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ABSTRACT 

SALAMEH, DOA'A, M. F., Master Degree: June 2022, Masters of Science in 

Engineering Management  

Title: A Lasso-Based DEA for Eco-Efficiency Performance Assessment for Global 

Food and Beverages Industry. 

Supervisor of Thesis: Dr. Galal M Abdella. 

Sustainable food systems are essential to secure food and nutrition for society and 

preserve the economic, social, and environmental aspects. A sustainable food system 

has become a significant demand for survival due to the dramatic growth of 

urbanization and global economic and health disruptions. Recently, food supply chains 

of global industries are encountering economic and environmental challenges, resulting 

in a significant decrease in their eco-efficiency performance. Therefore, there is a great 

need to identify possible reasons and their potential relationship across the eco-

environmental pillars of sustainability. To this end, this thesis proposes an approach for 

eco-efficiency assessment integrating both the Least Absolute Shrinkage Squared 

Operator (LASSO) with the Data Envelope Analysis. The new approach constitutes two 

stages. First, the LASSO regression is applied to reduce the dimension-space of the eco- 

and find the relative weights estimates for each indicator in the new dimension. Second, 

the DEA is used to estimate the eco-efficiency ratio for all the food industries. The 

mathematical and operational procedures of the new approach are demonstrated using 

the economic and environmental footprints of 30 food and beverages industries in the 

USA. The new strategy is expected to provide food and beverage industries with a 

powerful tool for assessing their contribution toward achieving sustainable 

development goals.   
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 LIST OF ACRONYMS  

Nomenclature 

 

Symbol Description 

𝛽𝑗 Values of the coefficients of the eco-environmental indicators in the 

model 

xij∈ ℝn The 𝑖th observation of the jth indicator 

𝜀 Error term 

X The design matrix 

𝑝 The dimension space (number of indicators) 

𝜆≥0 Pre-chosen penalization (or shrinkage) parameter 

‖𝜷‖1 The squared Euclidean norm 

𝜆‖𝜷‖1= 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1  LASSO penalty function 

𝛽^𝐿𝑎𝑠𝑠𝑜 Regression coefficients of the eco-environmental indicators 

λ Penalty parameter 

n Decision Making Units ( DMUs ). 

λj =(λ1, λ2, …..λnj)
T The intensity vector 

𝑠−/𝑠+ Slacks 

𝑥𝑖𝑗 DMU ith input 

𝑦𝑟𝑗 DMU rth output 

𝑃𝑑 Value of The Objective Function 

𝑚 Inputs of  DMUs  Used in DEA Analysis 

𝑠 Outputs of  DMUs  Used in DEA Analysis 

j Number of DMUs 

  

 

Abbreviations 
Symbol Description 

DEA Data Envelopment Analysis 

DMU Decision Making Units 

LASSO Least Absolute Shrinkage And Selection Operator 

FSC Food Supply Chain 

GHG Greenhouse Gases 

SDGs Sustainable Development Goals 

LCA Life Cycle Assessment 

GIS Geographical Information System 

SAFA Sustainability Assessment Of Food And Agriculture Systems  

RISE Response-Inducing Sustainability Evaluation 

EIO-LCA Hybrid Economic Input-Output And Life Cycle Assessment 

ECO-LCA Ecologically-Based Life Cycle Assessment 

SD System Dynamic Modeling 

DAG Directed Acyclic Graphs 

VECM Vector Error Correction Model 

AHP Analytical Hierarchy Process 

PCA Principle Component Analysis 

OLS Ordinary Least Squares 

SBM Slacks-Based Measure 

UM-LCA Hybrid Urban Metabolism - Life Cycle Assessment 
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CHAPTER 1: INTRODUCTION 

Food is an essential need for creatures in this universe. Securing and sustaining food 

production is a significant demand for survival. It has been noticed that the food supply 

chain has been jeopardized recently and lost its efficiency, which is mainly caused by 

greenhouse gas emissions (GHG), deforestation, water pollution, biodiversity loss, 

uneven water extraction, and carbon footprint. The carbon footprint continues to grow 

as a result of the continued use of conventional vehicles and the failure to switch to 

electric vehicles, which have proven to be environmentally friendly (Al-Buenain et al., 

2021; Kucukvar et al., 2021a; Al-Abadi et al., 2021; Onat et al., 2021; Kutty et al., 

2021a). Food consumption sustainability necessitates understanding multidimensional 

environmental, economic, and social impacts through a comprehensive and inclusive 

sustainability assessment and model-based framework (Abdella et al., 2020a). To stand 

and survive, food production needs clean air and water and healthy soils and climate; 

however, its sustainability requires a conscious and intentional decision considering the 

continuous societal growth(Kutty et al., 2020d). Sustainable development is critical to 

balancing the needs of current and future generations. A sustainable agricultural system 

assures food security and nutrition while simultaneously maintaining the economic, 

social, and environmental underpinnings essential for future generations' food security 

and nutrition. Between 1950 and 1960, sustainable food development was initiated; in 

the meantime, the green revolution exported high-technology agriculture. Using a two-

stage Data Envelopment Analysis (DEA), this thesis proposes a novel approach to 

analyzing the sustainability performance of 30 food industries in the United States. This 

novel method concentrates on identifying the most crucial variables that substantially 

impact sustainability performance first, then assessing the efficiency performance using 

DEA. The importance of these sustainability indicators is that they are quantitative 
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attributes of environmental and economic systems used to detect effects on system 

characteristics required to maintain human and environmental well-being. This method, 

therefore, increases the veracity of results. The first stage involves selecting the most 

significant eco-environmental indicators using the Least Absolute Shrinkage Squared 

Operator (LASSO) that eliminate the insignificant indicators; based on the LASSO 

results, an input-based Data Envelopment Analysis (DEA) model will be run to 

determine the efficient food manufacturing industry, accompanied by a projection level 

analysis to determine how inefficient food industries can improve their performance to 

achieve the efficacy. Considering 102 indicators arranged around the 17 Sustainable 

Development Goals (SDGs) adopted by the united nations, one of the most challenging 

difficulties for sustainability indicators is to portray historical gaps, trade-offs between 

the short and long term, and the differentiation between weak and strong sustainability 

dimensions (Eurostat, 2021). Each goal is typically linked to six indicators, 37 of the 

102 metrics are multifunctional (Eurostat, 2021), which means they are used to measure 

several SDGs and have a good association with one another, leading most previous 

DEA-based studies to run DEAs assessments with a relatively large number of 

indicators that may be insignificant to the context or have high relation to other 

indicators, resulting in inaccurate results ( López et al., 2016; Chen et al., 2021). The 

goal of this thesis is to bridge the gap in selecting appropriate eco-efficiency indicators 

from the vast space dimension of indicators, to assist decision-makers in situations 

where there is frequently a bias in the decision-making process, and to help create a 

standard practice to be followed by the food businesses to improve their efficiency 

performance. 
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1.1. Motivation  

An unprecedented increase in the demand for food associated with the world’s growing 

population pose serious concerns over the supply of food, particularly for developing 

countries. Geopolitical conflicts as well as natural disasters, exacerbated by climate 

crisis, lead to food market volatility and reduction in the amount of food available for 

import. As an integral part of ensuring long-term sustainability of food systems, 

scientific community has long been concerned on tracking the efficiency of the food 

systems with global peers to enhance the local production, consumption, and resource 

utilization. Indicator-based assessments are often used to track the efficiency of food 

systems across multiple dimensions of sustainability. Data Envelopment Analysis 

(DEA) has proved to be one of the most reliable tools for conducting such research 

(Martín-Gamboa et al.,2021). However, DEA pose certain drawbacks when dealing 

with high dimensional data, affecting the accuracy of the efficiency scores (López et 

al., 2016; Chen et al., 2021). To address these caveats, the research proposes a novel 

two-stage DEA approach, where stage 1 deals with dimensionality reduction followed 

by stage 2 running an envelopment model utilizing the selected set of indicators from 

stage 1 to identify the efficient decision-making units (DMU). The proposed approach 

is then applied to the case of 30 United States (U.S) food industries to assess the eco-

efficiency performance. Least Absolute Shrinkage and Selection Operator (LASSO) is 

used to dimensionally reduce the set of indicators for the eco-efficiency assessment. 

LASSO is proved to be a powerful variable selection technique under high 

dimensionality and its integration with DEA will result in improving the uncertainties 

and vagueness despite high correlation between indicators. 
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1.2. Research Problem and Research Questions  

This section discusses the problem that this thesis was created to address and the 

significant need identified when investigating the food system sustainability subject, 

followed by the questions that this thesis aims to answer. 

  

1.2.1. Research Problem 

This thesis aims to tackle the difficulties of assessing eco-efficiency using DEA 

under a high-dimensional indicator setting. High dimensional indicators settings are 

usually characterized by the high correlation between indicators, which leads to less 

accurate conclusions when utilized jointly, as revealed by prior research based only on 

DEA analysis(Lee et al., 2020).   

1.2.2. Research Questions  

The study aims to evaluate the sustainability performance of 30 food industries 

in the United States by measuring eco-efficiency using three different scenarios 

illustrated in chapter 4 to examine the applicability of the proposed method. Eco-

efficiency is primarily an aspect used for assessing both environmental and economic 

factors by measuring the food and beverage industry's efficiency in consuming water-

related to water stress and fossil energy resources in order to promote financial 

compensation for workers and, indirectly, to provide greater food security for a 

population that is more sensitive to economic insecurity. The study suggests a two-

stage DEA approach that utilizes LASSO to filter the space dimension and assess the 

efficiencies. The research attempt to address the following questions: 

1. How could LASSO be used to generate valuable inputs/outputs for analysis that do 

have a significant impact on eco-efficiency? 

2. Could DEA analysis be conducted with a considerably smaller number of indicators 
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yet get valid results? 

