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Abstract  In this paper, we consider improving 
maximum likelihood inference for the scale parameter of 
the Lomax distribution. The improvement is based on 
using modifications to the maximum likelihood estimator 
based on the Barndorff-Nielsen modification of the profile 
likelihood function. We apply these modifications to 
obtain improved estimators for the scale parameter of the 
Lomax distribution in the presence of a nuisance shape 
parameter. Due to the complicated expression for the 
Barndorff-Nielsen’s modification, several approximations 
to this modification are considered in this paper, including 
the modification based on the empirical covariances and 
the approximation based on using suitably derived 
approximate ancillary statistics. We obtained the 
approximations for the Lomax profile likelihood function 
and the corresponding modified maximum likelihood 
estimators. They are not available in simple closed forms 
and can be obtained numerically as roots of some 
complicated likelihood equations. Comparisons between 
maximum profile likelihood estimator and modified profile 
likelihood estimators in terms of their biases and mean 
squared errors were carried out using simulation 
techniques. We found that the approximation based on the 
empirical covariances to have the best performance 
according to the criteria used. Therefore we recommend to 
use this modified version of the maximum likelihood 
estimator for the Lomax scale parameter, especially for 
small sample sizes with heavy censoring, which is quite 
common in industrial life testing experiments and 
reliability studies. An example based on real data is given 
to illustrate the methods considered in this paper. 
Keywords  Modified Maximum Profile Likelihood 

Method, Lomax Distribution, Barndorff-Nielsen’s 
Adjustment Method 

1. Introduction
The Lomax distribution, commonly referred to as the 

"Pareto type II" distribution, was developed to model 
business failure data (Lomax [1]). The Lomax model 
belongs to the declining failure rate family in the lifetime 
distribution context, see Chahkandi and Ganjali  [2]. The 
Lomax distribution has been proposed as a heavy tailed 
distribution by Bryson [3] to replace the Exponential, 
Weibull, and Gamma distributions. The Lomax 
distribution is crucial for the analysis of lifetime data sets 
in various fields including business, medical sciences, and 
engineering (Johnson et al.  [4]). More examples can be 
found in Corbellini et al.  [5], Ghitany et al.  [6] and Holland 
et al.  [7]. 

The pdf and cdf of the underlying Lomax lifetime 
distribution are given respectively by 

𝑓𝑓(𝑦𝑦,𝜃𝜃,𝛽𝛽) = 𝛽𝛽𝛽𝛽
(1+𝛽𝛽𝛽𝛽)𝜃𝜃+1

 ,   𝑦𝑦 > 0,𝛽𝛽 > 0, 𝜃𝜃 > 0    (1) 

𝐹𝐹(𝑦𝑦,𝜃𝜃,𝛽𝛽) = 1 − 1
(1+𝛽𝛽𝛽𝛽)𝜃𝜃

 , 𝑦𝑦 > 0,𝛽𝛽 > 0, 𝜃𝜃 > 0    (2) 

where 𝜃𝜃 and 𝛽𝛽 are the shape parameter and the scale 
parameter, respectively. Many authors have addressed 
Lomax model inferences from Bayesian, E-Bayesian, and 
maximum likelihood estimation perspectives in the 
literature. For instance, E-Bayesian estimation was used by 
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Okasha  [8] to compute estimates of the unknown 
parameters in addition to estimating related survival time 
characteristics like the hazard and reliability functions. 
Baklizi et al.  [9] used likelihood (least square & weighted 
least square) and Bayesian inference for parameter 
estimation in this model under progressively censoring 
data. Howlader and Hossain  [10] considered Bayesian 
estimation of the Lomax distribution's survival function. 
Cramer and Schmiedt  [11] used type-II censored 
competing risks data from this model to calculate 
maximum likelihood estimates for the distribution 
parameters. Al-Zahrani and Al-Sobhi  [12] used Bayesian 
and maximum likelihood estimation to estimate the 
parameters based on general progressive censored data. 
Moreover, Mahmoud et al.  [13] compared the maximum 
likelihood (ML) and Bayes techniques for this model. 

The goal of this paper is to extend the work of the 
previous authors on maximum likelihood estimation to 
include modified estimation of the scale parameter in the 
presence of a nuisance shape parameter based on several 
approximations for Brandorff-Nielsen’s modified profile 
likelihood function. Furthermore, the maximum profile 
likelihood estimator and maximum modified profile 
likelihood estimators for the scale parameter were 
compared using simulation according to their biases and 
mean squares errors. 

The organization of this paper is as follows. The profile 
likelihood function and its properties are discussed in 
Section 2. Several approximations to Barndorff-Nielsen's 
adjustment are presented in Section 3. In Section 4, the 
adjustments are derived for inference on the Lomax scale 
parameter under type II censoring data. Section 5 presents 
the findings of a simulation study designed to investigate 
and compare the performance of estimators that are derived 
from the profile likelihood function and adjusted profile 
likelihood functions. In Section 6, numerical examples 
using real data are presented. Section 7 concludes the 
paper. 

