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ABSTRACT 

ATTIA,SARRA,M., Masters : June : 2022, Environmental Science 

Title:Role of Chronic Cadmium Exposure on Adipose Tissue Function 

Supervisor of Thesis: Dr.Hamda A. Al-Naemi. 

Cadmium (Cd) is a toxic environmental pollutant with a bioaccumulation 

feature that exceeds 35 years without a known biological role in the living systems. 

Recently, Cd was found to be accumulated in adipose tissue (AT) which is known for 

its vital role in energy homeostasis and endocrine functions. The main goal of this study 

is to investigate the effect of low-dose chronic exposure of Cd on the function of AT in 

different locations. Sprague-Dawley male rats were exposed to low Cd dose (15 ppm) 

for ten weeks, then subcutaneous AT, abdominal AT, and retroperitoneal AT were 

extracted for molecular analysis. Adiponectin and leptin expression levels were 

evaluated to assess AT function, and Monocyte Chemoattractant Protein-1(MCP-1) 

was evaluated to assess the adipose tissue macrophages function. Our results showed 

significant downregulation of adiponectin and leptin mRNA expression in SUB-AT 

compared to other depots. Also, MCP-1 mRNA and the protein expression levels were 

downregulated in SUB-AT. These results suggest that chronic exposure to low-dose Cd 

disrupts the function of WAT in a depot-specific manner by altering the expression 

profile of the adipocytokines.             
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CHAPTER 1: INTRODUCTION 

In a world of advanced industries and expanded urbanization, the health of all 

living organisms is under risk due to the high rate of environmental pollution. Patterns 

of environmental exposure vary from one place to another and depends on many factors 

such as source point, duration, and doses at the contact points. Countries with high 

industrial and agricultural production are more susceptible for higher rates of 

environmental pollutions. According to the US Environmental Protection Agency 

(EPA), endocrine disrupting chemicals (EDCs) are defined as exogenous substances 

that affect the endocrine system through altering its function by eliminating endogenous 

hormone or interfering with synthesis, secretion, metabolism, transport and receptor 

binding. As a result, endocrine system will be altered causing disrupting of homeostatic 

system (Lauretta et al., 2019). 

 The main concern about some EDCs is their resistance to degradation due to 

their lipophilic nature. Thus, they can accumulate and remain for many years in AT 

(Regnier & Sargis, 2014; Sabir et al., 2019). A recent report stated that, EDCs may have 

the ability of disrupting the homeostasis of the energy metabolism by altering the AT, 

attenuating the production of adipocytokine and endocrine regulation (Street et al., 

2018). One of the main EDCs is Cadmium (Cd), which is a widely spreading heavy 

metal that is naturally occurring in the Earth’s crust with average concentration of 0.1 

mg/kg (Cimboláková et al., 2020). 

Cadmium is classified as a toxic heavy metal and listed seventh on the priority 

list of Agency for Toxic Substances and Disease Registry (ATSDR, 2019). The recent 

global production of Cd reaches 23,000 metric tons which highlights the current 

challenge of Cd exposure worldwide (USGS, 2020). According to World health 

organization (WHO), the contentious atmospheric deposition, the elevated Cd level in 
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the marine environment, and the significant Cd stockpiled in the landfills are the main 

factors that facilitate Cd exposure (COWI A/S, 2003). These factors allow the 

increasing of Cd content in the agricultural top soil, harming the marine environment, 

and posing a serious risk to the health and the environment components. In addition to 

that, anthropogenic activities such as smelting, mining, metal industries, pigments, 

fossil fuels combustion and fertilizers are great contributors to the Cd environmental 

contamination (Godt et al., 2006; Dyer, 2007). 

The main routes of Cd exposure are inhalation, ingestion of contaminated food 

and water, and cigarette smoke (Andjelkovic et al., 2019; Fatima et al., 2019). Potential 

sources of Cd exposure that are highly consumed are seafood, cereals, bread, leafy 

vegetables, nuts, wild mushrooms, rice, and cocoa powder (COWI A/S, 2003; 

Tchounwou et al., 2012; Kijoon Kim et al., 2018). The Cd intake from planted food is 

the highest (Fristachi & Choudhury, 2017; Chen et al., 2018; Huang et al., 2021; Rusin 

et al., 2021). Thus, populations who depend on certain eating habits that includes 

cereals, vegetables and seafood are more susceptible for high Cd intake. Additionally, 

tobacco plant is an important source of Cd intake in smokers since it belongs to the Cd 

hyper-accumulators plants (Thévenod & Lee, 2013; Sabir et al., 2019). Smoking is the 

second main cause on Cd exposure and the estimated amount of Cd in one cigarette is 

around 1-2 μg (Fristachi & Choudhury, 2017; Sabir et al., 2019). The concentration of 

Cd in the blood of smokers is found to be 4-5 times higher compared to non-smokers 

(Thévenod & Lee, 2013). Moreover, Cd tends to bioaccumulate in the soil which makes 

its impact not limited to the food plants but also reaches to the groundwater 

(Rahimzadeh et al., 2017; Xie et al., 2019; Luo et al., 2020).  

 

Food intake is a key source of the body’s nutrition and energy; thus, 
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consumption of Cd-contaminated food may have an adverse effect on the systemic 

biological processes. The ingested Cd targets major organs such as the liver and kidneys 

which predominantly exhibit high rates of Cd accumulation (Jacobo-Estrada et al., 

2017; Genchi et al., 2020). After ingestion, Cd binds to albumin and blood erythrocytes 

which facilitate its migration into body’s organs and tissues where it can forms Cd-MT 

complexes by binding to metallothionein (MT) (Fatima et al., 2019). MT is a small 

protein that is rich in cysteine and characterized with high affinity to metal ions like 

Zinc (Zn), Copper (Cu) and is involved in metal detoxification by binding to toxic 

metals (Jacobo-Estrada et al., 2017). The high affinity of MT toward metals is due to 

the presence of the highly reactive thiol groups in MT (Sabolić et al., 2013). In 

physiological conditions, Zn-MT complex is the usual binding, however in the presence 

of Cd it becomes Cd-MT complex. The affinity toward Cd is higher and the stability of 

Cd-MT complex is 1000 fold higher than Zn-MT complex (Sabolić et al., 2013). 

Reports declared that Cd induces the gene expression of MT, therefore it is used as 

biomarker to indicate Cd exposure and its distribution through the tissues of the body 

(Tchounwou et al., 2012; Andjelkovic et al., 2019). 

Vital biological processes include glucose and lipid metabolism, and energy 

homeostasis are regulated by adipose tissue. Also, adipose tissue (AT) is responsible 

for releasing factors known as adipokines that regulate appetite, energy expenditure, fat 

distribution and systemic hemostasis. Thus, the potential effects of environmental 

pollutants on AT function are associated with disrupted metabolic homeostasis and 

increased risk for metabolic diseases such as type 2 diabetes. Traditionally the known 

primary function of adipose tissue is to serve as a body cushion to help protect inner 

organs, also it works as an insulator to prevent heat loss of the body (Hui & Feng, 2018). 

Additionally it has a main role in energy storage that provides the required systemic 
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energy (Kwon & Pessin, 2013). In the case of cold or low food intake, AT provides the 

desired energy to the body’s tissues through releasing glycerol and free fatty acids from 

the stored triglycerides. Also, AT is now recognized as an endocrine organ that 

produces a number of metabolic and hormonal active substances known as 

adipocytokines or adipokines (Frühbeck & Gómez-Ambrosi, 2013). There are two main 

types of AT, white adipose tissue (WAT) and brown adipose tissue. Both types of 

adipose tissue have distinct features and functions, and both are involved in systemic 

homeostasis maintenance. Nevertheless, WAT is considered the main site of metabolic 

dysregulation in several metabolic diseases (Henriques et al., 2019). Thus, WAT is the 

main focus in this study. 

The interaction between the bio-elements and Cd affects several biological 

processes that involve transporter proteins, ion channels, metabolism, absorption of 

nutrients and cellular hemostasis (Matović et al., 2011; Jacobo-Estrada et al., 2017). 

Many studies were done on the interaction between Ca, Zn and Cd and reported that Cd 

has a toxic effect in their cellular hemostasis due to their competition on the same 

binding site and ligands since both elements belong to the same group and are able to 

form tetrahedral complex (Matović et al., 2011). According to Andjelkovic et al. 

