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ABSTRACT With the exponentially growing COVID-19 (coronavirus disease 2019) pandemic, clinicians
continue to seek accurate and rapid diagnosis methods in addition to virus and antibody testing modalities.
Because radiographs such as X-rays and computed tomography (CT) scans are cost-effective and widely
available at public health facilities, hospital emergency rooms (ERs), and even at rural clinics, they could be
used for rapid detection of possible COVID-19-induced lung infections. Therefore, toward automating the
COVID-19 detection, in this paper, we propose a viable and efficient deep learning-based chest radiograph
classification (DL-CRC) framework to distinguish the COVID-19 cases with high accuracy from other
abnormal (e.g., pneumonia) and normal cases. A unique dataset is prepared from four publicly available
sources containing the posteroanterior (PA) chest view of X-ray data for COVID-19, pneumonia, and normal
cases. Our proposed DL-CRC framework leverages a data augmentation of radiograph images (DARI)
algorithm for the COVID-19 data by adaptively employing the generative adversarial network (GAN) and
generic data augmentation methods to generate synthetic COVID-19 infected chest X-ray images to train
a robust model. The training data consisting of actual and synthetic chest X-ray images are fed into our
customized convolutional neural network (CNN) model in DL-CRC, which achieves COVID-19 detection
accuracy of 93.94% compared to 54.55% for the scenario without data augmentation (i.e., when only a few
actual COVID-19 chest X-ray image samples are available in the original dataset). Furthermore, we justify
our customized CNN model by extensively comparing it with widely adopted CNN architectures in the
literature, namely ResNet, Inception-ResNet v2, and DenseNet that represent depth-based, multi-path-based,
and hybrid CNN paradigms. The encouragingly high classification accuracy of our proposal implies that it
can efficiently automate COVID-19 detection from radiograph images to provide a fast and reliable evidence
of COVID-19 infection in the lung that can complement existing COVID-19 diagnostics modalities.

INDEX TERMS COVID-19, convolutional neural network (CNN), deep learning, generative adversarial
network (GAN), pneumonia.

I. INTRODUCTION
The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), first observed in Wuhan, China, turned into a global
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pandemic of COVID-19 (coronavirus disease 2019) [1].
COVID-19 has a destructive impact on the well-being of peo-
ple, particularly senior citizens and patients with underlying
health conditions and compromised immunity levels. Bymid-
July 2020, the COVID-19 pandemic already contributed to
over 570,000 mortalities and more than 13 million cases
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of COVID-19 infection [2]. A critical step to combat the
pandemic is to effectively detect COVID-19 infected patients
as early as possible so that they may receive appropriate
attention and treatment. Early detection of COVID-19 is
also important to identify which patients should isolate to
prevent the community spread of the disease. However,
considering the recent spreading trend of the COVID-19,
an effective detection remains a challenging task, particularly
in communities with limited medical resources. While the
reverse transcription polymerase chain reaction (RT-PCR)
test-kits emerged as the main technique for COVID-19 diag-
nosis, chest X-ray (chest X-ray), computed tomography (CT)
scans, and biomarkers (i.e. high C-reactive protein (CRP),
low procalcitonin (PCT), low lymphocyte counts, elevated
Interleukin-6 (IL6), and Interleukin-10 (IL10)) are also being
increasingly considered by many nations to aid diagnosis
and/or provide evidence of more severe disease progres-
sion [3]–[5].

As depicted in Fig. 1, the existing system for detecting
COVID-19 using the aforementioned virus and antibody test-
ing modalities is time-consuming and requires additional
resources and approval, which can be a luxury in many devel-
oping communities. Hence, at many medical centers, the test
kits are often unavailable. Due to the shortage of kits and
false-negative rate of virus and antibody tests, the authorities
in Hubei Province, China momentarily employed radiologi-
cal scans as a clinical investigation for COVID-19 [6].

FIGURE 1. Challenges of existing system and our research focus for
COVID-19 screening in rural areas.

