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ABSTRACT 

ABOUMADI, ABDULLA, M., Masters : June : [2022], 

Masters of Science in Computing 

Title: Advanced Machine Learning Techniques for Arrhythmia Classification 

Supervisor of Thesis: Elias, E, Yaacoub. 

 

With the development of Internet-of-Things (IoT) applications, the concept of 

smart healthcare applications has gradually emerged to be the main factor in 

medicine. In fact, this raises the need to have a secure system that is efficient at the 

same time, due to the limited resources of IoT devices. Many different techniques 

have been developed and studied recently. For example, with centralized learning 

(CL), all data are collected and processed in one place. But many of these models are 

heavy and lead to an infringement of patient’s privacy. Hence, a Federated Learning 

(FL) approach helps in developing global application without storing the data in 

centralized cloud. Therefore, in this thesis, the concept of CL and FL using a 

convolutional neural (CNN) network is performed to identify and classify arrhythmia, 

while taking into consideration the accuracy and simplicity in simulating a system 

model that would be used in medical devices. The MIT-BIH dataset was used in this 

work to test and validate the proposed approach and compare it to other methods in 

the literature. 
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CHAPTER 1: INTRODUCTION 

 

 With the rapid evolution of adding intelligence to embedded systems such as 

the Internet of Things (IoT) [1], and the presence of data that has been collected 

widely from different IoT environments, the path is paved for deploying new 

interactive applications that transfer the traditional industry service to intelligently 

active services. However, many challenges were raised due to these trends such as 

latency and reliability and the need for processing after transmitting big data 

generated by IoT while ensuring the same quality of service. Artificial intelligence 

brings such real-time interactive applications to reality with the help of active learning 

and deep learning. Indeed, an efficient intelligent healthcare application can take 

place in event detection, categorization, and online real-time monitoring for a patient 

that is highly exposed to health deterioration. Such application is useful in many 

scenarios such as the recent pandemic which causes health evaluations in online 

health care. An electrocardiogram (ECG) is a primary vital sign that allows a doctor 

to monitor the patient and can be updated online. 

The essential target of the ECG is to monitor the heartbeat to identify the heart 

state; ECG is the only methodology that can identify the rhythm of the heart, 

especially for patients who suffer from chronic diseases. The ECG could be extracted 

from cardio tests or heart monitoring devices, and many extensive studies have been 

conducted in medical engineering to build early warning systems that notify patients 

and doctors of abnormal beats. Moreover, after cardiac operation, the chance of 

getting heart attack again increases and it does not mean that the patient fully recovers 

from heart disease. So, doctors need to keep monitoring patient’s’ heart activities in 

addition to medication; thus, using AI based application in discovering diseases in 
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early stages would increase. Each year, many patients die because of neglecting home 

medical care, where the patient is actually tired of going frequently to hospitals for a 

regular check-up, and in many cases, they are waiting for their appointment but at the 

same time they are suffering from such diseases. It has been reported by American 

Heart Association [2], in 2020, that around 100 million people around the world 

suffer from Cardiovascular disease (CVD). CVD causes blocking blood vessels which 

leads to death, and the main cause of blood blocking is arrhythmia, especially if it has 

been detected late. Doctors have been using visual inspection of ECG signals to detect 

and locate arrhythmia. However, this technique can be time-consuming when 

cardiovascular diseases are at their early stage, and such constraints come behind the 

fact that the doctor needs to inspect a long record of the patient’s heartbeat. Therefore, 

Doctors use the heartbeat cardio test to detect arrhythmia, with the help of certain 

devices. Some are used for short duration monitoring such as Holter, which stays for 

one to two days, and others are used for long-term patients’ monitoring [3], but still 

this method is used for patients who already have heart diseases and it does not 

transfer data. Instead, patients need to wait until the recording finishes and then take 

the data back to hospital to be analysed. Moreover, the fact that doctors are human, 

can lead to the chance of the wrong inspection taking place due to error during the 

analysis [4]. Hence, using IoT as smart medical instrument will allow immediate data 

analysis, since the IoT will keep sending the data whenever it collects some. In 

addition, bringing AI to embedded systems such as IoT will limit the power 

consumption due to transmitting data, and collaboration between the IoT devices can 

build and train model that can detect and classify abnormal vital signs. 
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1.1 Centralized learning 

 

There are mainly three types of active learning that could be used with big 

data to implement a real-time application, namely, centralized learning, decentralized 

learning, and federated learning. Researchers introduce decentralized learning with 

the trend of active learning and sharing data between the users, but this type of 

learning was not efficient since the model is fitted with the shared data, and usually 

only nearby IoT devices of one environment share data with each other. This 

methodology was missing a generalization factor, while Centralized Learning 

guarantees the model’s generalization with the big data since all the training is done in 

the cloud (in one place). Moreover, centralized learning achieves high performance, 

which is why most of the existing research focuses on centralized learning with Deep 

Neural Networks (DNN)[5]. However, such application on IoT devices does not meet 

the requirement, since the power consumption is high due to the computational power 

needed to run DNN. Moreover, the data processing is done in a centralized paradigm 

putting users’ privacy at high risk. Hence, to keep the user’s data private it is not a 

practical solution to forward it to a centralized entity for training or in some cases for 

prediction [5]. Moreover, the communication path between the IoT and the cloud will 

be highly loaded with data. So bringing the intelligence to the IoT device will 

maintain data privacy in addition to efficient communication between the IoT and the 

cloud [6].  
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1.2 Federated learning 

 

The new Federated Learning is a promising solution for model training 

without storing the data at a centralized location. While it is known as distributed 

machine learning, hence, it allows users to collaborate in building one model with 

their combined data, this is done without any sharing of data to a centralized entity 

[7]. The privacy-preserving and collaborative approach is carried out by three main 

steps where: (i) all the participating users receive the latest updated weight (W) from 

the centralized cloud that connects all of them. (ii) The participating users train the 

model based on the local data they own to have W for each user after training. (iii) 

Each user uploads their weight to the centralized cloud for the combination of weights 

and formation of a global model [8]. Such a method uses the centralized cloud to form 

a global model from users' knowledge after each local training until it reaches a 

certain convergence criterion. The devices following this collaborative approach 

never transfer their local data, since only the data knowledge is transferred in the 

shape of a locally trained model. However, these models are wasting the power of the 

IoT device since the model is being trained locally [9]. Moreover, the load of 

communication is large and it exponentially increases with the distance between the 

cloud and the clients which causes congestion, especially if the IoT devices train a 

deep learning model which requires large amounts of data transfer after each 

communication round [10].  
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1.2 proposed work 

 

 To address the above challenges, we propose a light Neural Network for Heart 

monitoring. The proposed work focuses on light Neural Network, which means fewer 

neurons of each layer and less number of layers. Hence, IoT acquires from the patient 

1D-time-domain ECG data, focusing on the data itself instead of NN for better 

performance. If the data is split and processed correctly, the 1D-CNN can extract 

features with less number of CNN layers without the need for more filters. The lighter 

the NN the least computational power is needed from IoT’s processor to train the 

model. Based on this, we implement this method on Centralized learning, where we 

gather the information centrally, and by tuning the segmentation frequency to be 

around one heartbeat, the data passes to the model. We used 1D-CNN to extract the 

heartbeat features, and then sent them to the model to be trained. After we managed to 

get a high performance compared to segmented data and compared to other papers, 

we moved to collaborative learning, with the same data pre-processing setup. In 

federated learning, the data will have the concept of its environment, which means the 

data is represented by its users’ local dataset, not by the population distribution. 

