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)is work introduces a three-dimensional, highly nonlinear quadratic oscillator with no linear terms in its equations. Most of the
quadratic ordinary differential equations (ODEs) such as Chen, Rossler, and Lorenz have at least one linear term in their
equations. Very few quadratic systems have been introduced and all of their terms are nonlinear. Considering this point, a new
quadratic system with no linear term is introduced. )is oscillator is analyzed by mathematical tools such as bifurcation and
Lyapunov exponent diagrams. It is revealed that this system can generate different behaviors such as limit cycle, torus, and chaos
for its different parameters’ sets. Besides, the basins of attractions for this system are investigated. As a result, it is revealed that this
system’s attractor is self-excited. In addition, the analog circuit of this oscillator is designed and analyzed to assess the feasibility of
the system’s chaotic solution. )e PSpice simulations confirm the theoretical analysis. )e oscillator’s time series complexity is
also investigated using sample entropy. It is revealed that this system can generate dynamics with different sample entropies by
changing parameters. Finally, impulsive control is applied to the system to represent a possible solution for stabilizing the system.

1. Introduction

Chaos is a complex behavior that has been investigated in
nature and mathematics [1]. It refers to the systems’ sen-
sitivity to their initial conditions and parameters [2].
Nonlinear systems such as ordinary differential equations
(ODEs) can generate chaotic behavior [3]. )erefore, they
can have applications in modeling natural systems with
chaotic behaviors such as neurons [4]. Besides, using cou-
pling methods, these systems can investigate collective be-
haviors of neuronal networks [5]. It is good to mention that
sometimes these dynamical systems are used in their

nonchaotic mode to model some behaviors of natural sys-
tems like central pattern generators (neurons that make
rhythms for locomotions) [6]. ODEs chaotic systems have
been categorized based on their equilibrium points types and
locations [7]. In this way, chaotic systems’ attractors can be
divided into two groups: ones that have at least one equi-
librium point in their basin of attraction (self-excited
attractors) [8] and ones that have no equilibrium point in
their basin of attraction (hidden attractor(s)) [9]. Besides,
the systems’ equilibrium points are interesting nonlinear
dynamics properties for researchers. For example, systems
have been introduced and investigated with a line of
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equilibria [9] or just one stable equilibrium [10]. Besides, two
main groups of systems can be defined based on the
equations’ time dependency: autonomous systems in which
no term as a function of time exists in their equations [11]
and nonautonomous systems in which a term dependent to
the time can be found in their equations (forced systems)
[12]. Besides, forcing systems can lead nonchaotic oscillators
to systems that have the capability of generating chaos. For
instance, using this technique, two-dimensional systems that
cannot generate chaotic time series can demonstrate chaotic
attractors [13]. )ese nonautonomous systems are also ca-
pable of generating hidden attractors [14]. Another method
to make a system chaotic is considering delays in the
equations of the system. For instance, a system with just one
equation can make chaos if it has a time delay in its equation
[15]. On the other hand, systems with four dimensions or
more can generate hyperchaotic behaviors. For instance, a
four-dimensional jerk system implicated with memristors
has shown the potential of demonstrating hyperchaos [16].
Besides these features, multistability refers to the existence of
several attractors (at least two ones) for different initial
values for a system without parameters’ changing [17]. In
addition to the mentioned properties, some other features
are defined for chaotic systems based on the topology and
shapes of attractors [18]. Some strange attractors with dif-
ferent symmetries’ types were reported [19]. Besides, the
systems with several wings’ attractors (multiscrolls) have
grabbed researchers’ interest [20]. For instance, it is in-
vestigated how the strange multiscrolls attractor for a system
can emerge and how its shape can be preserved [21]. In
addition, the systems that their attractors look like known
objects were also reported. For instance, chaotic systems
have been introduced to look like a Persian carpet [22] or a
peanut [23].

