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Abstract— Multiple-input multiple-output orthogonal
frequency division multiplexing with index modulation
(MIMO-OFDM-IM) has recently received increased attention,
due to the potential advantage to balance the trade-off between
spectral efficiency (SE) and energy efficiency (EE). In this
paper, we investigate the application of MIMO-OFDM-IM to
millimeter wave (mmWave) communication systems, where
a hybrid analogy-digital (HAD) beamforming architecture is
employed. Taking advantage of the Pareto-optimal beam design,
we propose a feasible solution to approximately achieve a globally
Pareto-optimal trade-off between SE and EE, and the collision
constraints of the multi-objective optimization problem (MOP)
can be solved efficiently. Correspondingly, the MOP of SE-EE
trade-off can be converted into a feasible solution for energy-
efficient resource usage, by finding the Pareto-optimal set (POS)
towards the Pareto front. This combinatorial-oriented resource
allocation approach on the SE-EE relation considers the optimal
beam design and power control strategies for downlink multi-
user mmWave transmission. To ease the system performance
evaluation, we adopt the Poisson point process (PPP) to model
the mobile data traffic, and the evolutionary algorithm is
applied to speed up the search efficiency of the Pareto front.
Compared with benchmarks, the experimental results collected
from extensive simulations demonstrate that the proposed
optimization approach is vastly superior to existing algorithms.

Index Terms— MIMO-OFDM, index modulation, spectral
efficiency, energy efficiency, Pareto-optimal set, mmWave
communication.
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I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) millimeter
wave (mmWave) communication has aroused great

expectations on enabling unprecedented high-rate transmis-
sion up to multi-gigabit for future wireless communication
networks, since a wide chunk of available bandwidth in
mmWave frequency band could be authorized to use [2]–[4].
In practical implementation, the wireless data transmission in
the mmWave band will incur high path loss and thereby severe
signal attenuation. It inevitably leads to a shorter transmission
range (roughly hundreds of meters), and necessitates light-
of-sight (LoS) communication links. Until now, the key to
get around this issue has been largely dependent on the use
of massive-antenna architectures at base stations (BS) and
the exploitation of highly directional beamforming at both
transmitter and receiver [5]–[7]. Additionally, the extremely
small wavelengths at mmWave frequencies also enable mas-
sive antenna arrays to integrate a larger number of antenna
elements, resulting in a sufficient spatial gain to combat fading.
To reduce energy consumption and system design complex-
ity, a two-stage hybrid analogy-digital (HAD) beamforming
architecture with reduced RF chains has emerged. As a scal-
able and economically efficient technique, HAD consists of
analog beamformers in the RF and digital beamformers in the
baseband [4], [8]. Mobile mmWave communication systems
will likely operate over wideband channels with frequency
selectivity. In this case, the orthogonal frequency division
multiplexing (OFDM) modulation can be employed to effec-
tively combat the channel’s frequency selectivity, as well as to
provide further improvement in spectral efficiency (SE) [9].

As a matter of fact, the above-mentioned sophisticated
technologies that require a large number of phase shifters
usually consume a large amount of power, which becomes
an obvious drawback, especially for non-chargeable devices.
In addition to a large amount of power consumption for
transmission, RF chains also contain some of the most
energy-hungry components in a transmission system, e.g.,
digital-to-analog converters (DACs), amplifiers, and frequency
synthesizers. These components substantially increase the
circuit power dissipation of the BS. In this context, many
studies discussed circuits design challenges in implementing
energy-efficient multi-antenna architectures [10]–[15].
Meanwhile, it has been demonstrated that the energy costs
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represent a significant portion of the total energy consumption
of a network. Seriously, the radio network itself could be
the most energy-consuming part, occupying ca. 80% of
an operator’s entire energy consumption. This results in
major economic and technical challenges [16], [17]. Due
to these facts, wireless operators resort to green wireless
networks, where energy efficiency (EE) and SE are the main
performance metrics for reducing the prohibitive cost and
energy consumption. Unfortunately, according to the Shannon-
Hartley theorem, conflicts of objects are usually difficult to
balance while optimizing both SE and EE simultaneously. For
mmWave MIMO systems with HAD beamforming, spectral-
and energy-efficient system-level design is still an imminent
challenge. It is mainly because the power consumption is
very high owing to a large number of radiating elements,
ultra-dense BS sites, and heavy data traffic load, etc., [18].

It should be emphasized that a large number of the exist-
ing investigations on the general SE-EE relation have been
comprehensively conducted. They provided good insights into
the joint SE-EE trade-off for different scenarios, e.g., sin-
gle/multiple cell deployment etc [18]–[22]. To jointly solve the
multi-objective optimization problem (MOP) in the wideband
regime, there have been some works focusing on energy-
efficient resource allocation/scheduling with guaranteed qual-
ity of service (QoS) [19], [23], and optimal resource allocation
policy [19], [24], [25]. For example, a complete analysis of
the SE and EE of two hybrid structures was provided in
[13], [26]. The relationship between SE and EE with partially-
connected HAD architecture was examined for optimal trade-
off in [26]–[28]. The work in [27] proposed a successive
interference cancelation (SIC)-based HAD beamforming for
mmWave MIMO systems. The authors of [29] formulated a
decoupled two-stage HAD design to maximize the SE and EE
in a mmWave massive MIMO system. In [30], Riberio et al.
investigated the EE of quantized hybrid transmitters and
proved that the topology of phase-shifting components can
offer a better SE-EE trade-off. Similarly, the authors of
[31] studied the trade-off between SE and EE in consider-
ation of the impact of nonlinear power amplifiers. Further-
more, the extensive investigations in [32]–[34] showed that
the configurable hybrid precoding and energy-efficient beam
designs are capable of effectively improving the SE and EE,
respectively.

In an effort to relax the paradox in the SE-EE trade-off,
an alternative way is to decompose the MOP into a num-
ber of subproblems and optimize them simultaneously. The
prospective study on multi-objective signal processing [35],
[36], revealed some facts, such as the respective scalarized
problems, the resource optimization and allocation, as well as
algorithmic tools in related fields. The authors of [37] high-
lighted the fact that the multi-component Pareto-optimization
will gradually become the norm. It differs from simply min-
imizing a single metric of the system, such as the bit error
rate (BER), the power consumption or the complexity. In [38],
Di Renzo et al. derived an explicit analytical formulation of
the SE-EE Pareto front to solve a bi-objective optimization
problem, and proved that the Pareto front is constituted by
a subset of the SE-EE trade-off. In brief, the use of Pareto

property has recently emerged as an attractive solution, show-
ing a connection of an allocation state of resources with
Pareto-optimal transmission design [39].

As a novel digital modulation scheme with high SE and
EE, index modulation uses the indices of the building blocks
of the communication system to implicitly convey additional
information bits. These approaches thereby create completely
new dimensions for data transmission. Inspired by the concept
of subcarrier index modulation (SIM) in [40], [41], OFDM
with index modulation (OFDM-IM) has been regarded as
a possible candidate for next-generation wireless networks.
More specifically, the extensions of OFDM-IM in various
formats have been regarded as appealing modulation can-
didates for mmWave communications and MIMO-OFDM
systems [42]–[44]. Among different IM schemes, MIMO-
OFDM with index modulation (MIMO-OFDM-IM) provides a
beneficial transmission paradigm [45]. The study demonstrated
that MIMO-OFDM-IM can offer significantly improved trans-
mission rates for practical systems, as well as a better error
performance than conventional MIMO-OFDM. In the MIMO-
OFDM-IM scheme, each parallel stream of information is
modulated by both subcarrier indices and M -ary constel-
lation symbols. Therefore, it has the potential to provide
a flexible trade-off between SE and EE [45]–[47]. For a
typical MIMO-OFDM mmWave system, it is worth noting
that with the extremely increasing of bandwidth and frequency
at mmWave frequencies, the escalating energy consumption
necessitates a high EE as well as a desirable SE. In this
context, MIMO-OFDM-IM has the potential to satisfy the
above requirements.

Motivated by these facts, we propose an SE-EE maxi-
mization IM scheme for multi-user mmWave MIMO-OFDM
systems. Pareto-optimal beam design is taken into account
with respect to the energy-efficient resource allocation in
beamspace. Because the total energy consumption of cellular
system is dominated by the BS, we focus on the SE-EE trade-
off in downlink. The main contributions of this paper can be
summarized as follows:

• We propose a MIMO-OFDM-IM scheme for HAD
beamforming mmWave systems, and a maximum likeli-
hood (ML) detector is employed to decode the informa-
tion bits from each subblock of MIMO-OFDM-IM. To the
best of our knowledge, this is the first work that integrates
the concept of IM into mmWave MIMO-OFDM commu-
nication systems. Meanwhile, we investigate the energy-
efficient aspects on designing the HAD precoder and
combiner. Interestingly, the proposed scheme integrating
MIMO-OFDM-IM can improve the SE-EE and transmis-
sion reliability with low complexity. It has the potential
to extend the coverage without capacity penalty. This,
collaborating with the HAD beamforming architecture,
allows more degrees of freedom to achieve realistic SE-
EE maximization in mmWave cellular networks.

