifying the observation that 

ONNs are considered a superset of CNNs since GOPs are a superset of MLPs.  

As previously stated, a generative neuron is produced repeatedly during BP 

training with no constraints. To enhance the learning performance, each generative 

neuron in a Self-ONN have self-optimized operators via BP training for each kernel 

element and connection link. A natural option for generating a composite nodal operator 

can be the weighted sum, as follows: 

Ψ(𝑾, 𝑦) = 𝑤1𝑆𝑖𝑛(𝑤2𝑦) + 𝑤3 exp(𝑤4𝑦) + ⋯ + 𝑤𝑄𝑦 (10) 

where 𝑤 is a 𝑄-dimensional parameter array made of weights as well as internal 

parameters of each function. However, owing to the various and combined dynamic 

ranges of the component non-linear functions, such construction of composite functions 

can have significant stability problems. Furthermore, tuning a plethora of parameters is 

required, particularly when the operator set library includes a large number of unique 

nodal operator functions, which conveniently can be formed using other traditional 

techniques such as Taylor Polynomials or Fourier Series. Due to its less complex nature, 

Taylor Polynomials is a superior option, which can be depicted for a function, 𝑓(𝑥), at 

a point, 𝑥 =  𝑎, as follows: 

f(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯ (11) 

where 𝑓′, 𝑓′′ and 𝑓′′′ are the 1st, 2nd, and 3rd derivatives, respectively. Hence, the function 

of the composite nodal operator can be derived via the 𝑄𝑡ℎ  order truncated Taylor 

approximation as follows:  

Ψ(𝑾, 𝑦) = 𝑤0 + 𝑤1(𝑦 − 𝑎) + 𝑤2(𝑦 − 𝑎)2 + ⋯ + 𝑤𝑄(𝑦 − 𝑎)𝑄 (12) 

where 𝑤𝑞 = 𝑓
(𝑞)

(𝑎)

𝑔!
 is the 𝑞𝑡ℎ parameter of the 𝑄𝑡ℎ  order polynomial. Such process is 
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optimized throughout the training phase to estimate the best-fitting operator for every 

kernel element of every individual inter-neuron connection. Yet, an obvious problem 

comes up: this estimate is only viable near 𝑦 =  𝑎. So, when the closer the points are 

to 𝑎, the less accurate the approximation becomes. Although, this phenomenon has no 

effect on Self-ONNs because the nodal operators work over the output of neurons of 

the preceding layer, where each layer is limited by the activation operator function’s 

generating range. So, in this work, the tangent hyperbolic (tanh) activation function is 

employed, with a range of [-1, 1]. Hence, 𝑎 =  0 in this instance, and the 𝑄𝑡ℎ  order 

Taylor approximation in Eq. (13) is reduced to the Maclaurin series as, 

Ψ(𝑾, 𝑦) = 𝑤0 + 𝑤1𝑦 + 𝑤2y2 + ⋯ + 𝑤𝑄𝑦𝑄 (13) 

Hence, the bias coefficient, 𝑤0 , can be dropped, as the resultant DC bias is 

factored out by the bias of every neuron. It is crucial to highlight that the existence of 

generative neurons with the composite nodal operator, a 𝑄𝑡ℎ  order Maclaurin 

polynomial, is the major distinction between ONNs and Self-ONNs. Consequently, 

every kernel element is a 𝑄-dimensional array, and the weight kernels, 𝑤𝑖𝑘
𝑙 , are 3D 

matrices that are equal to the 𝑤𝑖𝑘
𝑙+1<𝑞>, 𝑞 = 1, … , 𝑄 array of 𝑄 2D matrices. 

In this work, compared to the reviewed literature, a technical investigation is 

carried out using Self-ONNs, not only for gear fault detection, but also gear fault 

diagnosis with the classification of different severity levels on current signals, vibration 

signals, and acoustic signals. 
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CHAPTER 3: DATASETS AND METHODOLOGY  

3.1. System Overview 

 The workflow of the proposed system involves the design of datasets, in which 

different raw signal types are extracted to investigate their changing behavior in fault 

gear detection and diagnosis. This enables the intended facilities to perform safe and 

cost-effective operations and structural health maintenance. Figure 6 shows an 

overview of the system’s workflow defined in Work Packages (WPs). Each WP is 

described thoroughly in Chapters 3 and 4. 

 

 

Figure 6. Proposed Workflow. 

 

 In WP1, the raw data of current, vibration, and acoustic signals are recorded 

from a design test-rig system to diagnose the severity level of their fault condition. In 

this work, the fault condition is specified as the presence of cracking on the arc of the 

gear’s teeth. Including different signal types facilitates the investigation, presents its 

outcomes, and determines the best signal type for fault gear analysis.   

 In WP2, a re-sampling rate for each signal type is determined. The signals are 

then segmented into non-overlapping frames and then normalized. Before feeding into 

the 1D CNN and Self-ONN model architectures, all data acquisitions are then prepared 

to be divided into training, validation, and testing sets over four-Fold Cross-Validation 

(FCV).  
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 In WP3 and WP4, the model architecture is determined by its hyperparameters 

and complexity, and the diagnosis is accomplished by classifying the gear faults into 

five classes based on the cracking percentage levels. 