1.3. Research Aims Objective 

This thesis aims to develop a new weighting method for efficiency assessment that 

can identify effective and efficient sustainable food systems to discover the successful 

practices and generalize them to food supply chains to maximize their efficiency using 

a novel multistage DEA approach. The aim of this study will be achieved through the 

following objectives: 

1. LASSO analysis will analyze the critical indicators that significantly affect the 

industry's eco-efficiency performance. 

2. To measure the eco-efficiency performance of the 30 food industries using LASSO-

based DEA. 

3. To examine the applicability and operational performance of the proposed 

weighting method.   
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CHAPTER 2: LITERATURE REVIEW 

2.1. Overview 

Several methodologies and techniques have been utilized to analyze the food 

system's sustainability and assess the sustainability dimensions. Although boosting 

green consumption and production practices at various stages of the food supply chain 

(FSC), is critical to achieving global food security and sustainability, several challenges 

must be addressed, ranging from food waste accumulation in the FSC to tackling gender 

inequalities and climate-related concerns (Kutty et al., 2020b). As a result, this literature 

review provides a background on the tools and techniques used to assess the three 

categories of efficiency (environmental assessment, socio-economic assessment, and 

eco-environmental assessment), DEA usage for sustainability studies, modeling & 

optimization techniques, and the indicators and variable selection approaches. Each 

section summarizes the tools, techniques, and studies found in the Scopus database for 

the last decade of research. 

2.2. Environmental Assessment 

Food and agriculture organizations indicate that a sustainable food system 

should positively or neutral impact the environment. In this section, all the tools and 

techniques used to quantify and assess the food system's environmental impact will be 

mentioned to improve these systems further, reduce emissions, and improve plant, soil, 

water, and animal health, biodiversity, and food loss. For example, an increase in 

greenhouse gases (GHG) has been indicated in China between 1989 and 2017 caused 

by food production and consumption shown by using a hybrid economic input-output 

and life cycle assessment (EIO-LCA) to determine all kinds of environmental emissions 

as EIOA can compute environmental footprints holistically and reliably of China's food 

production and consumption (Zhang et al., 2022). According to the findings, population 
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growth and urbanization negatively influence CO2 emissions (Alsarayreh et al., 2020). 

Stone et al. (2021) studied the three vegetables production systems(small, medium, and 

large scale) and 18 vegetable crops normally grown in Des Moines, Iowa, to examine 

their environmental impact and make improvement decisions. The environmental 

impact analysis was done using the LCA approach for grapes production, including 

three models (early harvesting, ordinary harvesting, and delayed harvesting) that relied 

on the Italian system (Roselli et al., 2020). Another study evaluated the potential 

environmental savings that could be achieved in southern Sweden on broccoli crops if 

specific actions were taken using the LCA approach (Eriksson et al., 2021). Another 

novel bottom-up approach that utilizes a "Hybrid Urban Metabolism - Life Cycle 

Analysis (UM-LCA)" assessment to assess the food system's environmental impact on 

land use, freshwater quality, and global warming by Stellwagen et al. (2021). In 

Malaysia, the ecological effects of the production processes of rice crops have been 

studied using LCA to assess their performance (Harun et al., 2021). 

2.3. Socio-Economic Assessment 

Social-economic sustainability establishes a safe and prosperous workplace that 

supports humanity's wellness and needs (Kucukvar et al., 2021; Kutty et al., 2020c). 

Considering food sectors, it has been recognized that social sustainability is assessed 

and measured along the food supply chain (FSC), which consists of five stages: 

production, processing, wholesale, retailer/food services, and consumer (Desiderio et 

al., 2021). Social impact on sustainability could be understood once being analyzed at 

each stage of the food supply chain, as mentioned by Desiderio et al. (2021) and several 

authors in their systematic review that investigated social sustainability in the food 

sector and realized that most papers are done in that area studies tools used to assess 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85091779987&origin=resultslist&sort=plf-f&src=s&st1=%22Food+System%22++AND++%22Sustainability%22++AND++%22Impact+Assessment%22&nlo=&nlr=&nls=&sid=068072d3790a6001df42d9dd47d350fa&sot=b&sdt=cl&cluster=scopubyr%2c%222010%22%2cf%2bscosubjabbr%2c%22SOCI%22%2cf%2c%22MEDI%22%2cf%2c%22NURS%22%2cf%2c%22BUSI%22%2cf%2c%22EART%22%2cf%2c%22ECON%22%2cf%2bscopubyr%2c%222000%22%2cf&sl=77&s=TITLE-ABS-KEY%28%22Food+System%22++AND++%22Sustainability%22++AND++%22Impact+Assessment%22%29&relpos=5&citeCnt=9&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85091779987&origin=resultslist&sort=plf-f&src=s&st1=%22Food+System%22++AND++%22Sustainability%22++AND++%22Impact+Assessment%22&nlo=&nlr=&nls=&sid=068072d3790a6001df42d9dd47d350fa&sot=b&sdt=cl&cluster=scopubyr%2c%222010%22%2cf%2bscosubjabbr%2c%22SOCI%22%2cf%2c%22MEDI%22%2cf%2c%22NURS%22%2cf%2c%22BUSI%22%2cf%2c%22EART%22%2cf%2c%22ECON%22%2cf%2bscopubyr%2c%222000%22%2cf&sl=77&s=TITLE-ABS-KEY%28%22Food+System%22++AND++%22Sustainability%22++AND++%22Impact+Assessment%22%29&relpos=5&citeCnt=9&searchTerm=
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the social impact in specific stages of the FSC only, without considering its effect on 

others. 

Considering the growth of the population living in the urban areas, which is 

expected to increase by 2050 to reach 70% of people as indicated by the Food and 

Agriculture Organization. That increase will lead to enormous challenges facing 

conventional food production and supply chain that drive food and nutrition insecurity 

to urban and rural residents. Not using the resources efficiently due to the impractical 

practices of farmers and staffing along the FSC systems is the reason behind that. 

However, these unsustainable practices and degraded natural resources can once be 

fixed and standardized to link rural and urban communities since they are vital in 

designing stable and comprehensive linkages. A few countries and organizations 

recently acknowledged the importance of sustainable food systems and initiated 

guidelines and efficient practices to improve the food sector. For example, the Milan 

Urban Food Policy Pact lets over 120 cities get involved in developing food systems 

based on sustainability and social justice as well. At the UN Conference on "Housing 

and Sustainable Urban Development" in 2016, a new urban plan was established to 

regulate the international efforts revolving around urbanization for the next two 

decades. Moving to local initiatives adopted by a few countries, Sri Lanka, for instance, 

had initiated a fertilizer plant for generating compost from the solid wastes collected 

from cities. The Sri Lanka urban council placed this plant in the rural area to provide 

farmers with an easily accessible organic fertilizer. 

In contrast, in Argentina, they focus on teaching farmers effective agricultural practices 

besides providing them with technical and financial support, which was launched by 

the municipality of Rosario to switch to ecological agriculture (FAO,2017). In the 
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United States, people lack access to fresh food stores or take a long distance to reach 

them, as discovered by Benez-Secanho et al. (2021), who studied this phenomenon in 

Georgia, which suffers from this phenomenon the freshest food deficiency. 

Sophisticated space-related tools in geographical information systems (GIS) are used 

to spot fresh food stores and consider the population density as the dependent variable 

in the spatial lag regression model to figure out the factors affecting the accessibility of 

fresh food in Georgia (Benez-Secanho et al., 2021). Another universal assessment tool 

developed by the "Food and Agricultural Organization of the United Nations (FAO)" 

to assess the sustainability systems across each dimension is the "Sustainability 

Assessment of Food and Agriculture systems (SAFA)." It has been used among 

government, academia and research, private sectors, and research and projects as it 

helps to implement SAFA guidelines designed by FAO (FAO,2016). "Response-

Inducing Sustainability Evaluation (RISE)" assesses the sustainability dimensions 

across farming operations discovered by the Swiss college of Agriculture in 2011. It is 

an interview-based way that collects information about 54 different parameters rated 

by farmers using a scale from 1 (worst) to 100 (perfect) are then being summarized into 

ten indicators their scores are displayed in a radar chart for further studies (Grenz et al., 

2012). Furthermore, an economic analysis has been done using life cycle costing 

assessments of agriculture food systems specialized in grapes crops production (Roselli 

et al., 2020). 

2.4. Eco-environmental Assessment 

A critical dimension of sustainability is the eco-environmental dimension, a 

combination of the economic and environmental impact of the system (Saling, 2016; 

Kutty et al., 2020). Eco-efficiency is defined as a proportion of economic output to 

environmental effect (Abdella et al., 2021f). Being able to assess and quantify its 
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benefits in terms of materials and products significantly influences future improvement 

and takes further resolutions. It requires a holistic look at the system to build new 

processes and products that adopt sustainable principles(Elhmoud et al., 2020; Elhmoud 

et al., 2020a). Many techniques were established to analyze the entire product life cycle 

from early implementation. Eco-efficiency assessment has set standards for industries 

and products sustainability by researchers, as identified by  Abdella et al. (2020). A 

novel approach using "Economic Input-Output Life Cycle Assessment (EIO-LCA)" 

has been used to assess the effects of consumption and production tasks considering all 

possible impacts from the supply chain (Abdella et al., 2020). This approach is regarded 

as a top-down strategy that utilizes environmental indicators and monetary flows to 

decide (Kucukvar et al., 2019). EIO-LCA, associated with Data Envelopment Analysis 

(DEA), has been used by Egilmez et al. (2014) to assess the sustainability dimensions 

in the United States for food manufacturing industries.  Another methodology adopted 

by Park et al. (2016) utilized ecologically-based life cycle assessment (Eco-LCA) to 

establish a sustainability benchmarking model for 54  agriculture and food 

organizations in the United States that provide a benchmark for land and water 

footprints beside ecological resource consumption and atmospheric emissions. Eco-

LCA is considered a complement to the EIO-LCA since it has additional ecological 

footprint categories for renewable and non-renewable resources (Tatari & Kucukvar, 

2011). To address the difficulties of regression-based weights methods that are 

considered to be one of the recent sustainability models and give valuable relative 

weights for eco-efficiency composite indicators, a unique weighting methodology 

integrating linear mixed-effect models with Johnson's relative weights was developed 

by Abdella and several researchers (Abdella et al., 2021g). Life cycle assessment 

coupled with economic equilibrium modeling to prepare a feasible, realistic plan for the 
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aquaculture sector has been studied by Bohnes et al. (2022), whereas Spykman et al. 