Among different ODE systems, quadratic ones are
mainly focused on by some researchers interested in finding
elegant systems [2]. One reason is that these systems can
have simpler equations [24]. Lorenz equations, the first
introduced chaotic system, are one of these classes and have
just quadratic terms. Some quadratic systems were intro-
duced whose equations’ terms are lower than that of the
Lorenz equations [24]. Various dynamics of a quadratic
system were studied in [25]. Most of the quadratic systems
have at least one linear term in one of their equations [26].
Few systems have been introduced with no linear term in
their equations [27]. Xu andWang introduced such a system
built by just nonlinear quadratic terms for the first time [28].
As another example of the pure nonlinear systems category,
a multistable system can be mentioned with heterogeneous
attractors [29]. Here, an oscillator with absolute nonlinear
terms is introduced to generate various types of nonlinear
dynamics’ behaviors such as torus and chaos.

)e chaotic feasibility of nonlinear ODEs systems always
has been a question. Designing analog circuits for chaotic
systems has been a hot topic recently. Electrical circuits
simulated with PSpice or implemented physically are tools to
assess ODE systems’ chaotic behaviors. For example, an
electrical circuit was introduced to regenerate the chaotic
signals with a multiscroll dynamic [30]. In another instance,

analog electrical circuits of a system with multistability were
impacted [23]. Using memristors to model chaotic dynamics
is one of the hot topics; for instance, a five-dimensional
system with three linear dimensions was implicated using
two memristors [1]. Besides, chaotic systems’ implication
using digital circuits like field-programmable gate array
(FPGA) has been carried out to assess the possibility of
implicating chaotic systems. For instance, a jerk system
feasibility with strange coexisting attractors was assessed
with FPGA [31]. In another example, the chaotic time series
of a system with coexisting attractors and strange fixed
points’ curves was regenerated using FPGA [23]. One of the
applications of these circuits is random number generation
[32]. Other applications can be secure communications [33]
and image encryption [34]. In this work, the system’s analog
circuit is designed with PSpice, and the results of simulations
are reported.

)e complexity of chaotic systems’ signals has recently
become an exciting subject for researchers [35]. For instance,
the complexities of a system with hidden attractors (for time
series of its different parameters’ values) were calculated and
discussed [36]. Sample entropy is a feature for comparing the
complexity of time series repetitively [37]. In this method,
the philosophy of calculating complexity is based on the
possibility of predicting the future of the signals based on
their previous samples [37]. )is method has some ad-
vantages in comparison with other methods of measuring
complexity. For instance, it is less dependent on the length of
time series than approximated entropy [37]. Here, sample
entropy is used for calculating the complexities of the os-
cillator’s signals for different ranges of the introduced sys-
tem’s parameters.

Controlling chaotic oscillators has been an interesting
topic [38]. Various methods have been proposed to control
the chaotic dynamics [39, 40]. Impulsive control is a method
of stabilizing nonlinear systems such as the ones with infinite
[41, 42] or finite delays [43], delayed neural networks [44]
(that also includes exponentially stabilization [45] and fixed
time control [46]), stochastic delayed systems [47], or sin-
gularly perturbed models [48]. For instance, it was used for
stabilizing systems whose states are not measurable [49]. In
another example, an event-based version of this method was
used for controlling Chua-coupled systems [50]. )is
method also has been used for synchronization among
nonlinear systems [51], switched complex networks [52, 53],
high-dimensional Kuramoto systems [54], and fuzzy neural
networks [55]. Some advanced methods of impulsive control
have been introduced, for instance, versions with adaptable
frequencies [56]. In this paper, an impulsive-based method
for controlling the introduced pure nonlinear system is
implicated as a possible solution for stabilizing its equilib-
rium points.

In the next section, the system’s equations whose terms
are all nonlinear quadratic are presented (Section 2). Also,
the oscillator’s bifurcation and Lyapunov diagrams for
different parameters’ values are analyzed. Besides, the basin
of attractions of the pure nonlinear oscillator is plotted and
discussed. Section 3 explains the design of the introduced
pure nonlinear oscillator’s analog circuit and its
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simulations with PSpice. )e next part assesses the com-
plexity of the oscillator’s signals for various parameter
values (Section 4). Applying the impulsive control method
(Section 5) to the proposed system helps to enhance its
applications. )e simulations’ results are concluded in the
final part (Section 6).

