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Abstract: In the present study, Al-SiC-ZrO2 nanocomposites were developed and characterized.
Towards this direction, the aluminum (Al) matrix was reinforced with nano-sized silicon carbide
(SiC) and zirconium dioxide (ZrO2), and the mixture was blended using ball milling technique.
The blended powder was compacted and sintered in a microwave sintering furnace at 550 ◦C with a
heating rate of 10 ◦C/min and a dwell time of 30 min. The amount of SiC reinforcement was fixed to
5 wt.%, while the concentration of ZrO2 was varied from 3 to 9 wt.% to elucidate its effect on the
microstructural and mechanical properties of the developed nanocomposites. Microstructural analysis
revealed the presence and uniform distribution of reinforcements into the Al matrix without any
significant agglomeration. The mechanical properties of Al-SiC-ZrO2 nanocomposites (microhardness
and compressive strength) were observed to increase with the increase in the concentration of ZrO2

nanoparticles into the matrix. Al-SiC-ZrO2 nanocomposites containing 9 wt.% of ZrO2 nanoparticles
demonstrated superior hardness (67 ± 4 Hv), yield strength (103 ± 5 MPa), and compressive strength
(355 ± 5 MPa) when compared to pure Al and other compositions of the synthesized composites.
Al-SiC-ZrO2 nanocomposites exhibited the shear mode of fracture under compression loadings,
and the degree of deformation was restricted due to the work hardening effect. The appealing
properties of Al-SiC-ZrO2 nanocomposites make them attractive for industrial applications.
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1. Introduction

In recent years, active research has been in progress to overcome the limitations of monolithic
materials and to develop cost-effective smart materials with promising properties to meet modern
engineering and industrial requirements [1]. In such applications, aluminum metal matrix composites
(AMMCs) are attractive due to their appealing properties such as their low density, high elastic
modulus, excellent thermal stability, and wear resistance [2–5]. AMMCs have proven to be one of the
most promising structural materials comprising various reinforcements such as silicon carbide (SiC) [6],
silicon nitride (Si3N4) [7], aluminum oxide (Al2O3) [6], yttrium oxide (Y2O3) [8–10], boron carbide
(B4C) [11], titanium carbide (TiC) [12], zirconia (ZrO2) [13], etc.

Recently, Al-based nanocomposites have been considered to be better substitutes for the
conventional Al alloys and AMMCs because of their multifunctionality and superior properties [14,15].
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Al-based nanocomposites are a new class of composites comprised of a combination of one or more
types of nano reinforcements incorporated into the Al matrix, enabling them to make use of the unique
properties of individual contributing nano reinforcements [16]. The satisfactory structural performance
and promising properties (thermal and mechanical) of Al-based nanocomposites are significantly
contributing to a rapid improvement in their popularity and a dramatic widening in their scope of
applications [17–20]. As a comparison, Al-based nanocomposites demonstrate superior properties,
such as high strength, crack propagation resistance, and more remarkable plasticity at higher loads
when compared with conventional composites [21]. Moreover, nanocomposites provide increased
design diversity for the selection of materials to satisfy the application requirements [22]. The favorable
structural, thermal, mechanical, and multifunctional characteristics of nanocomposites have been well
explored in many applications like automobile, aerospace, aeronautical, marine, and other engineering
applications [23–28].

In developing Al-based nanocomposites, fabricating techniques play a vital role. It is well
documented that fabrication techniques have a significant influence on the strength and structural
properties of nanocomposites. Many processes can be used for the synthesis of Al-based nanocomposites,
such as powder metallurgy, forging, stir casting, etc. [12,29]. Among these techniques, the powder
metallurgy (PM) route tends to be more attractive due to its simplicity, low cost, and the properties it
imparts into the developed nanocomposites. Furthermore, in the PM synthesis technique, various sintering
techniques are used, including microwave, vacuum, spark plasma, conventional sintering processes,
etc. [30–32]. The sintering technique has a significant influence on the microstructural and mechanical
properties of the final composites [33]. In comparison with other sintering techniques, the microwave
sintering approach is the most effective technique in synthesizing Al-based nanocomposites. In addition
to a green source of energy, uniform heating, and improved densification, microwave sintering
results in much mor refined grain sizes because of its high heating rate and shorter soaking time,
which significantly influences the properties of nanocomposites.