2. Profile Likelihood Function 
We consider a model parametrized by a parameter 

(𝜃𝜃,𝛽𝛽), where β denotes the parameter of interest and θ is a 
nuisance parameter. The larger the nuisance parameter's 
dimension, the higher its potential impact on the inference 
results for the parameter of interest. As a result, replacing θ 
with the restricted maximum likelihood estimator 𝜃𝜃�𝛽𝛽 is a 
simple approach of removing the effect of the nuisance 
parameter on inference. Let 𝐿𝐿(𝜃𝜃,𝛽𝛽)  be the likelihood 
function and let 𝑙𝑙(𝜃𝜃,𝛽𝛽) = 𝑙𝑙𝑙𝑙𝑙𝑙�𝐿𝐿(𝜃𝜃,𝛽𝛽)�, where 𝑙𝑙𝑙𝑙𝑙𝑙 is the 
natural logarithm, then 𝑙𝑙𝑝𝑝(𝛽𝛽) = 𝑙𝑙(𝜃𝜃,𝛽𝛽)|𝜃𝜃=𝜃𝜃�𝛽𝛽 = 𝑙𝑙�𝜃𝜃�𝛽𝛽 ,𝛽𝛽� 
is called the profile log-likelihood function and the 
maximum profile likelihood estimator of 𝛽𝛽 , under this 
approach , is represented as 𝛽̂𝛽𝑝𝑝. However, because 𝑙𝑙𝑝𝑝(𝛽𝛽) 
does not attempt to approximate a true conditional or 
marginal likelihood function, the profile likelihood 

function is not a real likelihood function and thus lacks 
some of the favorable characteristics of a true likelihood 
function. This is because, by keeping the nuisance 
parameter at its point estimate, we are ignoring the 
uncertainty that comes with such estimation to some extent. 
Details on profile and modified profile likelihood functions 
can be found in Severini  [14]. 

3. Modified Profile Likelihoods 
There are several modifications to the profile likelihood 

function proposed. They are all designed to reduce the 
effect of the nuisance parameter on inference about the 
parameter of interest. We will discuss some of them in the 
following subsections. 

3.1. Barndorff-Nielsen’s Modified Profile Likelihood 
Function 

Barndorff-Nielsen  [15] developed a modification that, if 
it exists, approximates the marginal or conditional 
likelihood function for the parameter of interest. He 
proposed a formula for calculating the approximate 
conditional density of the maximum likelihood method 
given an ancillary statistic "𝑎𝑎". He called this formula the 
p* equation. Several authors have utilized modified profile 
likelihood functions for inference including Yang and Xie 
[16] and Ferrari et al. [17]. The approach used in this paper 
follows closely the approach of Ferrari et al. [17] for the 
Weibull shape parameter. The modified profile 
log-likelihood function of Barndorff-Nielsen is  

𝑙𝑙𝐵𝐵𝐵𝐵(𝛽𝛽) = 𝑙𝑙𝑝𝑝(𝛽𝛽) − log �
𝜕𝜕𝜃𝜃�𝛽𝛽
𝜕𝜕𝜃𝜃�
� − 1

2
log�𝑗𝑗𝜃𝜃𝜃𝜃�𝜃𝜃�𝛽𝛽 ,𝛽𝛽�� ,   (3) 

where 𝑗𝑗𝜃𝜃𝜃𝜃�𝜃𝜃�𝛽𝛽 ,𝛽𝛽� = −
𝜕𝜕2𝑙𝑙(𝜃𝜃�𝛽𝛽,𝛽𝛽)

𝜕𝜕𝜃𝜃2
 and 

𝜕𝜕 𝜃𝜃�𝛽𝛽
𝜕𝜕𝜃𝜃�

 is a partial 
derivative matrix of 𝜃𝜃�𝛽𝛽  with respect to 𝜃𝜃� . The most 
challenging part of computing the 𝑙𝑙𝐵𝐵𝐵𝐵(𝛽𝛽)  is in 

finding �
𝜕𝜕𝜃𝜃�𝛽𝛽
𝜕𝜕𝜃𝜃�
�. There is another equivalent modification for 

𝑙𝑙𝐵𝐵𝐵𝐵(𝛽𝛽) that avoid this term. It requires a sample space 
derivative of the log-likelihood function, as well as an 
ancillary statistic "𝑎𝑎"  such that �𝜃𝜃�,𝛽𝛽,� 𝑎𝑎� is a minimal 
sufficient statistic, see [15].  

The next three approximation approaches avoid the 
difficulties of evaluating the sample space derivatives 
emanating from this Barndorff-Nielsen’s approach. 

3.2. Population Covariance Approximation of the 
Modified Profile Likelihood Function 

Severini [18] presented the following approximation for 
Barndorff- Nielsen's modified profile likelihood function: 