 Finally, in WP5, the network’s performance is quantized as per five main 

classification evaluation metrics, which are Accuracy, Precision, Sensitivity, F1-score, 

and Specificity. 

3.2 Benchmark Dataset Creation  

 The dataset is acquired from a test rig system at Qatar University (QU) as shown 

in Figure 7. An accelerometer, a microphone, and a current measuring probe were 

connected to the test rig system and were used to record vibration, acoustic, and current 

signals, respectively. Gears of different anomalies were attached to the rotor test rig. In 

the recorded dataset, five classes of faulty gears are considered for detection and 

diagnosis. The fault severity is represented by the Cracking Level Percentage (CLP), 

which is a percentage of the cracking with respect to the arc length of a gear’s tooth. 

An example of a healthy gear that does not have any cracking is illustrated in Figure 8 

(left) in contrast with a 30% CLP faulty gear (middle), and a 50% CLP faulty gear 

(right). The five classes of faulty gears are labeled as: 0% CLP (healthy), 10% CLP, 

20% CLP, 30% CLP, and 50% CLP (severe). 

 

 

Figure 7. Acquisition test rig system with two gears attached at a QU lab. 
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Figure 8. A healthy gear that does not have any cracking (left), a 30% CLP faulty gear 

(middle), and a 50% CLP faulty gear (right). 

 

 At a sampling rate of 51.2 kHz, four different Data Acquisitions (DAs) were 

taken for 30 seconds. Data streams of all the five labeled classes for each of the different 

signal types (current, vibration, and acoustic) are recorded in each data acquisition. 

Therefore, for each DA, 30 x 51,200 = 1,356,000 samples are recorded for each labeled 

class, hence, a total of 1,356,000 samples x 5 classes = 6,780,000 samples for each 

signal type. Table 3 summarizes the recordings for each data acquisition. 

 

Table 3. Summary of recorded data acquisitions. 

For Each DA 

Signal type Current Vibration Acoustic 

Classes 5 classes 

0% CLP, 10% CLP, 

20% CLP, 30% 

CLP, and 50% CLP. 

5 classes 

0% CLP, 10% CLP, 

20% CLP, 30% CLP, 

and 50% CLP. 

5 classes 

0% CLP, 10% CLP, 

20% CLP, 30% CLP, 

and 50% CLP. 

Sampling 

rate 

51.2 kHz 51.2 kHz 51.2 kHz 

No. of 

samples per 

class 

1356000 1356000 1356000 
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3.3. Training Phase 

 In this operation, three independent 1D CNN as well as Self-ONN architectures 

are trained for each signal type as in Figure 9. Initially, the three datasets required to 

train each 1D CNN/Self-ONN architecture are down-sampled, segmented into non-

overlapping frames, normalized, shuffled, and produced as follows. 

1. The first dataset is composed of current signals Xcurr, pre-processed into N 

frames, [C1, C2, …, CN]. 

2. The second dataset is composed of acoustic signals Xaco, pre-processed into M 

frames, [A1, A2, …, AM]. 

3. The third dataset is composed of vibration signals Xvibr, pre-processed into K 

frames, [V1, V2, …, VK]. 

 

 

Figure 9. Training of three independent 1D CNN/Self-ONN architectures for different 

signal types. 

 

 It is worth mentioning that, as per the core concept of Self-ONNs, the value of 

the 𝑞𝑡ℎ parameter of the 𝑄𝑡ℎ  order polynomial specifies whether the running model 
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architecture is 1D CNN or Self-ONN, as 1D CNNs are a special case of the generalized 

Self-ONNs holding an order of 𝑞 = 1, whereas Self-ONN models can be specified 

when 𝑞 > 1. In this work, 𝑞 = 1 has been set for evaluating the learning performance 

of a 1D CNN model architecture, and 𝑞 = 3 and 𝑞 = 5 order values, each at once, have 

been set for evaluating the learning performance of the Self-ONN model architecture.  

 Several hyperparameters define the structure of a 1D CNN/Self-ONN, which 

are usually determined by trial and error [6]: 

1. Number of hidden layers 

2. Number of hidden fully connected layers 

3. Number of neurons in each hidden and fully connected layer 

4. Filter kernels size 

5. Subsampling factor 

 In this work, the architecture of the 1D CNN and Self-ONN models has been 

implemented using Pytorch and Google Colab. Pytorch1 is a library that consists of 

several components including ‘torch;’ a Tensor library with strong Graphics Processing 

Unit (GPU) support, and ‘torch.nn;’ a neural networks library that is designed for 

maximum flexibility and deeply integrated with the ‘autograd’ library. The 

computational platform, CUDA, is employed.  

 Google Colab [40], on the other hand, is an online Python editor from Google 

Research, allows researchers to write, execute, and collaborate on Python documents 

(i.e., Jupyter notebooks) on Virtual Machines (VMs). It offers several options for virtual 

Central Processing Units (vCPUs) with varying performance. Also, it includes different 

machine types with a selection of vCPUs and memory per vCPU for different 

 

1 https://pypi.org/project/torch/ 
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applications. Notwithstanding, different GPUs can be employed, where they can be 

used alongside vCPUs.  

