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Abstract: MXenes have emerged as promising materials for various mechanical applications due
to their outstanding physicochemical merits, multilayered structures, excellent strength, flexibility,
and electrical conductivity. Despite the substantial progress achieved in the rational design of
MXenes nanostructures, the tutorial reviews on the mechanical properties of self-standing MXenes
were not yet reported to our knowledge. Thus, it is essential to provide timely updates of the
mechanical properties of MXenes, due to the explosion of publications in this filed. In pursuit
of this aim, this review is dedicated to highlighting the recent advances in the rational design of
self-standing MXene with unique mechanical properties for various applications. This includes elastic
properties, ideal strengths, bending rigidity, adhesion, and sliding resistance theoretically as well
as experimentally supported with various representative paradigms. Meanwhile, the mechanical
properties of self-standing MXenes were compared with hybrid MXenes and various 2D materials.
Then, the utilization of MXenes as supercapacitors for energy storage is also discussed. This review
can provide a roadmap for the scientists to tailor the mechanical properties of MXene-based materials
for the new generations of energy and sensor devices.
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1. Introduction

Carbon-based nanostructures (C-Ns) such as graphene, carbon nanotubes, and carbon nitride are
of great interest due to their unique physiochemical merits such as high surface area, thermal stability,
and outstanding mechanical properties [1–4]. These properties promoted the utilization of C-Ns in
structural composites, protective coatings, fibers, energy storage, catalysis, and durable wearable
sensors; however, their complicated fabrication process remains a major challenge [5–7]. Y. Gogotsi
and M.W. Barsoum groups discovered a novel family of 2D transition metal carbides or nitrides called
MXene (pronounced “maxenes”) [8]. The general formula of MXene is Mn+1XnTx (n = 1–4), where M
represents transition metals, A is an A-group element of group 13 to 15 in the periodic table, X is carbon
or nitrogen, and Tx is surface functional groups (OH, O, Cl, F) (Scheme 1) [8]. There are around three
main structures of MXenes, including M2XTx, M3X2Tx, and M4X3Tx, derived from the selective etching
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of MAX phases (M, A, and X elements are in Scheme 1) including M2AX, M3AX2, and M4AX3. To this
end, more than 30 MXenes compositions have prepared, such as Ti2CTx, Nb2CTx, V2CTx, Ti3C2Tx,
Mo2TiC2Tx, Mo2Ti2C3, TiyNb2−yCTx, and NbyV2−yCTx, along with additional dozens were explored
by computational methods [9–11].

MXenes possess unique physical and chemical merits such as great miscibility, high surface area
to volume ratio, accessible active sites, surface charge state, electron-rich density, and absorption
of electromagnetic waves [12]. This is besides the impressive properties of 2D carbide transition
metal carbides/nitrides, such as multilayered structures with excellent mechanical properties, strength,
flexibility, and high electrical conductivity [12]. Additionally, the fabrication process of MXene is
scalable, productive, controllable, facile, and feasible for large-scale applications [12]. MXenes with high
negative zeta potential are miscible in various solvents, polymeric materials, and other C-Ns materials
resulting in the formation of unlimited composites with various properties [13]. The impressive
mechanical properties of MXenes are one of the unique features for MXene [2,14–16]. Despite the
significant progress in the synthesis of MXene nanostructures, Ti3C2Tx compound is the most widely
studied material, for various applications, due to its impressive electrical conductivity, mechanical
properties, and electrochemical properties electromagnetic shielding [2,14–16].

There are numerous published reviews in the fields of MXenes for energy, catalysis,
and environmental remediation [12,17–23]. However, the reviews on the mechanical properties
of self-standing MXenes are not yet reported [24]. Many studies have shown that MXenes exhibits
excellent mechanical ion adsorption properties, which in turn will set the stage for exploring the
possibility of their use in sensors and flexible devices [6,24–26]. For instance, the strain-tunable
electrochemical properties of MXenes enable them to be a propitious solution for flexible and stretchable
devices [6,24–26]. Regarding the electrochemical properties of MXenes, their large specific surface
area makes them a promising candidate for various applications such as supercapacitor, Li-ion and
Sodium-ion batteries, hydrogen storage, adsorption, and catalysts [6,24–26]. Due to the abundant
research and ceaseless publications on the mechanical properties of MXene (more than 146 articles,
according to SciFinder), it is crucial to provide a timely update of research efforts in this area.

Inspired by this, the presented review summarizes the recent progress of research work on
the mechanical properties of self-standing MXenes, from both theoretical and experimental views.
This includes: (1) elastic properties and superior strengths, (2) bending rigidity, (3) adhesion, and sliding
resistance with their fundamental mechanism supported with numerous representative paradigms.
Also, there are deep insights into the utilization of MXenes as supercapacitors. The future perspective
of the mechanical applications of MXene is also discussed.
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2. Mechanical Properties of Self-Standing MXenes

In this section, the elastic properties and superior strengths of self-standing MXenes are briefly
summarized, and we discuss the effect of other parameters such as layer thickness, functional groups,
and presence of point defects, different transition metals, and substitutional doping. The mechanical
properties of MXenes with different compositions are summarized in Table 1.
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Table 1. The mechanical properties of MXenes with different compositions.

Materials Morphology Preparation Method
(Experimentally/Theoretically) Measurements

Elastic
Constants c11

[GPa]

Young’s
Modulus

E
[GPa]

Strains along
Uniaxial x (εx)

Strengths along
Uniaxial x (σx)

[GPa]
Ref.

Ti3C2H2 2D unit cell Theoretical calculations VASP/PBE 419 392 - - [27]

Zr3C2O2
2D hexagonal

lattice Etching Al layers in Zr3AlC5 DFT 392.9 - - - [28]

Ti2C 2D sheets Theoretical calculations VASP 609 - - - [29]

Ti2CO2 2D sheets Theoretical calculations Nanoindentation
process - 983 - - [30]

Ta2C 2D sheets Theoretical calculations CASTEP/Wu-Cohen 788 - - - [31]

Ti2C 2D sheets Theoretical calculations MD - 597 - - [32]

Mo2C 2D sheets Chemical vapor deposition VASP - 312 - - [33]

Ti2CO2 2D sheets Etching Al layers in Ti2AlC2 VASP/PBE 745 570 0.28 56 [34]

W2C 2D sheets Theoretical calculations VASP/PBE 781.9 - 0.16 65.6 [35]

Materials Morphology Preparation method Measurements c11
(N/m)

E
(N/m) εx

σx
(N/m) Ref.