Hence, the design of the federated algorithm needs to address the above constraints. 

The imbalance in the dataset and wrong distribution of classes over clients lead to bias 

toward class or environment which leads to poor performance. However, the 

federated average can solve such an issue by averaging the weights of all the 

environments to make it global, and a global model will be used later on in IoTs as an 

application. Overall, our system model targets IoT devices and addresses their 

constraints, at the same time and without loss of generality, this thesis is considered as 

a case study, applying lightweight CL and FL in an intelligent healthcare system. The 

Healthcare system includes thousands of patients that need regular monitoring, and 
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because of the new pandemic situations, a huge amount of load faced the healthcare 

systems. Thus, the healthcare system needs to move to the home site with remote 

monitoring of the patient’s condition or home care. Hence, such an intelligent system 

can enable those services to patients by collecting information from the patients and 

processing it to identify the patient's health status. However, the collected data needs 

to be stored locally instead of violating patients’ privacy. Therefore, we found that 

federated learning enables remote monitoring of patients and helps envision an 

intelligent healthcare system. 

The developed approaches have been tested comprehensively on different 

scenarios via real-world datasets. Comparing our results to other papers that use real-

world datasets confirm that the proposed approach has near-optimal performance for 

different data and configuration distribution.  
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

There are three ways of connecting artificially intelligent applications to the 

cloud, allowing data and feedback communication in between, where the client is the 

patients, and the cloud is the hospital. By the three methodologies namely, 

centralized, decentralized, and federated learning, we can add intelligence to 

embedded systems. In this chapter, Centralized Learning and Collaborative Learning 

will be reviewed. In addition, the performance metric equations used to evaluate our 

system model are presented, in addition to the dataset used in training the model. 

 

2.1 Centralized Learning 

 

Centralized learning occurs when nodes are connected to the cloud. The nodes 

are mainly Internet of Things (IoT) devices that do not have enough power to process 

data and train a large amount of data, or the application is shared between many other 

IoT devices. So, they use centralized cloud computing to save the dataset and train a 

model. Such a learning paradigm made a quantum leap in Artificial intelligence, 

where the old way of building smart systems using AI models is by collecting data, 

training AI models in the labs, and tuning it for a certain application, then leaving it 

into devices [11]. The architecture in [12] proposed multichannel neural network in a 

smartwatch. Each lead is assigned to a different channel, the convolutional filter 

extracts features from each channel, then maps all the features to the features' vector 

before passing it to the MLP to classify the heartbeat. But for real-time application 

and variable data drift, centralized learning collects all the data on the cloud to train 

the AI model, and they use clients’ embedded systems from different environments 

for data acquisition. Then the training and sometimes the prediction happens online. 

The generalization is the main advantage of the centralized methodology, where the 
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model can generalize based on a group of embedded systems and thus instantly work 

with other embedded systems. In our first system, we used centralized learning with a 

machine learning model to identify and classify different types of arrhythmias. The 

model uses embedded systems to early notify a patient with chronic diseases of an 

abnormal beat. Where the patient or client is not using medical instruments anymore, 

IoT–cloud monitoring system can be used instead. 

 

2.1.1 Centralized Learning Arrhythmia related work 

 

In detecting arrhythmia, developers use the same techniques the doctors use 

for identifying and classifying arrhythmia, and the methodology uses sensors that 

record heartbeat, and from the shape of the heartbeat, arrhythmia could be classified. 

Different AI methodologies and different models could be used, and each model 

depends on the data type or understanding of the data (features). These features are 

used to feed a deep neural network to recognize diverse kinds of arrhythmias. 

Rajkumar, A, et al. [13] present a system model that uses the time domain of ECG 

signal’s extracted feature from a dataset and passes it to a one-dimensional neural 

network, the Exponential Linear Unit (ELU) activation function was used in training 

the model since it gave them better accuracy than other activation functions. But those 

features in many cases are contaminated by the noisy signal, this is because of the 

highly amplified ECG signal by the acquisition instruments [14]. To overcome such a 

problem, Nurmaini, Siti, et al. [15] proposed a Deep Learning model with an 

autoencoder (AE) for feature learning. Instead of removing the noise from the high 

and low-frequency signal, they mapped the signal into different pre-defined 

frequencies, and then they used the autoencoder to reconstruct the signal again. Then, 

the neural network layer was pre-trained and fine-tuned to identify arrhythmia. As a 



  

9 

 

result, the model can extract high-level features from unseen data.  

Other techniques attempt to extract ECG signals from the frequency domain 

and time-frequency domain besides the time domain and use different models 

depending on the feature extracted. The processing of ECG signals is not easy due to 

its complex stationary formation. In fact, the formation changes with respect to time 

forming different Heartbeat waves. This variation of the heartbeat is noticed not only 

between two patients, but the variation also varies with the same patient too [16]. 

Hence, the best way of processing data is using a nonlinear combination to extract 

such hidden features in the signal. Thus, the model will perform well even if the data 

is noisy. In one study [17], higher-order spectrum (HOS) was used to extract hidden 

features in the ECG signal instead of finding known features such as amplitude or 

peaks lengths. Instead, the second, third, and fourth order were used as the selected 

features with a fuzzy neural network (FNN) as an early warning application. The FNN 

was able to classify seven ECG classes with one normal class and the other six 

abnormal classes of a heartbeat. The proposed application shows a performance 

accuracy of 98%. R. J. Martis et. Al. [18] use the same HOS methodology, with the 

third-order only instead of taking three other orders as features. The captured features 

were fed to a neural network (NN), least squares (LS) support vector machine (SVM) 

evaluating different algorithms to identify normal heartbeat and classify the four types 

of arrhythmias. NN performed well with the features extracted from the ECG signal 

with obtained accuracy of 93.48%. Kutlu and Kuntalp [19] proposed an arrhythmia 

detection model that classifies the heartbeats that the Association for the 

Advancement of Medical Instrumentation (AAMI) specifies. Although the algorithm 

did reach 99% accuracy using K-nearest neighbor (KNN), such a system is not 

efficient in terms of power and storage. KNN algorithm uses the storage to store all 
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the datasets in one place and, when it is time to classify, it looks through all the data 

sets to find the nearest K neighbors. For real-time applications such as ECG 

identification and classification, such an algorithm is not efficient, especially for small 

embedded systems such as IoT. Fan [20], uses different methodology as an input 

feature to the SVM algorithm. Two combined features were used namely, wavelet 

coefficients and power spectral density (PSD). This method did not do as well as 

other algorithms. But compared to other papers [18], the performance of SVM 

accuracy increases around 4% to achieve an average accuracy of 96.73%. 