(2019), chronic exposure to Cd reduces the level of Zn in blood and some organs, 

affects the essential absorption of magnesium (Mg) and disrupts Cu, Zn and Mg tissue 

level. Furthermore, one of the main mechanisms of Cd toxicity is inducing oxidative 

stress which leads to lipid peroxidation and depletion of glutathione (GSH) (Bernhoft, 

2013; Atieh et al., 2017). Cadmium can cause an enhancement in the production of 

reactive oxygen species (ROS) through binding to the sulfhydryl groups of GSH protein 

and inhibiting the activity of anti-oxidant enzymes (Matović et al., 2011; Rahimzadeh 

et al., 2017). Moreover, Cd main features that poses its toxic risk are the non-
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biodegradability and prolonged biological half-life (10-30 years) with no known 

beneficial physiological function (Jacobo-Estrada et al., 2017; Rahimzadeh et al., 

2017).The toxicity of Cd comes from the ionized form (Cd2+) when released from their 

binding protein (Sabolić et al., 2013; Jacobo-Estrada et al., 2017; Mezynska & Brzóska, 

2018). Cadmium can bind to the mitochondria and inhibit both oxidative 

phosphorylation and cellular respiration even at low concentration (Patrick, 2003; 

Rahimzadeh et al., 2017). It has been reported that, Cd affects the cellular activities and 

induces cell apoptosis indirectly through modulating the level of Ca and consequently 

the caspases activities and the nitrogen-activated protein kinases (MRPKs) in the cell 

(Godt et al., 2006; Jacobo-Estrada et al., 2017; Rahimzadeh et al., 2017). 

The main targets for Cd are the liver and kidneys due to their ability to synthesis 

MT. However, when the amount of Cd passes their ability of synthesis MT, the 

detriment effect is induced. There are several mechanism of Cd- induced renal and 

hepatic toxicity such as dysregulation of autophagy, oxidative stress, endoplasmic 

reticulum stress, inflammatory cell infiltration and Cd-induced apoptosis (J.-Y. Lee et 

al., 2019; Zou et al., 2020). An example of Cd toxic mechanism is by triggering the 

accumulation of the apoptosis-inducing protein (P53) through inhibiting its degradation 

(J.-Y. Lee et al., 2019). Toxicity of Cd is not limited to the liver and kidney, it has been 

reported that, Cd toxic effect impacts also muscles, bones, pancreas, glands, brain and 

adipose tissue (Kawakami et al., 2010; Fristachi & Choudhury, 2017). The toxic effect 

on pancreas is disrupting the function of insulin in the body. As an endocrine disruption 

effect, many explanations could be provided such as Cd induces receptor degradation 

or alteration of the gene encoding receptor-protein at the DNA level, thus less insulin 

receptors may be synthesized (Ficková et al., 2003). Also, since the pancreatic β-cells 

are among the highest Zn concentration cells, Cd competes with Zn ions for several 
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binding sites including zinc transporters, thus Cd can utilize these transporters (Sabir et 

al., 2019). Therefore, Cd is deposited abundantly in pancreas causing disruption in 

insulin hemostasis. Additionally, Cd was found to be adversely impacting the function 

of several glands by disrupting the relative hormones homeostasis. For example, Cd 

was found to disrupt the function of pituitary gland which affects its patterns of 

releasing essential hormones (Caride et al., 2010; Fiordelisio et al., 2020). According 

to Calderoni et al. (2005) high Cd exposure induces apoptosis in pituitary cells and 

inhibit the production of prolactin. Moreover, for the thyroid gland, an association was 

reported between high Cd exposure and high thyroid hormone level and thyroglobulin 

level in adults (Buha et al., 2018).  In addition to that, several reports suggest that Cd 

acts as a metalloestrogen since it can mimic estrogen activity in mammary gland 

(Johnson et al., 2003; Ali et al., 2010; Bimonte et al., 2021) .This could be associated 

with nuclear ERα and its hormone-binding domain and the membrane-bound estrogen 

receptors activation (Pup et al., 2016). Also, Androgen hormone found to be a target 

for Cd toxic effects. Cd has the ability to mimic androgen by binding to its receptors 

and disrupt cell growth stimulation and gene expression modulation (Ye et al., 2000; 

Martin et al., 2002; Neslund-Dudas et al., 2018). Collectively, these data indicate that 

Cd has an endocrine effect that adversely impacts the endocrine system and 

consequently the pattern of systemic hormones. Thus, the leading aim of this study is 

to investigate the Cd effect on the endocrine function of AT by targeting specific 

adipokines namely leptin and adiponectin.  
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CHAPTER 2: LITERATURE REVIEW 

 Adipose tissue is a potential target for heavy metals accumulation in 

addition to the liver and kidney. Recent studies reported Cd accumulation in AT of the 

human body (Echeverría et al., 2019; Egger et al., 2019). Egger et al. (2019) stated that 

the median concentration of Cd in AT was about 12.6 µg/kg. Moreover, the results of 

Echeverría et al. (2019) showed that the mean Cd concentrations in AT of breast and 

waist regions were 32 and 42 µg/kg respectively. They correlated this accumulation of 

Cd in AT with several parameters such as age, smoking, the types of food consumed 

and body mass index. In agreement with these studies, Salcedo-Bellido et al. (2021) 

reported that persons exposed to Cd exposure from sources such as smoking had more 

accumulated Cd in their AT. Data collected from studies using rodent models showed 

similar results. Kawakami et al. (2010) reported a correlation between Cd doses 

increment and Cd concentration elevation in AT of male SIc: ICR mice. This was 

represented by their data where Cd concentration in AT recorded 0.114 μg/kg at the 

lowest dose (5 μmol/kg), and 0.404 μg/kg at the highest (20 μmol/kg). Altogether, these 

data suggest that AT is a potential site for Cd accumulation. The risk of Cd 

accumulation in AT includes disrupting its capability to accommodate the surplus 

energy and produce the required adipokines for its endocrine function. Consequently, 

this may affect the systemic homeostasis since AT occupies a large part of the whole 

body. 
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Adipose Tissue Structure 

Adipose tissue has a dynamic role, reflected by its heterogeneity, wide 

distribution, and unique structure. White adipose tissue (WAT) comprises a special 

loose connective tissue that is composed of unilocular adipocytes, parenchymal cells 

and the stromal vascular fraction (Frühbeck & Gómez-Ambrosi, 2013; Henriques et al., 

2019). The stromal vascular fraction includes preadipocytes, endothelial cells, 

fibroblasts and immune cells such as macrophages (Henriques et al., 2019). The 

unilocular adipocyte is a single large droplet that occupies most of the cell besides the 

cytoplasm and the peripheral nucleus. Both the unilocular adipocyte and the low 

mitochondrial density characterize WAT morphology (Walker et al., 2014; Henriques 

et al., 2019). The lipid droplet size determines the size of adipocyte, which can range 

from 20 µM to 200 µM(Walker et al., 2014). Accordingly, the elasticity feature of the 

adipocytes is maintained since their size can vary in response to different physiological 

conditions (Walker et al., 2014). Due to the wide abundance of WAT, it can be 

classified based on the regional distribution throughout the body. The two main 

subtypes of WAT are the subcutaneous (SUB) and the visceral (VAT). The latter also 

can be further subdivided into omental, mesenteric, perirenal, and peritoneal fat depots 

(Choe et al., 2016). Subcutaneous AT is located in the innermost layers of the skin and 

has a primary function of energy storage (Badimon & Cubedo, 2017; Henriques et al., 

2019; Kahn et al., 2019). Moreover, SUB-AT is responsible for thermal insulation and 

providing a protective cushion against mechanical damage (Choe et al., 2016; Chait & 

den Hartigh, 2020). On the other hand, the VAT is located in the internal organs and is 

known for its high metabolic response (Badimon & Cubedo, 2017; Kahn et al., 2019). 
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Both SUB-AT and VAT have different metabolic functions and different adipokine 

expression profiles. 

According to in vivo studies, VAT shows a high inflammatory profile indicating 

its association with pro-inflammatory conditions (Badimon & Cubedo, 2017). Another 

study compared SUB-AT and VAT in the case of type 2 diabetes and reported that VAT 

had a higher expression level of adipokines involved in inflammation (Samaras et al., 

2010). In contrast, SUB-AT was found to have a higher expression level of adipokines 

that are involved in energy expenditure, such as leptin and adiponectin (Samaras et al., 

2010; Item & Konrad, 2012). Under physiological conditions, SUB-AT accounts for 

80% of the total fat mass, while VAT represents around 10-20% (Henriques et al., 2019; 

Chait & den Hartigh, 2020). The ratio of SUB-AT to VAT varies depending on several 

factors such as nutrition, age, sex, and the homeostasis of each specific depot (Schoettl 

et al., 2018). As reported by Frühbeck & Gómez-Ambrosi (2012), the regional 

distribution of fats is associated with several inner organs like the kidney, liver, and 

heart which could be a key indicator for several metabolic alterations. Subsequently, 

AT responds to these alterations by remodeling adipocytes through changes either in 

the number, size, or both (Choe et al., 2016).  