𝑙𝑙𝐵̅𝐵𝐵𝐵 (𝛽𝛽)= 

𝑙𝑙𝑝𝑝(𝛽𝛽) + 1
2

log |𝑗𝑗𝜃𝜃𝜃𝜃(𝜃𝜃�𝛽𝛽 ,𝛽𝛽)| − log�I𝜃𝜃�𝜃𝜃�𝛽𝛽 ,𝛽𝛽 ; 𝜃𝜃 � , 𝛽̂𝛽��, (4) 

where, 
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I𝜃𝜃(𝜃𝜃,𝛽𝛽 ; 𝜃𝜃0,𝛽𝛽0) = 𝐸𝐸(𝜃𝜃0,𝛽𝛽0){𝑙𝑙𝜃𝜃(𝜃𝜃,𝛽𝛽)𝑙𝑙𝜃𝜃(𝜃𝜃0,𝛽𝛽0)𝑇𝑇}   (5) 

with 𝑙𝑙𝜃𝜃(𝜃𝜃,𝛽𝛽) = 𝜕𝜕𝜕𝜕(𝜃𝜃,𝛽𝛽)
𝜕𝜕𝜕𝜕

. Here, 𝜃𝜃�𝛽𝛽  is the restricted 
maximum likelihood estimator. 𝜃𝜃�  and 𝛽̂𝛽  are the 
maximum likelihood estimators of 𝜃𝜃 and 𝛽𝛽, respectively. 
𝜃𝜃0 and 𝛽𝛽0 is a value of the parameter that is different from 
𝜃𝜃 and 𝛽𝛽, respectively. 𝐼𝐼𝜃𝜃(𝜃𝜃,𝛽𝛽 ; 𝜃𝜃0,𝛽𝛽0) is independent of 
the ancillary statistic "𝑎𝑎"  and 𝐼𝐼𝜃𝜃(𝜃𝜃,𝛽𝛽 ; 𝜃𝜃0,𝛽𝛽0) represents 
the covariance between 𝑙𝑙𝜃𝜃(𝜃𝜃,𝛽𝛽)  and 𝑙𝑙𝜃𝜃(𝜃𝜃0,𝛽𝛽0)  .The 
corresponding modified maximum profile likelihood 
estimator (MMPLE) is represented as 𝛽̂̅𝛽𝐵𝐵𝐵𝐵 . 

3.3. Empirical Covariances Approximation of the 
Modified Profile Likelihood Function 

According to Severini [19], the empirical covariances 
approximation, presented below, is useful when 
calculating expected values of log likelihood derivative 
products is difficult. This approximation is as follows: 

𝑙𝑙𝐵𝐵𝐵𝐵 (𝛽𝛽)=𝑙𝑙𝑝𝑝(𝛽𝛽) + 

+ 1
2

log �𝑗𝑗𝜃𝜃𝜃𝜃(𝜃𝜃�𝛽𝛽 ,𝛽𝛽)� − log |𝐼𝐼𝜃𝜃(𝜃𝜃�𝛽𝛽, 𝛽𝛽;Ѳ�, 𝛽̂𝛽)|,   (6) 

where, 

Ĭθ (𝜃𝜃�𝛽𝛽, 𝛽𝛽;Ѳ�, 𝛽̂𝛽) = ∑ 𝑙𝑙𝜃𝜃
(𝑗𝑗)(𝜃𝜃�𝛽𝛽 ,𝑛𝑛

𝑗𝑗=1 𝛽𝛽) 𝑙𝑙𝜃𝜃
(𝑗𝑗)(Ѳ� , 𝛽̂𝛽 )𝑇𝑇 .  (7) 

Here, 𝑙𝑙𝜃𝜃
(𝑗𝑗) is the score function of the 𝑗𝑗𝑡𝑡ℎ observation, 

and the corresponding modified maximum profile 
likelihood estimator (MMPLE) under this approximation is 
represented as 𝛽𝛽�̂𝐵𝐵𝐵𝐵.  

3.4. An Approximation based on an Ancillary Statistic 

Fraser and Reid  [20] and Fraser et al.  [21] presented an 
approximation, which is given by 

𝑙𝑙𝐵𝐵𝐵𝐵 (𝛽𝛽)=𝑙𝑙𝑝𝑝(𝛽𝛽)+ 

+ 1
2

log�𝑗𝑗𝜃𝜃𝜃𝜃(𝜃𝜃�𝛽𝛽 ,𝛽𝛽)� − log�𝑙𝑙𝜃𝜃;𝑦𝑦�𝜃𝜃�𝛽𝛽 ,𝛽𝛽�𝑉𝑉�𝜃𝜃�,     (8) 

where,  

𝑙𝑙𝜃𝜃;𝑦𝑦(𝜃𝜃,𝛽𝛽) = 𝜕𝜕𝑙𝑙𝜃𝜃(𝜃𝜃,𝛽𝛽)
𝜕𝜕𝒴𝒴𝑇𝑇

             (9) 

Here, 𝜕𝜕𝑙𝑙𝜃𝜃(𝜃𝜃,𝛽𝛽)  is the score function for, 𝒴𝒴𝑇𝑇 =
(𝑦𝑦1, … … . ,𝑦𝑦𝑛𝑛) and  

𝑉𝑉�Ѳ = �− 𝜕𝜕𝜕𝜕(𝑦𝑦1;Ѳ,�  𝛽𝛽�)/𝜕𝜕Ѳ�

𝑓𝑓1(𝑦𝑦1;Ѳ�,𝛽𝛽�)
 , … … … … ,−𝜕𝜕𝜕𝜕(𝑦𝑦𝑛𝑛;Ѳ,�  𝛽𝛽�)/𝜕𝜕Ѳ�

𝑓𝑓𝑛𝑛(𝑦𝑦𝑛𝑛;Ѳ�,𝛽𝛽�)
 �,  (10) 

where 𝑓𝑓𝑗𝑗(𝑦𝑦; 𝜃𝜃,𝛽𝛽)  and 𝐹𝐹𝑗𝑗(𝑦𝑦; 𝜃𝜃,𝛽𝛽)  being the probability 
density function and the cumulative distribution function 
of 𝑦𝑦𝑗𝑗 , respectively, and 𝑉𝑉�Ѳ  is the approximate ancillary 
statistic. The corresponding modified maximum profile 

likelihood estimator (MMPLE) under this approximation is 
represented as 𝛽𝛽�̂𝐵𝐵𝐵𝐵. 