• From the perspective of Pareto principle, we propose
a Pareto-optimal beam design scheme for energy-
efficient resource usage for downlink mmWave trans-
missions. By the construction of the Pareto-optimal set
(POS), we propose a feasible combinatorial-oriented
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power control strategy, i.e., resource reallocation scheme,
to approximately achieve a Pareto-optimal trade-off
between SE and EE. We give a fundamental guideline
to tackle the MOP, where Pareto front is constituted by
a subset of the SE-EE trade-off.

• In this new paradigm, our approach for solving the SE-
EE trade-off is to convert the MOP into an evolutionary
search process of POS. We show that there exists a
globally optimal solution that maximizes EE, while still
maintaining an increased SE. Moreover, we show that the
combinational-oriented transmit power control strategy is
effective to balance the total transmit power, and the
globally optimal solution to the SE-EE maximization
can be achieved. To systematically evaluate the perfor-
mance of multiuser networks, we introduce a Poisson
point process PPP) to model the spatial distribution of
users, and the evolutionary algorithm is applied to speed
up the search process for approaching the Pareto front
asymptotically. The solving process of POSs associated
with all users is abstracted as an evolutionary population-
based MOP, which is potentially capable of applying to
other multiuser communication systems.

The rest of the paper is organized as follows. In Section II,
an mmWave MIMO-OFDM-IM system with HAD beamform-
ing architecture is presented, as well as a preliminary analysis
of SE and EE. In Sections III, the technical details of the pro-
posed Pareto paradigm on the SE-EE trade-off are described,
and a Pareto-optimal beam design strategy is mathematically
formulated. Section IV develops a system-level evaluation
technique based on the quantifiable PPP. Numerical results are
presented and discussed in Section V, and finally conclusions
are drawn in Section VI.

We use the following notations throughout this paper: bold
upper and lower case letters denote matrices and vectors,
respectively; (·)∗, (·)T , and (·)H denote complex conjugation,
transpose, and Hermitian transpose, respectively. The field of
complex numbers is denoted by C, and an m by n dimensional
complex space is correspondingly represented by Cm×n.

II. SYSTEM MODEL

A. Transmission Model of mmWave MIMO-OFDM-IM
Systems

The transceiver block diagram of MIMO-OFDM-IM for the
multi-user mmWave system is illustrated in Fig. 1, where the
conventional configuration of HAD beamforming architecture
is adopted. In this paper, we focus on the downlink multi-
user transmission and consider a single cell MIMO-OFDM
network. A BS with Nt transmit antennas and Mt RF chains
serves K active users, each of them using Nr,k receive
antennas and Mr,k RF chains, where k ∈ {1, . . . , K}. For
any user k, we assume that the BS transmits Jk ≤ Nr,k

data streams with Mt,k RF chains and Nt,k transmit antennas
(
∑K

k=1 Jk ≤ Mt ≤ Nt). The HAD beamforming architecture
of BS is constructed by the concatenation of a digital precoder
associated with the nth subcarrier Un,k ∈ CMt,k×Nt,k and an
analog beamformer Ũk ∈ CMt,k×Jk with a fully-connected
structure. For simplicity, we suppose that all users have the

same structure, i.e., an RF combiner Ṽk ∈ CJk×Mr,k followed
by a mapped digital baseband combiner Vn,k ∈ CNr,k×Mr,k .

For such a system incorporating the OFDM-IM transceiver,
a total of TkJk incoming bits from the input alphabet are
first split into Jk parallel streams. Each Tk-bit stream to
the digital precoder Un,k is pre-processed in each branch
of the transmitter by the OFDM-IM modulator. Afterwards,
the BS applies the baseband digital precoder Uk to modify
the obtained OFDM-IM data blocks. Typically, the inverse fast
Fourier transform (IFFT) is applied to derive a time-domain
signal, and the cyclic prefix (CP) is appended to prevent the
OFDM symbol from inter-symbol interference. At the receiver,
the mobile station (MS) performs an FFT of the time-domain
received signal and removes the CP. At the end, MS applies
the digital combiner Vn,k, and the received signal can be
separated and demodulated by the ML or minimum mean
square error (MMSE) detector. In our work, the effect of CP
on SE and EE could be regarded as a stable impact factor,
since the length of CP is conservatively chosen and fixed in
most current standards.

Within the OFDM-IM modulator, the incoming Tk-bit
stream is equally divided into G groups, in which p = Tk/G
bits for each group are split into two subgroups, i.e., the
index selection and M -ary modulation subgroups. For a fea-
sible frequency bandwidth BT with Ntotal OFDM subcarriers,
we assume that N consecutive OFDM subcarriers are assigned
for each given subblock g. For each subblock g, considering
the number of active subcarriers NA,k, the corresponding
index selection subgroup contains p1 = �log2 C(N, NA,k)�
bits for determining the indices of the active subcarriers, where
g ∈ {1, . . . , G}; The M -ary modulation subgroup contains
the remaining p2 = NA,k log2 M bits, which are mapped
onto a predefined M -ary quadrature amplitude modulation
(M -QAM) signal constellation S to obtain the first-stage
modulation subblock from the OFDM-IM subblock creator.
For simplicity, we denote Nk as the index pattern of user k.
Thereafter, each modulated subblock is fed into a concate-
nated OFDM block creator to construct the main OFDM-
IM blocks [45]. For the output of each OFDM-IM block,
the kth user’s data stream vector xjk

= [xjk
(1) . . . xjk

(N)]T

is independently modified by the digital baseband precoder
Uk ∈ CNt,k×Nr,k for subsequent IFFT operation, which is the
same as in a conventional OFDM transmitter [48].

In our work, a total of Ntotal OFDM subcarriers are split
into G groups, each of which consists of N subcarriers to
transmit M -ary PSK/QAM modulated symbols. Generally,
an index selection procedure can be performed by the use
of reference lookup tables for simple cases with a small
number of subcarriers. Alternatively, the combinatorial number
theory can be employed to design an efficient strategy for
selecting a subset of active subcarriers from a large number
of subcarriers. The unselected subcarriers remain inactive and
silent throughout the entire transmission phase [45], [49].
At the input of the OFDM index modulators, the modulated
symbol can be expressed as a Tk × Jk matrix

X̃k = [X̃1 X̃2 . . . X̃Jk
], (1)

where X̃jk
= [x̃1, x̃2, . . . , x̃Tk

]T is the vector of the incoming
data bits at the jkth input of the index select and the M -ary
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Fig. 1. Block diagram of the mmWave MIMO-OFDM-IM transceiver that employs the HAD beamforming architecture.

modulator. NA,k active subcarriers are selected by the index
selector, and the indices of the active subcarriers can be
denoted as

�g
jk

= [�g
jk

(1) �g
jk

(2) . . . �g
jk

(NA,k)]T , g = 1, 2, . . . , G.

(2)

Meanwhile, M -QAM signal constellation with element
qg
jk

(nA) ∈ S can be obtained:

qg
jk

= [qg
jk

(1) qg
jk

(2) . . . qg
jk

(NA,k)]T , g = 1, 2, . . . , G.

(3)

For the jkth transmit data steam, the gth OFDM-IM sub-
block element with p = p1+p2 bits, is used to form OFDM-IM
subblocks:

x̃g
jk

= [x̃g
jk

(1) x̃g
jk

(2) . . . x̃g
jk

(N)]T , g = 1, 2, . . . , G.

(4)

With the OFDM block creator B followed by Jk×N block
interleavers Π for traditional IFFT operation, the transmitted
IFFT components for users are given by

xk = [x1 x2 . . . xN ]T , xn ∈ {0,S}, (5)

where xn = [x1, . . . , xJk
], n = 1, 2, . . . , N is the unit-power

transmitted OFDM symbol at the jk antenna for the kth user.
Suppose Pt,k is the transmitter’s total power. Utilizing the
power reallocation policy proposed in [39], the power allocated
to each active subcarrier is Pt,k/(N −NA,k).