 Arumugam, M. et. Al. [21] use a dedicated wavelet to accurately identify the location 

and the amplitude of ECG segments P, Q, R, S, and T sub-waves as shown in Figure 

1. Extracting different energies at different wavelets to identify arrhythmia from the 

ECG signal does not efficiently work with IoT devices, where many preprocessing is 

needed to extract such complex features to train the model. Going back to the time 

domain, the model could be trained on a stream of sequences that represent the ECG 

signal called 1D, which takes into consideration the amplitude of the signal. Kiranyaz 

et. Al.[22], proposed for the first time a compact 1D-CNN ECG classifier in real-time, 

and achieved the state-of-the-art performance by splitting the MIT-BIH dataset based 

on AAMI recommendation. However, a recent study [23], pointed to the fact that the 

convolutional neural network is similar to it is predecessor MLP,  where both 

algorithms are homogeneous networks with a sole linear neural model [24]. Similar to 

the biological neurons, MLP and CNN have a learning ability to a non-linearly 

separable problem through crude neurons and future prediction based on the learning 

paradigm. 
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Figure 1. The typical ECG-beat [25] 

 

Thereafter, CNN [22] has been proposed as a dedicated 1D paradigm that can 

be trained for each patient as a compact classifier, the performance of ECG 

identification and classification could be performed with the utmost speed with a few 

hundreds of 1D convolution. As result, the convolutional layers were indeed the best 

choice for light-weight real-time advanced ECG monitoring and warning application. 

Similarly, Dokur, Z., & Ölmez, T. [26], proposed a computer-aided system embedded 

with an AI model that classifies arrhythmia in real-time. They evaluate two different 

systems: one uses the ECG signal as raw data and feeds a 1D-CNN input layer. The 

Second measures the performance after converting the raw data into another format, 

namely image. The system takes as input a 2D picture of the ECG classifying the 

heartbeat visually. This method requires an extra step before training the model, 

where the heartbeat needs to be plotted and then 2D-CNN extract the features such as 

curves and straight lines using convolutional filters. This methodology did not extract 

extra features to support the prediction accuracy. The average performance of the 
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image approach was not as good as the 1D-CNN method, with a 1% difference 

between the 1D and 2D, 99% and 98%, respectively. Moreover, taking into 

consideration the different network structures of the one-dimensional and two-

dimensional models, training a 1D model takes a much shorter time than 2D. 

However, both training and testing were quite fast and this is because in both methods 

a small-size network where used. 

The above method opens a discussion on how efficient converting ECG from 

one format to another is, after acquiring data. In the study of Wu et al. [27], the MIT-

BIH dataset was split into two subsets normal and abnormal, with 2D input space 

converting the data into an image in order to have better classification performance 

with a large network. The performance of the model achieves an average accuracy of 

98% with tuning different hyperparameters. In a study done by Jun et al. [28] and 

Rubin et al. [29], both papers used the same technique, but [29] uses the short-time 

FFT of ECG and converts the FFT to an image before training the model, the CNN 

extracts features to train MLP. The proposed methodology gives an accuracy of 90%, 

which is less than using the heartbeat image which achieves an accuracy around 98%.  

 

2.2 Federated Learning 

 It is hard to create an AI application without the dataset. Moreover, users' 

privacy is one of the most important priorities nowadays. Federated learning brings 

users' knowledge about a specific application to the cloud without bringing the data to 

the cloud to train a specific model. This methodology requires training at some stage, 

where the researchers thought of using the user’s embedded system to do that. But 

this methodology will be biased to the user’s environment and other users might have 

different environments with which the application is not familiar [30]. So, gathering 
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all the models at the cloud and summing them up will give the cloud an overall weight 

of different environments. And then the cloud can send those summed weights to the 

clients giving them a different view on the clients' environments, besides themselves. 

In a real-time application such as ECG classification and identification and with the 

growth of nations and diseases, the data flow moves fast, and to keep such a system 

up to date requires a lot of resources and computational power; therefore, acquiring 

data and training it locally will have many benefits [31]. 

 

2.2.1 Federated Learning Arrhythmia related work 

 

 In a real-time-based application for ECG monitoring and classification using 

federated learning, several techniques were used, and it has been discussed in CL. But 

many of the techniques are not suitable for such small embedded systems due to IoT 

constraints. The smaller the network the better for IoT, but this might raise other 

constraints such as the performance of a smaller network, which brings the scientist to 

a closed loop. Therefore, other methodologies were used next to the small network to 

increase the performance of the models. Recent research done by Sakib, S., [31], uses 

an asynchronous federated learning-based approach. The methodology was new for 

federated learning. New hyperparameters were introduced to the method such as the 

number of clients to wait before the start of federated averaging. This idea did not 

only enhance the performance but also reduced bandwidth consumption too. The main 

disadvantage of this asynchronous approach is that the model is not generalized to all 

clients’ environments anymore. Instead, the model is biased toward the clients who 

finish first, since any client who is below the model’s threshold of the number of 

participants has been ignored by the current round. The proposed method was done on 

the MIT BIH dataset to classify and identify arrhythmia. As mentioned before, the 
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drawback of the asynchronous method is that the performance of the model was 

slightly less than the synchronized approach, with a performance accuracy of 95% 

only in 20 communication rounds. Using minimized federated learning into 

hierarchical layers for communication in ECG classification application is an efficient 

way of reducing bandwidth consumption. Abdellatif, A. et. Al. [32], present an early 

Heretical Federated Learning HFL approach to classify heartbeat for IoT 

heterogeneous systems. The non-uniformly of distributed data is another issue facing 

the collaborative learning approach, where if the classes are present in one node, the 

learning will be easier. This study takes into consideration the non-IID next to the 

generic class of machine learning models that are trained using a gradient-descent-

based scheme. The proposed solution shows an effective performance of reducing 

communication overhead by providing a 75–85% reduction in the communication 

rounds between edge nodes and the centralized server, for the same model accuracy. 

In [33], a heavy federated learning application model is proposed, where deep 

learning and expandable artificial intelligence are used in ECG online monitoring. 

They performed the evaluation over noisy and clean data, with 5-fold cross-

validations, and the existing work achieved accuracy up to 94.5% and 98.9%, 

respectively, for arrhythmia detection. Hence, clean data improves the accuracy next 

to the deep neural network, but this brings us back to the beginning where the limited 

resources of the IoT cannot handle the cleaning of the data and training such big 

network.  

 

2.2.2 Challenges of Federated Learning in healthcare systems 

 We highlight the uniqueness of the proposed work represented by federated 

learning compared to other model schemes. The distributed training algorithm enables 
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as many users to collaborate in learning a model without sharing local data. Hence, 

many factors are controlled by the user such as the computational resources and data 

distribution due to their learning environment. However, for efficient leveraging of 

collaborative learning within many patients participating in the healthcare system, 

many challenges need to be addressed. Those challenges are present in most federated 

learning applications scenarios. 