Some nanocomposites have already been developed through different synthesis techniques
and reported in the literature. M. Sambathkumar et al. [34] developed Al-SiC-TiC nanocomposites
and investigated the influence of reinforcements on their mechanical and anticorrosion properties.
Johny James et al. [35] employed the stir casting technique to fabricate Al-based nanocomposites using
ZrO2 and Al2O3 as reinforcements and reported improved mechanical properties. Sajjad Arif et al. [36]
employed the PM route coupled with a tubular electric furnace in an argon atmosphere for synthesizing
Al-SiC-ZrO2 nanocomposites and concluded that the developed nanocomposites displayed enhanced
wear resistance and mechanical properties. K. Sekar et al. [37] utilized stir and squeeze casting
techniques to develop Al-SiC-ZrO2 nanocomposites and conducted a focused study on their welding
and mechanical properties. Vinod Kumar et al. [38] studied the effect of ZrO2 particles on the
characteristics of Al-SiC metal matrix composites developed through the stir casting method and
reported the impact of the concentration of ZrO2 particles on the laser machining.

Based on the existing literature, although Al-SiC-ZrO2 nanocomposites have been previously
developed, to the best of our knowledge, the synthesis of Al-SiC-ZrO2 nanocomposites using the
microwave sintering technique has not been reported so far. Since the microwave sintering technique
has a significant influence on the structural, thermal, and mechanical properties of Al-based composites,
it is thus realistic to explore the development of Al-SiC-ZrO2 nanocomposites through the microwave
sintering technique and to investigate the associated properties. Moreover, to rectify the lack of reports
on the effect of the concentration of ZrO2 on the mechanical behavior of Al-based nanocomposites,
a detailed analysis of the impact of the concentration of ZrO2 on the structural, morphological,
and mechanical properties of Al-SiC-ZrO2 nanocomposites is also reported in the present study. This will
be the first report that describes the synthesis and characterization of Al-SiC-ZrO2 nanocomposites
developed through the microwave sintering approach. The desirable properties of Al-SiC-ZrO2

nanocomposites justify their development and their potential industrial application.
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2. Materials and Methods

Pure Al (with 99.5% purity, 10 µm average particle size, Alfa Aesar, Tewksbury, MA, USA) was
used as the matrix material. SiC (45–55 nm particle size, purity >99%, Alfa Aesar, Tewksbury, MA,
USA) and ZrO2 (15 nm particle size, 99.7% purity, Alfa Aesar, Tewksbury, MA, USA) particles were
used as reinforcing materials. The compositions of pure Al and reinforced materials are shown in
Table 1. The samples of nanocomposites materials were fabricated by powder metallurgy method
involving ball milling and the microwave sintering process.

Table 1. The composition ratio of the Al-SiC-ZrO2 nanocomposites.