With OFDM block creator, each OFDM-IM block is created
by concatenating G OFDM-IM subblocks in each branch of
the transmitter. To exemplify the mapping of the block creator
B, a simple case for N = 4 and NA,k = 2 taking the following
mapping is demonstrated [45]:

B : (p, �) → x̃g
jk

∣∣
N=4, NA,k=2 ,

⎡⎢⎢⎣
0 0
0 1
1 0
1 1

⎤⎥⎥⎦
︸ ︷︷ ︸

p1 = 2 bits

,

⎡⎢⎢⎣
1 3
2 4
1 4
2 3

⎤⎥⎥⎦
︸ ︷︷ ︸

Indices (�g
jk

)T

→

⎡⎢⎢⎣
qg
jk

(1) 0 qg
jk

(2) 0
0 qg

jk
(1) 0 qg

jk
(2)

qg
jk

(1) 0 0 qg
jk

(2)
0 qg

jk
(1) qg

jk
(2) 0

⎤⎥⎥⎦
︸ ︷︷ ︸

OFDM-IM subblocks (x̃g
jk

)T

, (6)

where p1 = 2 bits can be used to determine the indices of
the two active subcarriers out of four available subcarriers;
N ∈ Nk is the size of FFT.

To proceed more explicitly, we temporarily put aside the dis-
cussions on the HAD issue in this subsection. At the receiver
side, we also suppose that the receiver removes the CP of
the received signal and performs FFT operations for the
subsequent signal separation and detection. With conventional
MIMO configurations, each transmit antenna transmits its own
OFDM-IM frame to boost into a subframe.

Assume that the channel matrix for each subcarrier is
available at the receiver. Generally, a near-ML joint detector
of the MIMO-OFDM-IM scheme can be used to achieve
near-optimal error performance and computationally effi-
cient detection (based on the results shown in [50]). For
an arbitrary OFDM-IM subblock from different transmit
antennas, a straightforward solution to the ML detection of
MIMO-OFDM-IM can be represented by

ˆ̃x
g

jk
= argmax

�xg
jk

∥∥∥∥∥ỹg
jk
−

√
γk

Nt,k

√
N

NA,k
Ajk

x̃g
jk

∥∥∥∥∥
2

, (7)

where Ajk
is an Nt,k× 1 channel gain vector with zero-mean

and identity covariance matrix, and γk denotes the signal-to-
noise-ratio (SNR) per receive antenna.

Let Ỹjk
= {ỹ1, ỹ2, . . . , ỹjk

} and p(X̃jk
, Ỹjk

) be the out-
put and the transition probability, respectively. Considering a
discrete memoryless channel, the mutual information between
Xjk

and Yjk
at each transmission epoch is given by

I(X̃jk
; Ỹjk

)

=
∑

�xjk
∈�Xjk

∑
�yjk

∈�Yjk

p(x̃jk
, ỹjk

)log2

(
p(x̃jk

, ỹjk
)

p(x̃jk
)p(ỹjk

)

)
. (8)

Accordingly, the channel capacity ζjk
is given by

ζjk
= supxjk

I(Xjk
; Yjk

). (9)

B. Spectrum Efficiency and Energy Efficiency

In practice, mmWave channels are expected to have a
limited number of channel taps due to the small number of
scatterers compared to the number of antennas [22], [23].
We thereby adopt a sparse geometric multipath channel model.
In this paper, we assume all channels to be slow Rayleigh
fading channels. The channel response does not change within
one symbol block but could vary from block to block. Without
loss of generality, the composite MIMO channel between BS
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and user k can be represented by the widely used Saleh-
Valenzuela channel model [51], which is given by

Hk =

√
Nt,kNr,k

L

∑L

�=1
κk,�aR(θk,�)aH

T (φk,�), (10)

where κk,� denotes the complex channel coefficient of the �th
propagation path. In our work, the mmWave channel estima-
tion is simplified to estimate the channel gains, the angle-
of-arrivals (AoAs), and angle-of-departures (AoDs) of the
propagation paths [29], [52], [53]. The response of the array
associated with user k can be modeled as

aR(θk,�) =
1√
Nr,k

[
1, ecos(θk,�), . . . , e(Nr,k−1)cos(θk,�)

]T

,

aT(φk,�) =
1√
Nt,k

[
1, ecos(φk,�), . . . , e(Nt,k−1)cos(φk,�)

]T

.

(11)

For the convenience of derivation, we define the transmitted
data symbols over the nth subcarrier as xn,k ∈ CJk×1, n =
1, . . . , N . The individual data stream is transmitted via JkN -
length data symbol blocks from the view of implementation in
the frequency domain. Assuming perfect synchronization and
FFT operation, the received MIMO-OFDM-IM signal of user
k over the nth subcarrier in the frequency domain is given by
[4], [9]

yn,k = WH
n,kHkFn,kxn,k︸ ︷︷ ︸
primitive signal

+
∑

j �=k
WH

n,jHkFn,jxn,j︸ ︷︷ ︸
interference component

+ WH
n,kzn,k, n ∈ Nk, (12)

where Wn,k = VkṼn,k; Fn,k = UkŨn,k; In,j =
WH

n,jHkFn,jxn,j is the interference component from other
users; zn,k ∼ CN (0, σ2

k) is the circularly symmetric complex
additive white Gaussian noise (AWGN) vector with mean zero
and covariance matrix σ2

k.
The received signal-to-interference-plus-noise ratio (SINR)

at the kth user can be represented by

SINRk

=

∑
n∈Nk

||WH
n,kHkFn,kxn,k||2∑

j �=k

∑
n∈Nj

||WH
n,jHkFn,jxn,j||2+

∑
n∈Nk

||WH
n,kzn,k||2

.

(13)

Assuming Gaussian signaling and single-user detection,
the interference can be treated as additional noise. We directly
apply Theorem 1 proven in [49] to mmWave MIMO-OFDM-
IM systems. Correspondingly, the SE of user k based on the
Shannon formula can be written as (14), shown at the bottom
of the page, (detailed derivation can be found in [49]), where
Λ−1

n,k = WH
n,kHk(

∑
j �=k Fn,kFH

n,k)HH
k Wn,k + σ2WH

n,kWn,k.
The total SE in bits/s/Hz of an arbitrary user can be

found by maximizing the following objective function with

the constraint of transmitted power:

ζtotal =
∑K

k=1
ωkζk, (15)

where ωk is the weight factor for user k; ζk =
∑

jk
ζjk

is the
SE of kth user. We can determine the weights according to
user’s traffic types, fairness, and other priority requirements.
Note that in a multiuser network with concurrent transmis-
sions, the PPP model can be conveniently applied to simulate
the locations of the users as well as their mobile data traffic.
Correspondingly, the SINR in (13) can be characterized, and
the system performance can be experimentally evaluated [54].

In practice, the total energy consumption of a cellular
system, consisting of both circuit power consumption and
transmit power consumption, is dominated by the BS. Gen-
erally, the power consumption model at the BS consists of
static and dynamic power consumption. The static power
consumption model is constructed by the power consumption
of all power amplifiers. The transmit power (dynamic) contains
all the other circuit power. In this paper, we adopt a linear
power consumption model proposed by [55]:

Psys,k = Pt,k + JkPRF,k + Pc,k + Nt,kPshift, (16)

where Psys,k is the system power dissipation of downlink
transmission of user k; PRF,k and Pshift denote the power
consumption of a single RF chain and a phase shifter, respec-
tively; Pc,k is the other power consumption of circuitry com-
ponents to support downlink transmission.1 The transmitter’s
total power constraint Pt,k is enforced by normalizing Fk,
i.e.,

∑N
n=1 ||Fn,k||2, n ∈ Nk [56]. The EE metric of the

transmitter can be defined as the transmitted information bits
per unit energy in the unit of bit per Joule (bit/J). It is worth
to note that an exact computation of the dissipated power
is a very difficult task [28]. Therefore, our work focuses
on a generalized power consumption model, whose energy
consumption can have a direct impact on energy-efficient
optimal beam design.

For a set of SINRs {SINRk}Kk=1, the total SINR scales in
a multi-user system can be represented by

SINRsys =
∑K

k=1
ωkSINRk. (17)

To guarantee the fairness among users in the multiuser
network, the max-min SINR problem is considered, which
deals with the sum-rate maximization problem and guarantees
the best performance of receivers. It is worth highlighting that
the theoretical and algorithmic connection between maximiz-
ing the weighted sum rate and the max-min SINR problem

1Depending on the restriction on cost, HAD beamforming is currently an
appropriate solution for mmWave systems. Alternatively, the future systems
will likely use all-digital architectures, which can be interpreted as a digital
counterpart. The proposed algorithms in this paper are applicable to the
general case, and the analog component listed above can be directly substituted
by a special type of digital fashion.