2. The Highly Nonlinear System: Analytical and
Numerical Analysis

)e construction of chaotic dynamics is an unknown subject
that attracted lots of attention [3, 57]. After revealing some
counterexamples for the hypothesis of a relation between
saddle equilibrium points and chaotic attractors [58, 59],
many works have been focused on studying chaotic flows
with unique properties [60, 61]. )ey have tried to under-
stand the construction of chaotic attractors. Some examples
are chaotic flows with different equilibrium points [62, 63]
and special attractors [64]. So, a pure nonlinear chaotic flow
is proposed here, and its various dynamics are investigated.
)e oscillator can be described by three-dimension equa-
tions that are coupled as follows:
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where x, y, and z are the system’s variables when a and b are
considered parameters. )e system is symmetric with the
change of variables (x, y, x, t)⟶ (− x, − y, − z, − t). So any
attractor of system (1) has a twin in reversed time and is
symmetric to the origin of the main attractor. )e system’s
equilibrium points are as follows:
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Considering these eight fixed points, the system’s Ja-
cobian and eigenvalues are as follows:

J �

0 − 2Y 2.6Z

− 2X 2Y 0

− 2X 2Y 0.2Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⟶ |λI − J| � 0⟶

λ 2Y − 2.6Z

2X λ − 2Y 0

2X − 2Y λ − 0.2Z
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λ((λ − 2Y)(λ − 0.2Z) − 0) − 2Y(2X(λ − 0.2Z)) − 2.6Z(− 4XY − (2X(λ − 2Y))) � 0.

(3)

)e types of equilibria when a � 0.5 and b � − 2.3 are
shown in Table 1 (considering eigenvalues for each
equilibrium).

)e system’s attractors for different parameters’ values
have been presented in Figure 1. Figures 1(a)–1(d) dem-
onstrate periods 1, 2, 4 and chaotic behaviors of the
oscillator.

)e Lyapunov exponent and bifurcation diagrams for
different parameters’ set are calculated to investigate more
about possible behaviors that the introduced system can
present. Firstly the b parameter is fixed (b � − 2.3), and
Lyapunov and bifurcation diagrams for a range of a are
plotted (Figure 2). Figure 2(a) demonstrates two Lyapunov
exponents that have higher values than the rest. )e third
Lyapunov exponent’s values are always negative and have a
higher absolute value than the two others. For the two
Lyapunov with higher values, the system’s behavior is pe-
riodic when one is zero and the other is negative. For the
situation that one of them is zero and another is positive, the
system’s behavior is chaotic. When both are zero, the sys-
tem’s behavior is the torus. Figure 2(a) demonstrates all of
the mentioned situations; therefore, the system has the
capability of having limit cycles, torus, and chaotic solutions.
Figure 2(b) is the bifurcation diagram for the same range of a

. Period windows can be seen in Figure 2(b). In the bifur-
cation diagram, a period-doubling route to chaos can be
observed by decreasing parameter a.

In the next step, parameter a is fixed, and the oscillator’s
behaviors for various b are investigated. Figure 3 reveals the
Lyapunov exponent and bifurcation diagrams when a � 0.5
and the b’s value changes. For better visualization, the
Lyapunov exponent with the largest absolute value (its value
is always negative) is not plotted in Figure 3(a). )e system’s
different behaviors from different limit cycles’ periods to
torus and chaos can be seen based on the previously
explained situations of the two larger Lyapunov exponents
(Figure 3(a)). An inverse route of the period-doubling route
to chaos can be observed in the bifurcation diagram by
increasing b (Figure 3(b)).

)e basin of attractions when the oscillator’s parameters
are set a � 0.5 and b � 2.3 are plotted for a range of initial
values (Figure 4). Two surfaces each containing four equi-
librium points are plotted. Studying the basin of attraction of
the oscillator shows that the oscillator has only one attractor.
Figures 4(a) and 4(b) show the parts of plates that Z �

��
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√
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��
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√
, respectively. )e equilibrium points (X �
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����
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−
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30.4

√
, Z � −

��
23

√
) are located at the edge of the unstable

region and the basin of attraction.)e type of both of them is
unstable (spiral). It can be seen that some equilibrium points
exist in the system’s attractor’s basin of attraction.)erefore,
the system’s attractor is self-excited.