 Given the non-IID nature of the healthcare system, the data is heterogeneous 

between the patients, since the data acquired at each user significantly varies. 

Typically, the data for training in collaborative learning is acquired using different 

devices (IoT) attached or nearby to the patient, which results in a non-homogeneous 

and not identical data distribution between the collaborative nodes. The result, 

FedAvg, will suffer due to the big number of communication rounds between the 

Edge users and the central cloud, especially in the case of imbalanced data [34].  

 Besides the imbalance and not identically distributed data, given the big 

number of chronically ill and elderly people, most of the hospitals need to serve this 

big number of patients daily. This puts a significant load on the health sector. Such a 

promising application for health demand will transfer the traditional large number of 

patients with mild conditions to home care, while being nursed remotely through the 

cloud. Such promising applications need more expansion so that healthcare is not 

confined within hospitals. 

 Finally, we discuss the challenge of the limited resources with the users. Given 

a large number of clients participating with limited computational power in their 

embedded systems next to the network nodes is really challenging for federated 

learning. A linear relation between the network traffic and the number of trainers 

creates congestion. This is because the clients need to update the model. Hence, 
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distributing the available network to clients to guarantee efficient communication is 

not an easy task. This is because the data distribution discussed earlier varies from 

one user to another. Moreover, and in addition to the distribution and data variety, the 

energy availability and the distance from the edge introduce an extra constraint that 

needs to be optimized. 

 

2.3 MIT-BIH 

 

Electrocardiography (ECG) datasets were collected by hospitals. The aim of 

research at the beginning from the dataset is to have a reference to different heart 

activities. Since those data contain normal and abnormal beats, they are suitable to be 

used by AI models as training and testing datasets. There are many ECG datasets that 

have been collected and each dataset has its quality such as the amount of noise and 

the number of samples of each class such, as PTB Diagnostic ECG Database and The 

Massachusetts Institute of Technology University and Boston’s Beth Israel Hospital 

(MIT-BIH) dataset [35]. The MIT-BIH is widely used by medical schools to train 

doctors on reading ECG to identify and classify abnormal and normal beats. It 

contains around 24 hours of recording from 48 different patients, where each record is 

around 30 minutes per patient, and corresponds to acquiring ECG record from 2-

leads. Lead-I is extensively used by many developers in the training of AI models 

while excluding lead-II since it records ECG from legs. Lead I data was obtained by 

placing the ECG electrodes on the chest and left arm, where those are the two places 

our embedded systems record data from. According to the Association for the 

Advancement of Medical Instrumentation (AAMI) [36], the heartbeat is split into 5 

parts (normal beat (N), supraventricular beat (S), fusion beat (F), ventricular beat (V), 

and unknown beat (Q)), where each part states the heart's behavior. From the heart's 
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behavior, we can study the rhythm of the heart using the MIT-BIH database that 

contains 109,446 samples as shown in Figure 2, and classify arrhythmias. 

 

 

Figure 2. Class distribution in the MIT-BIH Dataset. 

 

The ECG signal was sampled at 360 Hz and digitized at 11-bit resolution. The signal 

is also segmented and centred at the R-peak; each segment contains around 260 

samples, and for other samples, we used padding with zero so, all the segments are at 

the same size. 

However, there is a variable number of datasets that could be used in 

developing our model. We used MIT-BIH in training and testing, and this is because 

it has been used to train doctors on detecting arrhythmia. In addition, a huge amount 

of previous work was done on the same dataset; thus, using it maintains the fairness in 

comparison with previous work since we did not pre-process the data by removing 

extra noise and extract other features. 
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2.4 Evaluation Metrics 

The following equations have been utilized to evaluate the performance of the 

model [37]. The evaluation metrics of the model use four parameters that represent 

the status of the prediction. They are generally defined as TP for the truly predicted 

positive, the truly predicted negative is TN, false negative (FN) is the falsely 

predicted as negative, and finally the false positive (FP). These parameters could be 

calculated from the confusion matrix of the model. Accuracy (1) can be used to 

measure the overall performance of a model where it depends on all the accurate 

predictions over all the predictions made, and usually accuracy tells how true this 

method is. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑃𝑖+∑ 𝑇𝑁𝑖

𝑙
𝑖=1

𝑙
𝑖=1

∑ 𝑇𝑃𝑖+∑ 𝑇𝑁𝑖
𝑙
𝑖=1

𝑙
𝑖=1 +∑ 𝐹𝑃𝑖+∑ 𝐹𝑁𝑖

𝑙
𝑖=1

𝑙
𝑖=1

  (1) 

But accuracy does not generalize the performance of the model and getting 

very high accuracy does not mean that the model is not overfitting the testing set. 

Therefore, other metrics have been used to evaluate the confidence of the model such 

as F1-score, where it measures the ratio between the recall and precision. Recall or 

sensitivity (2) is the measurement of all truly positive predictions over all truly 

predicted observations. It has been used as a metric to measure the capacity of a 

model to correctly classify an event. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑇𝑃𝑖

𝑙
𝑖=1

∑ 𝑇𝑃𝑖
𝑙
𝑖=1 +∑ 𝐹𝑁𝑖

𝑙
𝑖=1

     (2) 

While the precision ratio (3) is the truly predicted positives overall positive 

observations. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑇𝑃𝑖

𝑙
𝑖=1

∑ 𝑇𝑃𝑖
𝑙
𝑖=1 +∑ 𝐹𝑃𝑖

𝑙
𝑖=1

     (3) 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
∑ 𝑇𝑃𝑖

𝑙
𝑖=1

∑ 𝑇𝑃𝑖
𝑙
𝑖=1 +

1

2
 (∑ 𝐹𝑃𝑖+𝐹𝑁𝑖)𝑙

𝑖=1

=  2 ∙  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
    (4) 

 

 

 The study aims to propose a novel approach in classifying multiclass model of 

arrhythmia using a one-dimensional (1D) convolutional neural network (CNN), by 

assuming first the hospital as a centralized cloud and storing the dataset in the hospital 

and training a model in chapter 3 to: 

 Detect arrhythmia using CNN, 

 Optimize the 1D-CNN with a minimum number of hidden layers with a high 

level of accuracy, and 

 Evaluate the arrhythmia detection method using the MIT-BIH dataset. 

The objective is to overcome the weaknesses of the previous works that apply deep 

Neural Network and many preprocessing which does not match with the IoT 

constraints in terms of computational power and power resources. While in chapter 4, 

our proposed work uses the same model in chapter 3 by considering 1D-CNN to: 

 Detect arrhythmia using a collaborative approach (Federated learning). 

 Optimize the 1D-CNN with a minimum number of hidden layers with a high 

level of accuracy in Federated learning. 

 Evaluate the arrhythmia detection method using the MIT-BIH dataset in 

Federated learning.  