S. No: Samples Name Compositions

1 A1 Pure Al
2 A2 Al-5wt.%SiC
3 A3 Al-5wt.%SiC-3wt.%ZrO2
4 A4 Al-5wt.%SiC-6wt.%ZrO2
5 A5 Al-5wt.%SiC-9wt.%ZrO2

The stoichiometric amounts of the matrix (Al) and reinforcements (SiC, ZrO2) were weighed
carefully using an analytical balance (Sartorius, ENTRIS64-1S, Lower Saxony, Germany). The weighed
powders were blended at a speed of 200 rpm for 12 0min using a planetary ball mill PM200
(RETSCH 20.640.0001, Haan, Germany). The blended powder weighing ~1.0 g was compacted
into cylindrical pellets at an applied pressure of 50 MPa for 60 sec. Then, the green pellets were sintered
using a microwave sintering furnace (VB ceramic furnace, VBCC/MF/1600 ◦C/14/15, Chennai, India).
The furnace has a designed maximum temperature of 1600 ◦C with high-grade alumina insulation.
This type of insulation helps the furnace have a fast rate of heating and serving for severe thermal
shock heating cycles. The compacted cylindrical pellets were sintered in a microwave sintering furnace
at 550 ◦C with a heating rate of 10 ◦C/min and a dwell time of 30 min. Following the pre-determined
time in the microwave, the billet was allowed to cool to room temperature without any holding time
under ambient atmospheric conditions. The sintering temperature of the billets was determined using
a non-contact IR in the microwave sintering furnace. Figure 1 shows the schematic representation of
the experimental procedure of the developed nanocomposites.
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Figure 1. Schematic representation of the development of Al-SiC-ZrO2 nanocomposites.

The XRD (X-ray diffraction) analysis was performed on the microwave sintered samples
(PANalytical X’pert pro, PANalytical B.V., Almelo, The Netherlands), with a scanning rate of
1.5◦/min and step size of 0.02◦ recorded in the 2θ range of 20–80◦. The morphological analysis was
performed using Field-Emission scanning electron microscope (SEM-FEI Nova NanoSEM 450 FE-SEM,
Hillsboro, OR, USA) analysis. The compositional analysis was conducted with energy-dispersive X-ray
spectroscopy (Bruker SDD-EDS, Coventry, UK). The surface morphology of the developed Al-SiC-ZrO2

nanocomposites was studied by using an atomic force microscope (AFM, model MFP-3D, Asylum
Research, Abingdon, Oxford, UK).
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The relative density of the microwave sintered samples was measured using Archimedes’ principle.
An analytical balance with density determination equipment (Sartorius YDK03, Lower Saxony, Germany)
with an accuracy of ±0.0001 g was used. The microhardness of the Al-SiC-ZrO2 nanocomposites was
determined by using a Vickers microhardness tester (FM-ARS9000, MKV-h21, Tokyo, Japan) with an
applied load of 25 gf for 10 sec. The experiment was conducted at room temperature and reported
values are an average of five successive indentations for each sample.

The compressive strength of Al-SiC-ZrO2 nanocomposites analysis was determined at room
temperature using a universal testing machine (Lloyd, USA-LR50Kplus, Sussex, UK) applying an
engineering strain rate of 10−4 s−1 under uniaxial compression loadings. The reported values are an
average of three successive values of test results. The fractographic analysis was carried out to study
the deformation behavior of Al-SiC-ZrO2 nanocomposites using a field emission scanning electron
microscope (SEM-FEI Nova NanoSEM 450 FE-SEM, Hillsboro, OR, USA).

3. Results and Discussion

3.1. XRD Analysis

Figure 2 shows the X-ray diffraction patterns of the microwave sintered pure Al and the developed
nanocomposites containing various concentrations of ZrO2. The results confirm the presence of Al
(high-intensity peaks) and reinforcements (SiC and ZrO2) in the nanocomposites. The intensity of the
reinforcement peaks is minimal as compared to the matrix due to their small volume fraction and
may be below the detectable limit of the XRD technique [39]. However, with a further increase in the
concentration of the reinforcement, an increment in the peak intensities can be noticed, enabling its
appearance in the XRD spectra. For more clarity, the enlarged XRD pattern of A5 nanocomposites is also
presented in Figure 2b, which confirms the presence of Al, SiC, and ZrO2 in the matrix, as represented
by different symbols [36,40]. These XRD patterns demonstrate that no other phases or impurities are
present, which confirms the high purity of the fabricated nanocomposites.
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Figure 2. X-ray diffraction patterns (a) of developed Al-SiC-ZrO2 nanocomposites and (b) an enlarged
pattern of Al-5SiC-9ZrO2 nanocomposites.