(2021) have initiated a newly modular method for assessing the eco-efficiency of the 

production of dried Hermetia illucens larvae followed by environmental life cycle and 

cost assessment to analyze these two sustainability dimensions. 

2.5. DEA for sustainability studies: 

Charnes et al. (1978) presented data envelopment analysis (DEA) as a non-parametric 

technique for assessing the efficacy of a collection of similar decision-making units 

(DMUs) wherein one or more inputs are utilized to produce one or more outputs (An 

et al., 2015; Cook et al. 2009; Wu et al. 2016). The main idea underlying DEA is to 

maximize the ratio of the sum of weighted outputs to overall weighted inputs for the 

DMU under consideration while ensuring that the ratios of all other DMUs are smaller 

than one. The technique is repeated for all DMUs, and the highest ratios obtained are 

indicated as the DMUs' efficiency ratings.Wong et al. (2008) and Mahdiloo et al. 

(2011) revealed several benefits of DEA that contribute to its popularity and 

effectiveness compared to other methods that are: DEA is an effective method for 

determining the relative efficiency of DMUs when several assessment criteria are 

present, second, the "efficient frontier" defines best practice as an evidence-based level 

of excellence that serves as a benchmark and identifies the best strategies that the least 

efficient DMUs could have used to improve. In the presence of several evaluation 

metrics, DEA is an effective method for determining the relative efficiency of 

DMUs.According to studies, it has been proved that DEA models serve in several 

contexts of sustainability, especially the traditional model that translates the data and 

deals with undesired outcomes as inputs  (Choi & Zhang, 2011). DEA models have 

been used extensively to clarify and cope with the challenges that face food systems 

locally, regionally, and globally. Several researchers used the DEA model to 

https://www.sciencedirect.com/science/article/pii/S0377221717305623#bib0029
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investigate the food and beverage industry performance efficiency in Thailand and 

Vietnam to understand its capability and suggest productivity improvements coupled 

with the resampling method to quantify the efficiency of 40 enterprises, 20 Vietnamese 

and 20 Thai companies, as indicated by Wang et al., (2020). Following an investigation, 

it was discovered that DEA has some drawbacks related to high dimensional input 

indicator space and their association with each other because as the correlation of the 

inputs increases, either positively or negatively, along with the number of indicators, 

the accuracy of the DEA results will be affected (López et al., 2016; Chen et al., 2021). 

2.6. Modeling and Optimization Techniques  

Several modeling techniques have been applied in the area of food system 

assessments. Modeling and optimization techniques help identify the relationships 

between indicators collected and utilized with the system's responses, minimizing 

production costs and enhancing quality. One of the most used techniques is Data 

envelopment analysis (DEA). DEA models have been used extensively to clarify and 

cope with the challenges that face food systems locally, regionally, and globally. For 

example, several researchers used the DEA model to investigate the food and beverage 

industry performance efficiency in Thailand and Vietnam to understand its capability 

and suggest productivity improvements coupled with the resampling method to 

quantify the efficiency of 40 enterprises, 20 Vietnamese and 20 Thai companies, as 

indicated by Wang et al., (2020). Another modeling technique that has been recently 

developed used by Olagunju et al. (2021) "Directed Acyclic Graphs (DAG) "beside a 

Vector Error Correction Model (VECM), which is used to assess the relationship 

between phosphate rocks, plant fertilizers, and wheat selling prices to give perception 

for the concerned people about how to respond to phosphate rocks supply shocks. 

Müller et al. (2020) used the following multiple modeling techniques meta-
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modeling techniques, non-equilibrium approaches, and behavioral-based modeling 

endeavors to establish a detailed reflection on three multiple subjects food security 

volatility, technology, and transformation. A system dynamic (SD) modeling approach 

was used by Sampedro et al. (2020) to determine the primary reasons that drive 

Galapagos island food systems to develop plans and test the impact on the supply 

system structures. Lastly, few researchers in the United States have used simulation 

models to visualize food system capacity and evaluate its performance (Conrad et al., 

2018). 

2.7. Indicators and Variable Selection Approaches 

The models built for quick monitoring of results can benefit from variable 

selection approaches since they simplify the modeling process and improve the 

accuracy of the models (Abdella et al., 2016h; Abdur-Rouf K et al., 2018; Abdella et 

al., 2019i). This literature highlights some widely used variable selection approaches 

and their uses. Using variable selection techniques within the analysis removes the 

irrelevant attributes, which reduces the cost of processing unrequired data on the 

model (Sagar et al., 2021). However, choosing an indicator set that gives a complete 

system picture. Considering many indicators would raise the expenses of collecting and 

analyzing them to study the system (Reisi et al., 2014). 

Furthermore, the variables can be indicators reflecting a particular set of data to 

explore or measure a model, where indicators must be limited, valuable, and well 

figured out. Utilizing many indicators is undesirable and complicates decision-making 

(Reisi et al., 2014). Grenz et al. (2009) have identified the most common indicators that 

researchers have used to investigate the sustainability dimensions of food industries, as 

illustrated in Fig 1. 
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Figure 1: Most used indicators in the previous studies. 

 

One of the most widespread approaches used is the analytical hierarchy process 

(AHP) which is a method that associates weights to the indicators in the model. Still, 

this method is subjective and inconsistent because it is based on various individuals' 

viewpoints (Reisi et al., 2014). Nevertheless, it has been applied to the process of 

selecting transport sustainability indicators to evaluate transport sustainability 

strategies in local governments in Taiwan, where the weights of the indicators and the 

selection of them for the governments have been developed through a panel of 

committee members (Shiau et al., 2013). Zheng et al. (2013)developed performance 

metrics for evaluating transportation sustainability has used AHP to assign relative 

weights to the variables, often determined by an expert panel based on theoretical 

backgrounds and considerations. However, this can pose the same problems as 

choosing a weighting pattern by a panel of experts. The principle component technique 

(PCA) compares distinct indicators on many aspects and ranks them (Reisi et al., 2014). 

"The least absolute shrinkage and selecting operator (LASSO)" is another method used 

mainly to set certain variables to further using it as a regression technique, where 

LASSO studies the correlation between the independent variable (x) and the dependent 

variable (y) to select the most valuable variables (Marami Milani et al., 2016; Sagar et 

al., 2021; Abdella et al., 2020). To find the potentially relevant indicators based on 
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exploratory data analysis, the Adaptive LASSO approach is used before the prediction 

of air quality and pollutants in multiple cities in India, where the use of adaptive LASSO 

resulted in pointing out essential components that affect the air that is measured (Sethi 

et al., 2021). Variable selection approaches are recently applied in many sustainability 

studies to select the best-fit indicators to measure the progress on sustainability (Reisi 

et al., 2014). For example, the LASSO approach is utilized in a paper to determine the 

best regression models between milk's essential components (protein, fat, and milk 

yield) as predictions and environmental factors as predictors (Marami Milani et al., 

2016). Another study used the LASSO technique and a cross-validation approach to 

measure weather conditions' impact on pedestrians' injury (Abdella et al., 2020d). 

Feature selection in data science and machine learning seeks to exclude the less 

important indications before completing the study with strong data analysis tools(Tang 

et al., 2014). This study suggested employing a multistage DEA technique because of 

the powerful analysis that DEA can perform. However, one of the key downsides of 

DEA is its potential sensitivity to the number of inputs and outputs chosen since it does 

not analyze their appropriateness, and its accuracy decreases as input indicators have a 

strong association with one another. Variable selection in DEA seeks to pick the 

smallest collection of variables possible to (1) influence the efficacy of the production 

function approximation; (2) estimate the actual inefficiency distribution of each 

observation; and (3) provide more significant inputs for a clearer understanding of the 

production conversion from inputs to outputs. Excluding insignificant variables in 

DEA, whether inputs or outputs, allows frontiers to be adequately calculated and 

eliminates the computational burden associated with such datasets. DEA loses 

explanatory value as the spatial space expands (Nataraja et al., 2011). While bigger 

datasets are better, the DEA literature has identified several basic criteria to be 
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followed. Golany et al. (1989) state that a wider collection of DMUs allows for more 

precise identification of the normal connections between the set's inputs and outputs. 

They suggest that DMUs should be at least twice the number of inputs and outcomes 

evaluated. According to Boussofiane et al. (1991), the number of inputs and outputs 

considered should be less than the total number of DMUs for successful discrimination 

and flexibility in weight selection. As a result, to address the DEA limitations related 

to accuracy and dimensional space complexity in the food sustainable systems domain 

and the need to conduct a food sustainability study to achieve food security, this thesis 

selected to utilize the LASSO approach to minimize dimensional space complexity. 

The benefits of employing LASSO over other regression-based approaches include that 

only LASSO achieves genuine dimensionality reduction by forcing numerous beta 

coefficients to be zero. In contrast, Ridge and Elastic Net force tiny coefficients near 

zero. The penalty factor in LASSO affects how many features are maintained; utilizing 

cross-validation to calculate the penalty factor ensures that the model will generalize 

well enough to subsequent sample data, which will be explained in detail in chapter 3. 
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CHAPTER 3: METHODOLOGY 

This section introduces the penalization-based DEA methodology. The methods and 

tools used are presented, such as LASSO-based regression and DEA.   

3.1. Proposed Methodology 

This study proposes a two-stage methodology for estimating operational efficiency; see 

Figure 2. The penalization-based regression is firstly applied to reduce the dimension 

space of the economic and environmental indicators. Second, the non-weighted DEA, 

weighted DEA, and whole data set models estimates operational efficiency using the 

reduced dimension of the indicators. Three DEA-based efficiency models have been 

generated in this study to test the applicability of the proposed method.  