 The deployed structure of the 1D-CNN and the Self-ONN models is defined in  

 

Table 4. 

 

Table 4. Hyperparameters definition of the 1D CNN and Self-ONN architecture 

models. 

Hyperparameter Value 

Number of hidden learning layers 3 

Number of neurons of hidden learning layers  [64, 32, 16] 

Subsampling factor in hidden learning layers [8, 8, 2] 

Kernels sizes in hidden learning layers   [41, 11, 11] 

Number of hidden MLPs 2 

Number of neurons of hidden MLPs [32, 32] 

Activation Function at hidden layers Tanh 

Number of neurons at the output MLP 5 

 

3.4. Network Configuration Parameters 

3.4.1. Classification Loss Function 

 The Mean Squared Error (MSE) function is used as the cost function for the 

classification networks. By the MSE loss function, a criterion that measures the mean 

squared error is created between each element in the predicted, 𝑦, and the target (truth) 

𝑡 class vectors. This is computed by summing up the squared (pairwise) differences and 

dividing by the number of such pairs as in Eq. (14). 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑡𝑖)

2𝑛
𝑖=1

𝑛
(14) 

where 𝑛 is the batch size. 

3.4.2. Other Configuration Parameters 

 Other configuration functions and parameters are summarized in Table 5, which 

are also determined by trial and error.  
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Table 5. Configuration parameters used within the network architecture. 

Parameter Value 

Learning rate 1e-4  

Confidence Interval   0.9 

Batch size 8 

Optimization function  Adam 

Number of epochs 200 for current and vibration signals, and 500 for acoustic 

signals 
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CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSION  

4.1. Experimental Setup  

The signal is preprocessed into several stages as follows: 

1. Frame down-sampling 

2. Frame segmentation 

3. Frame normalization 

4. Fold cross-validation 

The steps are described in detail in the following sub-sections. 

4.1.1. Frame Down-Sampling 

All signal types are down-sampled by a varying set of factors in all data 

acquisitions. Down-sampling rates of 5.12, 12.8, and 25.6 kHz are chosen for the 

current, vibration, and acoustic signals, respectively, based on the observation of the 

raw signals’ domains shown in Figure 10. Nevertheless, this does not impede the 

consistency of the 1D CNN/Self-ONN models, as the current, vibration, and acoustic 

signals are independently trained over separate network models with the same 

aforementioned network configurations and architecture hyperparameters. 
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Figure 10. Raw samples of the current (upper left), vibration (upper right), and acoustic 

(bottom) signals for gear fault detection and diagnosis before the down-sampling 

process for the 10% CLP class as an example.  

 

4.1.2. Frame Segmentation 

In each data acquisition, all signal types are segmented into non-overlapping 

frames of 1024 samples fixed length, and 200 ms, 80 ms, and 40 ms frame durations 

for the current, vibration, and acoustic signals, respectively, are resulted.  

Table 6 summarizes the down-sampling and segmentation processes, and the 

produced number of frames for each data acquisition DA. 
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Table 6. Pre-processing summary for each data acquisition. 

For Each DA 

1D Signals Current Vibration Acoustic 

Duration 200 ms 80 ms 40 ms 

Samples (per class) 1536000 1536000 1536000 

Down-sampled rate 5.12 kHz 12.8 kHz 25.6 kHz 

Down-sampled 

number of samples 

(per class) 

153600 384000 768000 

Number of Classes 5 5 5 

Frame Length 

(samples) 

1024 1024 1024 

Number of Frames 150 per class 

150 * 5 classes = 

750 

375 per class 

375 * 5 classes = 

1875 

750 per class 

750 * 5 classes = 

3750 

 

4.1.3. Frame Normalization  

Data normalization is one of the good practices performed before training a 

neural network in order to obtain a mean close to zero, in addition to yielding faster 

learning and faster convergence. Each frame is linearly scaled (normalized) within [-

1,1] as follows: 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 2
𝑋 − 𝑋𝑚𝑖𝑛𝑖𝑚𝑢𝑚

(𝑋𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑋𝑚𝑖𝑛𝑖𝑚𝑢𝑚)
− 1 (15) 

where 𝑋 is a sample amplitude in a frame, and 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is its normalized version. 

The normalized frames afterward are shuffled to be prepared for a four-FCV. 

4.1.4. Four-fold Cross-Validation  

The three 1D CNN and Self-ONN models are trained using four-Fold Cross-

Validation (FCV), with 80% are dedicated to the training set and unseen 20% of data 

dedicated to the testing set. A 20% portion of the training set is used as a validation set 

to avoid overfitting. 

Table 7 summarizes the data acquisitions, per signal type, used for training, 

validation, and testing in each fold. 
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Table 7. A summary of 4-fold cross-validation for each signal type using 4 data 

acquisitions. 