3.2. Microstructural Analysis

Figure 3 represents FE-SEM images for microwave sintered nanocomposites with different amounts
of reinforcement. It can be observed that the reinforcements (SiC and ZrO2) are homogeneously
distributed in the Al matrix without any significant agglomeration. The homogeneity and the amount
of ZrO2 in the Al matrix have a substantial influence on the microstructure and mechanical properties
of the nanocomposites. The presence of ZrO2 nanoparticles (white color) and SiC (light grey) in the
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Al matrix (dark grey) shows the interfacial integrity and confirms the presence of reinforcement.
The FE-SEM results are consistent with our XRD results presented in Figure 2.
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in Figure 4 also proves the presence of Al, Si, C, Zr, and O elements in the Al-SiC-ZrO2 nanocomposites.
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3.3. AFM Analysis

Atomic force microscopy (AFM) was utilized to measure the surface properties such as the
morphology and surface roughness of the developed nanocomposites. Figure 5 presents the 2D
images and X-profile of the developed nanocomposites, as well as the corresponding measured
surface roughness. The surface roughness was measured in terms of average roughness (Ra) and
root-mean-square (RMS) roughness. The Ra of pure Al is 21.793 nm, however, by adding SiC and
ZrO2 nanoparticles, a gradual increase in the surface roughness was observed in the fabricated
nanocomposites, reaching its terminal value at 51.565 nm in A5. The increase in the roughness of
Al-SiC-ZrO2 nanocomposites may be associated with the incorporation of hard ceramic nanoparticles
of SiC and ZrO2, as observed in FE-SEM analysis presented in Figure 3.
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3.4. Relative Density and Hardness

Figure 6 shows the relative density and microhardness of the microwave developed Al-SiC-ZrO2

nanocomposites with different reinforcement contents. It was observed that the relative densities
of the nanocomposites increased with an increasing amount of ZrO2 particles in the matrix.
The nanocomposites showed higher relative density than that of their base matrix due to the higher
density of the SiC (3.21 g/cm3) and ZrO2 (5.68 g/cm3) as compared to the Al matrix (2.7 g/cm3).
The increasing relative density corresponds to the presence of hard reinforcements, which allows the
densification of the reinforcements in the nanocomposites [34]. Figure 6 also shows the variation of the
microhardness of the nanocomposites with increases in the ZrO2 content in the Al matrix, and the
corresponding calculated values are tabulated in Table 2. The microhardness results show a decent
increase in the microhardness of the developed nanocomposites. The observed microhardness of pure
Al is 36 ± 3 HV, which reaches the maximum value of 67± 4 HV for the A5 nanocomposite.
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This increase in the hardness value of nanocomposites with the increasing amount of ZrO2

concentration in the Al-matrix can be associated with (i) the presence of hard ceramic particles (SiC and
ZrO2) and their homogenous distribution in Al matrix, (ii) the well-known dispersion hardening
effect, (iii) improved densification, which contributes to the increase in hardness, (iv) an improved
load-bearing capacity, and (v) strengthening due to the presence of hard particles following the rule of
mixture. A similar behavior of the hardness has been reported in previous research [23,41].

3.5. Compressive Analysis

The mechanical properties of the developed nanocomposites were further evaluated by conducting
a compressive test at room temperature under uniaxial compressive loading. The engineering
stress/strain curves, compressive yield strength (CYS), and ultimate compressive strength (UCS) of pure
Al and the developed nanocomposites are presented in Figure 7. Figure 7a indicates the engineering
stress/strain curves of the developed nanocomposites. Figure 7b shows the calculated yield strength
and compressive strength of the developed nanocomposites from the corresponding engineering
stress/strain curves. The calculated mechanical properties of the developed nanocomposites are
summarized in Table 2. It can be noticed that the addition of ZrO2 nanoparticles into the Al matrix
leads to increase in the yield strength, and ultimate compression strength of the nanocomposites. As a
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comparison, nanocomposites demonstrated improved mechanical properties when compared with Al
matrix. Moreover, as shown in Table 2, the A5 sample exhibited the maximum compressive strength of
355 ± 5 MPa with a yield strength of 103 ± 5 MPa at a uniform failure strain of 0.62.
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This improvement in the compressive strength of the nanocomposites compared to the Al matrix
can be associated with the coupled effect of the presence of hard ceramic nanoparticles, their uniform
distribution in the matrix, and the enrichment of the dislocation density due to dispersion hardening
effect [11]. There are many reported strengthening mechanisms/theories to explicate the strengthening
mechanism in metal matrix composites. In the present study, the strengthening of the fabricated
nanocomposites can be explained by considering the most active strengthening mechanism called
the dispersion hardening mechanism. Dispersion hardening is also known as Orowan strengthening,
which is caused by the hard second phase dispersed in the matrix material. The strengthening effect in
the composite materials can be estimated as given by the Orowan–Ashby equation [1,7], which indicates
that the smaller particle size of the reinforcement and its large volume fraction will improve the
strength of the composite material when keeping all other variables as constant, as is observed in our
nanocomposites. A similar observation has been reported in much earlier reports [6].