In the next section, an analog circuit of the system is
implicated for the system when it is in its chaotic mode.
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3. Analog System’s Circuit, Design, and
PSpice Implication

)e pure nonlinear system’s analog circuit in the chaotic
mode is designed. Simple elements such as resistors and Op-

Amps are used in its designed circuit. Its circuit’s schematic is
demonstrated in Figure 5. AD633/AD as an analog device is
used for multiplying variables together. )e values of ca-
pacitors and resistors are tuned to compensate for the
mentioned coefficient. To avoid the analog devices’ saturation,

Table 1: )e pure nonlinear system’s equilibrium points and their related eigenvalues when a � 0.5 and b � − 2.3 are set. )e equilibria
types are determined based on their eigenvalues.
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Figure 1: )e systems’ attractors for a’s different values when b � − 2.3. (a) For a � 3, period 1 can be seen in the system’s attractor. (b) For
a � 2, period 2 can be seen in the system’s attractor. (c) For a � 1.5, period 3 can be seen in the system’s attractor. (d) When a � 1.1, the
oscillator’s behavior is chaotic.
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x � 10X, y � 10Y, z � 10Z, and t � 0.1T are considered.
)erefore, the system’s equations can be rewritten as follows:
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Figure 2: Lyapunov exponents and bifurcation diagrams for different a values. (a) )e systems’ two larger Lyapunov exponents are plotted.
Periodic behaviors (one Lyapunov exponent negative and one zero), torus behaviors (when both Lyapunov exponents are zero), and chaotic
behavior (one Lyapunov exponent is zero and another one is positive) can be seen in the diagram. (b))e bifurcation diagram of the system
is plotted when the period-doubling route to chaos (from right to left) and period windows can be observed in the diagram.
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)e new version of the system’s equation (Eq. (4))
is designed by analog elements (Figure 5). )e values
of the analog elements are as follows:
R1 � 10KΩ, R2 � 10KΩ, R3 � 10KΩ, R4 � 10KΩ, R5 � 1KΩ, R6 � 10KΩ
R7 � 10KΩ, R8 � 10KΩ, R9 � 10KΩ, R10 � 1KΩ, R11 � 10KΩ, R12 � 1KΩ
R13 � 1KΩ, R14 � 1KΩ, R15 � 13KΩ, R16 � 1KΩ, R17 � 1KΩ, C1 � 10nF, C2 � 10nF,

and

C3 � 10nF. Finally, the implicated system’s equation to
simulate in PSpice can be written as follows:
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�

C1
R1

􏼒 􏼓
R15
R14

􏼒 􏼓 0.1Z
2
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R9

􏼒 􏼓V2.

(5)

)e circuit simulation in PSpice when a � 0.5 and b �

− 3.7 is demonstrated in Figure 5. All elements that are used
are analog. )e outputs of the designed analog circuit
compared to Matlab simulations are demonstrated in
Figure 6.

4. The Pure Nonlinear System’s
Complexity Analysis

Defining the complexity of the time series based on their
predictability results in the definition of sample entropy
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Figure 3: Lyapunov exponents and bifurcation diagrams when a value is fixed (a � 0.5). (a) For a range of b, the two largest Lyapunov
exponents are potted. Based on these Lyapunov exponents’ values, the system’s behaviors (torus when both are zero, chaos when one is zero
and another is positive, and periodic when one is negative and another is zero) for each specific value of b can be determined. (b) Bifurcation
diagrams of the system for the b’s same range. Period-doubling route to chaos (from right side to the left) and periodic windows can be seen
in the diagram.
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Figure 5: Schematic of the pure nonlinear system’s designed circuit. In the designed circuits, all used elements are analogs. Op-Amps are
used as integrators. Besides, they are also used for regulating the coefficients of nonlinear terms. Capacitors and resistors are the other analog
elements in the circuit. )e circuit is simulated in PSpice software.
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(SaEn). Accepting this definition, SaEn is applied to es-
timate the complexity of the system’s time series, as
reviewed in the Introduction section. SaEn tries to
measure the predictability of (t + 1)th samples of time
series when the previous samples (1, 2, . . . , t) are ob-
served. )e algorithm of calculating SaEn can be read in
[37]. To calculate the algorithm of SaEn, m � 2 and r � 0.2
are considered. )e algorithm is applied to the oscillator’s
attractors (the x variable time series) for ranges of the
parameters (a and b). )e initial conditions are considered
(0, 0, 0) and the transient time parts of the time series are