Motivated by this, several researchers and sources
recommend the use of chest radiograph for suspected
COVID-19 detection [7]–[9]. Therefore, radiologists can
observe COVID-19 infected lung characteristics (e.g., ground
glass opacities and consolidation) by harnessing non-invasive
techniques such as CT scan or chest X-ray. However, it is
difficult to differentiate the COVID-19-inflicted features
from those of community acquired bacterial pneumonia [10].
Therefore, for many patients, manual inspection of the radio-
graph data and accurate decision making can be overwhelm-
ing for the radiologists, and an automated classification tech-
nique needs to be developed. In addition, radiologists may get
infected and need to isolate that may impact rural commu-
nities with a limited number of hospitals, radiologists, and

caregivers. Moreover, as the second wave of COVID-19 is
anticipated in the fall of 2020, preparedness to combat such
scenarios will involve increasing use of portable chest X-ray
devices due to widespread availability and reduced infection
control issues that currently limit CT utilization [10]. There-
fore, as depicted in Fig. 1, in this paper, to automate the
COVID-19 detection using X-ray images, we aim to develop
an artificial intelligence (AI)-based smart chest radiograph
classification framework to distinguish the COVID-19 cases
with high accuracy from other abnormal (e.g., pneumonia)
and normal cases. In this vein, the main contributions of the
paper can be summarized as follows:
• A deep learning-based predictive analytics approach is
employed to propose a smart and automated classifica-
tion framework for predicting COVID-19, pneumonia,
and normal cases. Our proposed deep learning-based
chest radiograph classification (DL-CRC) framework
consists of a data augmentation of radiograph images
(DARI) algorithm and a customized convolutional neu-
ral network model.

• A uniquely compiled dataset from multiple publicly
available sources is preparedwith radiographs of healthy
(normal), COVID-19, and pneumonia cases reported to
date. The limited number of COVID-19 instances in
the dataset is identified as the prime reason for train-
ing bottleneck of deep learning algorithms. As a solu-
tion, our proposed DARI algorithm essentially combines
a customized generative adversarial network (GAN)
model with several generic augmentation techniques
to generate synthetic radiograph data to overcome the
COVID-19 class imbalance problem due to limited
dataset availability.

• We train a customized CNN model based on combined
real and synthetic radiograph images that contributes to
significantly improved accuracy of 93.94% in contrast
with 54.55% when only actual COVID-19 instances in
public datasets are used for training. While chest X-ray
is regarded as a less sensitive modality in detecting
COVID-19 infection in lungs compared to CT scans
in the literature [10], we demonstrate the good per-
formance of our custom CNN model in identifying
COVID-19 cases in the real dataset with high accu-
racy implying that our approach nullifies the need
for using expensive CT scan machines because the
COVID-19 detection accuracy using our custom CNN
model is much higher compared to the reported base-
line [10].

• We rigorously analyze the computational complexity
of the DARI, training, and running/inference steps of
our proposed DL-CRC framework. The analyses, fur-
ther corroborated by experimental results, reveal that
our proposed methodology leads to significantly lower
training time, and particularly much improved infer-
ence time, which is crucial for deploying the trained
model into portable X-ray devices for fast and reliable
COVID-19 feature detection in lung radiographs.
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• The performance of our customized CNN model is
extensively compared with the state-of-the-art CNN
architectures in the literature (i.e., depth-based CNNs,
multi-path-basedCNNs, and so forth) [11]. Our proposal
is demonstrated to substantially outperform the contem-
porary models in terms of classification efficiency.

The remainder of the paper is organized as follows.
Section II surveys the relevant research work regarding
COVID-19 and the relevant use of AI. The problem of tradi-
tional COVID-19 detection and challenges associated with it
to apply in developing communities is discussed in section III.
Our proposed input representation and deep learning model
are presented in section IV. The performance of our proposal
is evaluated in section V and extensively compared with those
of well-known CNN architectures. Some of the limitations of
the study is briefly explored in section VI. Finally, section VII
concludes the paper.

II. RELATED WORK
This section explores the relevant research work in the lit-
erature from two perspectives, i.e., imaging modalities for
COVID-19 detection, and AI-based analysis of radiograph
samples.

A. IMAGING MODALITIES FOR COVID-19 DETECTION
Most nations had to take measures to react to the sudden
and rapid outbreak of COVID-19 within a relatively short
period of time. According to [12], radiology departments
have started to focus more on preparedness rather than diag-
nostic capability, after sufficient knowledge was gathered
regarding COVID-19. The study in [5] stated the resemblance
of COVID-19 with other diseases caused by other coron-
avirus variants such as the severe acute respiratory syndrome
(SARS) and the middle east respiratory syndrome (MERS).
The importance of a tracking the lung condition of a recov-
ering coronavirus patient using CT scans was also mentioned
in the study. Chest imaging techniques were highlighted to be
a crucial technique for detecting COVID-19 by capturing the
bilateral nodular and peripheral ground glass opacities in the
lung radiograph images [13].