 

 

Figure 2: Two-stage LASSO based DEA for eco-efficiency assessment 

 

3.2. LASSO-based Eco-Environmental  Indicator Selection 

This study utilizes penalized regression to reduce the dimension of the eco-
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environmental indicators only to include the most significant indicators. This step will 

provide the management with insight into the most significant eco-environmental 

indicators. However, in practice, the LASSO (least absolute shrinkage and selection 

operator) and the ridge penalization are the most frequently used penalty functions. The 

shrinkage is intended to avoid overfitting the eco-environmental  indicators. Both of 

these penalty functions are capable of shrinking regression parameters to zero. 

However, only the LASSO penalty can eliminate the regression coefficients. Due to 

this property, LASSO-based regression is the most well-known technique for high-

dimensional applications. For further reading, see Hoerl & Kennard (1970), Verweij & 

Van Houwelingen (1994), and Tibshirani (1996 and 1997).  

The selection of eco-environmental indicators is formulated using a classical linear 

model expressing the value-added (response variable 𝑦𝑖) as a linear function of one or 

more eco-environmental indicators (model predictors 𝑥’s) as follows: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖       𝑖 = 1,2, …                                                  (1) 

where xij∈ ℝn is the 𝑖th observation of the jth indicator. The 𝛽𝑗 values are the 

coefficients of the eco-environmental indicators in the model. The error term 𝜀 is 

usually assumed to have a normal distribution.   

The LASSO based solution is often formulated as an optimization problem as follows:  

𝛽^𝐿𝑎𝑠𝑠𝑜 = (𝒚 − 𝑿𝛽) 𝑇(𝒚 − 𝑿𝛽) + 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

                                                  (2) 

Here 𝑿 is the design matrix,p is the dimension space (number of indicators), 𝜆≥0 is a 

pre-chosen penalization (or shrinkage) parameter that can be selected to achieve a 

particular penalty strength, ‖𝜷‖1 is the squared Euclidean norm, and the notation 

𝜆‖𝜷‖1= 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1  represents the LASSO penalty function. The vector 𝛽^𝐿𝑎𝑠𝑠𝑜 
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represnts the regression coefficients of the eco-environmental indicators involved in the 

study. However, the penalization parameter selection, 𝜆, is critical for the regression 

model's accuracy. When 𝜆=0, the optimization problem in Equation (1) is considered a 

general linear regression (no dimension reduction). However, numerous techniques for 

determining the optimal value of this parameter have been developed and validated over 

the years; see, for example, Tibshirani (1996) and Park & Hastie (2007). This study 

uses the LASSO regression in Equation (2). The results of the LASSO regression will 

be reported in the case study.  

3.3. DEA-based Eco-efficiency Assessment 

A non-radial Slacks-Based Measure (SBM) Data Envelopment Analysis (DEA) 

model is used to assess the efficiency of n Decision-Making Units (DMUs). Each DMU 

generates s outputs from m inputs. The ith input and rth output of DMUj are indicated as 

xij where, i = 1, 2,...,m and yrj where, r = 1, 2,...,s, respectively. The production 

possibility set (PPS) is defined using the non-negative combination of the DMUs in the 

set J as; 

P = { (xi , yr) : xi ≥ ∑ λjxij
n
j=1 , 0 ≤ yr ≤  ∑ λjyrj

n
j=1  , ∑ λj=1,n

j=1  λj ≥ 0; ∀ j, i, r}     (3)  

 λj = (λ1, λ2, …..λnj)
T is called the intensity vector. The SBM model presented by Tone 

(2001) under the variable returns to scale form is presented in Eq. 4, as follows; 

minp
d
*=

1- (
1
m

) ∑
si

-

xid

m
i=1

1+
1
s

∑
sr

+

y
rd

s
r=1

                                                                                                   (4) 

The inequalities in (3) can be transformed into equalities by introducing slacks, which 

forms the set of constrains of the non-oriented SBM model in Eq. (4) as follows; 

 xid = ∑ λjxij + si
- (i =1,2,…,m)

n

j =1

                                                                       (5) 
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y
rd

 = ∑ λjyrj
- sr

+ (r =1,2,…,s)                                                                              (6) 
n

j =1

 

∑ λj = 1
n

j =1

                                                                                                                 (7) 

λj ≥ 0 (j = 1,2,…, n) 

si
-, sr

+ ≥ 0 ,∀ i, r 

The proposed SBM model minimizes the mean rate of input and maximizes the inverted 

mean rate of output through  1- (
1

m
) ∑ si

-/xid
m
i=1  and 1+

1

s
∑

sr
+

yrd

s
r =1   respectively. si

- = 

(s1
- , s2

- …, sm
- )T  Rm and    sr

+  = (s1
+, s2

+…,  ss
+)T  Rs are the slacks of the inputs and 

outputs of the DMUs. Then these slacks are used in the objective function to assess the 

efficiency of the DMUs. When this model for DMUd is solved, the optimal value of the 

objective function (ρ*
d)  is obtained, and DMUd is considered efficient when ρ*

d =1 

(Seiford and Zhu 2002; Yang and Pollitt 2009; Badau 2015). 
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CHAPTER 4: DATA ANALYSIS AND RESULTS  

In this chapter, the proposed approach (2-Stage LASSO-based DEA) has been 

described using an actual case study of 30 food industries in the United States to provide 

concerned individuals with an indication of plans to enhance their food systems. 

4.1. Data Generation  

The statistics used to evaluate the sustainability performance of the 30 food 

industries in the United States were developed using an input-output model based on 

data from the EORA database, which has proved to be an accurate international 

database whose data has been used in numerous significant researches(Wiedmann et 

al., 2015). Eora comprises national input-output tables that span roughly the 

international economy (Lenzen et al., 2013). Eora is based on credible data sources, 

such as the UN System of National Accounts and the COMTRADE databases, and 

several national organizations like Eurostat and IDE/JETRO (Sen et al., 2020). In Eora, 

input-output tables are generated by converting Supply and Use Tables (SUTs) from 

190 nations into Make and Use matrices. Information is collected using specialized 

satellites. For this research objective, the 429 US domestic SUTs were coupled with 

various environmental variables via the specialized environmental satellite. The 

multiplier data were acquired from the input-output model to estimate the 

environmental consequences of the food consumption sectors in the United States. The 

information gathered was from the year 2015. Energy use, renewable resource 

consumption, air pollution, water footprint, and non-renewable resource consumption 

are the six major categories of environmental indicators. The input-output model for 

the US economy has been used to determine the multipliers for US food sectors 

following obtaining environmental effect data for the US food consumption sector and 

matching food consumption in monetary units ($). Sen et al. (2019) give extensive 
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instructions on creating input-output models and their formalization for further 

understanding. 

4.2. Data Description  

Fourteen indicators were retrieved from the Eora database to be utilized for the 

30 food industry analyses. The selection of these 14 indicators and food industries 

shown in Tables 1 and 2 is based on a study of existing research in that sector and the 

influence of these indicators on food industry eco-efficiency based on the literature 

review. 

 

Table 1: Selected environmental Indicators. 

Environmental Indicator Abbreviation Symbol Unit Mean 

Air Pollutants   

CO2 X1 

Kt 

5.5E+09 

CH4 X2 1.5E+08 

CO2 X3 8.0E+07 

HFC X4 1.3E+07 

PM10 X5 9.6E+06 

PM2.5 X6 3.7E+02 

N20 X7 1.0E+07 

VOC X8 1.8E+07 

SO2 X9 1.7E+07 

Minerals M X10 t 9.3E+10 

Mining and Quarrying MQ X11 t 6.1E+08 

Non-Renewable Energy 

Consumption  
NREC X12 TJ 9.6E+10 

Renewable Energy 

Consumption   
REC X13 TJ 6.9E+09 

Water Footprint   WF X14 
Mm3/

yr 
2.5E+10 

Economic Value added GDP Y $M 9.6E+09 

 

 

The indicators evaluated to execute the suggested approach are shown in Table 1. The 

independent variables (x1,x2...x14) are the environmental indicators, and the dependent 
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variable (Y) is the economic value-added, where they will be used in the first stage of 

the proposed method (LASSO analysis) to identify the significant indicators before 

moving on to the second stage. 
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Table 2: Food Industries. 

 Food industries  Abbreviation  

1.  All other food manufacturing                                                                                                  AOFF 

2.  Beet sugar manufacturing                                                                                                      BSM 

3.  Bread and bakery product manufacturing                                                                                        BBPM 

4.  Breakfast cereal manufacturing                                                                                                BCM 

5.  Breweries                                                                                                                     BW 

6.  Cheese manufacturing                                                                                                          CM 

7.  Chocolate and confectionery manufacturing from cacao beans CCCB 

8.  Coffee and tea manufacturing                                                                                                  CTM 

9.  Confectionery manufacturing from purchased chocolate                                                                          CMPC 

10.  Cookie, Cracker, and pasta manufacturing                                                                                       CCPM 

11.  Dog and cat food manufacturing                                                                                                DCFM 

12.  Dry, condensed, and evaporated dairy product manufacturing DCEPM 

13.  Fats and oils refining and blending                                                                                           FORB 

14.  Flour milling and malt manufacturing                                                                                          FMMM 

15.  Fluid milk and butter manufacturing                                                                                           FMBM 

16.  Frozen food manufacturing                                                                                                     FFM 

17.  Fruit and vegetable canning, pickling, and drying                                                                              FVPD 

18.  Ice cream and frozen dessert manufacturing                                                                                    ICFM 

19.  Non-chocolate confectionery manufacturing                                                                                      NCM 

20.  Other animal food manufacturing                                                                                               OAFM 

21.  Poultry processing                                                                                                            PP 

22.  Seafood product preparation and packaging                                                                                     SPP 

23.  Seasoning and dressing manufacturing                                                                                          SDM 

24.  Snack food manufacturing                                                                                                      SFM 

25.  Soft drink and ice manufacturing                                                                                              SDIM 

26.  Soybean and other oilseed processing                                                                                          SOP 

27.  Sugar cane mills and refining                                                                                                 SCMR 

28.  Tortilla manufacturing                                                                                                        TM 

29.  Wet corn milling                                                                                                              WCM 

30.  Wineries                                                                                                                      WINE 
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4.3. Selecting sustainability indicators using LASSO  

This section introduces the steps to select the best subset of indicators to model 

the operation efficiency of the corresponding food and beverage industries. However, 

with the current development in data collection methods and techniques, it becomes 

crucial to practice several dimension reduction techniques to overcome the over-fitting 

issues in various scientific and business fields. This is widely known in statistics as 

"Model Selection." Model selection refers to choosing the best subset of model 

predictors (sustainability indicators) to enhance the model performance. Traditional 

regression methods, such as simple linear regression and multiple regression using least 

square estimation methods, have some drawbacks under high dimension settings, such 

as assigning nonzero values to all model predictors, making them difficult to interpret, 

and producing overfitted model having low model prediction performance. 