emitted before calculating SaEn.)e results of SaEn values
can be observed in Figure 7. )e attractor is a fixed point
in parameters that SaEn values are zero. A trend can be
seen that increasing a, at first, causes an increase in SaEn
and then decreases it. In comparison with Figure 2,
generally chaotic states of the system have more sample
entropy values than periodic ones. Besides, a trend also
can be observed that decreasing b parameter values in-
creases SaEn values. Comparing this trend with the bi-
furcation diagram reveals that the chaotic regions
generally have more complexity.
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Figure 6:)e results ofMatlab and PSpice simulations for the system’s attractor when a � 0.5 and b � − 3.7. (a), (c), and (e) are related to the
Matlab simulations when (b), (d), and (f) are generated by the analog circuit designed in PSpice. (a, b) )e attractor’s projection in the XY
plane, (c, d) the attractor’s shadow in the XZ plane, and (e, f ) the attractor’s projection in the surface of the YZ.
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5. Impulsive Control

Here, the pure nonlinear oscillator is controlled using im-
pulsive control. In the first step, the system under impulsive
control can be described as follows [65–67]:

_X � f(t, X)

� AX +Φ(X),

ΔX � X t
+

( 􏼁 − X t
−

( )

� U(k, X),

t � Tk,

k � 1, 2, . . .

(6)

When f: R + × Rn ⟶ Rn is continuous, U: Rn

× Rn ⟶ Rn is continuous; X ∈ Rn is the vector of state
variables; and 0 <T1 < T2 < ... < TK < TK+1 < . . . , TK⟶∞
as k⟶∞. AX, in general, represents linear terms of
systems when Φ(X) contains nonlinear terms.

Definition 1. AssumingV : R+ × Rn ⟶ R+, thenV is said
to belong to the class V0, if

(1) V is continuous in (Tk− 1, Tk] × Rn and for each
X ∈ Rn, k � 1, 2, . . . , (t, Y)⟶ (T+

k , X) lim

V(t, Y) � V(T+
k , X) exists

(2) V is locally Lipschitzian in X

Definition 2. For (t, X) ∈ (Ti− 1, Ti]] × Rn, it is considered:

D
+
V(t, X)≜ h⟶ 0 + lim sup

1
h

[V(t + h, X

+ hf(t, X)) − V(t, X)].

(7)

Definition 3 (comparison system). Let V ∈ V0 and assume
that

D
+
V(t, X)≤ g(t, V(t, X)), t ≠Tk; and V(t, X + U(k, X))≤ Ψk(V(t, X)), t � Tk, (8)

where g : R+ × R+ ⟶ R is continuous and Ψk : R+

⟶ R+ is nondecreasing. )en the following system is the
comparison system of Eq. (6):

ω � g(t, ω), t ≠Tkω T
+
k( 􏼁

� Ψk ω Tk( 􏼁( 􏼁ω T
+
0( 􏼁

� ω0 ≥ 0.

(9)

Theorem 1. 8ese three conditions are assumed:

(1) V : R n × R n⟶ R+, V ∈ V0, K(t)D+V(t, X) +

D +K(t)V(t, X)≤ g(t, K(t)V(t, X)), t≜ τk, when g

is continuous in (Tk− 1, Tk] × R n for each x ∈ R n, k �

1, 2, . . . , (t, y)⟶ (T+
k , x)limg(t, y) � g(T+

k , x) ex-
ists. K(t)≥ m > 0, t⟶ T−

k limK(t) � K(Tk), t

⟶ T+
k limK(t) exists, k � 1, 2, . . . , D+K(t) �

h⟶ 0+lim sup(1/h)[K(t + h)–K(t)]

(2) K(Tk + 0)V(Tk + 0, X + U(k, X))≤ Ψk(K(Tk) V

(Tk, X)), k � 1, 2, . . .