Ti3C2O2 2D unit cell Theoretical calculations VASP/PBE 379 347 - - [27]

W2HfC2O2 2D unit cell Theoretical Calculations VASP/PBE - - - 47.3 [34]

Mo2CO2
hexagonal unit

cell Theoretical calculations VASP/PBE 361 302 - - [35]

Ti2CO2 2D sheets Theoretical Calculations DFT - 241 0.24 30.7 [36]
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2.1. Elastic Properties and Ideal Strengths

2.1.1. Effect of Functional Terminations

Functional terminations (–O, –F, –OH) of carbides have a significant effect on the structural and
mechanical properties of MXenes, as demonstrated extensively by DFT calculation. Figure 1a shows
the variation of the calculated elastic constants c11 of M2CT2 MXenes as a function of the layer thickness
and different functional terminations [27]. It can be seen that, except for Cr2CO2, the elastic constant
for MXenes with oxygen functionalization showed higher elastic constants compared to those with
hydroxyl and fluorine functional groups [27]. This is due to the stronger interaction between the
oxygen and surface M atoms [27].

The stress-strain curves, as well as the deformation mechanisms, were investigated in response to
tensile stress by DFT calculation for 2D Tin+1Cn (n = 1–3) (Figure 1b) [37]. Three loading conditions
were considered to measure the intrinsic mechanical responses to tensile strain in 2D Ti2C, which are
biaxial tension, uniaxial tension along the x-direction, and the y-direction [37]. The stress-strain
relations for 2D Ti2C under different loading conditions are shown in (Figure 1b) [37]. It was found
that 2D Ti2C is an elastically isotropic material, since the corresponding Young’s modulus Ex and Ey

were estimated to be 620 GPa and 600 GPa, respectively [37]. Moreover, 2D Ti2CO2 can sustain higher
strains for the three loading conditions than 2D Ti2C, which is even higher than that of graphene due
to surface functionalizing oxygen [37]. Another large variation in mechanical properties was detected
when different transition metal, along with surface functional groups, are used [28,38]. Furthermore,
in comparison to other functional groups in Ti3C2, the oxygen group possesses the highest in-plane
planar elastic modulus, as shown in (Figure 1c–e), leading to enhancement of strength, and adsorption
energy, which indicates its good thermodynamic stabilization [39]. This can be attributed to the
significant charge transfer from inner to outer surface bonds [39].
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Figure 1. (a) The elastic constants of c11 for M2CT2 MXenes. Reproduced with permission from [27].
Copyright IOP Publishing, 2015. (b) Calculated stress-strain curves of 2D Ti2C. Reproduced with
permission from [37]. Copyright RSC, 2015 (c) The stress-strain curves in the uniaxial tension Y direction,
(d) The stress-strain curves in the uniaxial tension X direction for Ti3C2 and P1 and P2 for Ti3C2O2,
(e) The stress-strain curves in biaxial tension for Ti3C2 and T1 and T2 for Ti3C2O2. All the vertical lines
mention the maximum stress values. Reproduced with permission from [39]. Copyright APS, 2016.
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The effect of surface termination groups on the elastic constants of 2D Ti2CT2 and Ti3C2T2 was
investigated using first-principles calculation by Density-functional theory (DFT) simulation [40].
It was found that the stiffness is highly dependent on the termination group. The elastic stiffness
of the MXenes is only maintained in the case of MXenes with O terminations while deteriorates in
the case of F and OH terminations [40]. This can be explained by the in-plane lattice constant in the
2D MXenes with different termination groups. The in-plane lattice constant for both 2D Ti2CT2 and
Ti3C2T2 MXenes was shortest in the case of O termination. In contrast, F and OH termination had
larger in-plane lattice constants indicating a strong interaction between Ti and terminating O atoms.

Another work in the literature [30] studied the effect of surface groups on the elastic properties of
MXenes. The ionic mobility for MXenes with different termination groups was investigated under
different strain conditions, using multiaxial loading schemes, biaxial and uniaxial tension along
x-direction and y-direction. It was observed that Ti2C (Ti2CF2) {Ti2CO2} can tolerate percentage of
strains of 8 (20) {19}, 16 (29) {24}, and 18 (10) {29} under biaxial and uniaxial tensions along the x and
y directions, respectively. Whereas Zr2C (Zr2CF2) {Zr2CO2} can withstand strains of 12 (21) {21}%,
16 (29) {27}% and 17 (16) {28}%, respectively as shown in Figure 2 [30]. It can be seen that Ti2CO2 has
higher critical strains than both Ti2C and graphene [30]. Additionally, overall, the surface groups
(O and F) increase the critical strain and provide more mechanical flexibility to the 2D MXenes by
considerably slowing down the collapse of the transition metal layers. This makes MXenes with O and
F termination groups potential candidates for high-performance lithium-ion batteries [30]. A recent
study [32] investigated the effect of point defects on the elastic properties of MXenes using the atomistic
simulation of nanoindentation of Tin+1CnO2 monolayer. The Young’s modulus of Ti3C2O2 was found
to be 466 GPa, which is slightly lower than the obtained values by DFT and hybridized computational
molecular dynamics (MD) simulations of 523 [41] and 502 [42] GPa, respectively. This can be attributed
to the presence of surface terminations. Moreover, the breaking strength of Ti3C2O2 was calculated
as 25.2 N/m, lower than that of graphene (42 N/m) [43]. As seen in (Figure 3a,b), Ti2CO2 exhibited a
more sudden fracture compared to Ti3C2O2, at higher force and lower displacement [32]. This can be
explained by the presence of two fewer atomic layers in Ti2CO2, resulting in a decreased resistance and
more abrupt failure. The calculated elastic modulus of Ti2CO2 (983 GPa) is higher than that of Ti3C2O2

and almost approaching the value of graphene [32]. However, this value is inconsistent with the
previously reported values by DFT (636 GPa) [41] and hybridized MD (597 GPa) [42]. The calculated
breaking force for Ti2CO2 of 33.6 N/m is approaching the levels of graphene [32].

Figure 3c–f shows simulation results of the nanoindentation of Ti3C2O2 with titanium and carbon
vacancies (VTi and VC, respectively) [32]. It can be seen that the cracks failed to propagate to the
edges of the samples contained 1% VTi and 10% VC with the same extent of the pristine Ti3C2O2,
which explains the effect of defects on the fracture mechanism of the sheets [32]. Furthermore, the
presence of defects results in a 17% reduction in elastic modulus (386 GPa), which is still higher than
graphene oxide and in good agreement with the recent experimental studies [2].
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permission from [32] Copyright Elsevier, 2019. 
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Figure 3. Force-Displacement curves for pristine monolayers of Ti3C2O2 (a) and Ti2CO2 (b). (c) A
representative force-displacement curve. (d–f) photographs are showing the progressive indentation
and fracture of the same representative Ti3C2O2 monolayer with 1% VTi and 10% VC. Reproduced
with permission from [32] Copyright Elsevier, 2019.