Cadmium and WAT Structure 

Adipose tissue structure is associated with adipogenesis which is responsible 

for the maturation of preadipocytes to adipocytes. The main differentiation markers of 

AT are CCAAT/enhancer-binding protein (C/EBP) and Peroxisome proliferator-

activated receptor-gamma (PPAR- γ). The disruption of adipogenesis leads to the 

impairment of the differentiation capacity of adipocytes, which then induces 

dysfunction of AT structure. In vitro, Cd was found to inhibit the differentiation of  
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3T3-L preadipocytes in a dose-dependent manner (E. Lee et al., 2012). The researchers, 

Lee et al. (2012), suggested that the inhibition occurred through the pathways of C/EBP 

and PPAR- γ since their expression level was found to be drastically decreased. In vivo 

study done by Kawakami et al. (2010), reported a reduction pattern of both C/EBP and 

PPAR- γ expression levels after Cd-exposure in a dose-dependent manner. This was 

accompanied by a significant decrease in mice AT weight and adipocytes size 

(Kawakami et al., 2010). Moreover, under acute Cd exposure, the size of the adipocytes 

of MT- null mice was found to be significantly reduced (Kawakami et al., 2013). In 

addition to that, the expression level of both C/EBP and PPAR- γ were significantly 

decreased (Kawakami et al., 2013). According to Kawakami et al. (2013), these results 

suggested that Cd has direct effects on accelerating the lipolysis process since it 

suppresses the expression level of adipogenic markers such as PPAE-γ and C/EBP-α. 

Furthermore, a recent study reported a significant reduction in body weight and 

adipocyte size after eight weeks of Cd exposure in the mice model (Prabhu et al., 2020). 

These results are in agreement with the results of other heavy metals studies. 

For example, Rizzetti et al. (2019), found that mercury (Hg) induces WAT disruption, 

which negatively reflectes the signaling events and metabolic activities. Their results 

suggested that the reduced size of adipocytes that occurred due to Hg exposure led to 

endoplasmic reticulum (ER) stress, attenuated antioxidant defenses, and disrupted the 

mRNA expression level of GRP78, PPARα, PPARγ, leptin, and adiponectin in WAT. 

However, two studies that explored the Cd effect on AT in rat models reported no 

change in body weight and adipocyte size (Ficková et al., 2003; Treviño et al., 2015). 

Collectively, Cd exposure has the potential to induce alterations into the structure of 

AT. It is worth mentioning that the structural changes resulted from Cd exposure lake 

consistency due to differences in experimental design that includes doses, duration, and 
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species. Considering the wide distribution of AT throughout the body, any changes 

related to the maturation of AT, or its structure may impact AT's primary functions. 

Adipose Tissue Function 

The main function of AT is to regulate the systemic energy storage and release 

through lipogenesis and lipolysis (Matafome & Seiça, 2017). Under the condition of 

excess energy, AT stores it in the form of triglycerides via lipogenesis. While under the 

systemic demand of energy, triglycerides are released through lipolysis into free fatty 

acids and glycerol. The balance between lipogenesis and lipolysis indicates healthy 

functional AT which can be reflected in the circulating lipid profile. The relationship 

between the circulating lipid profile and the main functions of adipose tissue, such as 

adipogenesis, lipogenesis, and lipolysis under Cd exposure, was extensively reviewed 

by Attia et al. (2021). A recent study investigating the effect of chronic low-dose Cd 

exposure on the circulating lipid profile reported a significant increase in serum levels 

of triglycerides (TGs), low-density lipoprotein (LDL), and total cholesterol. In contrast, 

high-density lipoprotein (HDL) and glutathione serum levels were reduced 

significantly in SD rats (Samarghandian et al., 2015). This study is consistent with those 

of Afolabi et al. (2012) and Treviño et al.(2015), who conducted it using Wister rats 

with acute high dose exposure to Cd and chronic exposure to Cd with multiple doses, 

respectively. The increment of TGs, LDL, and total cholesterol accompanied by a 

decrease in HDL in the circulation could be attributed to adipocyte dysfunction.  

Furthermore, the endocrine function of AT is vital, where adipokines are 

released to contribute to a complex network of signals (Frühbeck & Gómez-Ambrosi, 

2013). Adipokines that AT produces are involved in the metabolic regulation and play 

an essential role in maintaining systemic functions such as inflammatory and 
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immunological responses, vascular events, reproductive functions, appetite regulation, 

and insulin sensitivityy (Henriques et al., 2019). Additionally, some of these secreted 

adipokines exert both autocrine and paracrine actions, which mainly affect the 

processes of AT remodeling, angiogenesis, and adipogenesis (Ordovas & Corella, 

2008; Henriques et al., 2019). The AT secretory status depends on the changes of 

cellular tissue composition, including alterations in the phenotypes, numbers, and site 

of adipose tissue depots (Ouchi et al., 2011). There are two types of adipokines, pro-

inflammatory such as leptin, monocyte chemoattractant protein 1 (MCP-1), tumor 

necrosis factor-α (TNF-α) and interleukin 6 (IL-6) and anti-inflammatories such as 

adiponectin and interleukin 10 (IL-10) (Mancuso, 2016; Hui & Feng, 2018; Henriques 

et al., 2019). Studies showed that adipocyte secretion of adiponectin, leptin, resistin and 

TNF-α is related to increased risk of type 2 diabetes and arteriosclerosis (Kawakami et 

al., 2010; Samaras et al., 2010). The initial adipokines to be discovered were leptin and 

adiponectin and accordingly, AT was identified as an endocrine organ.  

Leptin  

Leptin is an adipokine secreted by AT and was the main reason for adipose 

tissue recognition as an endocrine organ when first discovered in 1994 (Zhang et al., 

1994). Studies found that WAT secrets leptin into the bloodstream and act on 

LEPR/LepR receptors in the hypothalamus to regulate food intake and energy 

expenditure in both animals and humans (M. Li, 2011; Münzberg & Morrison, 2015). 

The circulating level of leptin was found to be directly proportional to body fat mass, 

and its receptor is expressed abundantly in many tissues (Stern et al., 2016). 

Accordingly, leptin signals have an essential contribution to regulating AT metabolism, 

appetite, satiety, puberty, fertility, and reproductive function (Fasshauer & Blüher, 

2015; Stern et al., 2016). The long-form receptor LepRb initiates intracellular signaling 
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by activating the tyrosine kinase (JAK-2), including multiple downstream factors such 

as STAT-3 and SHP-2. These factors regulate activation of ERK and suppression of 

cytokine signaling 3 (SOCS3) and PI3K pathways which contribute to the innate 

immune response (Mancuso, 2016; Kahn et al., 2019). Moreover, leptin can directly 

increase pro-inflammatory cytokines such as TNF-α and IL-6 in monocytes. Also, it 

enhances the production of chemokines like MCP-1 and IL-8 in macrophages and the 

lipid mediators PGE2 cysteinyl leukotrienes (Ouchi et al., 2011; Mancuso, 2016). Also, 

leptin in monocytes can stimulate ROS production, promoting cell proliferation and 

migratory response (Ouchi et al., 2011). Since leptin's primary known function is 

appetite regulation, in the case of starvation/fasting, low leptin enhances the stimulation 

of high food intake and low energy expenditure and prevents starvation-induced 

changes (Kahn et al., 2019). In addition, studies showed that leptin plays a role in 

glucose metabolism regulation, exerts insulin-sensitizing effects, and is considered a 

key regulator of β-cells (Denroche et al., 2012; Fasshauer & Blüher, 2015; Stern et al., 

2016). Furthermore, leptin has been found to have a protective role for β-cells from 

lipotoxicity in multiple rodent models and culture cell lines (Stern et al., 2016). 

According to Denroche et al. (2012), leptin has an essential effect on glucose 

homeostasis since it can normalize glucose levels in the blood when insulin deficiency 

(type 1 diabetes) occurs in non-obese rodents. Also, leptin deficiency causes multiple 

metabolic disorders such as hyperphagia, diabetes, morbid obesity and immunologic 

dysfunction (Henriques et al., 2019).  

In terms of Cd exposure and its effect on leptin, a study done by Levy et al. 

(2000) reported a reduction of leptin expression level under the Cd exposure in a dose-

dependent manner (Levy et al., 2000). Similar results reported that Cd exposure 

decreases the expression level of leptin (Kawakami et al., 2010, 2012, 2013). In vitro, 
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treated adipocytes with high Cd concentration showed decreased in leptin secretion and 

phosphor-diesterase activity stimulation (Levy et al., 2000; Kawakami et al., 2010). 

These results are consistent with studies of other heavy metals on AT and adipokines. 

A study was done in China on children exposed to lead pollution and tested the 

adipokines level in their blood (Yang et al., 2014). Both leptin and IL-8 adipocytokine 

were detected. However, children with high blood lead levels had higher IL-8 than 

leptin. On the other hand, children with low blood lead levels, had higher leptin than 

IL-8. Thus, heavy metals exposure even at low doses has a potential impact on the 

pattern of leptin expression, suggesting induction of function disruption.  