(3) V(t, 0) � 0 and α(|X|) ≤ V(t, X) on R+ × R n,
when α(·) ∈ ℵ (continuous strictly increasing func-
tion class α : R+ ⟶ R+ so that α(0) � 0) are sat-
isfied. Next, the global asymptotic stability for the
trivial solution ω � 0 of the comparison system im-
plies global asymptotic stability of impulsive system
(6) trivial solution
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Figure 7:)e sample entropy is used for assessing the oscillator’s signals complexities for a range of the system’s parameters. A trend can be
seen that decreasing b and increasing a values result in increasing the sample entropy.
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Theorem 2. Let g(t, ω) � _λ(t)ω,Ψk(ω) � dkω, d k ≥ 0 for
all k≥ 1. consequently, system (6) origin is global asymptot-
ically stable if 8eorem 1 conditions and the following con-
ditions are held:

(1) λ(t) is nondecreasing, t⟶ T+
k lim λ(t) � λ

(Tk), t⟶ T+
k lim λ(t) � λ(T+

k ) exists, for all
k � 1, 2, . . .

(2) supi [dI exp(λ(Ti+1) − λ(T+
i ))] � ε0 < ∞

(3) 8ere exists a r > 1 such that λ(T2k+3) + λ(T2k+2) +

ln(rd2k+2 + d2k+1) ≤ λ(T+
2k+2) + λ(T+

2k+2) is held for
all d2k+2d2k+1 ≠ 0, k � 1, 2, . . . , or there exists an
r > 1 so that λ(Tk+1) + ln(rdk) ≤ λ(T+

k ) for all k

(4) V(t, 0) � 0 and there exists α(·) in class N such that
α(‖X‖)≤ V(t, X)

Theorem 3. 8e origin of the introduced pure nonlinear
chaotic system is asymptotically stable if there exists a ξ > 1
and a differentiable at t ≠Tk, and nonincreasing function
K(t) which satisfies the following:

−
_K(t)

K(t)
≤ q + r≤

1
(1 + ε)Δ2

ln
K T

+
2i( 􏼁K T

+
2i− 1( 􏼁

K T2i+1( 􏼁K T2i( 􏼁ξd
2􏼠 􏼡􏼠 or

−
_K(t)

K(t)
≤ q + r≤

1
max(Δ1,Δ2)

ln
K T

+
i( 􏼁

K Ti+1( 􏼁ξ d
􏼠 􏼡,

r �

0, if P � I,

2M

��
λ2
λ1

􏽳

if P≠ I,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

q is the (A + P− 1ATP) largest eigenvalue assuming P is a
positive definite symmetric matrix and λ1 > 0 and λ2 > 0 are
the smallest and the largest eigenvalues of P, respectively.
ρ(A) denote the spectral radius of A: d � ρ2(I + B). M for
the pure nonlinear chaotic system considered so that
|x(t)|<M, |y(t)|<M, |z(t)|<M.K(t). It is as in 8eorem 1,
Ti: i � 1, 2, . . . are varying but satisfy the following:

Δ1 � sup1≤j<∞ T 2j+1 − T 2j􏼐 􏼑< ∞ ,

Δ2 � sup1≤j<∞ T 2j − T 2j− 1􏼐 􏼑< ∞ .
(11)

Furthermore, for a given constant ε,

T 2j+1 − T 2j ≤ ε T 2j − T 2j− 1􏼐 􏼑 ∀j ∈ 1, 2, . . . ,∞. (12)

8is theorem’s proof can be seen in [66].

Remark 1. )eorem 3 also gives an estimate for the upper
bound. Δ1max and Δ2max of impulsive intervals are given by

Δ1 �
1

(1 + ε)(q + 2|aα|)
ln

K T
+
2i( 􏼁K T

+
2i− 1( 􏼁

K T2i+1( 􏼁K T2i( 􏼁ξd
2􏼠 􏼡,

Δ2 � εΔ1.