2.1.2. Effect of the Mass of the Transition Metal

DFT calculation using the Vienna ab initio simulation package (VASP) code, the mechanical
and dynamical properties were obtained for both pristine and terminated MXene (M2XT2) structures
with M = Sc, Mo, Ti, Zr, Hf, X = C, N, and T = O, F [29]. It was found that for the pristine carbides,
unlike nitride-based pristine, there is a positive correlation between the stiffness and the mass of the
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transition metal, as indicated by elastic constants [29]. Moreover, the Young Modulus for the nitrides
was slightly higher than that of the carbides [29].

In a recent study [44], the effect of asymmetrical functionalization of F and OH groups on the
mechanical properties of monolayer Janus MXenes M2X (M = Sc, Ti, V, Mn, Nb, Mo, Hf; X = C, N)
where the X atomic layer is sandwiched between 2 M layers was studied via DFT. It was found that
mechanical properties depend on the mass of the transition metal and the surface functionalization.
Results show that asymmetric functionalization has a consequential effect on the elastic properties of
the MXenes. For all the pristine M2X, the in-plane stiffness C of M2C is slightly lower than that of M2N
due to the additional valence electron that the N atom provides than C atoms than in turn generate
stiffer M-X bonds. However, due to the H structure of Mo2X, the in-plane stiffness of Mo2N is slightly
lower than that of Mo2C. Another finding was that by asymmetrical F/OH surface functionalization,
the in-plane stiffness C of Sc2C was increased from 92 Nm−1 to 192 Nm−1, which agrees with what
was found by [45]. Moreover, the in-plane stiffness C of monolayer M2X is lower than that of both
graphene [46] and single layer h-BN [47]. Upon asymmetrical surface functionalization, the mechanical
stability and the in-plane stiffness C of monolayer M2X can be enhanced [44]. Despite the fact that it is
experimentally challenging to synthesize MXenes accompanied with mixed functional groups [48],
eventually, the Janus MXenes could be synthesized experimentally, similar to the Janus graphene [33]
and Janus graphene oxide [49].

2.1.3. New Types of MXenes

The enhanced mechanical properties of new types of MXenes, such as Mo2C were predicted by
DFT calculations [34]. The Mo2C was fabricated via the chemical vapor deposition (CVD) method,
where the carbon source was methane, and Cu-foil was selected to be the substrate for a molybdenum
foil [50]. The lateral size of the fabricated Mo2C was found to be >100 µm [50]. No significant structural
changes were observed after immersing Mo2C in several solvents such as isopropanol, ethanol, HCl,
or after thermal annealing in air at 200 ◦C for 2 h, indicating its thermal and chemical stability [50].
Compared to the MoS2, Mo2C had a slightly higher biaxial elastic modulus of 312 ± 10 GPa [34].
The relatively large elastic modulus could be explained by the strong interactions between Mo and C
atoms. The calculated stress-strain curve for Mo2C (Figure 4a) shows mostly an elastic response until a
critical strain of 0.086, then the Mo2C exhibited creep deformation. Although this critical strain is less
than that of MoS2, the ideal strength of Mo2C is predicted as 20.8 GPa, approaching the value of a
monolayer of MoS2 (23.8) GPa [34]. The impressive mechanical properties make Mo2C a potential
candidate for mechanical applications.

2.1.4. Effect of Doping

The effect of doping on the elastic properties of MXenes was investigated by DFT calculations [51].
Specifically, B and V atoms were substitutionally doped into Ti and C sites in Ti2C, respectively,
resulting in Ti2(C0.5B0.5) and (Ti, V)C. While V-doping results only in marginal enhancement, B-doping
yields improved the elastic properties by decreasing the in-plane Young’s modulus and the yield
strength. The reduction in the stiffness can be attributed to the weak-bond of Ti-B compared to the Ti-C
bond (Figure 4b,c) [51]. Figure 5 shows the calculated stress-strain curves using the non-magnetic (NM)
and the lowest energy antiferromagnetic (AFM) states [51]. It can be seen that a remarkable decrease of
about 25–27% in Young’s modulus and in-plane stiffness of Ti2(C0.5B0.5) compared to Ti2C. However,
the doping of V at Ti sites results in the same stiffness of the undoped Ti2C. Intriguingly, the stiffness
of Ti2(C0.5B0.5) was about 4.2, 1.5, 1.86, and 3.1 times higher than that of 2D MoS2, graphene, h-BN,
and SiC reported elsewhere, respectively, due to the B-doping effect [51,52]. In contrast, Ti2(C0.5B0.5)
and (Ti,V)C with O-termination groups exhibited improved elastic properties compared to undoped
Ti2C O-passivated or O-free, owing to the enhancement of the local strain, causing a consequent
enlarging of the average thickness of O-passivated MXene by nearly 2% [51].
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Another study [53] predicted enhanced elastic properties of a 2D Tungsten Carbide (W2C)
monolayer by DFT calculations. The calculated c11 of 781.9 GPa indicated that W2C is mechanically
stable as it satisfies the 2D materials criteria for mechanical stability [36]. The uniaxial tensile loading
was applied along the armchair direction, where the correlation between the strain and stress was
investigated. As the strain increases, the stress increases until approaching the ultimate tensile strength,
as shown in (Figure 6a), then it decreases gradually. The same trend goes for the calculations along
the zigzag direction. The calculated ultimate strength of W2C is comparable to Ti2C [37] but higher
than that of MoS2 [54]. The Young’s modulus of W2C along with the armchair and zigzag directions
are 648 and 645 GPa, respectively, compared to graphene (1000 GPa) [43] and Ti2C (600 GPa) [37].
Furthermore, W2C was observed to have a high negative Poisson’s ratio (NPR) as they exhibited
a positive strain along the longitudinal direction while applying stretching force on the transverse
direction (Figure 6b) [53]. This intrinsic NPR of W2C could be explained by the robust coupling
between C-p and W-d orbitals in the pyramid structural unit. Additionally, incorporating the surface
functional groups to the calculations show that the NPR of W2C was turned into PPR due to the
weakening of M–C interactions [53].
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2.1.5. Effect of Varying F/O Ratio