ζk = Jk

[
E

(
NA,k

N

)
log2 det(IJk

+ Wn,kΛ−1
n,kWH

n,kHkFH
n,kFn,kHH

k ) +
1
N

log2 C(N, NA,k)
]

, (14)
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was revealed in [57], [58]. Leveraging on this fact, the joint
optimization of SE-EE maximization is equivalent to the
max-min SINR power control. This transformed problem has
already been constructed as in [57], [58], and the interested
readers can refer to a detailed proof in the aforementioned
literature. Typically, the max-min SINR problem satisfying the
overall transmit power constraint can be formulated as

max
{Fk,Wk}K

k=1

min SINRk(Pt,k)

s.t. Pt,k ≤ P max
t,k , ∀ k, K ≤

∑K

k=1
Jk ≤Mt, (18)

where P max
t,k is the maximum downlink transmission power of

user k. It should be noted that (18) only considers a single-
user case, which represents a locally optimal solution, only
with respect to feasible solutions close to that point. To find
the globally optimal solution, a global coordination is naturally
required for every feasible solution of whole users [57], [58].
Equivalently, since each global maximum is also a local
maximum, we can determine the overall optimization problem
by maximizing the minimum weighted sum of SINR in (17).

The objective function in terms of EE is defined as the sys-
tem capacity (bits/s) divided by the total power consumption.
The EE (bits/J) of user k is then defined as

max
{Fk,Wk}K

k=1

ηk =
BTk
· ζk∑N

n=1‖Fn,k‖2+JkPRF,k+Pc,k+Nt,kPshift

s.t.
∑N

n=1
‖Fn,k‖2 ≤Pmax

t,k . (19)

In the following, our goal is to concurrently optimize
the SE and EE under the individual SINR constraints given
in (18). It inevitably brings about conflicts of interest among
objective functions and needs a trade-off. According to the
classical SE-EE trade-off paradigm, the objective function can
be rewritten as

ηtotal =
BT · ζtotal

log2(
∑K

k=1 Psys,k)
. (20)

III. SPECTRAL-ENERGY EFFICIENCY TRADE-OFF WITH

PARETO-OPTIMAL BEAM DESIGN

A. Problem Statement

Using the aforementioned theoretical and algorithmic con-
nection between the SE-EE problem and the SINR problem,
in this section, we reformulate the problem of interest as an
SE-EE maximization problem for the holistic system under the
optimal beam design criteria, while guaranteeing a prescribed
minimum SINR and maximizing the overall minimum SINR
under a total power constraint for the transmit antennas.
Specifically, it is equivalent to concurrently solve the following
problems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QSE : max
{Fk,Wk}K

k=1

K∑
k=1

ζk(Fk, Wk, P, J)

s.t. 1T P ≤ P max
t , 1T J ≤Mt,

QEE : max
{Fk,Wk, ∀k}

K∑
k=1

ηk(Fk, Wk, P, J)

s.t. 1T P ≤ P max
t , 1T J ≤Mt

and {
QSINR : max

P, J∈Ψ
min SINRsys(P, J)

s.t. 1T P ≤ P max
t ,

where P = {P1, . . . , PK}; J = {J1, . . . , JK}; Ψ is the set
consisting of all feasible resource allocation strategies.

Mathematical optimization problems above can be
abstracted as solving the maximum (or minimum) problem
of one or more objective functions under certain constraints,
which is identified by MOPs. Generally, a maximization
MOP with m objective functions {f1(X , f2(X ), . . . , fm(X )}
can be formulated as follows [59]:

maximize F(X ) = (f1(X ), . . . , fm(X ))T

s.t. X ∈ En, (21)

where F(X ) ∈ Em is a vector function, that is, each element
is an objective function; X = {X1, . . . ,Xn} is a feasible
variable set selected from the decision variable space, aiming
to maximize each objective function by searching to identify
an optimal solution. Em and En are the objective function
space and decision variable space, respectively. The decision
space represented by MOPs can be characterized by tuple
M = (Em, En). If there are conflicts of interest among
multiple objectives, it is generally difficult to find the globally
optimal solution to the MOPs in (21). In particular, when a
set of non-convex objective functions conflict with each other,
solving the mixed MOP with high-dimensional parameters
becomes extremely difficult, and the problem could even be
NP-hard. From a methodological perspective, solving such an
optimization problem may also incur an excessive amount of
computational resource and a large search space.

In the following subsections, we focus on the relaxation of
the conflicting objectives and the Pareto-optimal SE-EE trade-
off to obtain a tractable solution. By applying the problem
transformation, we recast the above MOPs as several subopti-
mal problems. We show that the paradox in the conflicting
objectives can thus be alleviated, and the globally optimal
SE-EE trade-off can be achieved with lower computational
complexity.

B. Relaxation of SE-EE Maximization

In this subsection, we investigate the relaxation of SE-EE
maximization, as well as the impact of SINR under multi-user
interference constraints. To ease expositions, we use fSE(·),
fEE(·), and fSINR(·) to represent the objective functions with
respect to SE, EE and SINR, respectively. For the kth user,
the objective function can be expressed as

F(X k)=(fSE(μk), fEE(νk), fSINR(X k))T , F(X k) ∈M,

(22)

where μk, νk, ξk ∈ X k is the set of the decision vec-
tors with the same or different variable size(s), respectively.
We accordingly use the sets {F(X k)}Kk=1 to denote the
objective functions of all users.

1) Problem Transformation: For some practical applications,
although MOPs with multi-dimensional variables (parame-
ters) are common in various engineering domains, the joint
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optimization over more than two objectives is extremely
difficult to solve. Since the optimization of max-min SINR
is usually subject to non-convex constraints, these trade-offs
should be carefully considered. Otherwise, it would incur
prohibitively high computational demands. To achieve the
globally optimal SE-EE trade-off, our solution, which resorts
to the decomposition of the optimization process, consists of
two independent stages. First, SE and EE maximization of
every user is performed in a best-effort fashion without setting
other priority balance.2 In this case, we assume that SINR is
approximately constant and does not vary until the end of
the first stage. Then, the SE-EE trade-off between the power
and number of RF chains as well as throughput is optimized
to approach the Pareto-optimal beam design. As a result,
the vector objective function of the MOP can be reduced to
a single objective function, which is monotonically increasing
with SINR. Note that this assumption is only made at the
starting stage for initialization purposes, which is no longer
needed in the subsequent processing.

Then, a globally optimal solution for SINR can be solved
in a straightforward manner by properly adjusting the recon-
figurable power and the number of RF chains. In the case of
mmWave HAD systems, it is important to mention the fact
that finding the Pareto-optimal SE and EE can be equivalently
transformed into a design problem of the optimal beam.
Meanwhile, it is equivalent to the max-min weighted SINR
power control problem, as well as the practical constraints on
the number of active RF chains. Using this problem transfor-
mation, the paradox in (22) can be relaxed by sequentially
solving the following optimization problem:

max fSE(μk) = fSE(Fk, Wk, Pk, Jk),
max fEE(υk) = fEE(Fk, Wk, Pk, Jk)

s.t.
∑K

k=1
Jk ≤Mt,

∑K

k=1
Pt,k ≤

∑K

k=1
Pmax

t,k , (23)

and

max
ᾱ

min
{Pk,Jk}K

k=1

fSINR(ξk) =
∑K

k=1
ᾱkfSINR(Pk, Jk),

s.t.
∑K

k=1
ᾱk = 1, (24)

where ᾱT ∈ R1×K with rows ᾱk ∈ [0, 1]; μ, ν and ξ
are constructed by those limited variable combinations that
have a significant impact on the objective function, so as to
reduce complexity; Pk = (P1, . . . , PJk

) represents the link
power allocation outcome with respect to the kth user. For
simplicity, the power allocated to the reference subcarrier is
assumed to be equal in this paper. From the perspective of
the Pareto principle, the key to solve (23) and (24) is to find
the Pareto-optimal decision vector from the feasible decision
vectors. Meanwhile, it may be unrealistic to consider all
possible decision variables for solving MOPs. For this reason,
this paper only considers a limited set of decision vectors
corresponding to an approximately optimal solution so as to
limit the computational complexity. To be precise, the feasible

2In this context, a best-effort fashion refers to a mechanism in which
all users make their best effort to separately achieve SE-EE maximization
as much as possible. Intuitively, the behavior of best-effort optimization is
supposed to capture only a locally optimal SE-EE trade-off.

set X can be constructed by finite options of decisions,
i.e., a linear combination of all chosen decision vectors, which
can be viewed as a closed and bounded subset of G (all
possible decision sets). For K active users, it is given by X :
{X k = {Fk, Wk, Pk, Jk}}Kk=1. In the case of mmWave HAD
beamforming, we refer to this strategy as a reconfigurable
combinatorial-oriented beam management approach.