 Fold 1 Fold 2 Fold 3 Fold 4 

Training set DA 1, 2, 3 DA 2, 3, 4 DA 3, 4, 1 DA 4, 1, 2 

Validation set 20% of the training set  

Testing set DA 4 DA 1 DA 2 DA 3 

 

4.2. Classification Evaluation Metrics 

The network’s performance for each signal type is quantized as per five main 

classification evaluation metrics, which are Accuracy, Precision, Sensitivity, F1-score, 

and Specificity. 

An overall confusion matrix is produced accumulating all test results per class. 

The evaluation metrics are computed per class 𝑖 as follows.  

1. Per-class accuracy as in Eq. (16) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑙𝑎𝑠𝑠𝑖
=

𝑇𝑃𝑐𝑙𝑎𝑠𝑠𝑖
+𝑇𝑁𝑐𝑙𝑎𝑠𝑠𝑖

𝑇𝑃𝑐𝑙𝑎𝑠𝑠𝑖
+𝑇𝑁𝑐𝑙𝑎𝑠𝑠𝑖

+𝐹𝑃𝑐𝑙𝑎𝑠𝑠𝑖
+𝐹𝑁𝑐𝑙𝑎𝑠𝑠𝑖

 (16)  

2. Per-class precision as in Eq. (17) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠𝑖
=

𝑇𝑃𝑐𝑙𝑎𝑠𝑠𝑖

𝑇𝑃𝑐𝑙𝑎𝑠𝑠𝑖
+ 𝐹𝑃𝑐𝑙𝑎𝑠𝑠𝑖

(17) 

3. Per-class sensitivity as in Eq. (18) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠𝑖
=

𝑇𝑃𝑐𝑙𝑎𝑠𝑠𝑖

𝑇𝑃𝑐𝑙𝑎𝑠𝑠𝑖
+ 𝐹𝑁𝑐𝑙𝑎𝑠𝑠𝑖

(18) 

4. Per-class specificity as in Eq. (19) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠𝑖
=

𝑇𝑁𝑐𝑙𝑎𝑠𝑠𝑖

𝑇𝑁𝑐𝑙𝑎𝑠𝑠𝑖
+ 𝐹𝑃𝑐𝑙𝑎𝑠𝑠𝑖

(19) 

5. Per-class F1-score as in Eq. (20) 

𝐹1 − score𝑐𝑙𝑎𝑠𝑠𝑖
= 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠𝑖
 ∗  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠𝑖
 +  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠𝑖

(20) 



  

41 

 

where True Positives (𝑇𝑃) is the number of frames in the correctly predicted positive 

class by the model, True Negatives (𝑇𝑁) is the number of frames in the correctly 

predicted negative class, False Positives (𝐹𝑃) is the number of frames in the incorrectly 

predicted positive class, and False Negatives (𝐹𝑁) is the number of frames in the 

incorrectly predicted negative class.  

The overall accuracy is calculated as in Eq. (21) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑐𝑙𝑎𝑠𝑠𝑖

𝑘
𝑖=1

∑ 𝑆𝑐𝑙𝑎𝑠𝑠𝑖
𝑘
𝑖=1

 (21) 

where 𝑘 is the total number of classes, and 𝑆 is the total number of predicated frames 

for each class 𝑖 (i.e., ∑ 𝑆𝑐𝑙𝑎𝑠𝑠𝑖

𝑘
𝑖=1  is the sum of all frame elements in a confusion matrix).  

4.3. Gear Fault Detection Experimental Results  

The numerical and quantitative evaluation results for the current, vibration and 

acoustic signals are presented in this section. It is worth mentioning that, for each signal 

type, the 1D CNN and Self-ONN models at the epoch of the highest validation accuracy 

are selected for each fold. First, the system runs over the 1D CNN network architecture 

by setting the order value 𝑞 = 1 for each signal type. The system then runs on the Self-

ONN network architecture by adjusting the order value to 𝑞 = 3, and later to 𝑞 = 5 to 

observe the performance differences. The models’ configurations described in Table 4 

and Table 5 are set fixed for both 1D CNN and Self-ONN network architectures.  

4.3.1. Current Signal Results 

In this section, the performance of the trained 1D CNNs and Self-ONNs over 

200 BP epochs of the ‘current’ signal to diagnose the gear fault severity is detailed. The 

overall test confusion matrices resulted from the 1D CNN as well as the Self-ONN (q=3 

and q=5) are summarized in Table 8. 
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Table 8. Confusion matrix of the current signal over 1D CNN and Self-ONN per class. 