The mechanical properties of Ti2CTn terminated by O− and F− were manipulated by varying
F/O ratio from 1:17 to 17:1 [55]. The mechanical properties of the five thermodynamically most stable
structures with F/O ratios 1: 2, 5:4, 2:1, 7:2, and 17:1 were investigated. It was noticed that as the
F/O ratio increases, the Young’s, along the x- and y-directions, and shear moduli of Ti2CT2 gradually
decrease. For instance, Young’s modulus along the x-direction decreased from 222 to 159 (N m−1),
while the shear modulus decreased from 88 to 58 (N m−1). Additionally, all the Ti2CT2, with pure and a
mixture of surface terminations, exhibited Poisson ratios greater than that of graphene (0.224), ranging
from 0.24 to 0.37. Ti2CO1.33F0.67 exhibits the highest Young’s modulus along the x-direction (222 N m−1),
among other Ti2CT2, which is comparable to Ti2CO2 (241 N m−1). The calculated stress-strain curves
shown in (Figure 6c–e) indicated that Ti2CO2 (24%, 30%, and 20% under uniaxial tensions along the x-
and y-directions and under biaxial tensions) and Ti2CF2 (25%, 14%, and 18%) have higher critical strains
than that of Ti2CT2 with mixed terminations. Thus, the mechanical flexibility could be decreased with
mixed functional groups. Moreover, a lower critical strain of Ti2CT2 is observed with a higher degree of
the mixture (Figure 6c–e), such as in Ti2CO0.11F1.89, which could sustain only the lowest critical stains.
A similar trend is seen for the ideal strength with the variation of the degree of mixture, indicating that
the best mechanical strengths are assigned to Ti2CO1.33F0.67 and Ti2CO0.11F1.89. These findings pave
the way to demonstrate more effective methods in tuning the electrochemical properties of MXenes
by strains.

2.1.6. Effect of Number of Layers and Layer Thickness

The elastic modulus and breaking strength of monolayer and bilayer Ti3C2Tx flakes were
experimentally determined by AFM indentation [2]. It was shown that E2D values determined for
bilayer Ti3C2Tx flakes are exactly twice that determined for monolayer MXene membranes, suggesting
strong interaction between the layers due to hydrogen bonding. A single layer of Ti3C2Tx has an
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effective Young’s modulus of approximately 333 GPa, which is higher than that of graphene oxide
(210 GPa) and some other MXenes. Meanwhile, the breaking strength of a single layer of Ti3C2Tx was
17.3 ± 1.6 GPa. It was noted that Young’s modulus obtained experimentally is lower than that from the
MD simulation due to the presence of defects and surface functionalization.

The effect of layer thickness on the structural and elastic properties of 2D Tin+1Cn was studied using
MD calculations [42]. It was demonstrated that the Young’s modulus of MXenes could be significantly
increased by decreasing the layer thickness. The Young’s modulus of Ti2C, Ti3C2, and Ti4C3 was found
to be 597, 502, and 534 GPa, respectively, with a strain ε less than 0.01 and within 10% interpolation
error. As observed, the highest Young’s modulus was reported to the thinnest Ti2C carbide (3 atomic
layers). These results are in agreement with other theoretical predictions from DFT [41].

Similar findings on the effect of monolayer thickness on the elastic properties of the carbide
(Tin+1Cn) and nitride-based (Tin+1Nn) MXenes, by DFT calculations, were reported in another study [53].
It was shown that increasing the monolayer thickness decreases Young’s moduli of MXenes. The Young’s
moduli of the Tin+1Cn were found to be 601, 473, and 459 GPa for Ti2C, Ti3C2, and Ti4C3, respectively,
which is in good agreement with the values obtained previously by DFT calculations [37]. The bulk
model was generated by increasing the layer of atoms to infinity, thus showing that bulk Tin+1Cn has
Young’s modulus of 433 GPa, lower than that of rest of Tin+1Cn MXenes. Although a similar trend
was observed for the Tin+1Nn, higher Young’s moduli of Tin+1Nn over Tin+1Cn was observed, which is
consistent with previously reported experimental measurements for bulk TiN [56] and bulk TiC [57,58].
Furthermore, due to the 2D morphology of Tin+1Cn and Tin+1Nn with lower thickness, their calculated
in-plane Poisson’s ratios (ν) are 0.25 and 0.26, higher than that of the bulk TiC and TiN (~0.23) [56–58],
which is indicative of increased elasticity.

2.1.7. Effect of Intercalated Ions and Electrolytes

In order to study the effect of the intercalated ions on the mechanical properties of MXenes,
the mechanical properties were characterized at the nanoscale instead of at the macroscopic scale [59].
The elastic changes of a 2D Ti3C2Tx based electrode in a direction normal to the basal plane were
studied via in-situ contact resonance force microscopy (CRFM) imaging, combined with DFT during
alkaline cation intercalation/extraction [59]. The DFT calculations agreed well with experiments since
the presence of only 12.5% H2O resulted in a drastic decrease of E from 126 GPa of the dry sample to
29 GPa. The out-of-plane elastic modulus significantly correlated with the cations content. The MXene
electrode exhibited shrinkage of almost 10% (Figure 7a) in its lattice structure associated with a decrease
in the interlayer distance after Li+ intercalation [59].

The Ti3C2Tx exhibited smaller volume changes when K+ ions were intercalated, resulting in lower
stiffness than in the case of Li+ ions [59]. This is possible because the stiffness of the cation/water/MXene
system is enhanced by the strong oxygen atoms bonds resulted from one hydrogen atom, from the
surface hydroxyl group, being pushed out by the cations. Higher CR frequency values after Li+

intercalation indicates a stiffer 2D structure, in the direction normal to the electrode surface, with elastic
moduli ranging between 5 and 18 GPa (Figure 7b,c), twice that of water [59]. Additionally, it was found
that the elastic modulus can be tuned using the right combination of the electrolyte and the electrode.
The use of both the CRFM technique and DFT calculations revealed that the interface between the
electrode/electrolyte could be controlled by probing the mechanical properties associated with the
cation storage for applications such as supercapacitors and various types of batteries [59].
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2.2. Bending Rigidity

The mechanical response of 2D materials obtained under bending deformations is a critical
quantity called the bending rigidity [24]. The bending rigidity of MXenes is poorly investigated.
To the best of our knowledge, only two papers discussing this quantity have been published so
far. The bending rigidity is also affected by some parameters, such as the layer thickness and the
functionalization group. The bending rigidity of MXenes was first quantified in 2018 using classical
MD simulation for three different 2D titanium carbides (Ti2C, Ti3C2, and Ti4C3) to demonstrate their
bending resistance under applied bending load [60]. Ti2C was found to possess higher resistance for
bending than atomically thin graphene due to its larger thickness. In contrast, the bending strength of
Ti2C is lower than that of MoS2 due to different atomic arrangements and larger thickness in MoS2

compared to Ti2C [60].
DFT calculations have shown that the in-plane stiffness (C) and out-of-plane bending rigidity (D) of