This study uses LASSO-based regression as a very well-known tool for model 

selection. Lasso regression is a type of linear regression that uses shrinkage. In addition, 

lasso regression performs L1 regularization, which adds a penalty equal to the absolute 

value of the magnitude of coefficients. This type of regularization can result in sparse 

models with few coefficients; Some coefficients can become zero and be eliminated 

from the model. 

On the other hand, larger penalties result in coefficient values closer to zero, ideal for 

producing simpler models. However, LASSO improves the model's stability and 

accuracy by continuous shrinkage and only includes the most significant model 

predictors (indicators). The model selection provides the decision-makers with a 

simple, accurate, and interpretable model.  

Since the LASSO outcome depends on the value of the shrinkage parameter, several 

ways can be used to select the best model. For instance, K-fold cross-validation, Mean 
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Square Error (MSE) and Mean Absolute Deviation (MAD). This study applies the K-

fold cross-validation to optimize the shrinkage parameter. The procedures for the 

LASSO application will be described in the following sections. 

 

4.3.1. Sustainability Impact Normalization 

The sustainability impacts of the selected indicators contain different scales and units. 

Therefore, the "Feature Scaling" method is applied to have comparable indicators. The 

normalization step helps make the data comparable across all the indicators so that the 

information can be combined meaningfully. The normalized measures can be 

calculated using:   

𝑥𝑖𝑗
′ = 𝑏0 +

(𝑥𝑖𝑗 − X𝑚𝑖𝑛,𝑗)(𝑏1 − 𝑏0)

(X𝑚𝑎𝑥,𝑗 − X𝑚𝑖𝑛,𝑗)
;      𝑖 = 1,2, … . . , 𝑛 ,     𝑗 = 1,2, . . . , 𝑝            (8) 

 

where 𝑥𝑖𝑗 ix the 𝑖𝑡ℎ observation under the 𝑗𝑡ℎ sustainability indicator, X𝑚𝑎𝑥,𝑗 and X𝑚𝑖𝑛,𝑗 

are the maximum and minimum values of the 𝑗𝑡ℎ indicator, respectively, 𝑛 is the 

number of food and beverages industries (𝑛=30), 𝑝 is the number of indicators (𝑝=14), 

and 𝑏0 <  𝑏1 are predetermine min-max values for the range of 𝑛𝑖𝑗
′ . This study uses 𝑏0= 

0 and 𝑏1=1. e set at zero and 1. The normalized sustainability matrix is reported in 

Appendix A. 

4.3.2. Measure Correlation   

In this section, we measure collinearity among the sustainability indicators; see Figure 

3. This step is added to justify the importance of penalization regression to avoid 

overfitting. This study uses the correlation of determination (𝑟2) as the most popular 
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method for correlation measure. The 𝑟2 statistic determines the percentage of variation 

in one model predictor (indicator) that is predictable from the other predictors 

(indicators). The r2 can take any value from 0 to 1. The 𝑟2 means more percentages can 

be predicted and vice versa. This study uses 𝑟𝑖𝑗
2 to refer to the coefficient of 

determination between the 𝑖𝑡ℎ and 𝑗𝑡ℎ indicators. The 𝑟𝑖𝑗 values, refer to the sample-

based Pearson correlation coefficients, for all the pairs of the sustainability indicators 

were estimated and reported in the correlation matrix below:  

 

 

Figure 3: Selected Indicators Correlation. 

 

The correlation measures show that the sustainability indicators have medium to high 

correlations. The{CO, CO2}shows the highest correlation (0.976), while the {CH4, 

HFC} shows the lowest correlation.   
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4.3.3. Model Selection using LASSO  

This section introduces the procedures for solving the LASSO regression using 

IBM®SPSS® software. The IBM®SPSS® is a well-known statistical platform that offers 

advanced techniques and methods to help make high-quality decisions.  

The value of the tuning parameter, λ, is determined using the K-Fold Cross Validation 

(CV). This method is based on the trade-off between the value of λ and the model 

accuracy measured. Let y be the normalized value of the i𝑡ℎ observation (the added-

value of the ith industry); then model accuracy can be calculated as follows:   

MSE =
1

𝑛
∑(𝑦𝑖 − 𝑌̂𝑖)

2
                                                       

𝑛

𝑖=1

(9) 

Where 𝑛 is the number of observations and 𝑌̂𝑖 is the estimated response value of the 𝑖𝑡ℎ 

observation. In this study, 𝑛=30 is the number of food and beverages industry.  

The CV is also conducted using the IBM®SPSS®. Cross-validation tests the model's 

accuracy in predicting the new dataset to overcome statistical problems such as 

overfitting. The original dataset randomly divides the k-fold CV into k equal-sized 

subsets. Then, a single subsample is retained as the validation dataset for testing the 

model accuracy, and the remaining subsets are used as training subsets. The process is 

repeated k times, with each of the k subsamples used exactly once as the validation data. 

The k results can then be averaged to produce a single estimation. The CV procedure 

will be repeated at all suggested levels λ. Finally, the value of λ with the minimum MSE 

is selected as the optimal λ for conducting LASSO regression. The range of λ is selected 

to be from {0.01 to 1}, with an increment of 0.01. That means that 100 values λ are 

tested under the cross-validation framework. The run-time using the IBM®SPSS®  is 

around 30 seconds. 

https://en.wikipedia.org/wiki/Overfitting
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The CV is available as an option under the regularization regression; see Figure 

4. The number of folds is selected to 10. The CV outcome is reported in Appendix B. 

The optimal value of λ  and the selected best model were highlighted in gray and 

reported in the following section.  

 

Figure 4: K-Fold Cross-validation settings under the IBM®SPSS®. 

 

From the CV procedures, the optimal value of λ is 0.080. The LASSO regression is then 

conducted using this value λ. Figure 5 shows the settings of the LASSO regression 

using the IBM®SPSS®. 
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Figure 5: LASSO regression settings under the IBM®SPSS®. 

 

The optimal model based on LASSO regression is found to be as shown in Table 3: 

Table 3: Optimal model settings 

  X3 X4 X8 X9 X10 X13 

 Indicators CO HFC VOC SO2 M REC 

Coefficients 0.01229 0.77137 0.00036 0.07317 0.07833 0.09215 

Weight 0.01196 0.7506 0.00035 0.0712 0.07622 0.08967 

 

The optimal model shows that six indicators are selected to model better the 

relationship between the sustainability indicators and the added-value (Gross Domestic 

Product (GDP). The statistics of the selected model are shown in Table 4. 
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Table 4: Optimal model statistics. 

Penalty 

Regularization "R 

Square"  

Number of Selected 

Predictors 

Prediction 

Error 

0.080 0.992 6 0.008 

 

Table 4 shows that the optimal model has achieved a very small "prediction Error" with 

a high R2 value equal to 0.992. Other models, for instance, when λ=0.10 and 0.110 have 

shown a higher R2 (0.994), but considering that these models have only two indicators 

selected, the model with λ=0.08, six indicators selected, becomes more practical.   

The most critical challenge for completing the aggregation process is determining the 

extent to which each indicator contributes to the eco-efficiency value. It is customary 

to refer to the contribution level as a weight-value – or relative importance. 

The operational efficiency assessment challenges large business organizations 

with many sustainability impacts. One main challenge is determining the relative 

weight – or importance of each sustainability indicator. There are two different 

weighting methods in practice. These are weighting methods based on expert opinion 

and weighting methods based on statistical approaches; see (Saisana et al., 2002). The 

statistics-based weighting methods are widely common as they use a data-driven 

approach, such as principal component analysis, factor analysis, and multiple 

regression. (Saisana, 2002; Reisi, et al., 2014). In this study, we are using the outcome 

of the LASSO methods, mainly the coefficient estimates, to refer to the weight of the 

selected indicator. The weights reported in Table 4 were calculated as follows: 
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W𝑗 =
𝛽𝑗

∑ 𝛽𝑖
𝑠
𝑖=1

         𝑖, 𝑗 = 1,2, … … , 𝑠                                         (10) 

where W𝑗  and 𝛽𝑗 are the weight and the regression coefficients of the jth indicator, and 

𝑠 is the number of indicators of the selected model.   

4.4. DEA Based Efficiency Assessment 

 

The DEA approach has shown to be a powerful, effective analytical tool that has 

been employed in various sectors over the years and has provided valuable results by 

notable researchers internationally that assist decision-makers in enhancing their firms 

and practices by providing a benchmark for them. Based on the literature and research 

on DEA, it was discovered that DEA is sensitive to the high correlation dimensional 

space of indicators(López et al., 2016). As the number of indicators with relatively 

substantial associations increases, the accuracy of DEA decreases (López et al., 2016). 