This is because patients' medical records should be maintained private. To overcome 

the privacy constraint, the centralized cloud should only see the knowledge of the sub-

local dataset of each patient. In addition, this permits to overcome the weakness of the 

centralized learning that most of the previous work has, which is the bandwidth 

constraint for IoT network in addition to the other constraints discussed in the 

https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/
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Centralized approach. 
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CHAPTER 3: CENTRALIZED LEARNING 

 

3.1 Introduction: 

 

 Typically, Centralized learning (CL) is a learning methodology that assumes 

that patients provide relevant data to train a model. Hospitals for example are the 

centralized cloud in our scenario, where all inpatient and normal patients’ data is 

collected and sent to the cloud. Then the cloud preprocesses data before training its 

model locally.  

 The data is collected from the inpatient using medical sensors or normal users 

through IoT devices embedded with a sensor. The collected data allows the 

centralized cloud to have a look at data first to have a general understanding of the 

type and the number of classes it has, and then extracts features before training and 

predicting. 

 After feature extraction and training the model online on a cloud, the 

prediction part comes, where the model can predict online by keeping acquiring data 

from patients and notifying doctors if it detects abnormal behavior. But this method 

consumes the bandwidth and consumes power since the sensors need to connect to the 

cloud and send all normal and abnormal behavior. This method could be acceptable 

for the inpatients since the medical sensors are close to the cloud. While in IoT 

devices this methodology is expensive due to IoT constraints, since IoT devices are 

small, have small batteries, and have low computational power. Consequently, 

consuming all its power in sensing and sending data to the cloud is not efficient.  

 Therefore, the second methodology is to upload the pre-trained model on the 

IoT devices, where the prediction will take place locally and the devices will send a 
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notification to the doctor only if the model predicts abnormal behaviour. Figure 3 

shows how the system is connected and how it works. 

 

 

Figure 3. Centralized Learning system Architecture 

 

 In new environments such as mobile abnormal behavior detection with an 

intelligent system, however, the power and processing constraints can significantly 

affect performance and prevent the use of such a system. Given this issue, a tiny 

intelligent system should replace traditional heavy-weight algorithms that consume 

power in addition to communication. In fact, the lightweight system should be faster, 

and this means that it will consume less power.  

 Moreover, centralized learning allows supervising the system model and 

enhances model accuracy, due to the large amount of data collected in one place and 

training the same model.  So, in this chapter, we are modelling a multiclass 
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arrhythmia detection system using a Convolutional neural network and evaluating the 

system using the MIT-BIH dataset using a centralized learning approach. 

 

3.2 Centralized Learning Model: 

 The Centralized learning model consists of pre-processing, modelling, and 

representing a learning algorithm. The proposed architecture starts with data 

acquisition, where we selected a dataset that has been used to train doctors on how to 

identify the type of arrhythmia and find abnormal behaviours to train our CNN model. 

So, the cloud already has all the data. Although the cloud server is powerful and can 

pre-process the data by filtering the noise and applying various filters to extract some 

unnecessary features that are captured with the ECG signal, we used one light general 

pre-processing set that guaranteed the same result whatever the methodology used to 

predict arrhythmia. The same idea will be used in next chapters where it requires a 

simple and light way of pre-processing the data. 

 In an ECG signal CNN, the feature extraction process will look for features 

that follow patterns and marks such as P, T, Q, and R segments. Increasing the layers 

of the filter to identify those segments will not increase the accuracy by much. 

Moreover, the accuracy of the prediction of the filter is much higher than calculating 

the length of the segment.  

 The most widely used category cross-entropy is used in our methodology to 

calculate the loss of the 5 classes discussed in related work. In centralized learning, 

data is gathered, and the learning is generalized by the main cloud, therefore the loss 

is simply calculated as [38]: 
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𝑓𝑖(𝑤) = − ∑ 𝑦𝑗 ∙ log(ŷ𝑗) + (1 − 𝑦𝑗) ∙𝑐
𝑗=1 log(1 − ŷ𝑗)     (5) 

𝑓𝑐𝑙(𝑤) =
1

𝑛
∑ 𝑓𝑖(𝑤)𝑛

𝑖=1          (6) 

 

Where w is the model weights and C is the number of classes, y is the true label 

probability sample (0 or 1), ŷ is the predicted probability, and 𝑓𝑖(𝑤) is the loss at 

iteration i. 

 As shown above, in formula (6), the loss function does not relate to the 

number of layers, while it depends on the number of epochs and the rate of learning 

which generalizes the weight to predict the best fit class. Generalizing the model is 

important, as overfitting one class could lead to subversion of the model. So, to 

reduce the hazard of all the above constraints while keeping the model lightweight, or 

in other words, to predict correctly with the least number of weights involved in 

prediction, input data’s segments should be smaller in size too. 

 

3.3 Centralized Learning Proposed Approach: 

 

3.3.1: Centralized Learning - MIT-BIH: 

As mentioned previously we used the MIT-BIH dataset as our collected data 

from the users, where we split the data into two class two subsets: training and testing, 

after extracting the electrograms from the recording. Moreover, Doctors did not 

recommend a specific split of the data, but machine learning scientists who worked on 

the same dataset recommended [39], the splitting weights for training and testing as 

indicated in Table 1. 
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Table 1. scheme of the division of the MIT-BIH database into training (DS1) and 

testing (DS2). 

 N S V F Q 

DS1 46536 946 4034 4034 5628 

DS2 44053 1833 3202 388 2411 

 

Where N is the normal beat, S is the supraventricular beat, F is the fusion beat, V and 

Q is the ventricular beat and an unknown beat respectively. 

 

3.3.2: Centralized Learning Neural Network (NN): 

Using the neural network in classification problems is more efficient because 

it is the simplified version of the human brain using mathematical structure, where it 

both works as an information processor and memory. The way that the algorithm 

works is not only by placing threshold boundaries like many other machine learning 

algorithms, but more or less it drives a prediction based on its bias [40]. The process 

structure is shown in Figure 4 
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Figure 4. Proposed CNN architecture 

 

Since the mathematical Neural Network learning schemes are based on the 

input features for prediction, the 30 minutes heartbeat record dataset was broken 

down into segments. Each segment represents 0.33 seconds which is around one beat, 

this one beat is the 186-input feature to the NN. In addition, for better generalization, 

normalization was applied to the input features to confine the peak range of the beat 

to be between -1 and 1. Moreover, each beat represents one class of the classification 

problem, therefore one-hot encoding is used to replace the non-numeric labels with a 

number between 0 and 4: normal, supraventricular, ventricular, fusion, and unknown.  

 Based on the signal, the NN has an input layer composed of 186 neurons. The 

results of this layer are the 186 features extracted from the feature extraction layer 

embedded in the neural network, where the 1-D filters were used in finding lines and 

curves that represent the heartbeat to suitably distinguish one class from another, 
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followed by one 1-D convolutional neural network hidden layer of 64 neurons, and 

lastly the output layer of 5- neurons representing the five labels. This is the main setup 

of the neural network, but experiments did not stop here: Different numbers of hidden 

layers were tested and different numbers of neurons, as detailed in the results of 

Section 3.4. In addition, dropping out random neurons in training improves 

generalizing, where after each hidden layer, dropout took place to reduce overfitting 

and reduce the loss; thus, improving generalization error. 