2) Energy-Efficient Transmit Beam Design: It is important to
stress that in practice, the prerequisites of mmWave commu-
nications with high SE and EE have necessitated the require-
ment: (1) highly directive beams are required to compensate
for the severe path loss; (2) these beams need to be aligned
for affording robust transmission links. In particular, high-
directivity beam as well as the alignment of beam pairs at the
transmit and receive antennas depend on the steering vector,
which is dominated by the phased array, i.e., the analog beam-
former/combiner. These facts in turn imply that the aligned
beam pairs are always Pareto-optimal. The optimization of
the analog and digital parts can be thereby decoupled and
treated separately. To this end, the key consideration of this
paper is that the design of Pareto-optimal beam can be cast
as the optimization problem on digital baseband precoder and
combiner. By decoupling the optimization variables, the analog
part can be tackled by conventional optimization techniques
and regarded as a special type of the Pareto-optimal beam
design. The advantage of this strategy is that it not only can
greatly reduce the dimension of MOP, but also prevent the
impacts of nonlinearly associated with the analog components.
In other words, we are able to independently optimize Ũk and
Ṽk, i.e., the optimal Ũ

�

k and Ṽ
�

k can be found by assuming that
Uk and Vk are fixed. To obtain optimal Ũ

∗
k, the perfect channel

state information (CSI) is assumed to be available at the BS.
Based on (12), the Fk with locally optimal beam design at the
BS can be thereby determined by jointly solving the following
optimization problem:

Ũ
�

n,k = arg max
�Un,k, ∀ k

FH
n,kxH

n,kxn,kFn,k

s.t.
∑N

n=1
Tr(FH

n,kFn,k) < Pt,k. (25)

At the receiver, the feasible W�
k associated with Ṽ

∗
k for each

user can be computed in the same way as

Ṽ
�

n,k = argmax
�Vn,k, ∀k

∣∣∣∣WH
n,kH[k]Fn,k

∣∣∣∣2||xn,k||2∣∣∣∣WH
n,kzn,k

∣∣∣∣2
s.t.

∑N

n=1
||Wn,k||2 = 1. (26)

By explicitly decoupling the optimization operation, Ũk

and Ṽk can be determined first. After that, the desired digital
precoder and combiner can be treated as a matrix factorization
problem, resulting in low complexity. The optimal digital
combiner can be independently tackled via the MMSE
criterion [4]:

Vn,k = Λ−1Ũ
H

n,kHn,kŨn,kUn,k. (27)

Although the CSI is necessary for mmWave transmissions,
imperfect CSI is always present in practice due to fast-varying
channels or channel estimation errors. To evaluate the impact
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of imperfect CSI, the estimated channel matrix Ĥk with
imperfect CSI can be modeled as [27]

Ĥk = εHk +
√

1− ε2Δ, (28)

where ε denotes the CSI accuracy, and Δ ∼ CN (0, I) is the
error matrix that characterizes the channel estimation error.

By removing Ũk and Ṽk from the problem formulated
in (23) for the kth user, the problem of finding a set of decision
vectors X �

k that maximizes the SE and EE can be represented
by

max
{X �

k}K
k=1

(fSE(Uk, Vk, Pk, Jk), fEE(Uk, Vk, Pk, Jk)). (29)

Then, the transferred problem given in (29) can temporarily
achieve a single locally optimal solution associated with the
Pareto-optimal beam design of two objective functions. Since
the transmit beamforming mainly depends on the channel
direction, the individual beam alignment should be a necessary
and sufficient condition to accommodate the SE-EE maximiza-
tion. From this standpoint, the analog part of beamformers can
be fixed, while is to relax the constraint. We start from this
point and focus on solving the globally Pareto-optimal beam
design in the rest of this section.

C. Pareto-Optimal Solution to SE-EE Trade-Off

The objective of this subsection is to provide an efficient
procedure for the SE-EE maximization of entire system.
To generate universally Pareto-optimal SE-EE maximization,
we show that there exists a globally optimal solution that
maximizes EE while having an increasing SE. For satisfying
various rate requirements of the users, our proposed strategies
involve properly balancing SINR and choosing the beam man-
agement strategy with an adequate number of active RF chains.
To do this, we apply a weighted-sum criterion to capture
multiple objectives, which is a standard technique for finding
POS for vector optimization problems. This linear weighted-
sum method scalarizes multiple performance metrics into a
single-objective function. The optimal solution, i.e., X POS

k ,
is based on the solution to X �

k, resulting from a particular
set of weights. This method, also called scalarization, can be
expressed as

arg max
X ,ᾱ

∑K

k=1
ᾱkF(μk, νk, ξk)

s.t. μk, νk, ξk ∈ X �,
∑K

k=1
ᾱk = 1, (30)

where ᾱT ∈ RK×1 with rows ᾱk.
1) Compromise a Solution to the Pareto-Optimal Beam

Design: According to the criterion of the Pareto principle, once
the objective values of X POS with respect to the Pareto-optimal
beam design are achieved, it means that X POS is not dominated
by any other feasible decision vectors and satisfies F(X POS) 

F(X �), with objective set {UPOS

k , VPOS
k , PPOS

k , JPOS
k }. The

objective value of a set of Pareto-optimal decision vectors,
being chosen as optimal, constitutes the Pareto front. Note
that the relaxation strategy effectively avoids the singularity
problems caused by non-linearity and non-convexity. In this
case, the feasible X � is spanned by linear space because the

elements of objective vector set {UPOS
k , VPOS

k , PPOS
k , JPOS

k } are
linear. To this end, a feasible solution to finding optimal X POS

can be easily found by numerical methods.
In the following, we apply Cobb-Douglas production func-

tion to characterize the trade-off between SE and EE. It can
be expressed by a utility function U , which has the form [60]

U(fSE(X �
k), fSE(X �

k)) = (
�

fSE(X �
k))αk (

�

fEE(X �
k))1−αk ,

(31a)
�

fSE(X �
k) =

fSE(X �
k)

fmax
SE (X �

k)
and

�

fEE(X �
k)

=
fEE(X �

k)
fmax

EE (X �
k)

, (31b)

where αk ∈ [0, 1] is a normalized weight metric on a particular
trade-off between SE and EE for the conflicts of interest. With
this empirical production function, different weights can be
viewed as the benefit-cost ratio of the system. Accordingly,
the objective value can be evaluated by taking the sum
of the elasticities of output. For the purpose of evaluation,
a logarithmic form of above function can be given as follows:

Hk : H(X �
k) = αklog(

�

fSE(U�
k, V�

k, P�
k, J�

k ))

+ (1− αk)log
�

fEE(U�
k, P�

k, J�
k ). (32)

As can be observed, the above MOP of finding an optimal
decision vector set is transformed into a single globally
optimal problem:

max
{U�

k,V�
k,P�

k,J�
k}
H(U�

k, V�
k, P�

k, J�
k )

s.t. {U�
k, V�

k, P�
k, J�

k} ∈ X �,
∑K

k=1
J�

k ≤
∑K

k=1
Jk.

(33)

Recall (30) and (32) that are for mmWave HAD beamform-
ing systems with interference constraints. We have considered
the optimal beam design that satisfies multiple objectives
in a multi-user environment. It is worth pointing out that
aforementioned ᾱ and the weight vector with respect to
the utility function are equivalent. Note that, considering the
optimal target set of the overall user in the whole beamspace,
the globally optimal trade-off between SE and EE can be
expressed as

Hglobal 

∑K

k=1
(αkfSE(U�

k, V�
k, P�

k, J�
k )

+ (1− αk)fEE(U�
k, V�

k, P�
k, J�

k )). (34)

Even though the scalarized problem in (34) would naturally
come up with a compromise, since it may be convex, it is feasi-
ble to explore its Pareto front by this linear function with a rea-
sonable cost (that is, solvable in polynomial time) [35], [61].

In fact, due to the diversity of rate requirements, dif-
ferent users have different load priorities on the SE-EE
trade-off. Typically, the weights αk can be used to balance
aggregate utility and/or user fairness. In the user-centric
scenario, EE maximizations are generally considered with
respect to minimum-rate and/or SINR constraints, including
the reconfigurable number of multiplexed data streams. For
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cell-center users (strong users) and cell-edge users (weak
users), the low and the high power allocation strategies are
better to gain a higher network throughput. For strong users,
the over-large transmit power does not necessarily help to
improve the total SE, since the interference would dramatically
increase. To achieve the optimal SINR in a multi-user network,
the worst-case (weak users) and best-case (strong users) SINR
optimization problems need to be balanced.