Adiponectin 

Adiponectin is an adipokin produced exclusively by adipocytes with a high 

level in the blood that ranges between 3 to 30 μg/ml, and it targets different cell types 

(Fasshauer & Blüher, 2015; Mancuso, 2016). As a complex molecule, adiponectin has 

three forms which are low, intermediate, and high molecular weight complexes in the 

circulation. Also, it has two receptors, AdipoR1 and AdipoR2, which mediate the 

actions of adiponectin and activate the AMP-activated protein kinase (AMPK) pathway 

(Fasshauer & Blüher, 2015; Mancuso, 2016). The metabolic properties of adiponectin 

are favorable since it is an anti-inflammatory adipokine that can inhibit the activation 

of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). As a result, 

it inhibits inflammation, reduces the expression of TNFα and IL-6, and regulates 

glucose metabolism and energy homeostasis (Chandrasekar et al., 2008; Novotny et al., 

2012; Vasiliauskaité-brooks et al., 2017). The promotor of the adiponectin gene was 

found to have a various number of transcription factor binding sites such as PPARs (α 

& γ), C/EBPs, and response element-binding protein (SREBP) (Astapova & Leff, 

2012). These transcriptional factors positively regulate the transcription and expression 
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of the adiponectin gene (Astapova & Leff, 2012). Thus, any alterations on these factors 

could adversely affect adiponectin expression.  Furthermore, adiponectin is found to 

have a substantial role in improving insulin secretion through stimulating the insulin 

gene expression and the exocytosis of insulin granules (Fasshauer & Blüher, 2015). 

Adiponectin overexpression leads to the improvement of the insulin sensitivity system, 

while the opposite is related to lowering insulin sensitivity (Holland et al., 2011). 

According to Awazawa et al. (2009), the signals of adipoR1 mediate the liver kinase B 

(LKB-AMPK) pathway, which reduces the genes expression involved in both hepatic 

lipogenesis and cholesterol synthesis. This was attained by suppressing the expression 

of sterol response element binding protein-1C (SREBP1c). Accordingly, adiponectin 

contributes to reducing hepatic lipogenesis and the elevation of β-oxidation via both 

receptors that mediate the activation of AMPK and PPAR-α in skeletal muscle and liver 

(Ouchi et al., 2011; Stern et al., 2016). Activation of AMPK increases fatty acid 

oxidation and glucose uptake in the muscles tissue and inhibits gluconeogenesis in the 

liver (Ouchi et al., 2011). As a result, the deficiency of AdipoR1 reduces the AMPK 

activation and increases the production of glucose. While in the case of AdipoR2, the 

signaling activity of the PPARα pathway is decreased, and insulin resistance is 

enhanced (Ouchi et al., 2011; Iwabu et al., 2015). Thus, the disruption of both AdipoR1 

and AdipoR2 receptors has a negative effect on adiponectin's binding ability and, 

consequently, its actions (Ouchi et al., 2011). This was confirmed by Iwabu et al. (2015) 

when using AdipoR1- and AdipoR2-knockout mice and found that the binding ability 

of adiponectin has been abolished in this animal model. That indicates the critical role 

of both receptors in mediating the action of adiponectin in the body. Correspondingly, 

when the secretion of adiponectin is decreased due to obesity or obesity-metabolic 
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disease, it causes insulin resistance and glucose intolerance (Capeau, 2007; Iwabu et 

al., 2015). 

Few studies explored the effect of Cd on adiponectin expression. Under Cd 

acute exposure condition, the mRNA expression level of adiponectin in AT showed a 

significant reduction (Kawakami et al., 2010). Similarly, in MT-null mice, the 

expression level of adiponectin was significantly decreased in a dose-dependent manner 

(Kawakami et al., 2013). Moreover, the expression levels of the essential transcriptional 

factors peroxisome proliferator-activator receptor gamma (PPARγ) and 

CCAAT/enhancer-binding protein alpha (C/EBPα) were found to be reduced 

(Kawakami et al., 2013). These results match the collected data from in vivo studies 

after treatment with arsenic and mercury exposure (Farkhondeh et al., 2019; Rizzetti et 

al., 2019). These changes in adiponectin under unhealthy conditions could be used as a 

potential marker for AT dysfunction. 

Cadmium-correlated metabolic disease 

Adipose tissue dysfuncation has been suggested to have a significant role in 

enhancing the risk of metabolic disease development (Ordovas & Corella, 2008). As 

mentioned earlier, Cd has the ability to disrupt the structure and function of AT. This 

can lead to the development of metabolic, cardiovascular, and inflammatory diseases 

(Tellez-Plaza et al., 2013; Planchart et al., 2018; Das et al., 2021). Risk evaluation of 

metabolic diseases that is correlated with Cd can be assessed by following parameters: 

circulating lipid profile, GLUT4, insulin, and pro-inflammatory cytokines. According 

to several studies, under Cd exposure the circulating lipid profile was shown to change 

by increasing the levels of free fatty acids, triglycerides, low density lipo-protein, very-

low-density lipoprotein, and decreasing of high-density lipoprotein (Alvarez et al., 
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2007; Afolabi et al., 2012; Kisok Kim, 2012; Olisekodiaka et al., 2012; Treviño et al., 

2015; Zhou et al., 2016). These changes in the circulating lipid profile are reflecting the 

disruption of AT metabolism and function. Another disrupted process is the insulin 

homeostasis. Cadmium was found to reduce GLUT 4 (insulin-responsive glucose 

transporter) which impairs glucose uptake. Han et al. (2003) reported a significant 

reduction in GLUT4 mRNA and GLUT4 protein levels in adipocytes of Cd-treated rats. 

In addition to that, Cd was found to reduce the insulin receptors in AT which 

undesirably impact the insulin signaling (Ficková et al., 2003). This is related to the 

adverse impact of Cd on leptin and adiponectin since both are involved in the insulin 

signaling regulation. Adiponectin is known for GLUT4 induction and glucose uptake 

enhancement (Ceddia et al., 2005; Nicholson et al., 2018). As for leptin, is related to 

the adipocyte size and food intake flux that either stimulates or inhibits insulin. By 

using insulin resistance adipocytes dysfunction index (IDA-IR), Cd-treated AT 

exhibited a significant increment of insulin resistance (Treviño et al., 2015). Similarly, 

a recent study found a positive correlation between the high Cd level of smoker’s AT 

and the increased level of both HOMA-IR and insulin (Salcedo-Bellido et al., 2021). 

These data illustrate the negative effects of Cd on insulin signaling and its promotion 

for insulin resistance which play a crucial role in developing type-2-diabetes. In 

addition to that, several studies linked Cd with the induction of inflammatory events. 

The most produced pro-inflammatory cytokines (TNF-α and IL-6) in the condition of 

AT macrophage infiltration were found to be upregulated by Cd (Guzik et al., 2017; 

Salama et al., 2019). In contrast, an anti-inflammatory cytokine ( IL-10) was found to 

be significantly downregulated (Salama et al., 2019; Choudhury et al., 2021). Cytokines 

such as TNF-α and IL-6 are known to activate nuclear factor kappa B (NF-κB) signaling 

pathway. Consequently, NF-κB signaling pathway activates the transcription of 
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proteins and inflammatory factors that are involved in inflammatory pathways 

(Matafome & Seiça, 2017; Hossein-Khannazer et al., 2020). A study by Freitas & 

Fernandes (2011) reported that Cd highly activates NF-κB signaling pathway and 

induces TNF-α, and IL-6 release in monocytes. As a result, upregulation of pro-

inflammatory inhibit the anti-inflammatory adipocytokines such as adiponectin and IL-

10 (Fasshauer et al., 2003; Astapova & Leff, 2012; Upadhyaya et al., 2014; Mancuso, 

2016). Moreover, TNF-α and Il-6 were found to downregulate the gene expression of 

adiponectin (Astapova & Leff, 2012). 

Most of the above-reported studies investigated the effect of acute Cd exposure 

on organs such as liver and related biological function. However, few studies 

investigated chronic exposure of Cd on AT function. Thus, this study is carried out to 

further investigate the effect of chronic exposure to low dose of Cd on AT function 

through evaluating the pattern of adipocyte secretions and testing. It is hypothesized 

that chronic low dose cadmium exposure affects the functionality of white  adipose 

tissue. 
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Research Objectives 

1. Evaluation of expression level of adipokines (adiponectin and leptin) in rat 

adipose tissues after Cd exposure. 

2. Effect of Cd on the level of MCP-1expression in rat adipose tissues after Cd 

exposure. 