 The activation function is another factor that plays a role in modeling 

classification problems. A widely used activation function, called Rectified Linear 

Unit (ReLU), was used in the system. The ReLU activation function runs after each 

layer and restricts neurons from firing if the input of the neurons is below zero. Since 

the aim of the model is to identify and classify arrhythmia classes, ReLU with its 

binary output fires the same neurons’ input in case it is positive, otherwise for 

negative neurons’ input fires zero.  

 

3.4 Centralized Learning Results: 

In this section, the Centralized learning (CL) system will be evaluated. The 

system is trained on a different number of epochs to evaluate the accuracy, F1-score, 

recall, and precision. 
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3.4.1 Performance Evaluation without Preprocessing: 

Figure 5. shows the accuracy of the model using unprocessed input data. The 

model had an overall accuracy of 93 percent with 10 epochs. But this does not mean 

that the performance of classifying the classes is accurate. The model performed 

highest in identifying normal beats with an average accuracy of 96%, but the accuracy 

dropped down in predicting abnormal beats: Only 23% of correct predictions for the 

supraventricular beat and 88% in predicting ventricular beat, while for the rest, the 

prediction drops to around zero as in Figure 6 

 

 

Figure 5.  Accuracy vs. number of Epochs 

 

0

10

20

30

40

50

60

70

80

90

100

0 1 5 10 15 20

p
er

ce
n

ta
ge

No. Epochs

accuracy



  

29 

 

 

Figure 6. Confusion matrix for 20 epochs 

 

Figure 7. shows poor performance in classifying classes where the average of 

the classes did not reach 50% of accuracy, which means more than half of predictions 

were predicted wrong, although the training loss goes to near zero in training the 

model. But from Table 2 we conclude that the model cannot handle the data with 

those few hidden layers and the number of neurons.  
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Table 2. Classification Results 20 Epochs for Centralized Learning. 

 Precision Recall F1-score 

N 0.96 0.96 0.96 

S 0.23 0.23 0.23 

V 0.81 0.96 0.88 

F 0.05 0 0 

Q 0 0 0 

 

 

 

Figure 7. Average Macro precision, recall, and F1-score 

 

3.4.2 Performance Evaluation with Preprocessing: 

In this section, the performance of the centralized learning will be evaluated 

with the pre-processed dataset. The system is trained on a different number of epochs 

to evaluate the accuracy, precision, recall, and F1-score. 
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Figure 8 shows the accuracy of the model after data has been preprocessed 

using segmentation methodology. The accuracy performance increases 8%, noticing 

that NN is the same. Moreover, the fact that the neural network consists of one hidden 

layer makes it a fast learner, as with 20 epochs only the accuracy was 99%.  

 

Figure 8. preprocessed data's accuracy vs. number of Epochs 

 

In Figure 9, Figure 10, and Figure 11, it is shown that some classes needed 

more than five epochs to achieve 90%, but on the other side, many classes achieve 

more than 95% in five epochs. On the other side, with one hidden layer and 

segmented data, the performance of the average macro of F1-score increases by 55%, 

recall increases 52%, and precision increments 56%. 

 Since detecting arrhythmia is a binary experiment; therefore, if the accuracy of 

the normal beat is high, this means that all the normal beats could be identified, and 

the chance of a high-performance classifier would rise, leaving the abnormal samples 

that are not detected as normal to be identified as unknown. Moreover, the classifier 

will try to match the abnormal beat to one of the arrhythmia beats, and if it fails it will 

be classified as an abnormal and unknown beat. 
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Figure 9. Recall vs. number of Epochs 

 

 

Figure 10. F1-score vs. number of Epochs 

 

 

Figure 11. Precision vs. number of Epochs 
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Table 3. summarizes the results of Figure 9 to Figure 11 with 20 epochs. In 

addition, to further demonstrate our model’s ability, a confusion matrix was derived 

and shown in Figure 12. The selection of the last activation layer is based on multiple 

experiments in which it was deduced that the categorical cross-entropy is optimized 

when it was based on the SoftMax function. The SoftMax function was tuned to be 

suitable for such classifier applications with a learning rate of 0.0001. 

Moreover, compared with the unsegmented data, there is a lot of difference in the 

confidence matrix. The performance increases for several classes where more than 

half of the predictions were classified wrong. Moreover, compared with Table 2 that 

summarized unprocessed data, it can be seen that most of the classes have better 

performance such as ventricular beat and an unknown beat where the average 

performance increased by around 94%. 

 

Table 3. Classification Results in 20 Epochs with preprocessed data 

 Precision Recall F1-score 

N 0.99 1.0 1.0 

S 0.98 0.86 0.92 

V 0.99 0.99 0.99 

F 0.89 0.89 0.89 

Q 1.0 0.99 1.0 
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Figure 12. Confusion matrix for 20 epochs. 

 

3.5 Centralized Learning Result comparison: 

Table 4 shows a comparison of our approach to other methods investigated in the 

relevant literature. Our method achieves an average accuracy of 99%, which exceeds, 

or is comparable to, the accuracies of other methods. However, our method achieved 

this high accuracy while having the least number of hidden layers to avoid overfitting 

the model. Moreover, our method takes the least training time with less than eight 

minutes, whereas most of the methods in other papers took more than one hour, 

especially with those that have more than five CNN hidden layers. This is because our 

system model has been implemented by one hidden layer next to the input layer and 

SoftMax activation function before the output layer.   

It should be noted that all the system models in the reviewed literature used 

the same dataset. However, they generally used different samples distribution between 

the training and the testing sets. For example, Shi et al. [41], proposed 16 classes of 

cardiac arrhythmias showing new state of art methods that could be used in feature 

work. 
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Table 4. Studies of ECG classification using MIT-BIH 

papers Method  Acc - % Epochs 

Acharya et al.[42]  9-layer CNN 94.03% 20 

Shi et al. [41] CNN with Multi-input layer 94.20% 100 

Z. Yan et al. [43]  7-layer SNN 77.5% 150 

Rajkumar, A, et al. [13] 1D-CNN and ELU  93.6% 500 

B. Mathunjwa et al. 

[44]  

Multi-layer CNN  99% 300 

J. wang et al.[45]  Multi-layer CNN 98.6% 10 

Siti, et al. [15] DNN with AE 99% 200 

Proposed method 2021 1-layer input, 1-layer CNN 99% 20 
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CHAPTER 4: FEDERATED LEARNING 

 

4.1 Introduction 

In the centralized learning chapter, we specified the traditional machine 

learning done to train internet of things IoT devices by connecting to the cloud, to 

train generic models, and distribute the knowledge – model’s weights – to all the 

devices. The advantage of this methodology is the generalization problem of 

compatible devices. But the one main issue that faces this methodology is the 

bandwidth, which is limited in many cases. Moreover, the targeted IoT devices such 

as smartwatches and such devices with sensitive operational data must be on-site, 

given that such real-time application requires very low latency and that the data 

travels at a stable connection [46]. 