Ti2CTx, Ti3C2Tx, Nb2CTx, and Nb4C3Tx (T = O, OH, and F) are highly dependent on the layer thickness
of [Mn+1Xn] and functionalization groups [61]. As the [Mn+1Xn] layer thickness increases, the in-plane
stiffness increases (Figure 8a) due to the increase in the number of M-C bonds [61]. Nb2CT2 and Ti2CT2

have relatively low in-plane stiffness due to having only a three-atomic layer in [M2X], compared to
seven-atomic-thick [Nb4C3] layer in Nb4C3T2 with the largest in-plane stiffness. Moreover, the surface
terminations in MXenes significantly increased the stiffness (Figure 8a) [61]. The O-functionalized
MXenes were found to have higher in-plane stiffness than that of bare MXenes due to the strong
O−M bonding. However, similar in-plane stiffness was noticed for OH, and F terminated Mxenes [61].
Figure 8b depicts the bending rigidities of the four MXenes and their functional groups, showing that
Ti2C has a D value of 4.47 eV [61]. Compared to MXenes, the surface terminations groups decreased
their stiffness of graphene and graphene oxides [62,63]. Additionally, the measured bending rigidities
of Ti2C with surface functionalities (4.47 eV) were relatively lower than the previously reported value
by MD calculations (5.21 eV) [61], but was higher than that of a graphene monolayer (1.2 eV) [64].
Meanwhile, three-atom-thick Ti2C and Nb2C revealed superior flexibility (observed by Foppl-von
Karman number per unit area γ) and higher in-plane stiffness, compared to three-atom-thick MoS2

(9.14 eV) [61]. Therefore, increasing the layer thickness decreases the flexibility of MXenes; however,
better flexibility could be observed in MXenes with OH terminations, and the thinnest MXenes with a
noticeable decrease in the in-plane stiffness (requires milder exfoliation techniques) [61]. As observed
in Figure 8c, with increasing the layer thickness of MXenes, the in-plane stiffness, and out-of-plane
bending rigidity increases [61]. Lastly, the bending rigidity increases with effective thickness ts in a
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cubic manner, as presented in Figure 8d where C/D ratios were plotted and γ and D considered as a
function of effective thickness for 2D materials [61].Nanomaterials 2020, 10, x FOR PEER REVIEW 13 of 29 
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2.3. Interlayer Adhesion and Sliding

The interlayer adhesion energy and sliding resistance are two critical characteristics of MXenes
that are affected by several parameters such as composition, shape, adhesion, and functional species.
For instance, understanding the adhesion between MXenes and various substrates is crucial for MXene
device fabrication and performance. DFT calculations demonstrated that the surface functionalities
(T = OH, F, and O) weaken interlayer coupling of Ti3C2T2, relative to the bare counterparts as well
as other different 2D materials (Figure 8e) [65]. The binding energies of stacked Tin+1CnT2 were
found to be about 2- to 6-fold those of 2D graphite and MoS2 materials with weak interlayer coupling.
The interlayer coupling of Ti3C2T2 depends on the surface functionalities, which decrease the interlayer
coupling, resulting in exfoliation of the stacked Ti3C2T2 into monolayers with outstanding mechanical
properties compared to other 2D materials. The OH-containing functionalities were the most strongly
coupled Ti3C2T2 with the highest mechanical properties. The determined Young’s moduli normal
to the layer plane was 226 GPa for Bernal-Ti3C2(OH)2, which is more energetically preferred and
also higher than that of highly oriented pyrolytic graphite (about 34 GPa). Furthermore, another
study investigated the effect of surface functionalization on the sliding resistance of M2CO2 compared
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to bare counterparts using DFT, along with exploring the strain effect on the sliding resistance [66].
At equilibrium, the layers can easily slide due to the smaller binding energy as a consequence of
larger interlayer distance. Due to the oxygen hollow at the surface of oxygen functionalized MXenes,
the sliding resistance is increased. However, due to the strong metallic interactions between the
stacked M2C layers, the sliding resistance is much higher than that of M2CO2. Another finding is
that the relation between the gap and the energy barrier is not linear, whereas as the strain increases,
the gap first starts increasing until it reaches maximum value then starts decreasing again. Comparing
different stacking configurations, the mirror stacked M2CO2-II possesses a better lubricant property
than the parallel stacked M2CO2-I because its sliding energy barrier is much lower. In addition,
the sliding barrier can be significantly enhanced by normal compression. Whereas, the interlayer
sliding, owing to the transfer of different charges from M to O atom, may effectively be hindered by
the in-plane biaxial tension. The minimum energy pathway can be modified entirely by the uniaxial
tension strain due to anisotropic expansion of the surface electronic state. The functionalized MXenes
with strain-controllable frictional properties promise lubricating materials due to their lower sliding
resistance and superior mechanical properties.

Another study [67] investigated the effect of point defects on the friction coefficients using DFT
calculations and classical MD simulations with reactive force-field (ReaxFF) potentials. The results
revealed that the sliding pathways are with low energy barriers in all Tin+1Cn (n = 1, 2, and 3) systems.
For these systems, both DFT and ReaxFF methods predicted friction coefficients for interlayer sliding,
for normal loads below 1.2 GPa, to be between 0.24 and 0.273. It was found that titanium (Ti) vacancies
in sublayers and terminal oxygen (O) vacancies at surfaces increased the friction coefficients, reaching
almost 0.31. That is because the surface roughness increased, resulting in additional attractive forces
between adjacent layers. Thereby, Ti3C2 with surfaces functionalized with –OH and –OCH3 groups
were studied and found to be able to reduce the friction coefficient to 0.10 and 0.14, respectively.

Understanding of the adhesion among MXenes and different substrates is crucial for the fabrication
of MXene devices. In this regard, the adhesion of Ti3C2Tx and Ti2CTx) with a SiO2-coated spherical
Si tip was benchmarked compared to graphene (mono-, bi-, and tri-layer) and SiO2-coated Si tip
substrate using direct AFM measurements [68]. This is based on using the Maugis-Dugdale theory
for conversion of the adhesion force measured by the AFM to adhesion energy with consideration of
the surface roughness [68]. The average adhesion energies of Ti3C2Tx (0.90 ± 0.03 J m−2) was higher
than that of Ti2CTx (0.40 ± 0.02 J m−2) and was in the range of adhesion between graphene and SiO2.
The superior adhesion energy between SiO2 and Ti3C2Tx is due to its thicker monolayer relative to
Ti2CTx. Another observation was that the adhesion energy of multilayer MXene stacks is dependent on
the number of monolayers, in contrast to graphene, which is attributed to the larger interlayer spacing
and monolayer thickness of the MXenes.