4. Modified Profile Likelihoods for the 
Lomax Scale Parameter 

Let 𝑦𝑦(1), … … … ,𝑦𝑦(𝑟𝑟)  be the smallest order statistics 
from a sample of size n of a Lomax distribution 𝐿𝐿(Ѳ,𝛽𝛽). 
Here, the number of failure time (Say r) is fixed and 
prespecified and the time of study T is random. Therefore, 
Observation ceases (stopped) after the 𝑟𝑟𝑡𝑡ℎ failure (𝑟𝑟˂ 𝑛𝑛). 
The likelihood function for the (𝜃𝜃 ,𝛽𝛽) parameters is given 
by 

𝐿𝐿(Ѳ,𝛽𝛽) = �𝑓𝑓(𝑦𝑦(𝑗𝑗);Ѳ,𝛽𝛽) � 𝑆𝑆(𝑦𝑦(𝑟𝑟);Ѳ,𝛽𝛽)
𝑛𝑛

𝑗𝑗=𝑟𝑟+1

𝑟𝑟

𝑗𝑗=1

= �𝑆𝑆(𝑦𝑦(𝑟𝑟);Ѳ,𝛽𝛽)�𝑛𝑛−𝑟𝑟�𝑓𝑓�𝑦𝑦(𝑗𝑗);Ѳ,𝛽𝛽�
𝑟𝑟

𝑗𝑗=1

 

= �(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟))−Ѳ�𝑛𝑛−𝑟𝑟��𝛽𝛽Ѳ�1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)�
−(Ѳ+1)

�
𝑟𝑟

𝑗𝑗=1

 

= ��1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)�
−Ѳ�

𝑛𝑛−𝑟𝑟
· 𝛽𝛽𝑟𝑟Ѳ𝑟𝑟 · ∏ �1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)�

−(Ѳ+1)𝑟𝑟
𝑗𝑗=1  (11) 

Therefore, the log-likelihood function is given by,  

𝑙𝑙(Ѳ,𝛽𝛽) = 𝑟𝑟 log𝛽𝛽 + 𝑟𝑟 logѲ − ∑ log�1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)� −𝑟𝑟
𝑗𝑗=1

Ѳ�∑ log(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)) + (𝑛𝑛 −  𝑟𝑟) log(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟))𝑟𝑟
𝑗𝑗=1 � (12) 

The log-likelihood function's first derivative with 
respect to 𝜃𝜃 is given by 

𝜕𝜕𝜕𝜕
𝜕𝜕Ѳ

=
𝑟𝑟
Ѳ
− 

−�∑ log�1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)� + (𝑛𝑛 − 𝑟𝑟) log�1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)�𝑟𝑟
𝑗𝑗=1 � (13) 

The root of this equation in 𝜃𝜃 for a fixed value of 𝛽𝛽 is 

Ѳ�𝛽𝛽 = 𝑟𝑟
∑ log�1+𝛽𝛽𝑦𝑦(𝑗𝑗)�+(𝑛𝑛−𝑟𝑟) log(1+𝛽𝛽𝑦𝑦(𝑟𝑟))𝑟𝑟
𝑗𝑗=1

    (14) 

This root represents the restricted MLE of 𝜃𝜃 for a given 
𝛽𝛽.  

Note that under no censoring (𝑟𝑟 = 𝑛𝑛), this estimator 
reduces to the one given before in Uncensored data. 

Substituting 𝜃𝜃�𝛽𝛽 in the log-likelihood equation we obtain 
the profile log-likelihood function  

𝑙𝑙𝑝𝑝(𝛽𝛽) = 𝑙𝑙�Ѳ�𝛽𝛽 ,𝛽𝛽� = 

=𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙 𝛽𝛽 + 𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙�Ѳ�𝛽𝛽�  −∑ 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)) − �Ѳ�𝛽𝛽� ·𝑟𝑟
𝑗𝑗=1

�∑ 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)) + (𝑛𝑛 −  𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟))𝑟𝑟
𝑗𝑗=1 �   (15) 
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It follows, 
𝑙𝑙𝑝𝑝(𝛽𝛽) = 𝑙𝑙�Ѳ�𝛽𝛽 ,𝛽𝛽�

= 𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙 𝛽𝛽

+ 𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑟𝑟

∑ 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)� + (𝑛𝑛 − 𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)�𝑟𝑟
𝑗𝑗=1

�

−�𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗))
𝑟𝑟

𝑗𝑗=1

− �
𝑟𝑟

∑ 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)� + (𝑛𝑛 − 𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟))𝑟𝑟
𝑗𝑗=1

�

∙ ��𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)) + (𝑛𝑛 −  𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟))
𝑟𝑟