Ground Truth Predicted Classes 

 

0% CLP 

(healthy) 

10% 

CLP 

20% 

CLP 

30% 

CLP 

50% CLP 

(severe) 

1D CNN 

0% (healthy) 600 0 0 0 0 

10% CLP 0 578 22 0 0 

20% CLP 0 71 529 0 0 

30% CLP 27 1 5 567 0 

50% CLP 

(severe) 0 0 0 0 600 

Self-ONN (q=3) 

0% (healthy) 598 2 0 0 0 

10% CLP 0 545 55 0 0 

20% CLP 0 82 518 0 0 

30% CLP 1 0 9 584 6 

50% CLP 

(severe) 0 0 0 0 600 

Self-ONN (q=5) 

0% (healthy) 600 0 0 0 0 

10% CLP 0 560 40 0 0 

20% CLP 0 76 524 0 0 

30% CLP 12 6 18 556 8 

50% CLP 

(severe) 0 0 0 0 600 

 

To observe the network performance in each fold, the training, validation, and 

testing accuracies and losses are plotted per epoch as in Figure 11 and in Figure 12, 

respectively, for the system over 1D CNN and Self-ONN.   
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Figure 11. Plots of the training, validation, and testing accuracy per epoch for the 

current signal over 1D CNN and Self-ONN per fold. 
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Figure 12. Plots of the training, validation, and testing loss per epoch for the current 

signal over 1D CNN and Self-ONN per fold. 

 

Moreover, the resulted evaluation metrics after testing per class are summarized 

in Table 9.  
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Table 9. Per-class classification evaluation metrics for the current signal over 1D CNN 

and Self-ONN. 

 

Accuracy Precision Sensitivity F1-score Specificity 

1D CNN 

0% 

(healthy) 99.1 95.69 100 97.8 98.87 

10% CLP 96.87 88.92 96.33 92.48 97 

20% CLP 96.73 95.14 88.17 91.52 98.87 

30% CLP 98.9 100 94.5 97.17 100 

50% CLP 

(severe) 100 100 100 100 100 

Overall 

Average 95.8 95.95 95.8 95.79 98.95 

Self-ONN (q=3) 

0% 

(healthy) 99.9 99.83 99.67 99.75 99.96 

10% CLP 95.37 86.65 90.83 88.69 96.5 

20% CLP 95.13 89 86.33 87.64 97.33 

30% CLP 99.47 100 97.33 98.65 100 

50% CLP 

(severe) 99.8 99.01 100 99.5 99.75 

Overall 

Average 94.83 94.9 94.83 94.85 98.71 

Self-ONN (q=5) 

0% 

(healthy) 99.6 98.04 100 99.01 99.5 

10% CLP 95.93 87.23 93.33 90.18 96.58 

20% CLP 95.53 90.03 87.33 88.66 97.58 

30% CLP 98.53 100 92.67 96.2 100 

50% CLP 

(severe) 99.73 98.68 100 99.34 99.67 

Overall 

Average 94.67 94.8 94.67 94.68 98.67 

 

4.3.2. Vibration Signal Results 

In this section, the performance of the trained 1D CNN and Self-ONN models 

by 200 BP epochs over the vibration signal to diagnose the gear fault severity is 

detailed. The overall test confusion matrices resulting from the 1D CNN as well as the 

Self-ONN (q=3 and q=5) models are summarized in Table 10. 
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Table 10. Confusion matrix of the vibration signal over 1D CNN and Self-ONN per 

class. 

Ground Truth Predicted Classes 

 

0% CLP 

(healthy) 

10% 

CLP 

20% 

CLP 

30% 

CLP 

50% CLP 

(severe) 

1D CNN 

0% (healthy) 1317 24 24 89 46 

10% CLP 26 1440 18 13 3 

20% CLP 7 14 1469 8 2 

30% CLP 69 24 28 1331 48 

50% CLP 

(severe) 30 2 5 25 1438 

Self-ONN (q=3) 

0% (healthy) 1398 13 14 34 41 

10% CLP 8 1479 9 2 2 

20% CLP 5 16 1477 2 0 

30% CLP 92 29 11 1312 56 

50% CLP 

(severe) 20 1 2 5 1472 

Self-ONN (q=5) 

0% (healthy) 1373 18 19 62 28 

10% CLP 6 1479 9 4 2 

20% CLP 3 6 1488 2 1 

30% CLP 50 17 11 1405 17 

50% CLP 

(severe) 11 0 1 11 1477 

 

To observe the network performance in each fold, the training, validation, and 

testing accuracies and losses are plotted per epoch as in Figure 13 and in Figure 14, 

respectively .   
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Figure 13. Plots of the training, validation, and testing accuracy per epoch for the 

vibration signal over 1D CNN and Self-ONN per fold. 
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Figure 14. Plots of the training, validation, and testing loss per epoch for the vibration 

signal over 1D CNN and Self-ONN per fold. 

 

Moreover, the resulted evaluation metrics after testing per class are summarized 

in Table 11. 
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Table 11. Per-class classification evaluation metrics for the vibration signal over 1D 

CNN and Self-ONN. 