2) Combinatorial Resource Reallocation: From a systematic
perspective, the optimization problem formulated in (34) under
the SINR constraint would be still arduous if a great deal of
adjustment of different parameters of the decision vector is
imposed. To this end, we propose a combinational-oriented
transmit power control strategy to adaptively handle the worst
and the best cases. With the aid of MIMO-OFDM-IM, a power
reallocation and/or power saving scheme can be directly
applied to balance the total transmit power. This additional
degree of freedom is capable of providing an appropriate trade-
off between SE and EE as well as error performance. Let
P = (β1, . . . , βK)T be the instantaneous power reallocation
set, which is an additional product of the power saved by
those inactive subcarriers of OFDM-IM. Note that (33) is
equivalent to the classical sum rate maximization [57]. After
a beam design which is proven to be optimal, the power
allocation solution can be yielded by applying the Lagrangian
method, e.g., the so-called water-filling solution (proved in
[61], p. 245).

To achieve the optimal SINR, we then turn to define a
resource reallocation policy ΨT , which is a new combination
of decision vector sets ΨT : {Ψk = {Pk, Jk; βk}}Kk=1 at
decision epoch T . Without loss of generality, this resource
reallocation problem can be interpreted as searching for a
feasible strategy and has been formulated as in [35]

maximize
ΨT +1�ΨT ,...,Ψ1�Ψ0

{fSINR(Ψ1), . . . , fSINR(ΨK)}

s.t.
∑K

k=1
Tr(1T Pk) ≤ P max

t ,
∑K

k=1
Jk ≤ Nt.

(35)

In this way, the effective source reallocation among the users
will be gradually achieved over each iteration, and then be
extracted as ΨT +1|ΨT that satisfies the power constraints and
maximizes the performance fSINR(X k), ∀ k.

A key characteristic of such an approach is to allocate
power, RF chains and bandwidth optimally among users,
whilst the beamforming matrixes can be temporarily fixed
(see the necessary and sufficient conditions discussed in
Section III-B). More precisely, the combinatorial optimization
strategy Ψ is equivalent to select a limited subset from all
feasible combinations of decision variables, and the search-
space for finding optimal decision vector sets is thereby
shrunken. Accordingly, the optimization problem of (24) can
be transferred to the following single-objective optimization
problem:

max
{U�

k,V�
k}K

k=1, ᾱ
min

{PPOS
k ,JPOS

k }K
k=1

∑K

k=1
ᾱkfSINR(P�

k, J�
k ; βk)

s.t. Pt,k ≤ P max
t,k , ∀ k. (36)

In particular, by combinatorially altering the values of the
members of Ψ, the proposed policy is able to find the best
one from a set of globally optimal solutions, and (36) yields
the complete Pareto-optimal set [35], [36].

3) Approaching Complete Pareto-Optimal Beam Design: By
applying the method in [35], [36], one can explicitly see that
the proposed policy can also lead to the sum rate maximization
as well as to maximize the minimum rate of the users,
especially in the low SNR region. In our work, the desired
quantization level of SINR is indicated by α and P , which can
be used to improve SINR of weak users. If all of the constraints
in (36) are satisfied, the reduced JPOS

k and PPOS
k produce the

optimal power allocation scheme. In this case, when coeffi-
cients of α are properly balanced, it is effective to perform
optimal downlink power transmission for all active users.

Importantly, the expression in (36) also indicates that we
can achieve an approximately complete Pareto-optimal beam
design. The constrained weight vector yields a part of POS,
i.e., PPOS

k and JPOS
k . Obviously, if all of the constraints in (36)

are satisfied, we can obtain the partially suppressed JPOS
k and

the feasible power reallocation scheme PPOS
k for all users. It is

possible that the network can dynamically choose its most
desired weight vector. When these weighting coefficients are
properly adjusted, i.e., α� → αPOS, the SINR of the entire
downlink approaches the globally Pareto-optimal design.

Recalling (34), it can provide the complete Pareto-optimal
set, despite the nonconvexity (if any) of the considered prob-
lems. With the combined decision variable set Ψ for achieving
the Pareto-optimal beam design, mathematically, the globally
optimal Pareto solution can be found by alternately solving
the following problem:

max
{UPOS

k ,VPOS
k }K

k=1

Hglobal 

∑K

k=1
H(U�

k, V�
k, PPOS

k , JPOS
k , βk)

s.t. {PPOS
k , JPOS

k , βk}Kk=1 ∈ Ψ. (37)

Note that the above approaches focus on one specific subject,
i.e., finding the optimal points towards the true Pareto front
in the space of objective functions in MOPs. Correspondingly,
the obtained result is approximately Pareto optimal, i.e., opti-
mized beam designs towards the Pareto front. To achieve
this, a more efficient algorithm needs be devised to find the
globally optimal Pareto solution to the SE-EE maximization.
Most existing multi-objective evolutionary algorithms have
been proven to be efficient to approximate POS in both of
the decision and objective spaces [62]. Subsequently, we will
provide a generic evaluation framework and give an alternative
way of finding POS towards the true Pareto front. Based on
the classical evaluation algorithm, a set of candidates X � can
gradually evolve to seek a set of promising points that are as
close to the Pareto-optimal X POS as possible.

IV. PARETO-OPTIMAL SE-EE EVALUATION

A. Spatial Poisson Point Process

To systematically evaluate the proposed optimization strat-
egy, we consider the case of a single-cell mmWave MIMO-
OFDM-IM system. The location of the BS is fixed and set as
the original point of the coordinate, and a single cell system
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is considered to be a circular disc of radius R. The active
K users are located on a Euclidean plane, and randomly
distributed around the BS. The location of the kth user,
represented by polar radius rk and polar angle ϕk, can be
modeled as an independent PPP in Rm [54]. Denote λk as the
corresponding intensity of these K users. Each user can be
modeled as an independent homogeneous PPP with intensity
λk, i.e., Γ = {(rk, ϕk; λk)}Kk=1, where (rk, ϕk) is a two-
dimensional polar coordinate. Since the locations of K active
users with {Γ1, . . . , ΓK} are random variables in a given
area, they can be randomly generated according to the PPP.
Fig. 2 illustrates a snapshot of PPP in the beamspace, where
the size of the circle represents the corresponding scaled inten-
sity of the PPP. Note that although we consider a single cell
multiuser downlink system, the model also works for multi-
cell systems, since the case of single-cell downlink transmis-
sion can be easily extended to multi-cell setups. Importantly,
by applying a simple but effective optimization approach that
was proposed in [35], [36], the multi-cell resource allocation
can be generally transformed into a monotonic problem that
can be solved with the global trade-off.

As shown in Fig. 2, the distributions of users are modeled as
points of a homogeneous PPP on the plane, and the differenti-
ated rate requirements of users are also approximated by using
stochastic geometry tools for the performance evaluation of the
proposed optimization strategy. In order to make the evaluation
tractable, we assume that the proposed optimization strategy
operates in a succession of time intervals, i.e., epochs, where
each PPP realization maps to the current decision epoch T .
Then, we can evaluate the impact of superimposing perfor-
mance from one epoch to the next. For any given decision
epoch, the intensity of the underlying PPP can be obtained in
a closed-form solution, by which we can signify the strong
users and weak users of interest. Note that this systematic
approach can actually be interpreted as a priori articulation of
preferences. Most importantly, such a predefined configuration
can be reproduced, and is thereby more suited to fairly evaluate
the performance of optimization strategy in practice with the
SE-EE trade-off.

According to the aforementioned Pareto-optimal solution,
αk is proportional to λk. If the full set of λk is given, then
a specific vector α can be estimated. As a result, the optimal
compromise can be obtained for optimizing the SE-EE trade-
off. In this paper, it is worth pointing out that by making use
of each user’s channel quality indicator (CQI) feedback, α can
be easily acquired at the BS, and the weights can be flexibly
altered according to the dynamic of the network load as well
as the CQI information.

Define R to be the state transition rate corresponding to the
gradient of intensity between transient states. The dynamic of
PPP over a specified decision epoch T can be modeled as a
backward Markov chain:

p(Γi
k|Γi−1

k ) =
∏j

j=0
Pr (1 +R(Γi+j

k |Γi+j−1
k )), ∀ k, (38)

where p(Γi
k|Γi−1

k ) is an accumulated one-step transition prob-
ability from the (i− 1)th decision epoch.

Fig. 2. A snapshot of the spatial PPP is directly applied in beamspace, where
nomadic users are uniformly and independently distributed, and the randomly
generating intensity of the mobile data traffic is proportional to the size of
the circle. Each beam denoted as (θ, φ) is associated with a desirable HPOS.