σOrowan =
1
λ
(0.13Gb) ln

( r
b

)
(1)

where λ is interparticle spacing, G is the shear modulus of Al, b is the Burgers vector of Al, and r is the
particle radius of the nanoparticle. The interparticle spacing is given by the following equation [42]:

λ =
4(1− f )r

3 f
(2)

where f is the volume fraction of the reinforcement particles.
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Table 2. Hardness and compressive properties of Al/SiC/ZrO2 nanocomposites and their comparison
with other nanocomposites.

Composition
Microhardness Compressive Properties

References
(Hv) CYS (MPa) UCS (MPa) Failure Strain (%)

Pure Al 36 ± 3 47 ± 4 337 ± 5 <60

Present work
Al-5SiC 54 ± 5 66 ± 3 342 ± 4 <60

Al-5SiC-3ZrO2 58 ± 4 87 ± 3 349 ± 6 <60
Al-5SiC-6ZrO2 62 ± 3 98 ± 6 352 ± 3 <60
Al-5SiC- 9ZrO2 67 ± 4 103 ± 5 355 ± 5 <60

Al-1.5Fe2O3-2Al2O3 47.2 - 152 0.64 [43]
Al-2.5Fe2O3-2Al2O3 42.9 - 125 0.53

Al-5RHA-5FA 58.66 - 213 - [44]
Al-6RHA-4FA 63.0. - 216 -

Al-2.5TiO2-2.5CuO 73 278 250 - [45]

Al-4Ni-8SiC 48.12 - - - [46]

Al6063-6SiC-2Gr 65.3 - 176 - [47]

Al6061-7Al2O3-20SiC - - 300 - [48]

3.6. Fractography

Figure 8 illustrates the fractographic images of pure Al and Al-SiC-ZrO2 nanocomposites under
compressive loading. The shear mode structure can be observed in both the pure Al and nanocomposites.
It can be observed that the occurrence of shear mode fractures in the Al matrix was less compared to
its reinforced nanocomposites [49]. Furthermore, due to the work hardening behavior, the degree of
compressive deformation that occurred in the pure Al and the nanocomposites is different. The plastic
deformation is restricted because of the presence of secondary phases of the reinforcement in the
nanocomposites [50].
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4. Conclusions

In this study, Al-SiC-ZrO2 nanocomposites containing a fixed amount of SiC (5 wt.%) and varying
concentrations of ZrO2 (3, 6, and 9 wt.%) were fabricated successfully by powder metallurgy route using
the microwave sintering technique. A comparison of mechanical properties indicated that the fabricated
nanocomposites demonstrated superior properties when compared to monolithic aluminum (Al).
The mechanical properties of the nanocomposites (hardness, yield strength, and compressive strength)
increased with an increasing amount of ZrO2. Al-5SiC-9ZrO2 showed 119%, and 56% increases in
yield strength compared to pure Al and Al-5SiC nanocomposites, respectively. This improvement in
mechanical behavior can be attributed to the uniform of hard ceramic nanoparticles (SiC and ZrO2)
and their presence, which activates the dispersion hardening phenomenon.
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