 

Accuracy Precision Sensitivity F1-score Specificity 

1D CNN 

0% 

(healthy) 95.8 90.89 87.8 89.32 97.8 

10% CLP 98.35 95.74 96 95.87 98.93 

20% CLP 98.59 95.14 97.93 96.51 98.75 

30% CLP 95.95 90.79 88.73 89.75 97.75 

50% CLP 

(severe) 97.85 93.56 95.87 94.7 98.35 

Overall 

Average 93.27 93.22 93.27 93.23 98.32 

Self-ONN (q=3) 

0% 

(healthy) 96.97 91.79 93.2 92.49 97.92 

10% CLP 98.93 96.16 98.6 97.36 99.02 

20% CLP 99.21 97.62 98.47 98.04 99.4 

30% CLP 96.92 96.83 87.47 91.91 99.28 

50% CLP 

(severe) 98.31 93.7 98.13 95.86 98.35 

Overall 

Average 95.17 95.22 95.17 95.13 98.79 

Self-ONN (q=5) 

0% 

(healthy) 97.37 95.15 91.53 93.3 98.83 

10% CLP 99.17 97.3 98.6 97.95 99.32 

20% CLP 99.31 97.38 99.2 98.28 99.33 

30% CLP 97.68 94.68 93.67 94.17 98.68 

50% CLP 

(severe) 99.05 96.85 98.47 97.65 99.2 

Overall 

Average 96.29 96.27 96.29 96.27 99.07 

 

4.3.3. Acoustic Signal Results 

In this section, the performance of the trained 1D CNNs and Self-ONNs by 500 

BP epochs over the acoustic signal to diagnose the gear fault severity is detailed. Note 

that, based on the observation of the raw acoustic signal patterns, the number of epochs 

has been increased from 200 to 500 for this signal type in order to observe the network’s 

performance over a longer time without altering its complexity. The overall test 
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confusion matrices resulting from the 1D CNN as well as the Self-ONN (q=3 and q=5) 

models are summarized in Table 12. 

 

Table 12. Confusion matrix of the acoustic signal over 1D CNN and Self-ONN per 

class. 

Ground Truth Predicted Classes 

 

0% CLP 

(healthy) 

10% 

CLP 

20% 

CLP 

30% 

CLP 

50% CLP 

(severe) 

1D CNN 

0% (healthy) 1486 797 258 266 193 

10% CLP 658 1764 260 186 132 

20% CLP 216 258 2369 30 127 

30% CLP 143 115 21 2540 181 

50% CLP 

(severe) 137 91 73 204 2495 

Self-ONN (q=3) 

0% (healthy) 1726 603 176 295 200 

10% CLP 658 1865 219 139 119 

20% CLP 142 199 2563 16 80 

30% CLP 78 73 12 2670 167 

50% CLP 

(severe) 158 57 34 135 2616 

Self-ONN (q=5) 

0% (healthy) 1870 645 154 140 191 

10% CLP 631 1972 196 82 119 

20% CLP 145 186 2570 9 90 

30% CLP 176 96 16 2591 121 

50% CLP 

(severe) 164 69 26 90 2651 

 

To observe the network’s performance in each fold, the training, validation, and 

testing accuracies and losses are plotted per epoch as in Figure 15 and in Figure 16, 

respectively.   
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Figure 15. Plots of the training, validation, and testing accuracy per epoch for the 

acoustic signal over 1D CNN and Self-ONN per fold. 
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Figure 16. Plots of the training, validation, and testing loss per epoch for the acoustic 

signal over 1D CNN and Self-ONN per fold. 

 

Moreover, the resulted evaluation metrics after testing per class are summarized 

in Table 13. 
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Table 13. Per-class classification evaluation metrics for the acoustic signal over 1D 

CNN and Self-ONN. 

 

Accuracy Precision Sensitivity F1-score Specificity 

1D CNN 

0% 

(healthy) 82.21 56.29 49.53 52.69 90.38 

10% CLP 83.35 58.31 58.8 58.55 89.49 

20% CLP 91.71 79.47 78.97 79.22 94.9 

30% CLP 92.36 78.74 84.67 81.6 94.28 

50% CLP 

(severe) 92.41 79.76 83.17 81.43 94.72 

Overall 

Average 71.03 70.51 71.03 70.7 92.75 

Self-ONN (q=3) 

0% 

(healthy) 84.6 62.49 57.53 59.91 91.37 

10% CLP 86.22 66.68 62.17 64.35 92.23 

20% CLP 94.15 85.32 85.43 85.37 96.32 

30% CLP 93.9 82.03 89 85.37 95.12 

50% CLP 

(severe) 93.67 82.21 87.2 84.63 95.28 

Overall 

Average 76.27 75.75 76.27 75.93 94.06 

Self-ONN (q=5) 

0% 

(healthy) 85.03 62.63 62.33 62.48 90.7 

10% CLP 86.51 66.44 65.73 66.08 91.7 

20% CLP 94.52 86.77 85.67 86.22 96.73 

30% CLP 95.13 88.98 86.37 87.66 97.32 

50% CLP 

(severe) 94.2 83.58 88.37 85.91 95.66 

Overall 

Average 77.69 77.68 77.69 77.67 94.42 

 

4.4 Discussion 

The accuracy plots indicate that, with the use of the validation set, the network 

model with the highest generalization capability was selected for all signal types. 

Different configurations of the network architecture and hyperparameters were 

evaluated to achieve the best performance. A slight ‘overfitting’ is apparent for the 

classification over the acoustic signal; however, it did not affect the overall 
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performance.  