B. Determining Pareto-Optimal Set

In this section, we show that the proposed MOP solution to
finding POS towards the true Pareto front can be calculated
by means of a multi-objective evolutionary algorithm, e.g.,
non-dominated sorting genetic algorithm-II (NSGA-II) [62].
Many studies reveal that NSGA-II has a better search ability
than exhaustive search. Thus, it is often more efficient to find
multiple Pareto-optimal solutions in one single simulation run,
and many NP-hard MOPs can thereby be solved using this
technique.

Our target is to determine the Pareto-optimal SE-EE trade-
off through the feasible decision vector set X � by identifying
the globally POS. Once searched outcome converges to the
optimal or near-optimal solution, the Pareto-optimal beams
for K active users are available to achieve SE-EE maximiza-
tion under SINR constraints. As described in Section III-B,
the dimension of MOP is reduced by the decomposition-
based method for the optimization of the analog and digital
beamforming. By relaxing the design problem of the objective
function in (22), this dimension reduction approach can con-
siderably reduce the search space and still guarantees globally
optimal solutions. Note that NSGA-II is an algorithmic tool for
finding out the Pareto front, and other advanced evolutionary
algorithms can be alternatively applied to solve such problems.

Algorithm 1 summarizes the steps to search through the
feasible vector space for identifying the globally POS, please
find it at the next page. It is initialized by the initial user
discovery as well as the beam training procedure. In the first
stage, SE and EE maximization of each user is performed in
a best-afford fashion without setting any priority balance. The
joint maximization of SE and EE for each user is performed
concurrently, and we thereby achieve a single locally Pareto-
optimal solution. In the second stage, the globally optimal
trade-off between SE and EE is taken into account. It mainly
aims to apply NSGA-II for finding the globally POS under the
SINR constraints. We alternately solve the problem formulated
in (33) and (37) based on the combinatorial-oriented power
control strategy for the optimal transmission.

For given (30), we solve the two subproblems (33)
and (36) separately to obtain the optimal decision vector
sets {U�

k, V�
k, P�

k, J�
k}Kk=1 and Ψ. In each iteration, NSGA-II

repeats this process until the convergence is achieved,
i.e., X POS is identified. By NSGA-II, ε is a ratio of Euclidean
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Algorithm 1 Evolutionary Algorithm Searching POS for the
Globally Pareto-Optimal SE-EE Trade-off

Input: F = {fSE, fEE; fSINR}, X = {Fk, Wk, Pk, Jk}Kk=1.
� K active users

Output: HPOS
global ← {UPOS

k , VPOS
k , PPOS

k , JPOS
k }Kk=1.

1: initialization: Generate K active users with {Γ1, . . . , ΓK}.
2: � PPP
3: Uk, Vk, ∀ k → Ũ

�

k, Ṽ
�

k. � user discovery
4: for k from 1 to K do � beam alignment
5: Search X i

k : (Uk, Vk, Pk, Jk) to maximize F(fSE, fEE).
6: Set X i+1

k ← X i
k.

7: return H(i)
global : X (0)

k ← X �
k.

8: � initial population: locally optimal trade-off
9: end for

10: repeat
11: SE-EE Trade-off: H(i)

global : H(U�
k, V�

k, P�
k, J�

k ).
12: Measure α weight metrics. � Cobb-Douglas
13: for all k do � complexity reduction
14: max-min: fSINR(ξk) =

∑K
k=1αkfSINR(Pk, Jk).

15: Subprocedure: an instantiation of NSGA-II
16: evoluatary subroutine for solving (37) � search X POS

k

17: If H(j)
global ≺ H

(j−1)
global then X (j+1)

k ← X (j)
k .

18: else if H(j)
global 
 H

(j−1)
global then X POS

k ← X (j)
k .

19: end if
20: end for
21: Find Ψ: {PPOS

k , JPOS
k , βk}Kk=1.

22: � combinatorial resource reallocation mechanism
23: Until |Hj

global −H
j−1
global| ≤ ε. � Euclidean distances

24: Determine HPOS
global: {H(UPOS

k , VPOS
k , PPOS

k , JPOS
k )}Kk=1 from

the last fronts {X POS
k }Kk=1.

25: Optimal beam redesign: {FPOS
k , WPOS

k }Kk=1.
26: � globally optimal trade-off

distances among different Pareto fronts. In our work, ε is used
to compute the minimum Euclidean distance of the objective
function from chosen solutions towards Pareto front. The
smaller this metric is, the better the convergence toward the
Pareto front will be.

As shown in Algorithm 1, NSGA-II starts with an initial
population X (0)

P = {X �
k}Kk=1, corresponding to the locally

optimal SE-EE trade-off H(0)
global (c.f. line 6 of Algorithm 1).

The population then evolves toward nearby globally optimal
SE-EE trade-off, i.e., sorting the best non-dominated solution
{X POS

k }Kk=1, through subsequent iterations, called generations.
Finding the optimal solution to (37) toward the Pareto front
involves three key steps for the decision making process, given
as follows:

Subprocedure: an instantiation of NSGA-II evoluatary sub-
routine for solving (37):

1) Create an offspring population X (i)
Q = {∇X (i)

k }Kk=1 by
a mutation operator ∇ with different variable step sizes
and form a combined population X (i)

R = X (i)
P ∪ X (i)

Q .

Classify all non-dominated solutions X (i)
R into different

dominance sets {Yl}ll=1, where Y l corresponds to the
best solutions, given Y(i) � Y(i+1).

2) Sort the members of each set Y(i)
l within the same

dominance level, according to the descending order of
crowding distance, while those solutions located in a
lesser crowded region are preferred.

3) Select a better subset of non-dominated solutions from
{Yl}ll=1 to form a new population X (i+1)

P while pre-
serving an already found X POS

k . Repeat until satisfying
the stop criteria (c.f. line 19, Algorithm 1).

C. Complexity Analysis

The computational complexity of Algorithm 1 comes from
the size of decision space M, i.e., the number of objectives
and the size of decision vectors. According to the description
in Section IV, the objective space F is transformed into a
single globally optimal problem. The overall computational
complexity of the algorithm is within an acceptable range.
To search for the optimal X POS, the time and space complexity
of NSGA-II is related to the dimension of the feasible variable
set. It mainly depends on two aspects: (1) the optimization
of HAD beamforming, and (2) the number of simultaneously
transmitting and receiving beams in the beamspace. It is
important to mention the fact that, in the case of the proposed
algorithm, we are able to independently optimize the digital
parts of HAD beamforming, which is dominated by calculating
all of the optimal U�

n,k. By this decoupled optimization oper-

ation, the first-generation non-dominated {X (0)
k }Kk=1 can be

obtained from initial user finding and beam training procedure.
In mmWave communications, a fundamental limit is that the
number of transmission beams cannot be larger than the
number of RF chains. Thus, the number of simultaneous
transmission users is limited. For this reason, the search space
can be further reduced, and thereby leads to fast convergence.
On the other hand, it has been proved that NSGA-II with
O(MN2) computational complexity is a fast and elitist multi-
objective genetic algorithm. Most results indicate that it is
superior to the genetic algorithm in terms of both its accuracy
and convergence rate in the obtained non-dominated solution
[62]. In our proposed approach, the size of search space is
effectively shrunken. Therefore, it is feasible to search for the
globally Pareto-optimal solutions at an affordable complexity.

V. NUMERICAL RESULTS

A. Simulation Settings

In the considered simulation scenario, a cellular mmWave
network with the HAD architecture is considered. The azimuth
angles are assumed to be uniformly distributed over [0; π],
and the AoA/AoD elevation angles are uniformly distributed
over [−π/2; π/2]. As shown in Section IV-A, the users are
independent and uniformly distributed abiding a spatial PPP.
Correspondingly, the user own expected throughput is indepen-
dently characterized by the PPP intensity λ. To simulate strong
users and weak users, the desirable users are chosen from
100 user samples, which are all generated by an independent
two-dimensional homogeneous PPP. The performance evalua-
tion is carried out through Monte Carlo simulations, and each
result is the average of 100 independent realizations. Finally,
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TABLE I

SYSTEM CONFIGURATION AND SIMULATION SETTING PARAMETERS

the convergence behavior of the proposed POS searching
algorithm is investigated. Table I summarizes the simulation
parameters and the experimental setup.