3. Comparison between three adipose depots (subcutaneous, abdominal and 

retroperitoneal).  
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CHAPTER 3: MATERIALS AND METHODS 

 Adipose Tissue Samples  

Preserved adipose tissue samples (Retroperitoneal, subcutaneous and 

abdominal) were obtained from Dr. Hamda Al-Naemi tissue repository at Laboratory 

Animal Research Center (LARC), Qatar University. Tissue samples were collected 

under study approved by Institutional Animal Care and Use Committee IACUC # QU-

IACUC 038/2017 and conducted by Al-Naemi and Das (2020) at Laboratory Animal 

Research Center (LARC); Qatar University. 

Study Design and Treatment Procedures are reported in details by (Al-Naemi & 

Das, 2020). Briefly, adult male Sprague Dawley (SD) rats were divided into two groups, 

control and cadmium-treated. The control group received normal drinking water while 

Cd treated group received Cd in drinking water with dose of 15 mg Cd/kg body weight 

(B.W.) as CdCl2 (BDH Chemicals, England) for 10 weeks. Then, the animals were 

sacrificed using anesthesia with sodium thiopentone (40 mg/kg B.W., i.p.) and adipose 

tissue (Retroperitoneal, subcutaneous, and abdominal) were collected, frozen in liquid 

nitrogen and stored in the repository at − 80 °C. 

Gene Expression Assay 

Adipose tissue previously stored at -80°C were homogenized using both liquid 

nitrogen and probe sonicator, then total RNA was extracted from adipose tissue using 

TRIzol™ LS Reagent (ThermoFisher Scientific, USA; 10296010). Slight modifications 

were followed at the washing step, where the RNA pellet was resuspended in ice-cold 

75% ethanol and kept at-20°C for overnight. Then, washed three times to enhance the 

RNA purity. Total RNA was quantified using nanophotometer (Implen; P330). A 

known amount of RNA samples (150 ng) was reverse transcribed into cDNA using the 

high-capacity cDNA transcription kit individually (Applied Biosystems, Lithuania) 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Al-Naemi%20HA%5BAuthor%5D&cauthor=true&cauthor_uid=32124290
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following the manufacturer’s instructions. Final volume of the obtained cDNA was 20 

µl and stored at -20°C until the performance of RT-PCR gene expression assays. RT-

PCR was performed using diluted cDNA (1:3) and TaqMan® Fast Advanced Master 

Mix (Applied Biosystems, USA) for six targets as summarized in Table 1. GAPDH 

(Rn01775763_g1) was assigned as the endogenous gene. The amplification was carried 

out by QuantStudio 6 flex (Applied biosystem™). The relative quantity of gene 

expression was calculated using 2-∆∆Ct method. Results are presented as fold change 

(log2) versus the mean values of the control samples normalized against the 

endogenous gene.  

 

 

Table 1. TaqMan Gene Expression Assays 

 

 

 

 

 

 

Protein Expression Study 

The followed protocol of protein extraction was adopted from Marin et al. (2019) with 

few modifications. Briefly, adipose tissue samples were homogenized using liquid 

nitrogen and with probe sonicator. Then, further homogenized sample was subjected to 

cell lysis using cell lysis buffer (CLB) which is a mixture of RIPA buffer (Thermo-

Fisher Scientific, USA) and cocktail protease & phosphatase inhibitor (Thermo-Fisher 

Scientific, USA). A fixed amount of CLB was added to each tissue sample with a ratio 

Targeted Gene Taqman Assay ID 

Adiponectin Rn00595250_m1 

Leptin Rn00565158_m1 

MCP-1 Rn00580555_m1 

IL-6 Rn01410330_m1 

IL-10 Rn01483988_g1 

TNF-α Rn01525859_g1 
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of 600 𝝁l (CLB)/ 100 mg (tissue weight) individually. Then, samples were incubated 

in ice for 1h, then centrifuged three times; each round was 15 minutes on a speed of 

20,000 rcf at 4°C. Upper lipid layer was removed after each centrifugation and the 

supernatant was transferred to a new tube. Finally, total protein was quantified using 

Bicinchoninic acid (BCA) kit (Thermo-Fisher Scientific, USA) with bovine serum 

albumin (BSA) as reference by following the manufacture instructions, and the 

absorbance was measured at 562 nm using Versamax Multiplate Reader (Molecular 

Devices).  

Western Blotting  

Protein samples (containing 30 𝜇g/well) were loaded onto 10% SDS-PAGE gel and 

separated by electrophoresis using Tricine buffer. Electrophoresis conditions and 

protein visualization steps were adopted with few modifications from Hermann 

Schägger (2006) and Haider et al. (2012). For gel imaging, stain-free gel (TGX stain 

free FastCast Acrylamide starter kit, 10% - BioRad) was used to capture the separation 

pattern of each tissue type. Then, the separated proteins were transferred to PVDF 

membrane (0.2 𝜇m) at 90 V for 35-51 minutes in 1x TGS transfer buffer. PVDF 

membrane was selected to facilitate the probing and stripping process as citied in 

multiple studies (Alvarez et al., 2007; Buettner et al., 2008; Diaz Marin et al., 2019). 

Next, PVDF membranes were washed with 1X TBS buffer containing 0.1% Tween 20 

(washing buffer) and blocked in 5% skimmed milk buffer for 1 h. After three washes, 

PVDF membranes were incubated with specific primary antibodies against adiponectin 

(Abcam, ab62551) at 1:500 dilution, leptin (Abcam, ab3583) at 1:500 and MCP-1 

(Abcam, ab9669) at 1:4000, all for overnight at 4°C. This was followed by three washes 

with washing buffer, then the PVDF membranes were incubated with the secondary 

anti-rabbit (Abcam, ab205718) at 1:15,000 for 1h at room temperature. The 
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immunoreactive bands were detected using ECL method using Syngene G box Gel 

documentation system.  

 

Statistical Analysis  

Data is presented as means ± SEM. Statistical significance of differences in means is 

determined by a one-way or two-way ANOVA followed by comparison test. P-value 

<0.05 is considered a significant value. All statistical analysis is performed using 

GraphPad Prism version 9.  
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CHAPTER 4: RESULTS 

Effect of Cadmium on the Expression level of Adipokines in Adipose Tissue  

The RNA extraction process from AT is challenging due to the nature of AT 

structure and composition, such as high-triglycerides content, low cell count, and the 

presence of other cells (i.e., endothelial cells and fibroblasts). However, RNA of 

adipose tissue was successfully extracted using the optimized TRIzol™ LS method. 

Total RNA was quantified using the nano-photometer to determine the concentration 

and quality of the extracted RNA. Table 2 shows the concentrations of control (C) and 

Cd-treated (T) samples. The purity of the extracted RNA is represented by the ratio of 

(260/280) and ranges between 1.9-2.0, indicating a high purity level. Accordingly, 150 

ng of RNA/sample were reverse transcribed into cDNA using the high-capacity cDNA 

transcription kit for RT-PCR gene expression. 

 

 

Table 2. RNA Quantification of Adipose Tissue from Control and Cd-treated rats 

Tissue Type Sample RNA Concentration 

(ng/µl) 

A260/A280 A260/A230 

Retroperitoneal 

Adipose Tissue 

Control- 1 452 1.965 1.725 

Control- 2 476 1.951 1.889 

Control- 3 468 1.983 1.934 

Treated-1 420 1.927 2.333 

Treated-2 590 1.916 1.161 

Treated-3 476 1.915 2.164 

Treated-4 494 1.960 1.350 

Treated-5 510 1.962 2.179 

Treated-6 422 1.901 1.486 
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Tissue Type Sample RNA Concentration 

(ng/µl) 

A260/ A280 A260/A230 

Abdominal 

Adipose 

Tissue 

Control- 1 492 1.937 2.216 

Control- 2 648 1.976 2.09 

Control- 3 348 1.933 1.891 

Treated-1 464 1.983 1.95 

Treated-2 596 1.961 1.560 

Treated-3 470 1.942 1.880 

Treated-4 686 1.983 1.874 

Treated-5 534 1.963 1.628 

Treated-6 436 1.982 1.874 

Subcutaneous 

Adipose 

Tissue 

Control- 1 680 1.977 1.628 

Control- 2 582 1.966 1.802 

Control- 3 1302 1.997 1.429 

Treated-1 1340 1.994 2.094 

Treated-2 2488 2.016 2.170 

Treated-3 914 1.978 2.175 

Treated-4 796 1.990 2.221 

Treated-5 776 1.970 1.896 

Treated-6 1028 1.977 1.941 

 

 

Adipokines Gene Expression Level in AT of Cd-treated Rats 

The level of adipokines (adiponectin and leptin) expression levels were 

investigated. Figure.1 shows a common trend of downregulation for both adiponectin 

and leptin within the three AT types. The gene expression levels of adiponectin and 

leptin in AB-AT (B) and REtrop-AT (C) showed a decrease without a significant 

difference in the gene expression levels of targeted adipokines based on 2-∆∆Ct 

calculations. However, between the adipokines, a significant difference was found 

between leptin and adiponectin in AB-AT. Unlike REtrop-AT and AB-AT, there is a 

significant downregulation of both adiponectin and leptin gene expression levels in 

SUB-AT (A). 
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Figure 1. Effect of Cd-treatment on the expression level of adiponectin and leptin in 

adipose tissue of male Sprague-Dawley rats.  