𝑗𝑗=1

� 

(16) 

The MLE of 𝛽𝛽 , which is the maximum profile 
likelihood estimator of 𝛽𝛽 is the solution of the following 
equation 

𝜕𝜕𝑙𝑙𝑝𝑝(𝛽𝛽)
𝜕𝜕𝜕𝜕

=
𝑟𝑟
𝛽𝛽
− 

-∑
𝑦𝑦(𝑗𝑗)

1+𝛽𝛽𝑦𝑦(𝑗𝑗)
− 𝜃𝜃�𝛽𝛽 ∑

𝑦𝑦(𝑗𝑗)

1+𝛽𝛽𝑦𝑦(𝑗𝑗)
−

𝜃𝜃�𝛽𝛽(𝑛𝑛−𝑟𝑟)𝑦𝑦(𝑟𝑟)

1+𝛽𝛽𝑦𝑦(𝑟𝑟)
= 0𝑟𝑟

𝑗𝑗=1
𝑟𝑟
𝑗𝑗=1     (17) 

Which is equivalent to the following equation, 
𝑟𝑟
𝛽𝛽

−�
𝑦𝑦(𝑗𝑗)

1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)

𝑟𝑟

𝑗𝑗=1

−�
𝑟𝑟

∑ 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)�+ (𝑛𝑛 − 𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)�𝑟𝑟
𝑗𝑗=1

��
𝑦𝑦(𝑗𝑗)

1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)

𝑟𝑟

𝑗𝑗=1

−
� 𝑟𝑟
∑ 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)�+ (𝑛𝑛 − 𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)�𝑟𝑟
𝑗𝑗=1

� (𝑛𝑛 − 𝑟𝑟)𝑦𝑦(𝑟𝑟)

1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)
= 0 

The MLE β�  can’t be obtained analytically and we need 
to find it numerically by applying some iterative methods 
like the Newton-Raphson method or direct optimization 
techniques.  

Calculating 𝑗𝑗𝜃𝜃𝜃𝜃�𝜃𝜃�𝛽𝛽 ,𝛽𝛽� from the observed Fisher 

information matrix 𝑗𝑗(𝜃𝜃,𝛽𝛽)  =  −� 𝜕𝜕2

𝜕𝜕𝜃𝜃2
𝑙𝑙(𝜃𝜃,𝛽𝛽)�

𝜃𝜃=𝜃𝜃�𝛽𝛽
 which 

is obtained from the log-likelihood function for Lomax 
distribution evaluated at (𝜃𝜃�𝛽𝛽 ,𝛽𝛽) we obtain  

𝑗𝑗ѲѲ�Ѳ�𝛽𝛽 ,𝛽𝛽� =
�∑ 𝑙𝑙𝑙𝑙𝑙𝑙(1+𝛽𝛽𝑦𝑦(𝑗𝑗))+(𝑛𝑛−𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1+𝛽𝛽𝑦𝑦(𝑟𝑟))𝑟𝑟

𝑗𝑗=1 �
2

𝑟𝑟
  (19) 

Now, we will consider some approximations to the 
modified profile likelihood for Lomax parameter 𝛽𝛽 using 
Barndorff-Nielsen’s Method that are described in section 
3. 

Equation (4) is not possible to derive in type II censoring 
because 𝑦𝑦𝑗𝑗  are order statistics (Not iid). Therefore, we 
make use of the empirical covariances. 

Using (7), it follows that 

𝑙𝑙𝜃𝜃
(𝑗𝑗)�𝛽𝛽,𝜃𝜃�𝛽𝛽� =

𝑟𝑟
Ѳ�𝛽𝛽

− 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)) − (𝑛𝑛−) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)) 

and 

𝑙𝑙𝜃𝜃
(𝑗𝑗)�𝛽̂𝛽 ,𝜃𝜃�� =

𝑟𝑟
Ѳ�
− 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽̂𝛽𝑦𝑦(𝑗𝑗)� − (𝑛𝑛

− 𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽̂𝛽𝑦𝑦(𝑟𝑟)) 

Then, 

𝐼𝐼𝜃𝜃�𝛽𝛽,𝜃𝜃�𝛽𝛽; 𝛽̂𝛽,𝜃𝜃��=∑ �� 𝑟𝑟
Ѳ�𝛽𝛽
− 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)) − (𝑛𝑛 −𝑟𝑟

𝑗𝑗=1

𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟))� �𝑟𝑟
Ѳ�
− 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽̂𝛽𝑦𝑦(𝑗𝑗)� − (𝑛𝑛 −

𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽̂𝛽𝑦𝑦(𝑟𝑟))�� 

From (6,7,16 & 19), we obtain 

𝑙𝑙𝐵𝐵𝐵𝐵(𝛽𝛽)
= 𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙 𝛽𝛽

+ 𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙�Ѳ�𝛽𝛽�−�𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗))
𝑟𝑟

𝑗𝑗=1

− �Ѳ�𝛽𝛽�

· ��𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)) + (𝑛𝑛 −  𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)�
𝑟𝑟

𝑗𝑗=1

�

+
1
2 𝑙𝑙𝑙𝑙𝑙𝑙 �

�∑ 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)� + (𝑛𝑛 − 𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)
𝑟𝑟
𝑗𝑗=1 )�2