Thus, the accuracy of DEA improved by carrying out the proposed first stage, which 

limited the indicators to those with a significant impact only. To better understand the 

proposed method, three scenarios will be examined using the DEA technique using the 

SBM DEA model run using the MaxDEA 8 Ultra software and their outcomes will be 

compared in the sections that follow. The three scenarios are  1) LASSO-based un-

weighted DEA, 2) LASSO-based Weighted DEA, and 3) Full-dimension DEA 

(including the 14 indications collected). 

4.4.1. Eco-Efficiency Assessment of LASSO-based un-weighted DEA  

This section presents the results of the first scenario that deploys the indicators set 

generated from the LASSO analysis. 
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Figure 6 shows that DMUs BBPM, BCM, CCCB, CTM, CMPC, FMBM, FFM, 

FVPD, ICFM, SPP, SFM, SDIM, SOP, and WINE  got 100% eco-efficiency, followed 

by DMUs BW and AOFM with an approximately 88% eco-efficiency, whereas all the 

remaining DMUs lagged at 80% efficiency, having the least efficiency percent of 

43.68% and 44.18% for the OAFM and FORB industries, respectively. 

 

 

Figure 6: Eco-efficiency of LASSO-based Un-weighted DEA 
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4.4.2. Eco-Efficiency Assessment LASSO-based Weighted DEA  

This section presents the second scenario results that deploy the indicators set generated 

from LASSO analysis with their associated weights generated from computed as 

illustrated in section 4.3.3. 

 

Figure 7 shows that the DMUs BBPM, BCM, BW, CCCB, CTM, CMPC, 

FMBM, FFM, FVPD, ICFM, SPP, SFM, SDIM, SOP, and WINE adopt the best eco-

efficiency among the 30 DMUs, with 100% efficiency, followed by DMU AOFF with 

88.4%, whereas all the remaining DMUs fall behind 83% eco-efficiency. Whereas we 

have five food industries with less than 50% efficiency, the least efficient percent is 

equal to 30.6%, acquired by the TM industry.  

 

 
Figure 7: Eco-efficiency of LASSO Based Weighted DEA 
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4.4.3. Eco-Efficiency of Full Dimension DEA   

This section presents the results of the third scenario that deploys the whole indicators 

set generated, collected, and normalized without using LASSO. 

 

 

Figure 8: DMUs Eco-efficiency Using 14 Indicators. 

 

Figure 8 shows that several DMUs have 100% eco-efficiency. These are the 

BBPM, BCM, BW, CCCB, CTM, CMPC, FMBM, FFM, FVPD, ICFM, SPP, SFM, 

SDIMM SOP, and WINE. The results showed that AOFF has an eco-efficiency of 

86.4%, whereas all the remaining food industries are behind 78% eco-efficiency. 

Having the least eco-efficiency equals 42.87%, acquired by the FMMM industry.  
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4.5. Results Discussion  

The outcomes of the three scenarios are illustrated in Table 5. In the first model 

(LASSO-based DEA-non-weighted), the top-ranked industries with 100 percent 

efficiency were: BBPM, BCM, CCCB, CTM, CMPC,FMBM,FFM, FVPD,ICFM, SPP, 

SFM, SDIM, SOP, and WINE. The highly performing industries in the second scenario 

(LASSO based weighted DEA) were BBPM, BCM, BW, CCCB, CTM, CMPC, 

FMBM, FFM, FVPD, ICFM, SPP, SFM, SDIM, SOP, and WINE, whereas the top-

ranked industries in the third scenario (DEA alone) were BBPM, BCM, BW, CCCB, 

CTM, CMPC, FMBM, FFM, FVPD, ICFM, SPP, SFM, SDIMM SOP, and WINE. This 

clearly illustrates that the top-ranked industries created by both non-weighted and 

weighted LASSO-based DEA have 14 out of 15 same DMU efficiency, while the 

results from the second scenario are identical to the results from the third. 

Examining the eco-efficiency of the following five ranking industries: the 

second, third, fourth, fifth, and sixth performing industries, the first scenario said that 

BW, AOFF, CCPM, SDM, and CM, respectively. In the second scenario, the results 

were AOFF, PP, WCMM CM, and CCPM. Finally, the third scenario, the 14 

dimensional DEA, displayed the AOFF, CCPM, SDM, NCM, and CM. Observing that 

the similarity between the first and third scenarios was high, as four of the five DMUs 

were in common, while when comparing the results of the second and third scenarios, 

there were only three DMUs in common, concluding that the first and third scenarios 

got nearly the same results. 

Finally, after comparing the five lowest-ranked eco-efficiency businesses, the 

first scenario revealed that BSM, SCMR, FMMM, FORB, and OAFM are the least 

efficient industries. The NCM, BSM, SCMR, FORB, and TM were in the second. And 

according to the findings of 14 dimensional DEA, the third scenario, BSM, SCMR, 
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FORB, OAFM, and FMMM are the least eco-efficient performing industries. 

Observing that the first and third scenarios provide identical results but in a slightly 

different order of the industries. At the same time, the second and third scenarios have 

three out of four industries in common with some different sequencing. 

After comparing three categories of results from the three scenarios, it was 

discovered that there is a high similarity between the three models, most notably 

between the non-weighted LASSO-based DEA and the entire dimension DEA model. 

This indicates that by using the most significant set of indicators only generated by 

LASSO, we achieved the best results rather than using a large set of indicators, 

implying that these selected variables and other variables primarily influence the 

DMUs' efficiency have little influence on the eco-efficiency. This illustrates the 

method's applicability while also addressing the DEA's limitation with high 

input/output dimensions and the difficulty in evaluating efficiency with many inputs. 
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Table 5: Ranking of 30 indutries among the three scenarios 

Model 1 Model 2 Model 3 

Industry Rank Industry Rank Industry Rank 

BBPM 1 BBPM 1 WINE 1 

BCM 1 BCM 1 SPP 1 

CCCB 1 BW 1 SOP 1 

CTM 1 CCCB 1 SFM 1 

CMPC 1 CMPC 1 SDIM 1 

FMBM 1 CTM 1 ICFM 1 

FFM 1 FFM 1 FVPD 1 

FVPD 1 FMBM 1 FMBM 1 

ICFM 1 FVPD 1 FFM 1 

SPP 1 ICFM 1 CTM 1 

SFM 1 SDIM 1 CMPC 1 

SDIM 1 SFM 1 CCCB 1 

SOP 1 SOP 1 BW 1 

WINE 1 SPP 1 BCM 1 

BW 15 WINE 1 BBPM 1 

AOFF 16 AOFF 16 AOFF 16 

CCPM 17 PP 17 CCPM 17 

SDM 18 WCM 18 SDM 18 

CM 19 CM 19 NCM 19 

PP 20 CCPM 20 CM 20 

DCEPM 21 SDM 21 DCEPM 21 

WCM 22 DCFM 22 PP 22 

NCM 23 FMMM 23 TM 23 

DCFM 24 DCEPM 24 WCM 24 

TM 25 OAFM 25 DCFM 25 

BSM 26 NCM 26 BSM 26 

SCMR 27 BSM 27 SCMR 27 

FMMM 28 SCMR 28 FORB 28 

FORB 29 FORB 29 OAFM 29 

OAFM 30 TM 30 FMMM 30 

 

4.4 Benchmark Learning Pathways  

 

 This section performs projection analysis for the eco-efficiency first model, 

which used non-weighted LASSO-based DEA and had a practically identical ranking 

to full dimension DEA analysis (third scenario). The projection study focuses on 

improving the eco-efficiency of the inefficient food industry and getting a 100% score. 

The percentage reduction values linked with each inefficient DMU to the frontier were 
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calculated based on the distance to frontier approach, which helps determine how much 

each indicator must be decreased to reach the efficient frontier. In other words, it 

forecasts the future activities that will be taken to improve each food business's 

sustainability performance. As a result, Table 6 shows the appropriate activities, 

represented with percentages, to improve the eco-efficiency performances of each 

DMU across all eco-efficiency metrics, which will be reflected in an increase in the 

economic value added to reach the maximum efficiency frontier. 
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Table 6: Projection Analysis Data. 

DMU 

CO HFC VOC SO2 WFM MLS 

Diff (%) 

AOFF -32.807 -9.949 -18.05 -10.791 0 -3.736 

BSM -54.353 -66.343 -58.922 -55.075 -17.387 -36.677 

BBPM 0 0 0 0 0 0 

BCM 0 0 0 0 0 0 

BW -0.346 -16.48 0 0 0 -52.528 

CM -56.234 -35.663 -31.723 -6.317 -1.638 -31.383 

CCCB 0 0 0 0 0 0 

CTM 0 0 0 0 0 0 

CMPC 0 0 0 0 0 0 

CCPM -28.444 -39.547 -21.967 -14.939 -18.087 -9.929 

DCFM -47.822 -44.053 -32.429 -15.419 -65.094 -54.861 

DCEPM -43.967 -35.291 -34.82 -22.562 -20.131 -38.282 

FORB -60.755 -71.102 -45.51 -32.376 -84.828 -40.334 

FMMM -70.296 -42.478 -56.555 -52.192 -71.244 -36.602 

FMBM 0 0 0 0 0 0 

FFM 0 0 0 0 0 0 

FVPD 0 0 0 0 0 0 

ICFM 0 0 0 0 0 0 

NCM -19.472 -60.316 -41.613 -26.64 -30.803 -35.766 

OAFM -62.371 -40.146 -46.579 -27.858 -82.424 -78.541 

PP -52.714 -11.381 -30.394 0 -46.341 -30.806 

SPP 0 0 0 0 0 0 

SDM -36.253 -35.983 -30.333 -14.09 -11.277 -32.452 

SFM 0 0 0 0 0 0 

SDIM 0 0 0 0 0 0 

SOP 0 0 0 0 0 0 

SCMR -50.842 -65.255 -56.935 -54.822 -62.182 -19.301 

TM -30.001 -69.306 -46.118 -42.394 -85.355 -4.805 

WCM -45.136 -21.685 -40.671 -39.66 -28.757 -27.79 

WINE 0 0 0 0 0 0 

 

The percentage indicates that the FMMM industry has the most significant CO 

reduction, with a 70% decrease, which, when reduced, will have a significant positive 

influence on its performance. In terms of HFC, FORB has the highest drop percentage, 

equaling 70%. At the same time, VOC levels in the BSM business should be decreased 

by 59%. Whereas SO2 should be reduced by 55% in the BSM sector, WFM should be 

reduced by 85% in the TM sector. Finally, OAFM necessitates a 78.5 percent decrease 

in MLS. 
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4.5 Improvement Actions 

 

Developing novel ways to reduce the environmental effect of food production and 

support the universe potential to produce food in the future is a demand. According to 

the findings, several indicators contribute significantly on the industry's sustainability 

performance such as emissions and energy consumption. 