(A) subcutaneous adipose tissue, (B) abdominal adipose tissue, (C) retroperitoneal 

adipose tissue. Gene expression results were generated using 2-∆∆Ct  method. An 

unpaired t-test comparison was performed using GraphPad Prism version 9, the 

significant different is represented by (* P-value < 0.05), n=6.      

 

MCP-1 and Adipokines Gene Expression Levels in each AT Type 

The levels of MCP-1 and adipokines (adiponectin and leptin) expression levels 

within each AT type were investigated. No significant differences were observed 

between the expression level of MCP-1 and adipokines in SUB-AT and REtrop-AT. 

However, in AB-AT, a statistically significant difference was found between the 

expression levels of MCP-1 and adiponectin. Another observation was noted regarding 

the higher expression level of examined targets in SUB- AT compared with REtrop-AT 

and AB-AT. 

 

 

 

 

 

 

 

A B C 
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Figure 2. Relationship between the expression level of MCP-1 and adipokines of three 

different adipose tissue depots of male Sprague-Dawley rats after Cd-treatment.  

((A) subcutaneous adipose tissue, (B) abdominal adipose tissue, (C) retroperitoneal 

adipose tissue.  Gene expression results were generated using 2-∆∆Ct method. One-way 

ANOVA was performed using GraphPad Prism version 9, the significant different is 

represented by (*** P-value < 0.001), n=6.      

 

 

Gene Expression of MCP-1 and the Inflammatory Mediators in AT  

A trend of downregulation is shown in REtrop-AT and SUB-AT for the 

expression level of MCP-1 as shown in Figure 3. Whereas in AB-AT, a non-significant 

upregulation in the expression level of MCP-1is observed. The gene expression of IL-

6 tended to decrease in both REtrop-AT and AB-AT, and it was under the detection 

limit in SUB-AT. Similarly, IL-10 gene expression showed a trend of downregulation 

in all AT tissues. TNF-α gene expression was found to be downregulated in SUB-AT. 

While in REtrop-AT ad AB-AT, an upregulation of TNF-α was observed but is not 

significant based on 2-∆∆Ct calculations. Notably, SUB-AT showed a higher expression 

level in terms of the MCP-1 and IL-10 fold change that recoded 4.5 and 3.5 respectively. 

Also, a statistically significant difference was found between the TNF-α and MCP-1 

gene expression levels in SUB-AT.    

 

 

 

A B C 
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Figure 3. Effect of Cd-treatment on the expression level of MCP-1 in three different 

adipose tissue depots of male Sprague-Dawley rats and its relation with selected 

inflammatory markers.  

(A) subcutaneous adipose tissue, (B) abdominal adipose tissue, (C) retroperitoneal 

adipose tissue. Gene expression results were generated using 2-∆∆Ct method. One-way 

ANOVA was performed using GraphPad Prism version 9, the significant different is 

represented by (** P-value < 0.01), n=6.      

 

Comparison Between Gene Expression Levels of Adipokines and MCP-1 in all AT 

Types 

 

The expression pattern of adipokines varies from one AT depot to another. 

Accordingly, further investigation was done to compare the gene expression level of 

adiponectin, leptin, and MCP-1 in REtrop-AT, AB-AT, and SUB-AT of Cd-treated rats. 

Using Two-way ANOVA, SUB-AT showed high significant difference relative to 

REtrop-AT and AB-AT (P < 0.001). As shown in Figure 4, adiponectin and leptin 

expression levels were found to be significantly expressed in SUB-AT, whereas both 

REtrop-AT and AB-AT showed less significant expression. Also, a significant 

difference (P<0.001) was found between the gene expression of MCP-1 in SUB-AT 

and AB-AT.                                       

A B C 
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Figure 4.Comparison between the expression level of adiponectin, leptin and MCP-1 in 

AT depots of male Sprague-Dawley rats.  

abdominal adipose tissue(AB-AT), subcutaneous adipose tissue (SUB-AT), 

retroperitoneal adipose tissue (Retrop-AT). Gene expression results were generated 

using 2-∆∆Ct  method. 2way ANOVA was performed using GraphPad Prism version 9, the 

significant different is represented by (* P-value < 0.5, **P<0.1, ***P<0.001), n=6 
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Total protein Quantification  

Total protein quantification was determined using BCA protein assay against the 

standard protein BSA. The concentration of total protein extracted from each depot is 

shown in Table 3 where BCA protein assay was performed in duplicate. And the 

mean of protein concentration is presented as mean ± SEM. Protein concentrations 

were calculated based on the standard curve of standard protein BSA as shown in 

Figure 5. The calculated concentrations of total protein extracted from SUB-AT were 

the highest whereas the concentrations of protein extracted from REtrop-AT were 

lowest (Table 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 5. Standard Calibration Curve for BCA assay.Standard used in this assay is bovine serum 

albumin. Assay was performed in duplicates.  
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Table 3. Protein Quantification of Adipose Tissue from Control and Cd-treated rats. 

Tissue Type Sample Mean of Protein Concentration  (mg/ml) 

Subcutaneous 

Adipose Tissue 

Control- 1 

1.3 ± 0.153 Control- 2 

Control- 3 

Treated-1 

1.9 ± 0.251 

Treated-2 

Treated-3 

Treated-4 

Treated-5 

Abdominal 

Adipose Tissue 

Control- 1 

0.9 ± 0.140 Control- 2 

Control- 3 

Treated-1 

1.6 ± 0.06 

Treated-2 

Treated-3 

Treated-4 

Treated-5 

Retroperitoneal 

Adipose Tissue 

Control- 1 

0.9 ± 0.07 Control- 2 

Control- 3 

Treated-1 

1.0 ± 0.05 

Treated-2 

Treated-3 

Treated-4 

Treated-5 

 

 

 

Total protein separation of AT depots from control and Cd-treated Rats 

 

To evaluate the expression level of adipokines, 30 𝜇g of extracted protein from 

each AT type was separated in 10% SDS-PAGE. The area of focus for the targeted 

proteins starts form 50 kDa and below. As shown in Figure 6 bands are shown in the 

aimed molecular weights. However, at REtrop-AT the lower the molecular weight the 

less band are detected as shown in Figure 7&8 especially below 20 kDa. This accord 

with the concentration of extracted protein from each depot.  
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Figure 7. Representative image of stain-free gel of Abdominal AT after SDS-PAGE.  

Figure 6. Representative image of stain-free gel of subcutanous AT after SDS-PAGE.  
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Protein expression of Adiponectin in AT depots 

The expression of adiponectin was evaluated using western blot qualitative 

analysis. As shown in Figure 9, expression of adiponectin was detected in all AT depots. 

It was observed that adiponectin at all AT depots detected at 50 kDa which is higher 

than the theoretical value due to the fats that hinder the migration of protein through 

the gel. Adiponectin expression in SUB-AT was found to be higher than AB-AT and 

REtrop-AT.      

  

Figure 8. Representative image of stain-free gel of retroperitoneal AT after SDS-PAGE.  
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Protein expression of Leptin in AT depots 

The expression of leptin was evaluated using western blot qualitative analysis. 

As shown in Figure 10, expression of leptin was detected in all AT depots at 25 kDa. It 

was observed that leptin expression was the lowest at Retrop-AT compared to SUB-AT 

and AB-AT. However, SUB-AT expressed more leptin than AB-AT and REtrop with 

noticeable decrease in the treated samples.  

 

Figure 9. Protein expression of adiponectin in AT depots of subcutaneous, abdominal, and retroperitoneal. 

Figure 10. Protein expression of leptin in AT depots of subcutaneous, abdominal, and retroperitoneal. 
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Protein expression of MCP-1 in AT depots 

 

The expression of MCP-1 was evaluated using western blot qualitative analysis. 

As shown in Figure 11, expression of MCP-1 was detected in all SUB-AT and AB-AT 

at 20 kDa. It was observed that MCP-1 was not detected in most of the treated samples 

compared to control. It is worth mentioning that the least protein concentration is the 

one extracted from REtrop-AT, though the initial weight of all AT depots was the same 

(Table 3). Moreover, the stained gel of REtrop-AT samples showed almost no bands at 

the molecular weights below 20 kDa (figure 8) where MCP-1 is detected. Therefore, 

MCP-1 protein expression was not detected in all the samples of REtrop-AT.  