4.4.1. 1D CNN Results 

It is observed that the ‘current’ signal type is the best choice among other signal 

types in terms of diagnosis performance with an overall accuracy of around 96%, a 96% 

sensitivity, whilst having a precision, F1-score, and specificity above 95%.  

So far, what has been covered was only the frame-based classification results, 

which can give an idea only about the overall classification performance. In practice, 

further analysis is needed to convert this frame-based classification into a real diagnosis 

and detection scenario, for which the highest speed and maximum robustness are 

required. For this purpose, we start by analyzing the speed of detection. For the 

detection of the gear faults over the ‘current’ signal, 96% frame-based sensitivity is 

achieved. Thus, that the probability of missing the first faulty frame (regardless of the 

fault severity) is only 4%.  Therefore, the probability of missing the two consecutive 

frames is around 0.0016, which is negligible. Considering the frame duration for the 

‘current’ signal as 200 ms, this means that compact 1D CNNs can detect and diagnose 

the severity of the gear faults in less than 400 ms. Although it can be inspected that, for 

the ‘current’ signal type, the network yields the highest confusion when predicting 20% 

CLP as 10% CLP during classification, there are either no or minor confusions between 

the other true and predicted classes.  

Following the current signal, the second most reliable signal type to consider 

for gear cracking fault diagnosis is the vibration signal, whereas the least reliable signal 

type is the acoustic. Similarly, the network models with the highest validation 

accuracies are selected in each fold. The vibration signal has an overall sensitivity close 

to 93%. Once again, this is a frame-based sensitivity measure, and for the detection of 

the gear faults, around a 93% frame-based sensitivity is achieved, which implies that 
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the probability of missing the first faulty frame (regardless of the fault severity) is 7%.  

Therefore, the probability of missing the three consecutive frames is around 0.00034, 

which is negligible. Considering the frame duration for the vibration signal as 80 ms, 

this means that compact 1D CNNs can detect the gear faults in less than 240 ms. This 

is a faster detection and early diagnosis capability than the ‘current’ signal. Although it 

can be inspected that the network yields the highest confusion when predicting the 0% 

CLP as 30% CLP during classification, there are either half or much less confusions 

between the other true and predicted classes for the vibration signal. It is also noticed 

that the confusions significantly decrease over the Self-ONN model architectures.  

Finally, as for the acoustic signal type, the networks at the highest validation 

accuracies are also selected in each fold to ensure the best generalization capability. 

Around 71% frame-based sensitivity is achieved. Thus, the probability of missing the 

first faulty frame (regardless of the fault severity) is 29%, which is the highest among 

all signal types.  Therefore, the probability of missing the six consecutive frames is 

around 0.0006 which is negligible. However, considering the frame duration for the 

acoustic signal as 40 ms, this also means that compact 1D CNNs can detect the gear 

faults using the acoustic signal in less than 240 ms. This is also a faster detection speed 

than the ‘current’ signal. 

4.4.2. Self-ONN Results 

It is observed that, for the ‘current’ signal type, the Self-ONNs with 𝑞 = 3 and 

𝑞 = 5 get a slightly lower performance level than 1D CNNs with a F1-score difference 

of 1%. Since the detection problem over the ‘current’ signal type is the easiest due to 

the periodicity of the signal pattern, the detector does not need a complex/deep network 

architecture, and hence, yielding a comparable performance level with the Self-ONNs. 

Conversely, when dealing with a much more challenging data learning problem 
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such as over the vibration signal type, a significant improvement on the classification 

performance is observed by Self-ONNs yielding around a 3% F1-score, sensitivity, and 

accuracy improvements. The performance on the vibration signal has increased 

gradually from the 1D CNN case to the Self-ONN with order 𝑞 = 3 to 𝑞 = 5. 

Furthermore, the performance gap further widens at the most challenging 

problem of all three signal types: the acoustic signal. A performance gap of around 7% 

in the F1-score, sensitivity, and accuracy is observed by the Self-ONNs. Once again, 

the performance on the acoustic signal has significantly increased from the 1D CNN 

case to the Self-ONN with order 𝑞 = 3 to 𝑞 = 5.  

Moreover, it is observed that the performance generally improves when 

increasing the 𝑄𝑡ℎorder from 𝑞 = 3 to 𝑞 = 5, as a Self-ONN with a 𝑞 = 5 provides a 

better approximation of the composite nodal operator function during training, as in Eq. 

(13), in contrast with that of a Self-ONN with a 𝑞 = 3.    

Evidently, running Self-ONNs over the two challenging signal types unlocks 

their potential for gear fault detection and diagnosis, whereas deeper and more complex 

CNN models are required to accomplish the same performance level.  

The diagnosis analysis of the proposed system is presented in Table 14 in terms 

of the accuracy and sensitivity of the first-time detection of an abnormal frame 

regardless of the fault severity level. It can be noticed that the system outperforms using 

the ‘current’ signal measurement for faulty gears in terms of both accuracy and 

sensitivity with values higher than 99%, followed by the vibration signal type. The 

system’s diagnosis performance degrades further using the acoustic signal type. It can 

also be noticed that the detection of the first faulty frame for each signal type improves 

when running the system on the Self-ONN model. Similarly, there is a slight 

improvement over the ‘current’ signal when shifting from 1D CNNs to Self-ONNs, 
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however, more significant improvements are noticed when observing cases of more 

challenging data learning, as in the vibration and the acoustic signal types, with 

approximately a 1.6% and 3.7% accuracy and sensitivity increase, respectively, for the 

vibration signal, and a 2.8% and 12.8% accuracy and sensitivity increase, respectively, 

for the acoustic signal. 