While in decentralized learning the devices use the training and run models 

locally by avoiding the cloud, this methodology helps in real-time prediction 

applications, and in addition, it solves centralized learning constraints such as privacy 

and connectivity. However, each model learns its environment; in the case of data 

drift this methodology is performing well, but other knowledge is missing from other 

environments that are useful in predicting events that it is not familiar with. This 

means that generalization is not present in such a methodology [47]. 

Therefore, a new methodology is required, such as collaborative learning that 

shares such environments' experience and ensures data privacy in addition to the 

bandwidth constraint. Collaborative learning or Federated Learning (FL) is the ability 

to extend local training between clients using a centralized cloud [48]. This 

methodology is used for the privacy of data, where the client trains the data locally 

using the cloud model and shares the weights with the cloud. The centralized cloud 
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averages the weights to have overall knowledge and sends the model after averaging 

to the clients for prediction. This process of learning is slower than centralized 

learning since the training process takes cycles to learn what others know and reduce 

overfitting the local data [49].  

Figure 13 shows how the cloud starts by assigning the model’s paradigm to 

the client's with initially random weights. Then the local training process starts with 

machine learning, noticing the device needs to run the application next to training the 

model. Therefore, power constraints are raised here, where the more the number of 

epochs, the more the consumption of the IoT device’s computational resources, and 

hence the more the consumption of power. In addition, poisoning the model by 

applying very few numbers of epochs affects the overall results [49]. This is a 

debatable topic, and our assumption is that all the clients have the same weight 

gaining knowledge, which means that all the clients are equally important to our 

federated model. 
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Figure 13. Federated Learning system Architecture 

 

After training the model locally, the weights are sent to the cloud for 

averaging. The idea behind averaging is to average the knowledge and get a neutral 

model not biased to a client or a class. As explained before, the training process takes 

cycles of training by the client and averaging by the cloud back and forth until the 

model paradigm converges. The faster the convergence the lower the bandwidth 

usage. This is because the client does not keep updating anymore, which is also 

another debatable constraint [50]. So, our stopping criterion is that whenever the 

model converges, the learning cycle stops before it starts overfitting.  

The bandwidth consumption in federated learning is lower compared to the 

bandwidth in centralized learning since clients are not anymore sending raw data. 

However, it sends the model weight, therefore federated learning has been used 

widely nowadays in many IoT applications. 
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4.2 Federated Learning Model 

 In federated learning, the aim is to optimize the final federated model from n 

clients, in which, the client trains the least number of epochs, and the learning process 

takes the least number of cycles per client. Moreover, it should be noted that each 

client has its own centralized learning, and this process is repeated in all clients. So, 

(6) is repeated for each client, and at the cloud, they are summed, and weights are 

averaged. Therefore, the loss function of FL is calculated as [38]: 

Where at client k: 

𝐹𝑘(𝑤) =
1

𝑛𝑘
∑ 𝑓𝑖(𝑤)𝑖∈𝑃𝑘

  (7) 

 

But this is not the case in the cloud, where the loss function is calculated as the 

following: 

𝑓𝐹𝐿(𝑤) = ∑
𝑛𝑘

𝑛
𝐹𝑘(𝑤)𝐾

𝑘=1   (8) 

   

K is the number of clients, 𝑛𝑘 is the number of samples given to client k, Pk is 

the set of the indexes of the samples given to client k, and fi is the same as (5). 

 

4.3 Federated Learning proposed approach. 

 

4.3.1: Federated Learning - MIT-BIH  

The model in federated learning will be the same model that has been used in 

centralized learning. Moreover, we used the same MIT-BIH dataset but this time the 

data is split equally over the clients, where randomly the classes will be assigned to 

each client following independent and identically distributed (IID) methodology. This 

is because if all users have an equal amount of each class and data, their federated 
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learning accuracy will remain constant, and no new knowledge will be distributed. 

Therefore, each client will fit the model by the sub dataset. This reflects the scenario 

of collecting data and training it locally. Table 5 shows two subsets, the first subset is 

the training subset, where the total number of the subset is divided by the number of 

users n, and the second subset is the testing subset, and this subset is used to evaluate 

the performance of the collaborative average model.  

 

Table 5. MIT-BIH subsets for Federated Learning 

 N S V F Q 

DS1 46536/n 946/n 4034/n 415/n 5628/n 

DS2 44053 1833 3202 388 2411 

 

4.3.2: Federated Learning Neural Network (NN): 

 

 Adding intelligence to IoT sometimes is costly. Federated learning uses the 

client’s device to train the Neural Network model, and this process takes hours to 

train one cycle. Thus, the less the power used and the more performing the model, the 

better is the overall rating. Figure 14 shows 1-D CNN with a different model structure 

to measure the performance of the application over the dataset. The model structure is 

made of a number n of hidden layers, and at each hidden layer, there is a number m of 

neurons. The criteria for finding the best model are when any parameter n or m 

increases and the accuracy does not increase much, the performance at m-1 or n-1 

converges.  
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Figure 14. Federated Learning Neural Network 

 

The paradigm of the convolutional neural network is explained in chapter 3.3. 

The evaluation of different setups took place, and the performance is shown in the 

results section. To measure the gain of the information and to show that useful 

information has been transferred between clients, the testing subset has been 

evaluated using the federated average model. When the model performance increases 

after each cycle and has not converged yet, there is more useful information to gain. 

Otherwise, the model converges, and wasting more computational power is not 

helpful.  

 

4.4 Federated Learning Results: 

In this section, we evaluate the model performance over hyperparameters such 

as the number of layers, number of neurons in each layer, and number of epochs. 

Moreover, the experiment took place on a different number of clients participating in 

building the collaborative model. Then, we experiment with the performance of the 

devices in terms of time and loss versus different hyperparameters. 
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 To investigate the performance of the CNN over the dataset, firstly we 

measure the federated average performance versus the number of epochs per user. 

Figure 15 shows the performance of the FedAvg with five epochs per user and 

different numbers of users. It shows that the best performance was done by the least 

number of users in 30 rounds with 96%, this is because the more the number of clients 

the more the number of cycles needed to converge. But on the other side, when the 

number of users increases to the double, 2n, the time per user to train the model is less 

by almost half for a 1% difference in performance. Moreover, Figure 16 shows that 

the accuracy is higher, but the amplitude between the cycles is high, and this is 

because the model at a higher number of epochs needs more time to converge. In 

addition, we can see that by increasing the number of epochs, the model overfits the 

local sub-dataset. Hence, the forward and backpropagation are memorizing the local 

data. When both the number of users and epochs increase, the model needs more and 

more cycles to converge.  
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Figure 15. Federated Learning 5e Accuracy of different number of clients  

 

 

Figure 16. Federated Learning 10e Accuracy of different number of clients 
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has (training subset/number of users), which leads to higher loss compared with a 

smaller batch of users. But on the other side, the loss of 50 users after the model 

converges decreases to around 0.1% compared to the loss of 8 users which after 

convergence barely scores 0.04%. 