 

The protein expression of Adipokines and MCP-1 in all AT depots 

 

The protein expression of each target was evaluated in AT depots (Table 4). 

Adiponectin and leptin were found to have a higher expression in SUB-AT compared 

to AB-AT and REtrop-AT. On the other hand, the lowest MCP-1 expression was found 

at SUB-AT compared to AB-AT.   

Figure 11. Protein expression of MCP-1 in AT depots of subcutaneous and abdominal. 
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Table 4. The Protein Expression of Adipokines and MCP-1 in AT depots. 

Tissue Type Target Control Treated 

Subcutaneous 

Adipose Tissue 

Adiponectin ++ +++ + +++ +++ + 

Leptin +++ ++ ++ + + + 

MCP-1 + - - + - - 

Abdominal 

Adipose Tissue 

Adiponectin ++ ++ + +++ +++ + 

Leptin ++ + ++ ++ + + 

MCP-1 + - - + + - 

Retroperitoneal 

Adipose Tissue 

Adiponectin +++ ++ ++ + ++ + 

Leptin + + + + + + 

MCP-1 UN UN UN UN UN UN 

Expressed (+), Not expressed (-), Un-detected (UN). Increasing the number of (+) 

means higher intensity.  
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CHAPTER 5: DISCUSSION 

Cadmium is a toxic environmental pollutant that has high accumulation 

properties in live tissues such as liver, kidney and adipose tissue. According to the 

literature, Cd accumulation imposes adverse effects on the function of targeted tissues 

(Genchi et al., 2020). To our knowledge, there are limited investigations on the link 

between chronic Cd exposure and WAT function. Therefore, this study attempted to 

study the impact of chronic Cd exposure on WAT function using three different AT 

depots of adult male SD rats. The expression levels of adiponectin and leptin in 

subcutaneous (SUB-AT) and visceral depots (AB-AT and REtrop-AT) were evaluated. 

Our results showed that adiponectin and leptin mRNA expression levels were 

significantly downregulated in SUB-AT. Moreover, a significant difference was found 

between subcutaneous AT and visceral AT (Retroperitoneal and Abdominal); 

indicating a depot-location properties when exposed to Cd. Conventionally, the 

expression patterns of adipokines differ between adipose depots (M. Lee et al., 2013). 

Subcutaneous adipose tissue expresses leptin and adiponectin more than visceral 

adipose tissue (Samaras et al., 2010; M. Lee et al., 2013; Mazaki-Tovi et al., 2016). 

This aligns with our results where the expression level of adiponectin and leptin is 

greater in SUB-AT than AB-AT and REtrop-AT. 

Adipokines such as adiponectin and leptin are produced by mature adipocytes, 

which help adipocytes maintain the body energy homeostasis. Therefore, disrupting 

their production could be an indication of adipocytes dysfunction that might be linked 

to adipocytes maturation. Adipocyte’s maturation is regulated by critical factors such 

as PPARγ and C/EBPα. A previous in vitro study reported that Cd adversely affects the 

differentiation of preadipocytes by downregulating the expression level of PPARγ and 

C/EBPα in 3T3-L1 adipocytes (E. Lee et al., 2012). This also accords with results 
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reported by Kawakami et al. (2010, 2013) that showed Cd exposure altered the 

expression level of the critical regulators of adipogenic differentiation PPARγ and 

C/EBPα in mice models. Linking these results with the downregulation of adiponectin 

and leptin supports the hypothesis that Cd adversely affects the differentiation capacity 

of the adipocytes. Under acute Cd exposure, similar significant downregulation of 

adiponectin mRNA expression level was detected (Kawakami et al., 2010). Another 

study conducted by Kawakami et al.(2013) using MT-null mice showed that acute 

exposure reduced the mRNA expression level of leptin and adiponectin in a dose-

dependent manner. 

In the present study, the protein production for adiponectin and leptin by 

adipocytes was investigated in the three adipose depots. Since adiponectin and leptin 

are secretory proteins, most studies assess their levels in blood samples. Although both 

adipokines have paracrine and endocrine effects and act on other tissues through their 

specific receptors, the AT remains to be their main production site. However, to our 

knowledge there is no available literature investigating the Cd impact on the protein 

production of adipokines at adipose depots. The results generated from the current study 

showed that chronic low dose Cd exposure does not inhibit both adipokines protein 

expression in all AT depots. According to the literature, Cd adversely affects the 

adiponectin circulating level (Valcke et al., 2019; X. Wang et al., 2021). A similar effect 

was observed with other heavy metals such as lead, mercury, and arsenic, where their 

exposure negatively affected the circulating level of adiponectin (Song et al., 2017; 

Valcke et al., 2019; Tinkov et al., 2021; X. Wang et al., 2021). Nevertheless, when the 

protein level of adiponectin in visceral AT and subcutaneous AT was compared with 

its level in circulation, no correlation was found (Jonas et al., 2017). Moreover, no 

correlation was found  between the adiponectin mRNA-expression level and 
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adiponectin protein concentration in normal and abnormal adipose tissue (Jonas et al., 

2017). Unlike adiponectin circulating level, adiponectin gene expression level did not 

correlate with protein content in AT and its secretion in both SUB and VAT (Kovacova 

et al., 2012; Korac et al., 2021). Similarly, an in vitro study reported that the reduction 

of adiponectin in the media did not mirror a reduction in adiponectin tissue content 

(Phillips et al., 2008). This suggests a posttranscriptional mechanism that might 

regulate the protein amount or posttranslational changes that affect the protein stability 

and secretion rates.  

In addition, adiponectin has three isoforms in circulation, which are trimer (low 

molecular weight), hexamer (medium molecular weight), and multimeric (high 

molecular weight). The distribution of the circulating adiponectin oligomers is thought 

to be primarily regulated at the stage of secretion from adipocytes (Coelho et al., 2013). 

The adiponectin multimerization has a vital role in its biological function (Kovacova et 

al., 2012). As mentioned earlier in Chapter 2, it is evident that adiponectin exerts its 

action through two essential receptors, which are AdipoR1 and AdipoR2. The studies 

of Cd exposure effect on adiponectin receptors are scarce. However, a study reported 

that lead exposure caused downregulation of adiponectin receptor (Meyer et al., 2020). 

Several studies found that adiponectin receptors expression at gene and protein levels 

are positively associated with adiponectin circulating level (Kern et al., 2003; Blüher et 

al., 2007; Kollias et al., 2011; Jonas et al., 2017). This indicates the vital role of 

AdipoR1 and AdipoR2 in adiponectin functionality. Thus, the expressed adiponectin in 

the current study could be reflecting the non-secretory form of the protein that could be 

a result of deficiency in corresponding receptors. Further investigation is required to 

assess the expression level of both receptors at the gene level and protein level in AT 

which could provide further knowledge about adiponectin functionality under chronic 
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Cd exposure.  

Unlike adiponectin, leptin production and secretion into the blood is 

proportional to the adipocytes size and numbers (Park & Ahima, 2014). As discussed 

above, leptin is produced by differentiated adipocytes, and its low expression could 

indicate a deficiency of the adipocytes maturation process. The data collected from the 

present study showed a low protein expression of leptin in SUB-AT when compared to 

adiponectin (Table 4). Also, the most downregulated adipokine in SUB-AT was leptin 

(Figure 2A). Together, this data supports the hypothesis that chronic Cd exposure 

dysregulates adipocytes maturation process which affects their secretion capacity. 

Leptin secretion rate increased or decreased independently of its mRNA expression 

(Barr et al., 1997) due to the presence of  small vesicular stores in adipocytes (Harris, 

2014). Thus, chronic low-dose Cd exposure could affect the secretion and production 

of leptin but was not enough to exhaust the leptin stores and entirely suppress leptin 

expression. In addition, leptin expression varies between fat depots and the favored 

depot to produce leptin is subcutaneous. Accordingly, the expression level of leptin in 

visceral AT (AB-AT & REtrop-AT) seems unaffected and not fluctuated compared to 

leptin expression in SUB-AT (Figure 9). Considering that SUB-AT is the depot to most 

accumulate Cd (unpublished data); this explains the dysregulated expression of 

adipokines at both protein and mRNA levels in SUB-AT compared to other depots.  