𝑟𝑟 �

− 𝑙𝑙𝑙𝑙𝑙𝑙 ����
𝑟𝑟
Ѳ�𝛽𝛽

− 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)) − (𝑛𝑛
𝑟𝑟

𝑗𝑗=1

− 𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟))��
𝑟𝑟
Ѳ�

− 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽̂𝛽𝑦𝑦(𝑗𝑗)� − (𝑛𝑛 − 𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽̂𝛽𝑦𝑦(𝑟𝑟))��� 

where,  

Ѳ�𝛽𝛽 =
𝑟𝑟

∑ 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)� + (𝑛𝑛 − 𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟))𝑟𝑟
𝑗𝑗=1

 

and where 𝜃𝜃�  and 𝛽̂𝛽  are the maximum likelihood 
estimators of 𝜃𝜃 and 𝛽𝛽. The corresponding estimator is  
𝛽𝛽�̂𝐵𝐵𝐵𝐵. There is no closed form expression for the MLE 
𝛽𝛽�̂𝐵𝐵𝐵𝐵 and we need to find it numerically by applying some 
iterative methods to solve the likelihood equation and 
compute the estimate 𝛽𝛽�̂𝐵𝐵𝐵𝐵 . 

We also obtain, an approximation based on ancillary 
statistics. Using (9) it follows that 

𝜕𝜕𝑙𝑙𝜃𝜃�𝜃𝜃�𝛽𝛽 ,𝛽𝛽� =
𝑟𝑟
𝜃𝜃�𝛽𝛽
− ��𝑙𝑙𝑙𝑙𝑙𝑙 [1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)] + (𝑛𝑛 − 𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙 [1

𝑟𝑟

𝑗𝑗=1

+ 𝛽𝛽𝑦𝑦(𝑟𝑟)]� 

Therefore, 
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𝑙𝑙𝜃𝜃;𝑦𝑦�𝜃𝜃�𝛽𝛽 ,𝛽𝛽� =
𝜕𝜕𝑙𝑙𝜃𝜃�𝜃𝜃�𝛽𝛽 ,𝛽𝛽�
𝜕𝜕𝒴𝒴𝑇𝑇 = − �

𝛽𝛽
1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)

�     , 

 𝑗𝑗 = 1,2 … . , 𝑟𝑟 − 1 

                                        = −�
𝛽𝛽

1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)
+

(𝑛𝑛 − 𝑟𝑟)𝛽𝛽
1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)

�      , 𝑗𝑗

= 𝑟𝑟 

From (10)  

𝜕𝜕𝜕𝜕�𝑦𝑦𝑖𝑖 ;Ѳ,�  𝛽̂𝛽�
𝜕𝜕Ѳ�

=
�1 + 𝛽𝛽 �  𝑦𝑦(𝑗𝑗)�

Ѳ� 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽̂𝛽 𝑦𝑦(𝑗𝑗))

�1 + 𝛽𝛽 �𝑦𝑦(𝑗𝑗) �
2Ѳ�

        

, 𝑗𝑗 = 1,2 … . , 𝑟𝑟 

𝑓𝑓𝑗𝑗�𝑦𝑦; 𝜃𝜃 � , 𝛽̂𝛽� =
𝛽̂𝛽𝜃𝜃�

(1 + 𝛽̂𝛽𝑦𝑦𝑗𝑗)𝜃𝜃�+1
 

Then,  

𝑉𝑉�𝜃𝜃(𝑗𝑗) = −
�1 + 𝛽𝛽 �  𝑦𝑦(𝑗𝑗)�

Ѳ� 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽̂𝛽 𝑦𝑦(𝑗𝑗))

�1 + 𝛽𝛽 �𝑦𝑦(𝑗𝑗) �2Ѳ
� ·

�1 + 𝛽̂𝛽 𝑦𝑦(𝑗𝑗)�
𝜃𝜃�+1

𝛽𝛽 �𝜃𝜃�

=
�1 + 𝛽𝛽 �  𝑦𝑦(𝑗𝑗)�

2𝜃𝜃�+1 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽̂𝛽 𝑦𝑦(𝑗𝑗))

�1 + 𝛽𝛽 �𝑦𝑦(𝑗𝑗) �2Ѳ
�
𝛽̂𝛽𝜃𝜃�

= −
(1 + 𝛽̂𝛽 𝑦𝑦(𝑗𝑗)) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽 � 𝑦𝑦(𝑗𝑗))

 𝛽̂𝛽Ѳ�
           ,   𝑗𝑗 = 1,2, … . 𝑟𝑟 − 1

= −
(1 + 𝛽̂𝛽 𝑦𝑦(𝑟𝑟)) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽 � 𝑦𝑦(𝑟𝑟))

 𝛽̂𝛽Ѳ�
        ,   𝑗𝑗 = 𝑟𝑟 

Hence from (8) 

𝑙𝑙𝐵𝐵𝐵𝐵(𝛽𝛽)
= 𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙 𝛽𝛽 + 𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙�Ѳ�𝛽𝛽�

−�𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)) − �Ѳ�𝛽𝛽�
𝑟𝑟

𝑗𝑗=1

· ��𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)) + (𝑛𝑛 −  𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)�
𝑟𝑟