(13)

)e introduced pure nonlinear system when a � 0.5 and
b � 2.3 are set is considered. According to the second sec-
tion, this system has eight equilibrium points. Assuming
(x∗, y∗, z∗) as an equilibrium point of the system, the
system equations considering x1 � x − x∗, y1 � y − y∗, z1
� z − z∗ can be rewritten as follows:

_x1 � 1.3z
2
1 + 2.6z

∗
z1 + 1.3z

∗2
− y

2
1 − 2y

∗
y1 − y

∗2
+ a,

_y1 � y
2
1 + 2y

∗
y1 + y

∗2
− x

2
1 − 2x

∗
x1 − x

∗2
,

_z1 � y
2
1 + 2y

∗
y1 + y

∗2
− x

2
1 − 2x

∗
x1 − x

∗2
+ 0.1z

2
1 + 0.2z

∗
z1 + 0.1z

∗2
+ b.

(14)

Equilibrium (x∗ � +
����
30.4

√
, y∗ � −

����
30.4

√
, z∗ � −

��
23

√
)

is considered to be stabilized. Without losing generosity for
stabilizing equilibrium points of the system, the same
method can be applied to the other equilibria of the pure

nonlinear system. In this way, considering (6) and (12), for
the equilibrium point (x∗ � +

����
30.4

√
, y∗ � −

����
30.4

√
,

z∗ � −
��
23

√
), equations can be rewritten as follows:

_X � AX +Φ(X),

A �

0 − 2y
∗ 2.6z

∗

− 2x
∗ 2y

∗ 0

− 2x
∗ 2y

∗ 0.2z
∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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�

0 2
����
30.4

√
− 2.6

��
23

√

− 2
����
30.4

√
− 2

����
30.4

√
0

− 2
����
30.4

√
− 2

����
30.4

√
− 0.2

��
23

√

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

Φ(X) �

1.3z
2
1 − y

2
1

y
2
1 − x

2
1

y
2
1 − x

2
1 + 0.1z

2
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

U(k, X) � BX,

t � Tk, k � 1, 2, . . .

(15)

Considering K(t) � 1, ε � 1, ξ � 1.1, B �

s � − 1.1 0 0
0 − 1 0
0 0 − 1

⎛⎜⎝ ⎞⎟⎠ and P � I, then d � (s + 1)2 �

0.01, q � 23.86 (T 2j+1 − T 2j) � (T 2j − T 2j− 1) � Δ< (Δ1 �

Δ2 � − ln(ξ d)/q � 0.1890⟶ (Δ is considered 0.1)). )e
stabilized system numerical simulations are plotted in
Figure 8. Figures 8(a)–8(c) demonstrate the time series of
x1, y1, and z1, respectively, for the oscillator described in Eq.
12. )e time series of x1, y1, and z1 for the stabilized system
using the impulsive controller (based on Eq. 13) are dem-
onstrated in Figures 8(d)–8(f ), respectively.

6. Conclusion

Here, a pure nonlinear 3D system was presented. It was
observed that the system could generate periodic, torus,
and chaotic time series. Analytical analysis revealed that the
oscillator has eight unstable equilibrium points for a set of
parameters. )e basin of attraction diagrams showed for

this set of parameters that the system attractor is self-ex-
cited. )e pure nonlinear system’s feasibility was investi-
gated with an analog circuit built by simple elements like
capacitors and Op-Amps. Changing parameters’ values
revealed that the system could generate time series with a
wide range of complexities. A possible solution to system
stabilization was described by using the impulsive con-
troller on the system. For this system, when both constants
(parameters a and b) were equal to zero, the system had an
unbounded solution. According to the authors’ best
knowledge, no pure nonlinear quadratic system has been
introduced before with no constant values in its equations.
)erefore, searching for such a system can be interesting
for future research.

Data Availability

All the numerical simulation parameters are mentioned in
the respective text part, and there are no additional data
requirements for the simulation results.
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Figure 8: For the initial condition (0.1, 0.1, 0.1), time series of x1, y1, and z1 of the system demonstrated in Equation (12) are plotted in (a),
(b), and (c), respectively. )e transient signals of, x1, y1, and z1 for this system under the impulsive controller (Equation (13)) are plotted in
(d), (e), and (f), respectively.
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