B. Discussion of Numerical Results

In this part, we present and discuss the detailed simulation
results to evaluate the performance of the proposed optimiza-
tion approach as compared to state-of-the-art association algo-
rithms for both high and low SNR regimes. In Fig. 3(a) and
3(b), we evaluate the SE and EE performance in the high SNR
regime by considering the impact of perfect and imperfect
CSI, respectively. We compare the proposed Pareto-optimal
HAD beamforming scheme with the approximation methods,
including a decoupled two-stage HAD design proposed in [34]
and an improved alternating minimization (AM) algorithm
proposed in [29]. The work of [34] proposed an alternating
optimization technique, called the ARAB algorithm, for multi-
user massive MIMO system, where OFDM modulation is
employed. In [29], the AM algorithm can be extended easily to
advanced MIMO-OFDM configurations without changing the
antenna setup at both the transmitter and the receiver. There-
fore, the above algorithms considered for our experiments can
be uniformly set to the MIMO-OFDM transmission mode for
fair comparisons. For all cases, we can see that imperfect CSI
greatly degrades the performance of SE. In Fig. 3(a), we notice
that the SE performance of the algorithms is close when the
perfect CSI is assumed. In Fig. 3(b), the first important note is
that our proposed approach has a much higher EE than those
of the algorithms proposed in [29], [34]. As expected, the full-
digital beamforming achieves better SE performance, but has
poorer EE performance.

Next, we consider the low SNR condition with the same
system configurations. The experimental results for achievable
SE and EE in the lower SNR regime are shown in Fig. 4(a)
and 4(b), respectively. We can observe that except for the
full-digital beamforming, the proposed approach with equal
power allocation can significantly outperform its counterpart.
That is, the proposed approach achieves higher SE and EE
than the existing approaches designed in [29], [34]. For weak
users, it is a competitive technology to provide a much higher
data rate and a longer transmission distance. In addition,
it can be observed that our proposed scheme has the ability
to extend the coverage at the edge of the cell and make the
cell-edge users obtain better performance. This is because for
MIMO-OFDM-IM with power allocation, the subcarriers with
high power can be scheduled for weak users. Even with a
total transmit power constraint, the achievable sum rate in the
low SNR regime is maximized by exploiting the systematic
optimization of power allocation.

Fig. 3. SE vs. SNR and EE vs. SNR with perfect CSI and imperfect CSI,
given ε = 0.8.

For any given individual user link, the relation of the SE
and EE as a function of the ratio of α is depicted in Fig. 5.
Here, the normalized weight factor ω represents the expected
throughput of specific user, i.e., SE demand. Generally, we can
determine the weight according to the actual traffic distribu-
tion by considering different throughputs. From this figure,
as the weight ω grows from 0.6 to 0.9, the SE and EE
achieved by the proposed SE-EE trade-off can adapt with the
demand of throughput. After experimental comparison of these
aforementioned algorithms, the results demonstrate that our
proposed approach can explicitly control the SE and EE ratios
among users. In particular, we find that the proposed Pareto-
optimal beam design is efficient to improve EE performance
while guaranteeing SE. It means that if we increase capacity
demand of the user, Pareto-optimal trade-off can provide a
balance between SE and EE. For the same reasons pointed out
above, with the help of OFDM-IM, it allows a higher degree
of freedom to achieve an adequate SE-EE trade-off. When
the reduction in energy consumption is taken into account,
an inverse relationship between SE and EE can be avoided.
Our approach thereby achieves superiority over the traditional
approaches.

In Fig. 6, we examine the sum transmission power yielded
by different approaches with respect to assigning different
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Fig. 4. SE vs. SNR and EE vs. SNR with perfect CSI and imperfect CSI,
given ε = 0.8, where the proposed method is based on the equal power
allocation scheme.

Fig. 5. SE vs. EE with locally optimal trade-off: A case of single-user SE-EE
trade-off.

numbers of RF chains Jk at the BS. In order to charac-
terize the proposed power allocation, the sum transmission
power is investigated without considering SE-EE trade-off.
The figure shows that the total transmit power increases
with an increasing number of active RF chains based on
the distributed number of users K = (8, 4, 1). As described

Fig. 6. Sum Tx power vs. the number of RF chains at the BS based on
the optimal power adaptation scheme for strong users and weak users with
different transmission power reallocation strategies.

Fig. 7. SE vs. EE with globally optimal trade-off: A case of globally optimal
SE-EE trade-off based on the globally POS, where α1 = 0.4 and α2 = 0.6
are assigned for strong users and weak users, respectively.

in (33), we perform the max-min power allocation strategy in
the downlink of mmWave transmissions. In [32], the authors
considered a flexible hybrid precoding scheme for mmWave
MIMO communications, where the number of active RF
chains can be adjusted to achieve the optimal EE. Simi-
larly, with the proposed combinatorial-oriented beam design
approach, we also prove that there exists a trade-off between
SE and EE by varying the number of activated RF chains. For
weak users, the proposed power reallocation scheme shows
great superiority over those of the schemes proposed in [29],
[32], [34] under a total power constraint. Besides, we can
observe that in the case of k = 8, Jk = 14, the proposed
power allocation algorithm and the approach proposed in
[32] outperform their counterparts (requiring 16 RF chains)
proposed in [29], [34]. From the perspective of degree of
freedom introduced by MIMO-OFDM-IM, our approach is
capable of efficiently utilizing downlink wireless resource as
well as achieving a lower expected power consumption. This
also implies that the proposed power control strategy can
partially eliminate the limits of the SE-EE trade-off.

Fig. 7 shows the SE-EE Pareto front in terms of a par-
ticular MOP solution, in which this MOP with constraints is
addressed by two possible solutions in the feasible region.
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Fig. 8. Convergence property of using NSGA-II algorithm to enumerate all
feasible POSs with the SINR threshold.

The green and blue points correspond to weak users and strong
users that are identified on the Pareto front, respectively. As a
case study, we consider a realistic scenario, which consists of
four strong users and four weak users, and we aim to maximize
the SE and EE, simultaneously. In particular, our goal is to
find the globally POS by using the NSGA-II algorithm to
enumerate all of the feasible POSs. In other words, deriving
the globally optimal SE-EE trade-off is equivalent to finding
the POS as close as possible to the Pareto front, i.e., X POS.
By comparing Hglobal for each solution X � in the objective
space, we can identify a Pareto-optimal solution X POS and
thereby make a final decision on the SE-EE trade-off with
X POS. A key observation of Fig. 7 is that by properly adjusting
weighting coefficients α, the performance of SE and EE can
be significantly improved, which fully verifies the theoretical
analysis. It is obvious that the SE-EE improvement achieved
by the proposed approach is clearly superior to the one given
in [34]. Here, we show a globally optimal SE-EE trade-off.
As can be observed from the figure, the blue points can
be regarded as one of possible POS to improve the EE of
strong users, and the green points represent another POS to
maximize both SE and EE for weak users. Once both SE and
EE are maximized, these points can be approximately viewed
as Pareto front.

Finally, the convergence behavior of NSGA-II based opti-
mization strategy with respect to different SINRs is shown
in Fig. 8. The metric ε is iteratively computed until a conver-
gence threshold is reached, resulting in the globally POS. It is
seen that as the iteration number increases, a sufficiently small
ε can be achieved. After 100 iterations, the objective values are
close to the final converged results. We examine the effect of
the SINR threshold and find that the rate of convergence seems
to be very sensitive to the SINR factor. Note that when the
improvement of Δ SINR = 0, it actually means that no SINR
constraint is imposed. In this case, the proposed algorithm
can provide the highest convergence rate with the smallest ε,
but SE cannot increase significantly in the absence of SINR
improvement. From this figure, it is shown that in the best
case, the algorithm can achieve a 2 dB SINR improvement,
whilst the convergence attained at this optimal seems to be

relatively slow, requiring about 500 iterations. Intuitively, this
phenomenon coincides with the realistic situation. That is,
the larger SINR improvement would introduce a higher degree
of complexity or uncertainty and requires more steps to obtain
the stationary point of the globally POS. By user discovery
and initial access procedures, we can run our algorithm with
different initial points independently and allows us to adap-
tively handle the SE-EE optimization problem with tractable
solutions.

VI. CONCLUSION

In this paper, an energy-efficient mmWave
MIMO-OFDM-IM system with the HAD beamforming
architecture was proposed and investigated. We provided the
optimal solution that allows a higher degree of freedom to
achieve realistic SE-EE maximization in mmWave cellular
networks. We have given a baseline design to solve the
SE-EE trade-off for mmWave MIMO-OFDM-IM systems.
The key finding of this study is that the use of Pareto-optimal
beam design can achieve a globally optimal trade-off between
SE and EE, and the collision constraints of MOP can be
efficiently released. Also, the flexible power reallocation
scheme can significantly extend the coverage for the cell-edge
users. It is expected that the density of the BS may have a
more significant impact on the network SE and/or spatial SE,
as well as EE scales with the user density. In future work,
we will consider a wide range of conditions as well as the
equivalent form of the SE-EE trade-off, such as combining
some fundamental results from random matrix theory.
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