Several actions could be taken to reduce carbon emissions according to the 

Alkaabneh et al., (2021)  It has been discovered that research and development that 

leads to storage solutions with lower carbon emission rates has the greatest promise for 

reducing emissions. Carbon taxes have the ability to cut emissions as well, but at the 

expense of reducing production output and raising consumer costs. The fastest-growing 

greenhouse gases are hydrofluorocarbons (HFCs), which are chemicals commonly used 

in refrigeration and cooling systems. HFCs have the potential to have a large influence 

on climate change. Short-term initiatives to minimize HFC emissions will dramatically 

lower expected temperature rises over the next few decades. The American Innovation 

and Manufacturing Act of 2020 urges the Environmental Protection Agency (EPA) to 

execute a 15-year phasedown of regulated HFC production and consumption of 85 

percent as well handle these HFCs and their alternatives and make the transition to next-

generation technology easier (Controlling industrial greenhouse gas emissions, 2021). 

Choosing eco-friendly packaging is another way to reduce wastes and emissions as food 

packaging generates a significant amount of waste and pollution. Every year, about 78 

million metric tons of plastic packaging are manufactured, with just 14 percent of that 

amount recycled. Because the great majority of plastic is manufactured from 

nonrenewable resources – either oil or natural gas – and will end up in a landfill (Royte, 

2021). In terms of water footprint reductions, research has shown that decreasing the 

environmental effect of food waste and loss will assist to reduce water footprint 
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(Marston et al., 2021). Improving energy and water efficiency would help to improve 

the food industry's sustainable performance. Food processing and manufacturing need 

a lot of energy and water. Processing and manufacturing account for approximately 

23% of total energy expenditure in the food business in the United States. Water is 

widely utilized in food preparation, both as an ingredient and in a variety of industrial 

operations (e.g. washing, disinfecting, conditioning, and cooking). Reducing energy 

and water usage can be especially difficult in the food processing and manufacturing 

industries, where production demands and safety regulations must take precedence. 

Smart metering and the adoption of energy efficiency and sustainable water 

management systems  can assist in improving the industry sustainability (University of 

Michigan, 2019). Another way to improve sustaibility performance is to employ eco-

friendly ingredients because the production of a variety of agricultural commodities, in 

particular, generates environmental and social sustainability problems. Deforestation 

and habitat degradation have been connected to palm oil, cocoa, and coffee, for 

example. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1. Conclusion and Recommendations 

Food system Food eco-efficiency assessment is important for assessing and monitoring 

economic and environmental management systems. The growing concern of 

sustainability management is attributed to the need for qualitative and quantitative 

management tools to provide business owners, stakeholders, and suppliers with a data-

driven framework for selecting the most appropriate decisions related to both 

environmental and socio-economic sustainability issues. However, the eco-efficiency 

assessment for large organizations with multiple environmental and economic impacts 

is computationally expensive and complex. Therefore, there is a demand for developing 

a reliable and accurate method of assessing food eco-efficiency. To this point, this thesis 

presents a two-stage methodology integrating both dimension reduction with DEA for 

assessing food eco-efficiency performance under high dimensional settings of 

sustainability indicators. The LASSO method is well-known for its efficacy as a 

variable selection technique. The incorporation of LASSO into the DEA aids in 

resolving the DEA's issues with high-dimensional space and highly correlated 

indicators. The proposed method was evaluated and validated using a real-world dataset 

that represented the environmental impact of fourteen indicators across 30 food and 

beverage industries. The food and beverage industries dataset was obtained from the 

Eora database.  

The first stage of the proposed methodology is known as dimension reduction. This 

stage has been complet3ed using IBM-SPSS software. The outcome of this stage 

resulted in a new dimension of six sustainability indicators with MSE=0.008. In 

addition, the new subset has shown a correlation coefficient equal to 0.992.  

The second stage of the proposed methodology is the eco-efficiency-based DEA. This 
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step has been completed using the SBM DEA model run using the MaxDEA 8 Ultra 

software. Three DEA eco-efficiency models were constructed in this study. These are 

1) LASSO-based un-weighted DEA, 2) LASSO-based Weighted DEA, and 3) Full-

dimension DEA. An eco-efficiency rank comparison of the three models has been 

conducted, and important conclusions have been extracted.   

Generally speaking, the results revealed that the three eco-efficiency models performed 

quite similarly. However, the non-weighted LASSO-based DEA and the full-DEA 

models demonstrated the highest similarity. This finding allows the management 

decision-makers to interpret the DEA-based ecoefficiency outcomes using few 

indicators. Also, it demonstrates the proposed method's applicability in addressing the 

DEA's weaknesses with high input/output dimensions and the difficulty in interpreting 

efficiency with a large number of inputs. The LASSO-base weighted DEA has shown 

a reasonable performance compared with the LASSO-based unweighted DEA.  

The regression coefficients were used as weights in this study. However, other 

weighting techniques, such as PCA, and Elastic Net, can be used in conjunction with 

the proposed method to improve the LASSO-based weighted DEA. Additionally, 

machine-learning-based clustering is a possible direction for future work, in which 

comparisons are made based on cluster group rather than rank. 
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APPENDIX A 

Data collected and analyzed: 

Y X1 X2 X3 X4 X5 X6 X7  

 
CO2 CH4 CO HFC PM10 PM2.5 N20 Industry 

0.736823 
8.05E-

01 9.75E-01 
8.49E-

01 
5.75E-

01 
8.91E-

01 
8.59E-

01 
9.09E-

01 AOFF 

0.98637 
9.79E-

01 9.99E-01 
9.82E-

01 
8.66E-

01 
9.75E-

01 
9.55E-

01 
9.78E-

01 BSM 

0.206456 
4.88E-

01 9.47E-01 
6.76E-

01 
7.18E-

02 
7.37E-

01 
5.10E-

01 
7.78E-

01 BBPM 

0.814606 
8.89E-

01 9.90E-01 
8.98E-

01 
5.45E-

01 
8.96E-

01 
7.62E-

01 
9.05E-

01 BCM 

0.483263 
6.26E-

01 9.75E-01 
7.28E-

01 
2.07E-

01 
8.15E-

01 
7.40E-

01 
8.51E-

01 BW 

0.785475 
7.77E-

01 8.90E-01 
8.08E-

01 
6.29E-

01 
8.50E-

01 
8.43E-

01 
8.55E-

01 CM 

0.98836 
9.90E-

01 9.99E-01 
9.91E-

01 
9.32E-

01 
9.88E-

01 
9.85E-

01 
9.90E-

01 CCCB 

0.921569 
9.52E-

01 9.98E-01 
9.56E-

01 
7.74E-

01 
9.61E-

01 
9.83E-

01 
9.71E-

01 CTM 

0.739592 
8.46E-

01 9.87E-01 
8.89E-

01 
1.91E-

01 
8.54E-

01 
8.06E-

01 
8.86E-

01 CMPC 

0.647861 
7.52E-

01 9.71E-01 
8.00E-

01 
3.21E-

01 
8.30E-

01 
7.13E-

01 
8.55E-

01 CCPM 

0.787576 
8.32E-

01 9.71E-01 
8.34E-

01 
5.57E-

01 
8.64E-

01 
6.26E-

01 
8.64E-

01 DCFM 

0.882247 
8.91E-

01 9.57E-01 
9.11E-

01 
6.95E-

01 
9.13E-

01 
9.19E-

01 
9.24E-

01 DCEPM 

0.92024 
9.29E-

01 9.94E-01 
9.21E-

01 
6.96E-

01 
9.18E-

01 
6.72E-

01 
9.13E-

01 FORB 

0.961943 
9.50E-

01 9.93E-01 
9.44E-

01 
9.21E-

01 
9.66E-

01 
8.90E-

01 
9.65E-

01 FMMM 

0.609013 
6.44E-

01 8.25E-01 
7.03E-

01 
4.34E-

01 
7.66E-

01 
7.52E-

01 
7.72E-

01 FMBM 

0.621072 
6.49E-

01 9.36E-01 
7.04E-

01 
5.24E-

01 
8.29E-

01 
6.48E-

01 
8.22E-

01 FFM 

0.52784 
6.31E-

01 9.72E-01 
7.38E-

01 
4.45E-

01 
8.52E-

01 
8.82E-

01 
8.86E-

01 FVPD 

0.939681 
9.56E-

01 9.90E-01 
9.69E-

01 
8.36E-

01 
9.67E-

01 
9.79E-

01 
9.72E-

01 ICFM 

0.849192 
8.93E-

01 9.90E-01 
9.22E-

01 
4.14E-

01 
8.91E-

01 
8.24E-

01 
9.11E-

01 NCM 

0.957835 
9.58E-

01 9.93E-01 
9.52E-

01 
9.17E-

01 
9.66E-

01 
8.68E-

01 
9.62E-

01 OAFM 

0.448697 
4.55E-

01 6.39E-01 
5.07E-

01 
2.41E-

01 
5.82E-

01 
4.93E-

01 
5.79E-

01 PP 

0.948628 
9.67E-

01 9.96E-01 
9.82E-

01 
8.88E-

01 
9.80E-

01 
9.95E-

01 
9.85E-

01 SPP 

0.842628 
8.84E-

01 9.89E-01 
8.98E-

01 
6.30E-

01 
9.12E-

01 
8.39E-

01 
9.22E-

01 SDM 

0.580604 
6.97E-

01 9.81E-01 
7.43E-

01 
2.32E-

01 
8.10E-

01 
5.31E-

01 
8.09E-

01 SFM 

0.262738 
5.52E-

01 9.80E-01 
7.22E-

01 
1.21E-

01 
8.04E-

01 
8.68E-

01 
8.72E-

01 SDIM 

1 
9.99E-

01 1.00E+00 
9.98E-

01 
9.99E-

01 
9.99E-

01 
9.91E-

01 
9.98E-

01 SOP 

0.96479 
9.59E-

01 9.97E-01 
9.66E-

01 
7.12E-

01 
9.49E-

01 
9.21E-

01 
9.58E-

01 SCMR 

0.964642 
9.72E-

01 9.96E-01 
9.73E-

01 
6.26E-

01 
9.40E-

01 
9.60E-

01 
9.50E-

01 TM 

0.99589 
9.93E-

01 9.99E-01 
9.94E-

01 
9.92E-

01 
9.96E-

01 
9.82E-

01 
9.95E-

01 WCM 

0.828873 
8.94E-

01 9.95E-01 
9.14E-

01 
6.10E-

01 
9.26E-

01 
9.87E-

01 
9.45E-

01 WINE 
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X8 X9 X10 X11 X12 X13 X14  
VOC SO2 M MQ NREC REC W Industry 