3. Self-Standing MXene as Electrode for Supercapacitors

Supercapacitors are highly efficient energy storage devices, owing to their excellent power density,
fast charge propagation, and long-term durability. The capacitance performance can be calculated
using the maximum stored energy (E) and this equation E = 1/2 CV2, where C is the total capacitance,
and V is the working voltage. Meanwhile, the power delivery (P) can be calculated using this equation
P = V2/4R, where R is the equivalent series resistance of the supercapacitor. Self-standing MXenes are
among the most promising materials for supercapacitors due to their excellent electrical conductivity,
mechanical flexibility, high surface area, and high capacitance [24,69,70]. Thereby, few reviews
emphasized the utilization of MXenes as supercapacitors, which showed that self-standing Ti3C2Tx is
the most studied MXenes [71–73]. Several factors determine the capacitance performance of MXenes,
such as their morphology, surface area, composition, preparation approaches, as well as the type of
electrolytes. Table 2 shows the utilization of self-standing Ti3C2Tx prepared by various approaches as
efficient supercapacitors, which showed comparable or better performance than that of hybrid Ti3C2Tx

(i.e., combined with PPy, rGO, and CNTs) [74–76]. Table 3 shows the supercapacitance performance of
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self-standing Ti3C2Tx and hybrid Ti3C2Tx in different electrolytes solutions. The performance of both
self-standing and hybrid Ti3C2Tx in acidic electrolytes (H2SO4) was significantly higher than that in
alkaline or neutral electrolytes (Table 3). For example, Ti3C2Tx showed capacitance performance of 70,
95, 245, and 450 Fg−1 in KOH, MgSO4, 1 M H2SO4, and 3 M H2SO4, respectively [76–78]. The same
phenomenon was observed in self-standing V2CTx, which showed the capacitance performance of (487 F
g−1) in H2SO4 compared to 225 Fg−1 in MgSO4 and 184 Fg−1 in KOH [79]. Interestingly, the capacitance
of self-standing V2CTx in H2SO4 electrolyte (487 F g−1) [79] was superior to Ti3C2Tx, Mo2CTx,
Mo1.33CTx 245, 196, and 339 F g−1, respectively [74,75,80]. The superior capacitances performance of
self-standing MXenes in acidic electrolytes compared to in neutral or alkaline electrolytes is owing
to the pseudocapacitive performance with surface redox reactions in acidic electrolytes relative to
compared to the ion-intercalation capacitance in neutral and alkaline electrolytes [24]. The surface
functionalities (i.e., O2, OH, and F) have a significant effect on the capacity of the H2SO4 electrolyte;
The increase of O and decrease of F ions termination in Ti3C2Tx increases the capacitance [81].

The pseudocapacitance characteristics and internal mechanism of various MXenes as
supercapacitors deeply studied in H2SO4 electrolyte, in addition to the factors determine the capacitance
effect via DFT calculations [81]. This is included various MXenes (Mn+1XnTx), where M = Sc, Ti, V,
Zr, Nb, Mo; X = C, N; T = O, OH; n = 1–3) in H2SO4 electrolyte [82]. The predicted capacitance
performance of Ti3C2Tx, Mo 2CTx, and V2CTx [82,83] were similar to the experimentally measured
capacitances 235, 245, 90, and 380 F g−1, respectively [77,79,82].

Evaluating the descriptors for the capacitance trends, we find that more positive hydrogen
adsorption free energy (weak binding to H) and smaller change of the potential at the point of zero
charge after H binding lead to higher capacitance. Interestingly, the pseudocapacitive performance of
nitride MXenes electrodes outperformed carbide MXenes. Mainly, Ti2NTx is expected to possess a
high gravimetric capacitance under any applied voltage in H2SO4, owing to the low atomic weight
and favorable redox chemistry of Ti. Meanwhile, Zrn+1NnTx is anticipated to possess the best areal
capacitive performance [82]. The higher capacitance performance is attributed to the higher adsorption
free energy and lower change of the potential at the point of zero charge after H binding [82].
The relationship between the charge storage of nitride and carbide MXenes against the shift in the
point-of-zero-charge (VPZC) and H2 adsorption free energy (∆GH) displayed that the large ∆GH and
the low ∆pzc lead to higher charge storage per unit of formula (Figure 9) [82]. Thereby, Zr-based
nitride MXenes (Zr2N, Zr3N2, and Zr4N3) reveal the highest charge storage under an applied potential
range from −1 to 1 V vs. standard Hydrogen Electrode (SHE) [82].

Although the tremendous progress in the capacitance performance MXenes, some remaining
gaps exist among the theoretical calculations and experiments, such as inaccurate consideration of the
multilayered structures of MXenes along with ignoring the F-rich MXenes surface [84,85].
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Table 2. Freestanding Ti3C2Tx MXenes prepared by various approaches as efficient supercapacitors compared to some Ti3C2Tx composites as a function of preparation
method. Abbreviations: PPy = polypyrrole, rGO = reduced graphene oxide, CNT = carbon nanotubes and EG = electrochemically exfoliated graphene.

MAX Phase MXene-Hybrid Material Composition Synthesis/Characterization Methods Morphology Performance Ref.