𝑗𝑗=1

�

+
1
2
𝑙𝑙𝑙𝑙𝑙𝑙 �

�∑ 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)� + (𝑛𝑛 − 𝑟𝑟) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟))𝑟𝑟
𝑗𝑗=1 �2

𝑟𝑟 �

− 𝑙𝑙𝑙𝑙𝑙𝑙 �����
𝛽𝛽

1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)
��

(1 + 𝛽̂𝛽𝑦𝑦(𝑗𝑗))𝑙𝑙𝑙𝑙𝑙𝑙 (1 + 𝛽̂𝛽𝑦𝑦(𝑗𝑗)

𝛽̂𝛽Ѳ�
��

𝑟𝑟−1

𝑗𝑗=1

�

+ ��
𝛽𝛽

1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)
+

(𝑛𝑛 − 𝑟𝑟)𝛽𝛽
1 + 𝛽𝛽𝑦𝑦(𝑟𝑟)

� ·
(1 + 𝛽̂𝛽𝑦𝑦(𝑟𝑟)) 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝛽̂𝛽𝑦𝑦(𝑟𝑟)

𝛽̂𝛽Ѳ�
�� 

where,  

Ѳ�𝛽𝛽 =
𝑟𝑟

∑ log�1 + 𝛽𝛽𝑦𝑦(𝑗𝑗)� + (𝑛𝑛 − 𝑟𝑟) log(1 + 𝛽𝛽𝑦𝑦(𝑟𝑟))𝑟𝑟
𝑗𝑗=1

 

 

The corresponding estimator is 𝛽𝛽�̂𝐵𝐵𝐵𝐵 , which will be 
computed numerically. 

5. Simulation Study 
In order to compare the performance of estimators which 

are obtained from the profile likelihood function and 
modified profile likelihood functions, a simulation study 
on point estimation for the Lomax scale parameter 
(parameter of interest) was carried out for different sample 
sizes, and different true parameters values of 𝜃𝜃 & 𝛽𝛽. Bias 
and mean square error (MSEs) are presented for all the 
following point estimators: 𝛽̂𝛽𝑝𝑝  , 𝛽𝛽�̂𝐵𝐵𝐵𝐵  and 𝛽𝛽�̂𝐵𝐵𝐵𝐵 . 𝛽̂𝛽𝑝𝑝  
under both no and type II censoring. 𝛽̂𝛽𝑝𝑝 denotes the profile 
likelihood estimator. 𝛽𝛽�̂𝐵𝐵𝐵𝐵  and 𝛽𝛽�̂𝐵𝐵𝐵𝐵  are the modified 
profile likelihood estimators derived from 
Barndorff-Nielsen's modified profile likelihood function 
based on an empirical covariance and an ancillary statistic 
approximation, respectively. 

The following steps were followed: 
(1) For a given value of 𝑛𝑛,𝛽𝛽,𝜃𝜃, and 𝑟𝑟 based on censored 

proportions 20% (failure rates of 80%) we generate a 
sample from the Lomax distribution. 

(2) For a starting value of 𝛽𝛽 (initial guess), we use the 
“optim” function in R to find the maximum profile 
likelihood estimator (MPLE) for the scale parameter 
(𝛽𝛽). 

(3) Using the estimate of 𝛽𝛽 (found in step 2), we calculate 
the estimate of the shape parameter (𝜃𝜃). 

(4) Using the estimated values of 𝛽𝛽 (MLPE) and 𝜃𝜃 as 
starting values, we calculate the maximum modified 
profile likelihood estimators (adjusted MPLE). 

(5) The previous steps are repeated 5000 times. The 
biases and the mean square errors of the estimators 
are computed. The results are shown in Tables 1-4. 

Table 1.  Bias of 𝛽𝛽 for different sample sizes and true parameters 
value,(𝜃𝜃,𝛽𝛽) = (1.0,1.0) 

Sample sizes 𝜷𝜷�𝒑𝒑 𝜷𝜷��𝑩𝑩𝑩𝑩 𝜷𝜷��𝑩𝑩𝑩𝑩 

n=50, r=40 0.0041898 −0.0273814 0.1378329 

n=75, r=60 0.0180403 −0.0036065 0.1057426 

n=100, r=80 0.0113555 −0.004815155 0.0755752 

Table 2.  Bias of 𝛽𝛽 for different sample sizes and true parameters 
value,(𝜃𝜃,𝛽𝛽) = (1.2,1.0) 

Sample sizes 𝜷𝜷�𝒑𝒑 𝜷𝜷��𝑩𝑩𝑩𝑩 𝜷𝜷��𝑩𝑩𝑩𝑩 

n=50, r=40 −0.0029896 −0.03752231 0.1447843 

n=75, r=60 0.01656271 −0.007219475 0.1143707 

n=100, r=80 0.01068609 −0.007226078 0.08313256 
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Based on the two tables above (Tabel 1 and 2) that 
contain bias for the following point estimators: 𝛽̂𝛽𝑝𝑝  , 𝛽𝛽�̂𝐵𝐵𝐵𝐵 
and 𝛽𝛽�̂𝐵𝐵𝐵𝐵  under type II censoring, the results show that 
when the proportion of censored observations is 20 % 
(Failure Rates of 80%), the modified profile maximum 
likelihood estimator based on an empirical covariance 
approximation (𝛽𝛽�̂𝐵𝐵𝐵𝐵) has the smallest bias for sample sizes 
n=75 and n=100 and across all the true parameters values 
considered (𝜃𝜃,𝛽𝛽) = (1.0,1.0), (1.2,1.0). It is also worth 
mentioning that as the sample size increases, the bias of the 
modified empirical covariance estimator 𝛽𝛽�̂𝐵𝐵𝐵𝐵  decreases. 