 

Table 14. Detection and diagnosis system performance on the detection of the first 

faulty frame for all signal types. 

Signal Type  Model  Accuracy (%) Sensitivity (%) 

Current signal 1D CNN 99.1 99.9 

Self-ONN (q=3) 99.9 99.67 

Self-ONN (q=5) 99.6 99.9 

Vibration signal 1D CNN 95.8 87.8 

Self-ONN (q=3) 96.97 93.2 

Self-ONN (q=5) 97.37 91.53 

Acoustic signal 1D CNN 82.21 49.53 

Self-ONN (q=3) 84.6 57.53 

Self-ONN (q=5) 85.03 62.33 

 

Moreover, the classification models of the different signal types are compared 

against each other in terms of computational inference time and the number of trainable 

parameters. Using a constant number of trainable parameters in all models (33,525), the 

computational speed performance of the model applied on all signal types does not 

exceed 1.5 ms for one frame. This inference time, therefore, is considered negligible 

for the frame duration (200, 80, or 40 ms). Thus, the computational inference time for 

a frame is around 0.7, 1.8, and 3.4% of the overall system speed for the current, 

vibration, and acoustic signal types, respectively.  

Limitations of the proposed work include testing the network on other cases of 

gear cracking anomaly levels (i.e., different CLP values), and on other rotor rig systems 
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to comply with real-world applications as in industrial machinery. These will be the 

topics for future research.  
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CHAPTER 5: CONCLUSION 

In this study, ML-based techniques for facility condition monitoring are 

investigated and presented in a comparative analysis. Unlike the traditional fully-

connected neural networks, CNNs significantly decrease network parameters through 

local connectivity and exchanging weights using convolutional layers, which comprises 

a group of kernels with a limited receptive area. Besides, training deep 2D CNNs 

requires extensive training in order to obtain an appropriate generalization capacity. 

This typically involves large-scale datasets, which in turn raises the computational 

difficulty considerably. Therefore, compact 1D CNNs have been designed to overcome 

these disadvantages while achieving higher accuracies and computational efficiencies 

on 1D signals. Nevertheless, the novel Self-ONNs architecture model has been recently 

proposed as a superset of CNNs, where nodal operators and pooling are generalized to 

decrease complexity and network depth required by CNNs in many challenging 

problems. 

In this work, the design and implementation of 1D CNNs as well as Self-ONNs 

for gear fault detection are investigated over three types of signals: current, vibration, 

and acoustic. Unlike prior works in the literature, this study is not only limited to gear 

fault detection, but also extends to the diagnosis of gear fault severity. 

The performance of the system is continuously evaluated in terms of standard 

performance metrics for validation on real data recorded from a test rig system at QU. 

It became evident from the results that, when running the system over 1D CNNs, the 

‘current’ signal has been found the most reliable signal type for fault diagnosis, 

following by vibration and the acoustic signals next in line. Furthermore, the system’s 

performance over the Self-ONNs was evaluated yielding significant improvements in 

the vibration and acoustic signals, which were considered as challenging cases in terms 
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of data learning and classification. Therefore, Self-ONNs unlock the true potential of 

challenging signal types for gear fault detection and diagnosis.  

Moreover, as the diagnosis is based on the frame-based classification accuracy 

measure, whereas the fault detection is an instantaneous action, the time delay for the 

detection of the first occurrence of a gear fault was considered. For this purpose, the 

probability of missing a certain number of faulty frames was computed, and the time 

delay equivalent to the number of faulty frames with a negligible probability was 

calculated. The results show that the acoustic signal yields the least time for fault 

detection due to the shortest frame duration. The computational inference time was also 

evaluated to be minimal with respect to the overall system’s response time considering 

each of the signal’s frame length. 

Furthermore, to fulfill a complete investigation on the system’s diagnosing 

performance, the system’s performance for detecting the first faulty frames has been 

evaluated in terms of accuracy and sensitivity. It was observed that, once again, the 

‘current’ signal has the highest sensitivity metric approaching closely to 99%, whereas 

the vibration and acoustic signals were beyond compare approaching to around 88 and 

50%, respectively, in the 1D CNN case. However, when observing the system’s 

performance over Self-ONNs for detecting the first faulty frames, there was a slight 

improvement on the current signal, and significant improvements on more challenging 

signal types, approaching a sensitivity of 92 and 62% for the vibration and acoustic 

signals, respectively. This is analogous to the system’s classification performance.  

Future work includes targeting an actual health monitoring system, that is, 

employing a trained system that is used for gear health monitoring on another system 

and robust to the variations on machines/gears, time and sensor locations, and other 

environmental parameters.  
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