Ti3AlC2 Ti3C2Tx HF etching/TEM, SEM, CA, XRD, EIS Nanosheets 517 F/g at 1 A/g [16]

Ti3AlC2 Ti3C2Tx HF etching/EIS, XRD Paper 340 F/cm3 at 1 A/g [76]

Ti3AlC2 Ti3C2Tx-P HCl–LiF/SEM, TEM, FTIR Paper 416 F/g at 5 mV/s [84]

Ti3AlC2 Ti3C2Tx HCl–LiF/XRD, TEM, SEM Nanosheets 900 F/cm3 at 2 mV/s [77]

Ti3AlC2 Ti3C2Tx-EG HF etching/XRD, TEM, SEM Nanosheets 33 F/cm2 at 2 mV/s [86]

Ti3AlC2 Ti3C2Tx HF etching/NA Film 528 F/cm3 at 2 mV/s [87]

Ti3AlC2 Ti3C2Tx NH4F-hydrothermal/XRD, SEM, Raman, XPS Nanosheets 141 F/g at 2 A/g [88]

Ti3AlC2 Ti3C2Tx-rGO HCl–LiF/XRD, SEM Nanosheets 8.6 mWh/cm3 at 0.2 W/cm3 [89]

Ti3AlC2 Ti3C2Tx-CNT HCl–LiF/XRD, SEM, TEM Nanosheets 314 F/cm3 at 1.7 mg/cm2 [90]

Ti3AlC2 Ti3C2Tx HF etching/NA Nanosheets 2.8 mWh/cm3 at 0.225 W/cm3 [91]

Ti3AlC2 BiOCl-Ti3C2Tx HF etching/XRD, SEM, TEM, XPS Nanosheets 397 F/cm3 at 1 A/g [92]

Ti3AlCN Ti3C2Tx HCl–LiF/TEM, AFM, SEM Nanosheets 61 mF/cm2 at 5 µA/cm2 [93]



Nanomaterials 2020, 10, 1916 17 of 27

Table 3. Freestanding Ti3C2Tx and Ti2CTx MXenes supercapacitors compared to some Ti3C2Tx composites as a function of electrolyte and scan rate/current density.
Abbreviations: PPy = polypyrrole, rGO = reduced graphene oxide, CNT = carbon nanotubes, PVA = polyvinyl alcohol, and SWCNT = single-walled carbon nanotubes.

Freestanding Ti3C2Tx and Ti2CTx MXenes

Electrode Electrolyte Scan Rate/Current Density Initial Capacitance (IC) Cycle Number (CN) Capacity After Cycles (AC) Ref.

Ti2CTx 30 wt % KOH 10 A g−1 51 F g −1 6000 93% [74]

Ti3C2Tx 1 M KOH 1 A g −1 350 F cm−3 10,000 ∼94% [76]

Ti3C2Tx 1 M H2SO4 5 A g −1 415 F cm−3 10,000 ∼100% [81]

Ti3C2Tx 1 M H2SO4 10 A g −1 900 F cm−3 10,000 ∼100% [77]

Ti3C2Tx 1 M H2SO4 10 A g −1 499 F g −1 10,000 ∼100% [94]

Ti3C2Tx 6 M KOH 5 A g −1 118 F g−1 5000 ∼100% [95]

Ti3C2Tx 1 M H2SO4 5 A g −1 215 F g−1 10,000 ∼100% [96]

Ti3C2Tx 1 M H2SO4 5 A g −1 892 F g−1 10,000 ∼100% [97]

N-Ti3C2Tx 1 M H2SO4 50 mv s −1 192 F g −1 10,000 92% [98]

Ti3C2Tx/paper 1 M H2SO4 2 mA cm−2 25 mF cm−2 10,000 92% [99]

Ti3C2Tx/3D porous
layered double hydroxide 6 M KOH 1 A g−1 1061 F g−1 4000 70% [100]

400-KOH-Ti3C2Tx 1 M H2SO4 1 A g−1 517 F g−1 10,000 >99% [101]

Ti3C2Tx MXenes Hybrid Composites

Electrode Electrolyte Scan Rate/Current Density Initial Capacitance (IC) Cycle Number (CN) Capacity After Cycles (AC) Ref.

Ti3C2Tx/PVA 1 M KOH 5 A g −1
∼370 F cm−3 10,000 ∼85% [16]

PPy/Ti3C2Tx 1 M H2SO4 100 mV s−1
∼250 F g−1 25,000 92% [84]

Ti3C2Tx/SWCNT 1 M MgSO4 5 A g −1 345 F cm−3 10,000 ∼100% [102]

Ti3C2Tx/rGO 3 M H2SO4 100 mV s−1 777 F cm−3 20,000 ∼100% [103]

Ti3C2Tx/CNT 1 M EMITFSI 1 A g−1
∼80 F g−1 1000 ∼90% [104]

Ti3C2Tx/CNT 6 M KOH 10 mv s−1
∼384 F g−1 10,000 ∼100% [105]

TiO2/Ti3C2Tx 6 M KOH 5 mV s−1 143 F g−1 3000 ∼96% [106]

MnOx/Ti3C2Tx 1 M Li2SO 4 2 mV s−1 602 F cm−3 10,000 89.8% [107]

PPy/Ti3C2Tx 0.5 M H2SO4 1 mA cm−2 406 F cm−3 20,000 ∼96% [108]
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Increasing the specific surface areas (SSA) and the active redox sites of MXenes can enhance
their capacitance performance. Using these strategies, the capacitances of macroporous Ti3C2Tx and
Ti3C2Tx hydrogels reached 210 and 380 F g−1, respectively, owing to their abundance of active sites
resulted from the high SSA [84,109]. Moreover, macroporous Ti3C2Tx shows capacitances of 310,
210, and 100 F g−1 at scan rates of 0.01, 10, and 40 V s−1, respectively [78]. This indicated the direct
correlation between the current density peak (i) current and scan rate (v), which can be an indicator for
the inherent charge storage kinetics as can be calculated using this equation i = avb, where a and b are
constants. Electrodes of supercapacitors usually possess a linear relationship between v and i, i.e., (i~v).

To this end, macroporous Ti3C2Tx in H2SO4 electrolyte showed a pseudocapacitive behavior as
found in the linear dependence of log i vs. log v, i.e., b ≈ 1 [78].
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Another factor for improvement of the capacitance performance of MXenes is the selection of
appropriate electrolyte, due to the difference in the ionic conductivity, operation voltage, the temperature
of different electrolytes that subsequently tailor the capacitance performance. Thereby, aqueous
electrolytes with their outstanding ionic conductivity are preferred compared to organic or ionic
liquids electrolytes, although the ionic liquids electrolytes have the largest potential window and
feasible for high working temperatures. This finding was achieved in the superior capacitance of
Ti3C2Tx (325 Fg−1) in H2SO4 [81], compared to (70 F g−1) in ionic liquid electrolytes [110] and (32 F g−1)
in organic electrolytes [104]. The capacitance performance of Ti3C2Tx in propylene carbonate (PC)
organic electrolyte with higher ionic conductivity was higher than that in acetonitrile and dimethyl
sulfoxide (DMSO), with lower ionic conductivity [111]. The preparation method of MXenes is
also an essential factor for boosting the mechanical properties and electrochemical or capacitance
performance. Investigation of the mechanical evolution during the intercalation/deintercalation of
MXenes revealed that Li-ion intercalation increases the out-of-plane stiffness (elastic properties) in
aqueous electrolytes [59]. This is achieved by proposing a theoretical correlation among the cation
content and the out-of-plane elastic properties during electrochemical reactions.