7.99E-01 7.56E-01 8.51E-01 8.73E-01 7.81E-01 6.97E-01 8.03E-01 AOFF 

9.71E-01 9.65E-01 9.86E-01 9.85E-01 9.81E-01 9.71E-01 9.84E-01 BSM 

4.87E-01 3.12E-01 5.28E-01 6.17E-01 2.95E-01 7.24E-02 2.30E-01 BBPM 

8.58E-01 8.28E-01 9.03E-01 8.91E-01 8.25E-01 7.48E-01 6.50E-01 BCM 

6.20E-01 5.37E-01 1.01E-01 4.66E-01 4.71E-01 2.79E-01 6.21E-01 BW 

8.07E-01 8.12E-01 8.23E-01 7.84E-01 7.87E-01 7.59E-01 7.88E-01 CM 

9.85E-01 9.82E-01 9.91E-01 9.92E-01 9.87E-01 9.83E-01 9.93E-01 CCCB 

9.37E-01 9.28E-01 9.49E-01 9.68E-01 9.59E-01 9.39E-01 9.92E-01 CTM 

7.85E-01 7.40E-01 8.40E-01 8.99E-01 8.03E-01 6.69E-01 9.23E-01 CMPC 

7.10E-01 6.43E-01 7.69E-01 7.98E-01 6.11E-01 4.53E-01 5.75E-01 CCPM 

7.98E-01 7.84E-01 7.21E-01 7.92E-01 7.44E-01 6.99E-01 3.82E-01 DCFM 

8.78E-01 8.63E-01 8.91E-01 9.02E-01 8.86E-01 8.51E-01 8.90E-01 DCEPM 

9.12E-01 9.06E-01 9.26E-01 9.27E-01 8.82E-01 8.79E-01 4.41E-01 FORB 

9.42E-01 9.30E-01 9.63E-01 9.34E-01 9.15E-01 9.17E-01 8.22E-01 FMMM 

6.88E-01 6.99E-01 6.98E-01 6.45E-01 6.50E-01 5.74E-01 6.71E-01 FMBM 

7.06E-01 6.99E-01 7.31E-01 7.08E-01 6.13E-01 4.66E-01 4.13E-01 FFM 

6.34E-01 5.69E-01 4.96E-01 7.68E-01 6.28E-01 4.45E-01 8.29E-01 FVPD 

9.53E-01 9.48E-01 9.57E-01 9.69E-01 9.50E-01 9.15E-01 9.72E-01 ICFM 

8.29E-01 8.18E-01 8.66E-01 9.25E-01 8.43E-01 7.72E-01 8.27E-01 NCM 

9.49E-01 9.50E-01 8.81E-01 9.29E-01 9.31E-01 9.32E-01 6.90E-01 OAFM 

4.94E-01 5.48E-01 5.24E-01 5.83E-01 3.88E-01 2.69E-01 3.41E-03 PP 

9.71E-01 9.61E-01 9.80E-01 9.86E-01 9.71E-01 9.58E-01 9.91E-01 SPP 

8.52E-01 8.40E-01 8.68E-01 8.56E-01 8.57E-01 8.10E-01 8.59E-01 SDM 

6.87E-01 6.91E-01 6.81E-01 6.81E-01 6.49E-01 4.96E-01 5.13E-01 SFM 

5.18E-01 3.74E-01 0.00E+00 7.56E-01 4.58E-01 2.44E-01 8.45E-01 SDIM 

9.99E-01 9.99E-01 9.99E-01 9.98E-01 9.99E-01 9.99E-01 9.84E-01 SOP 

9.39E-01 9.23E-01 9.78E-01 9.76E-01 9.37E-01 9.25E-01 9.73E-01 SCMR 

9.44E-01 9.30E-01 9.78E-01 9.72E-01 9.59E-01 9.51E-01 9.31E-01 TM 

9.93E-01 9.92E-01 9.95E-01 9.90E-01 9.91E-01 9.89E-01 9.72E-01 WCM 

8.74E-01 8.47E-01 7.98E-01 8.94E-01 8.99E-01 8.74E-01 9.83E-01 WINE 
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APPENDIX B 

Cross-Validation Outcome 

  Penalty 

Regularization "R 

Square" (1-Error) 

Number of 

Selected 

Predictors 

Apparent 

Prediction 

Error  
1 0.010 0.996 14 0.004  

2 0.020 0.992 14 0.008  

3 0.030 0.988 14 0.012  

4 0.040 0.988 13 0.012  

5 0.050 0.975 14 0.025  

6 0.060 0.977 13 0.023  

7 0.070 0.971 13 0.029  

8 0.080 0.992 6 0.008  

9 0.090 0.990 7 0.010  

10 0.100 0.994 2 0.006  

11 0.110 0.994 2 0.006  

12 0.120 0.993 2 0.007  

13 0.130 0.993 2 0.007  

14 0.140 0.919 12 0.081  

15 0.150 0.992 2 0.008  

16 0.160 0.991 2 0.009  

17 0.170 0.990 2 0.010  

18 0.180 0.989 2 0.011  

19 0.190 0.989 2 0.011  

20 0.200 0.988 2 0.012  

21 0.210 0.987 2 0.013  

22 0.220 0.986 2 0.014  

23 0.230 0.985 2 0.015  

24 0.240 0.983 2 0.017  

25 0.250 0.982 2 0.018  

26 0.260 0.981 2 0.019  

27 0.270 0.980 2 0.020  

28 0.280 0.978 2 0.022  

29 0.290 0.977 2 0.023  

30 0.300 0.975 2 0.025  

31 0.310 0.974 2 0.026  

32 0.320 0.972 2 0.028  



 

59 

33 0.330 0.971 2 0.029  

34 0.340 0.969 2 0.031  

35 0.350 0.967 2 0.033  

36 0.360 0.966 2 0.034  

37 0.370 0.964 2 0.036  

38 0.380 0.962 2 0.038  

39 0.390 0.960 2 0.040  

40 0.400 0.958 2 0.042  

41 0.410 0.956 2 0.044  

42 0.420 0.954 2 0.046  

43 0.430 0.952 2 0.048  

44 0.440 0.950 2 0.050  

45 0.450 0.947 2 0.053  

46 0.460 0.945 2 0.055  

47 0.470 0.943 2 0.057  

48 0.480 0.940 2 0.060  

49 0.490 0.938 2 0.062  

50 0.500 0.936 2 0.064  

51 0.510 0.933 2 0.067  

52 0.520 0.931 2 0.069  

53 0.530 0.928 2 0.072  

54 0.540 0.925 2 0.075  

55 0.550 0.922 2 0.078  

56 0.560 0.920 2 0.080  

57 0.570 0.917 2 0.083  

58 0.580 0.914 2 0.086  

59 0.590 0.911 2 0.089  

60 0.600 0.908 2 0.092  

61 0.610 0.905 2 0.095  

62 0.620 0.902 2 0.098  

63 0.630 0.899 2 0.101  

64 0.640 0.896 2 0.104  

65 0.650 0.893 2 0.107  

66 0.660 0.889 2 0.111  

67 0.670 0.886 2 0.114  

68 0.680 0.883 2 0.117  

69 0.690 0.879 2 0.121  



 

60 

70 0.700 0.876 2 0.124  

71 0.710 0.872 2 0.128  

72 0.720 0.869 2 0.131  

73 0.730 0.865 2 0.135  

74 0.740 0.861 2 0.139  

75 0.750 0.858 2 0.142  

76 0.760 0.854 2 0.146  

77 0.770 0.850 2 0.150  

78 0.780 0.846 2 0.154  

79 0.790 0.842 2 0.158  

80 0.800 0.838 2 0.162  

81 0.810 0.834 2 0.166  

82 0.820 0.830 2 0.170  

83 0.830 0.826 2 0.174  

84 0.840 0.822 2 0.178  

85 0.850 0.818 2 0.182  

86 0.860 0.813 2 0.187  

87 0.870 0.809 2 0.191  

88 0.880 0.805 2 0.195  

89 0.890 0.800 2 0.200  

90 0.900 0.796 2 0.204  

91 0.910 0.791 2 0.209  

92 0.920 0.787 2 0.213  

93 0.930 0.782 2 0.218  

94 0.940 0.777 2 0.223  

95 0.950 0.773 2 0.227  

96 0.960 0.768 2 0.232  

97 0.970 0.763 2 0.237  

98 0.980 0.758 2 0.242  

99 0.990 0.753 2 0.247  

100 1.000 0.748 2 0.252  

 