Table 3.  MSEs of 𝛽𝛽 for different sample sizes and true parameters 
value,(𝜃𝜃,𝛽𝛽) = (1.0,1.0) 

Sample sizes 𝜷𝜷�𝒑𝒑 𝜷𝜷��𝑩𝑩𝑩𝑩 𝜷𝜷��𝑩𝑩𝑩𝑩 

n=50 1.430854 1.301745  1.969685 

n=75 0.9000115 0.8466787 1.118009 

n=100 0.6702818 0.6407744 0.7857691 

 Table 4.  MSEs of 𝛽𝛽 for different sample sizes and true parameters 
value,(𝜃𝜃,𝛽𝛽) = (1.2,1.0) 

Sample sizes 𝜷𝜷�𝒑𝒑 𝜷𝜷��𝑩𝑩𝑩𝑩 𝜷𝜷��𝑩𝑩𝑩𝑩 

n=50, r=40 1.637519 1.490294  2.27276 

n=75, r=40 1.095941 1.0286 1.374207 

n=100, r=80 0.7987492 0.7620716 0.9470012 

From Table 3 and 4, we notice that the modified profile 
maximum likelihood estimator based on empirical 
covariance approximation (𝛽𝛽�̂𝐵𝐵𝐵𝐵 ) has the smallest mean 
squared errors for all sample sizes and true parameters 
values considered. Therefore, we can conclude that based 
on mean squared errors, the best performing estimator 
under type II censoring is 𝛽𝛽�̂𝐵𝐵𝐵𝐵 . It is worth noting that, 
under no censoring (𝑟𝑟 = 𝑛𝑛) , the standard profile 
likelihood estimator (𝛽̂𝛽𝑝𝑝  ) has the smallest bias and mean 
squared errors (MSEs) under the same sample sizes and 
true parameters values that we considered in type II 
censoring data. 

6. Numerical Example with Real Data 
In this section, we consider real-world data sets to 

demonstrate the proposed method and validate how our 
estimators perform in practice. We assume that the data is a 
random sample from the Lomax distribution. 

Measurements of total rain volume in South Florida 
from cloud base following aircraft seeding penetration are 
included in the data. The research was based on 
radar-evaluated rainfall from 52 cumulus clouds in south 
Florida, 26 seeded clouds, and 26 control clouds. This data 
set was obtained from Simpson's   [22] meteorological study 
and was further analyzed by Giles et al. [23], Helu et al. 
[24], and A. Baklizi et al. [9]. We obtained the profile 
likelihood estimator and modified profile likelihood 
estimators for the Lomax scale parameter using only 

measurements from the control group. For type II 
censoring, we consider subset of these measurements and 
impose a failure rate of 80%. The values of these 
estimators are shown in Table 5. 

Table 5.  Point estimates of the Lomax scale parameter (𝛽𝛽)based on the 
real data set 

Estimator Point estimates 

𝛽̂𝛽𝑝𝑝 0.01909989 

𝛽𝛽�̂𝐵𝐵𝐵𝐵 0.018055 

𝛽𝛽�̂𝐵𝐵𝐵𝐵 0.02299024 

It has been noticed that the point estimate obtained from 
the modified profile likelihood function based on an 
empirical covariance approximation (𝛽𝛽�̂𝐵𝐵𝐵𝐵 ) is numerically 
smaller than the standard profile likelihood estimator 
( 𝛽̂𝛽𝑝𝑝  ),and  also, to the modified profile maximum 
likelihood estimator based on ancillary statistics 
approximation (𝛽𝛽�̂𝐵𝐵𝐵𝐵). This is to be expected, given that the 
results of the previous simulation study show the mean 
squared errors of this estimator (𝛽𝛽�̂𝐵𝐵𝐵𝐵 ) is the least. 

7. Conclusion 
The Barndorff-Nielsen modified profile likelihood 

function, which is based on empirical covariance and an 
ancillary statistic approximation, is used to modify the 
standard maximum profile likelihood estimator for the 
Lomax scale parameter (parameter of interest). The 
numerical results of the simulation study under type II 
censoring show that the modified profile maximum 
likelihood estimator based on empirical covariance 
approximation outperforms not only the standard 
maximum profile likelihood estimator, but also the 
modified profile maximum likelihood estimator based on 
ancillary statistics approximation. It has almost smallest 
bias and always has the lowest mean squared errors for all 
sample sizes considered (n=50,75, and 100) with 20% 
censored observations and across all true values of the 
parameters considered. When there is no censoring in the 
data, the standard profile maximum likelihood estimator 
performs the best because it has the smallest bias and mean 
squared errors for the same sample sizes and true values of 
parameters that we considered when there is type II 
censoring. 
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