Although MXenes were reported to be promising for energy storage applications, their restacking
issue, low intrinsic electronic and ionic conductivity, and low specific capacity hinder their use in the
practical applications [24]. Besides, the underlying mechanism of the use of MXenes for supercapacitors
still needs to be clarified, and that requires further in-depth theoretical and experimental investigations.
Furthermore, due to the remarkable influence of the electrolytes on the MXene supercapacitors,
more studies are needed for electrolytes optimization.
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4. Mechanical of Self-Standing MXenes vs. Hybrid MXenes

MXenes, especially Ti3C2Tx, was found to be a promising candidate for enhancing the mechanical
properties of various polymers, metals, and carbon materials. This is owing to the multilayered 2D
structure and outstanding Young’s modulus of Ti3C2Tx monolayer (0.33 ± 0.03 TPa), measured via the
nanoindentation experiments [2]. For instance, the mechanical properties of polyvinyl alcohol (PVA)
nanofibers were significantly enhanced via using Ti3C2Tx and cellulose nanocrystals (CNC) fillers
(denoted as PVA/CNC/Ti3C2Tx) compared to pristine PVA [112]. Notably, PVA nanofibers containing
0.07 wt.% of both CNC and Ti3C2Tx displayed more than 100% enhancement of the storage modulus
relative to PVA nanofibers. In comparison, PVA nanofibers with 3 wt.% nanocellulose (PVA/CNC)
revealed a 74% increase in storage modulus of PVA at 25 ◦C [112]. Additionally, the elastic modulus of
PVA/CNC/Ti3C2Tx nanofibers (855 MPa) was 2.1 times higher than that of PVA nanofibers (392 MPa).
The Young’s modulus of PVA/CNC/Ti3C2Tx nanofibers (293 ± 59 MPa.) was higher than that of
PVA/CNC (241 ± 51 MPa), PVA/Ti3C2Tx (283 ± 60 MPa), and PVA nanofibers (221 ± 51 MPa) [112].
Likewise, polyimide/Ti3C2Tx aerogel prepared via the freeze-drying of and annealing to form a robust,
lightweight, and hydrophobic aerogel (Figure 10a) with three-dimensional “house of cards” structure
(Figure 10b) [113]. The compressive strength at 80% strain and Young’s modulus of elasticity for
PI/Ti3C2Tx aerogel increased significantly with decreasing the Ti3C2Tx concentration. This is owing to
greater porosity and lower density of PI/MXene aerogels with the increase of the Ti3C2Tx amount [113].
Interestingly, the elastic properties, PI/MXene-3 with a ratio of 5.2:1, respectively, showed impressive
stress−strain repeatability after 50 cycles of compression-release (Figure 10c), attributed to the strong
interactions between PI chains and Ti3C2Tx nanosheets in the hybrid aerogel [113]. Silver nanowires,
combined with Ti3C2Tx (AgNWs-Ti3C2Tx) transparent conductive electrode, displayed a higher
conductivity, chemical stability, and mechanical stability than that of pristine AgNW electrode [114].
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Ti3C2Tx/carbon nanotube (CNT) 3D porous aerogel (denoted as MXCNT) was synthesized using
the bidirectional freezing approach (Figure 11a) [115]. Figure 11b displays the compressive stress-strain
curves for Ti3C2Tx and MXCNT aerogels measured under compression at a displacement rate of
1 mm/min up to 50% strain. The compressive strength of MXCNT was substantially higher than
that of Ti3C2Tx Figure 11b. Also, the compressive strength of MXCNT increased with increasing
CNT concentration to reach the maximum value of 25,000 Pa using a ratio of 1/3 of Ti3C2Tx/CNT,
respectively. This is originated from the uniform distribution of Ti3C2Tx multilayered sheets with
CNT in the direction of the compressive force resulting in a uniform aerogel, as shown in (Figure 11c).
Interestingly, the as-formed MXCNT aerogel can afford more than 500 times (Figure 11d) and more
than 2100 times (Figure 11d) of its weight without collapsing along with recovery of 12.1 % strain after
eliminating the applied load. The significant enhancement in the compressive strength of MXCNT is
ascribed to the ordered porous framework supported by vertical pillars, that warrants the cell walls
deformation on compression rather than sliding between the walls [115]. The MXCNT aerogel is highly
promising for electromagnetic interference (EMI) shielding applications.
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5. Summary and Perspectives

In summary, this review emphasized the recent advances in the mechanical properties of
self-standing MXenes, including elastic properties, bending rigidity, and adhesion and sliding
resistance from the experimental and theoretical views. This is, besides, to compare the mechanical
properties of self-standing MXenes with hybrid MXenes along with their utilization as supercapacitors.
Both experimental and theoretical calculations implied the significant effect of shape (i.e., layer thickness,
interlayer spacing, dimensional, and porosity), preparation method, type (i.e., carbides or nitrides),
composition (i.e., mono-/binary/multi-metals, doping, defects, and decoration with nanoparticles or
single atoms), and functional groups (O, OH, and F) on enhancement the mechanical properties of
MXenes. These features endowed the mechanical properties of MXenes are found to be closer to
various 2D materials such as graphene, molybdenum disulfide, and boronitrene.
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Despite the significant progress achieved in the rational design of self-standing MXenes,
their mechanical properties are frequently investigated theoretically rather than experimentally.
Additionally, the preparation approaches of MXenes entail multiple complicated steps, hazard
chemicals, and without precise monitoring, shape, composition, and surface/bulk functionalities.
However, the theoretical calculations predicted the synthesis of dozens of MXenes with outstanding
mechanical merits coupled with electrical conductivity, high surface area, and ion adsorption/storage
properties, which leaves extensive gates for the utilization of MXenes in various applications such
as flexible devices, energy production/storage devices, and sensors. To this end, the capacitance
performances of MXenes were enhanced significantly via their integration with conductive polymers,
carbon-based materials (i.e., graphene, carbon nanotubes), and doping or functionalization metals
(i.e., transition metals, noble metals, non-metals traces, semiconductors). Thereby, the mechanical
properties of self-standing MXens and their mechanism should be highlighted experimentally rather
than through theoretically. Also, the combination between MXenes and other carbon-based materials
and novel metallic nano architectonics can lead to impressive properties and applications [116–119].
Thus, the presented review can provide a guided roadmap for the scientists to design novel MXenes
for the coming generations of energy conversion and storage devices as well as smart sensors.
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