 

 

Figure 17. loss in Federated Learning for 5 epochs 
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hidden layers increases it takes more cycles. The graph shows that the model 

completes 50 cycles and still the performance is bouncing, meaning that it did not 

converge yet. Moreover, in Figure 18, we can see that the model started learning 

much earlier with one hidden layer compared to 2 hidden layers, that were started 

performing after 10 cycles, and 3 hidden layers after 18 cycles. This leads to the 

conclusion that when the number of hidden layers increases the performance gets 

better; on the other hand, the computational resources get consumed due to delays in 

convergence which requires more cycles and more power to train the model per cycle.   

 

 

Figure 18. Federated Learning performance with a different number of hidden layers. 
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beginning of training cycles the performance of 15% dropout is better, but while the 

number of cycles increases and after 25 cycles the difference is minimized between 

the two performances to less than 0.5%. However, the advantage of increasing the 

dropout rate is fewer neurons are participating in the model randomly, which means 

that each client takes less energy in training the model as shown in Figure 20. 

Increasing the dropout by 35% reduces the energy consumption by around 6.6% on 

average for each client. 

 

 

Figure 19. Federated Learning performance with a different dropout rate 
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Figure 20. Federated Learning average time per cycle for 15% and 50% dropout 

 

Thirdly, we experiment with the FL model different numbers of neurons with 
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Figure 21. Federated Learning performance with a different number of neurons 
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achieves 95% in 30 cycles. It should be noted that all other approaches use the same 

MIT-BIH dataset. 

 

Table 6. Studies of ECG classification using Federated Learning 

papers Method  Accuracy 

% 

Cycles 

[31] Asynchronous federated 

learning-based ECG 

95% 20 

[32] hierarchical federated learning 

for IoT 

90% 100 

[51] GRP-FED: 2-layer fully 

connected, 5 epochs 

56.9%  100 

[52] 4-conv, 2-dense 1D CNN 97.78% 400 

[33] Data process and noise filter 

with 7 layers 2D-CNN 

98.9% - 

Proposed 

method  

1- Two hidden layers 1D-CNN 97.27%  100 

2- one hidden layer 1D-CNN 95.27% 30 

 

  



  

50 

 

4.6 Federated Learning challenges: 

 

Although federated learning is a promising paradigm for real-time applications 

that ensure preserving privacy by training user’s data locally, before sharing the 

knowledge of the data only without sharing the data. However, there are other 

concerns facing such a paradigm such as some data needing to be collated in one 

batch before the model starts training on data. If the model is trained on data 

whenever it receives data, we will start having resource limitation issue. Since it will 

need almost infinite power to run such a strategy. Moreover, the IoT’s processor will 

not handle multiple real-time applications working in parallel for almost 24 hours. In 

addition, in case of storing the data to train the model after collecting an amount of 

data raises another question, where the data will be stored, since most of the IoT 

devices are limited in storage too. Hence, such concerns are debatable, and it depends 

on the developer, whether the developer will increase the space to store data, or with 

the 5G evolution where he can store it online in a private cloud container dedicated 

for each IoT device and ignore bandwidth consumption. Many concerns could be 

raised and sorting one could raise the other. 

In addition, for such real-time application development on IoT devices, there 

are two ways to do it maintaining the same or better performance. The first way is by 

having excellent sensors that can acquire heartbeat data with almost zero noise. Such 

sensors are now present in the market, and they can acquire data similar and even 

better that the MIT-BIH dataset that we used. In addition, if the data is perfectly 

acquired, the prediction performance will increase due to less noise appearance in the 

data that can change training weights. However, the second way depends on IoT’s 

processor. Hence, heavy signal processing needs to be done on the signal before it 

enters such a model and today's IoT processor is compatible. The data limitation 
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challenge of arrhythmia detection application is another concern since the data is old. 

However, almost 90% of the developers use the same dataset as a standard dataset for 

training or testing their model for arrhythmia detection. Moreover, generating new 

data takes time and equipment quality insurance. Since, as mentioned before, the 

sensors vary in quality and performance and testing the right sensor that is capable 

with all IoTs is nearly impossible. In addition, MIT-BIH is used to train doctors 

(cardiologists) in reading heartbeats. Hence, training the model on the same dataset 

might be efficient.   
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

In this thesis, we studied a smart health system paradigm, where users 

synchronize the cloud’s model, and the cloud synchronizes the user’s model. The 

object is to obtain a light model to be used in IoT devices and at the same time is 

accurate while having the least number of neural network layers as they are the 

dominant source of power consumption in this system. Toward this end, we first 

optimized a centralized learning model which is lighter than other proposed models in 

the literature for a smart health system, in terms of the number of NN which affects 

the time consumed to train a model. The performance accuracy of this model depends 

on the right segmentation frequency and the 1D CNN filters used in extracting 

features from the data. 

We then proposed a private approach for our application based on federated 

learning. Hence, we bring intelligence to IoT, fine-tuning the model to overcome the 

IoT’s constraints in terms of power consumption and waste of bandwidth. The 

collaborative approach aims to train the models locally and share the knowledge of 

different environments such that a global model represents the application. In 

addition, this method allows data drift to be considered, as we saw recently in the new 

covid pandemic, such application could be modified with the environment by 

enabling local training. Eventually, we argued that both the system needed to be light 

and the communication should be considered in the design of future distributed and 

learning systems.  

To that end, promising future work can look at other algorithms that extract 

from the ECG signal more numerical values such as the width of the peaks by looking 

at smaller segments from one heartbeat. In addition, for federating learning we are 

going to look at online learning in choosing for the client the communication channel 
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based on the congestion at the base station. The idea of not considering all the nodes 

equally, especially when the IoT is inherently robust to non-IID sub-datasets, is also a 

topic of interest for future investigation. 

Moreover, such a paradigm is still not compatible with centralized learning, 

where the non-IID affects its performance in terms of accuracy and time needed to 

converge. However, we could boost the federated model if we manage to set the right 

initial weights of the global model before the first communication round. Hence, idle 

data could be used for training in the could before we send the first model, since we 

know for example how the idle data looks like we can generate some at the server 

layer first using generative models, or portion of users data and we can generate more 

data using the same generative models. In addition, the previous way can also save the 

model from data poisoning, since we cannot know that the data is poisoned unless we 

can see it. 

In addition, although the collaborative approach is more efficient in terms of 

bandwidth consumption than centralized learning, where only the weights will be sent 

to the central server over the network unlike its counterpart, where the data needs to 

be collected and sent to the central server to be trained there. However, developers 

always would like to go near zero in bandwidth consumption utilizing present 

approaches. In the future, there might be an application that requires many 

communication rounds, and such a process consumes bandwidth. Hence, model 

compression could be one-way of minimizing network consumption. However, this 

might drop the performance of the model. Another way of doing this is by 

quantization, where the model has a map in the server that reflects the model’s real 

weight.      
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