There is an established link between the abnormality of adipocytes and the 

induction of inflammation, especially with obesity (Rull et al., 2010; Greevenbroek et 

al., 2016). In the case of obesity, well-known inflammatory markers in ATs are TNF-

α, IL-6, and the elevated number of macrophages. In the present study, we investigated 

the effect of chronic Cd exposure on the adipose tissue macrophages (ATM) by 

assessing the expression level of MCP-1 as a functional protein for 
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monocytes/macrophages recruitment. MCP-1 is mainly produced under the state of AT 

abnormality. Our results showed a trend of downregulation in the mRNA expression 

level of MCP-1 in SUB-AT and REtrop-AT whereas it showed a non-significant up-

regulation in AB-AT (Figure 3). The significant downregulation was found in SUB-AT 

with fold change of 4. Additionally, the protein expression of MCP-1 in most treated 

samples was suppressed in SUB-AT and AB-AT (Figure 10). Unlike adiponectin, leptin 

can enhance the production of MCP-1 and stimulates the macrophages infiltration in 

response to an excess food intake as part of its pro-inflammatory properties (Coelho et 

al., 2013; Mancuso, 2016). However, in the current work, leptin is downregulated 

which could explain the downregulation trend of MCP-1. Moreover, experimental 

results in the literature demonstrate a correlation between the AT leptin expression and 

markers of inflammation (Harris, 2014). The present study demonstrated that both 

mRNA and protein expressions of MCP-1 matched in SUB-AT (Figure 2A & Figure 

10). The downregulation of MCP-1 protein expression might be a result of the low 

protein expression of leptin. To the best of our knowledge there are very limited studies 

that explore the effect of Cd on adipose tissue macrophages activity, especially at the 

protein level. Therefore, most of the interpretation of our data is based on the available 

literature of mRNA expression levels of MCP-1, the cytokines levels from 

macrophages cell lines as well as macrophages in AT under obesity condition. 

However, few studies reported that low dose Cd decreases essential proteins in 

macrophages which inhibit the motility of the macrophages and alter their interactions 

and migration ability. Of relevance, there is a noteworthy difference between the impact 

of high-dose Cd and low-dose Cd, especially on the macrophages activities and 

inflammatory mediators levels. The high-dose encourages their pro-inflammatory 

events while low-dose inhibits those events (Kiremidjian-Schumacher et al., 1981; 
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Olszowski et al., 2015; Mirkov et al., 2021). These pro-inflammatory events include: 

activating NF-κB pathway, inducing oxidative stress and recruiting more immune cells 

(Thévenod & Lee, 2013; Andjelkovic et al., 2019).     

Macrophages quantity, activation state, and metabolic phenotypes are the main 

factors that determine macrophages function (Y. Li et al., 2020). Under pathological 

conditions, ATM can exhibit mixed phenotypes in response to local regulation (Z. 

Wang et al., 2021). However, the maintained cellular communication and crosstalk 

between adipocytes and macrophages is demonstrated by the ability of preadipocytes 

to differentiate into macrophages (Thomas & Apovian, 2017). Published data indicated 

that Cd adversely affects the differentiation capacity of preadipocytes into macrophages 

and interferes with the immune cells development (Z. Wang et al., 2021). Taken 

together, these research findings suggest that Cd might impair the differentiation of 

preadipocytes through diminishing the transcription factor PPARγ that could influence 

the differentiation of macrophages (Thomas & Apovian, 2017). The AT-derived MCP-

1 expression in normal-weight and overweight women is associated with resident 

macrophages content, stromal vascular cells, and AT location as reported by Bruun et 

al.(2005). Accordingly, impaired adipogenesis leads to a decrease in macrophages 

differentiation capacity, which translates into the downregulation of MCP-1. 

On the other hand, Kawakami et al.(2013) reported an increment in the number 

of macrophages and elevation of the mRNA expression level of MCP-1 after Cd 

treatment in the MT-null mice model in a dose-dependent manner. Another study 

reported acute Cd exposure caused an upregulation of MCP-1 mRNA expression levels 

in glioblastoma cell lines (Kasemsuk et al., 2020). Moreover, chronic low dose 

exposure to Cd was found to induce inflammatory cells infiltration in liver tissue 

associated with upregulation of MCP-1 mRNA expression level in the hepatocytes of  
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pubertal mice model (X. Li et al., 2021). These results are opposing to the results of our 

study that might be due to differences in the experimental design  including the different 

animal models, Cd dose, and mode of administration (Kuester et al., 2002). Despite the 

dose, acute exposure of Cd caused an upregulation of MCP-1 mRNA expression level 

within the first 24h, while the chronic Cd exposure caused downregulation of MCP-1 

expression level which is consistent with our results (Harstad, 2002). Moreover, a 

recent in vitro study compared mouse and rat macrophages cell lines and reported that 

mouse macrophages cell lines were more sensitive to Cd exposure than rat macrophages 

cell lines (García‐Mendoza et al., 2019). To the best of our knowledge, this study is the 

first to investigate the effect of chronic Cd exposure on MCP-1 mRNA and protein 

expression levels in adult male SD rats 

 Macrophages produces certain cytokines which mediate the inflammatory 

response and can be used as markers for macrophages activity. Therefore, we further 

investigated the expression patterns of the inflammatory cytokines, namely TNF-α, IL-

6, and IL-10. Our result showed a trend of downregulation of both IL-6 and IL-10 in 

all AT depots. However, TNF-α showed a slight upregulation in AB-AT and REtrop-

AT but not in SUB-AT. The expression pattern of the inflammatory cytokines agrees 

with the MCP-1 expression pattern. Early evidence demonstrated that Cd significantly 

decreased the phagocytic activity of murine macrophages in a dose-dependent manner 

(Loose et al., 1978). In vitro experiments conducted by Jin et al.(2016) showed that Cd 

exposure decreased the inflammatory responses of murine macrophages in a dose and 

time-dependent manner. Moreover, a subtoxic dose of Cd (10µM) was found to inhibit 

the expression level of both IL-10 and IL-6 in murine macrophages (Riemschneider et 

al., 2015). Cox et al. (2016) proposed that Cd induces immune dysfunction in 

macrophages. This was confirmed it with lipopolysaccharide treatment after Cd 
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exposure wherein the ability of macrophages to transcribe and release cytokines was 

disrupted. A single-cell transcriptomic study reported that chronic Cd exposure induces 

phenotypic alterations in the immune system and reduces the number of monocytes 

when comparing the circulating immune system with the plasma Cd level (Lu et al., 

2021). Together, these data suggest that chronic Cd exposure disturb the function of 

immune cells, especially the macrophages. 

Former studies that investigated the macrophages infiltration patterns in 

different AT depots reported that in normal-weight and obese conditions, VAT was 

found to have more macrophages than SUB-AT (Jonas et al., 2015). Subcutaneous AT 

acts as a metabolic sink that stores excess free fatty acids and glycerol in the form of 

TGs. Visceral AT accumulates when the capacity of SUB-AT is exceeded due to 

chronic stress (Ibrahim, 2010). Also, VAT is associated with inflammatory events. This 

could explain the upregulation trend of MCP-1 and TNF-α in AB-AT of our study. 

Although the MCP-1 expression level was found to be disrupted, the inflammatory 

markers were found to be downregulated which suggests that chronic exposure to low-

dose Cd is not an inflammatory promotor. It is possible that Cd exposure negatively 

affected SUB-AT but not to the level that causes lipid accumulation in VAT. Hence, 

REtrop-AT was found to be the least affected AT, which is reflected in the amount of 

extracted protein (low fat cells) and non-significant adipokines expressions.  

To summarize the results of the present study, the author suggests that chronic low-

dose Cd exposure affects WAT function, that results in significant downregulation of 

mRNA expression levels of adiponectin and leptin mainly at SUB-AT. This elucidates 

the protective role of SUB-AT microenvironment against Cd toxicity among other 

tested WAT depots.    
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CONCLUSION  

The main goal of the current study was to examine the effect of chronic 

exposure to chronic low-dose Cd on the WAT function. To achieve this goal, the main 

adipokines produced and secreted by WAT were evaluated in different WAT depots, 

namely, subcutaneous, abdominal, and retroperitoneal adipose tissues. The most 

significant finding that emerged from this study is that chronic exposure to low-dose 

Cd adversely affects the secretion pattern of fundamental adipokines in SUB-AT 

compared to other depots. Moreover, chronic Cd exposure disrupts the function of 

adipose tissue macrophages in SUB-AT compared to visceral depots. However, Cd 

exposure to low-dose dose did not induce inflammation in SUB-AT. This study is one 

of the first attempts to thoroughly examine the effect of chronic exposure to low-dose 

Cd in different WAT depots at both gene and protein levels. It contributes to the existing 

knowledge by providing insights into the impact of chronic exposure to low-dose Cd 

on the function of different adipose depots that occupy different locations throughout 

the body. In terms of directions for future research, further work investigating the effect 

of chronic Cd on the protein expression of adiponectin and leptin and their receptors is 

required using other techniques other than western blot analysis. This could enhance 

our understanding of the potential alterations in the protein sequencing and the 

mechanisms regulating their production and secretion. Henceforth, combining the 

protein expression in WAT with the adipokines circulating level will further explain 

the association between the production and the secretion of adipokines by the 

adipocytes.  
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