B. AI-BASED RADIOGRAPH ANALYSIS
The application of AI, for early detection, diagnosis, moni-
toring, and developing vaccines for COVID-19, were elabo-
rately discussed in [14]. Several research work exist in the
literature that exploited various deep learning techniques on
X-ray data to demonstrate reasonable performance [15]–[18].
In [19], a model, referred to as DarkCovidNet, for early
detection of COVID-19 was proposed which utilized 17 con-
volutional layers to perform binary and multi-class classi-
fication involving normal, COVID, and pneumonia cases.
While the model reported an overall accuracy of 98.08%
for the binary classification and 87.02% for multi-class clas-
sification, our reconstruction of the DarkCovidNet using
multiple datasets indicated overtraining and much lower

accuracy when non-biased test data are presented to the
model. Several other papers applied deep learning models on
CT scan images to detect and monitor COVID-19 features
in the radiograph data [20], [21]. Ardakani et al. in [22]
employed implemented the state-of-the-art CNN architec-
tures such as AlexNet, ResNet-18, ResNet-50, ResNet-101,
SqueezeNet, VGG-16, VGG-19, MobileNet-V2, GoogleNet,
and XceptionCT to differentiate between COVID-19 and
non-COVID-19 cases. Their experiments showed that deep
learning could be considered as a feasible technique for iden-
tifying COVID-19 from radiograph images. To avoid poor
generalization and overfitting due to lack of COVID-19 sam-
ples in available datasets, a GAN model was used in [23]
to generate synthetic data, which achieved a dice coefficient
of 0.837. The applicability of GAN for COVID-19 radiograph
data synthesis can be confirmed from the broader spectrum of
GAN applications on various medical data according to the
survey in [24]. The survey identified various unique proper-
ties of GAN such as domain adaptation, data augmentation,
and image-to-image translation that encouraged researchers
to adopt it for image reconstruction, segmentation, detection,
classification, and cross-modality synthesis for various med-
ical applications.

III. PROBLEM STATEMENT
With the rapidly surging pandemic, the demand for efficient
COVID-19 detection has dramatically increased. The lack of
availability of COVID-19 viral and antibody test-kits, and the
time required to obtain the test results (in the order of days
to weeks) in many countries are posing a great challenge in
developing/rural areas with less equipped hospitals or clinics.
For instance, in many developing countries, hospitals do
not have sufficient COVID-19 test-kits, and therefore, they
require the assistance of more advanced medical centers to
collect, transport, and test the samples. This creates a bot-
tleneck in mass testing for COVID-19. Therefore, to meet
the daily demand for an enormous amount of new test cases,
an automated and reliable complementary COVID-19 detec-
tion modality is necessary, particularly to confront the sec-
ond wave of the pandemic. Radiograph image utilization for
initial COVID-19 screening may play a pivotal role in areas
with inadequate access to a viral/antibody testing. In several
studies, CT scans were used for analyzing and detecting fea-
tures of COVID-19 [25] due to higher resolution of features
of ground glass opacities and lung consolidation compared
to chest X-ray images. However, due to infection control
matters associated with patient transport to CT suites, rela-
tively high cost (for procurement, operation and maintenance
of CT equipment), and the limited number of CT machines
in developing/rural areas, CT scan is not a practical solu-
tion for detecting COVID-19 [10]. On the other hand, chest
X-ray can be employed to identify COVID-19 or other pneu-
monia cases as a more practical and cost-effective solution
because X-ray imaging equipment are pervasive at hospital
ERs, public healthcare facilities, and even rural clinics. Even
for trained radiologists, detecting chest X-ray images pose
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challenges to distinguish between features of COVID-19 and
community acquired bacterial pneumonia [10]. Moreover,
the influx of patients into hospital ERs during pandemic,
manual inspection of radiograph data and accurate decision
making can lead to a formidable tradeoff between detection
time and accuracy that can overwhelm the radiologist depart-
ment. Therefore, an automated classification technique needs
to be designed. As the second wave of COVID-19 is expected
in many countries, preparedness to combat the pandemic
will involve increasing use of portable chest X-ray devices
due to widespread availability and reduced infection control
issues that currently limit CT utilization [10]. In the following
section, we address the aforementioned problem and present
a deep learning-based approach to effectively solve the prob-
lem.

FIGURE 2. Our customized generative adversarial network (GAN) model
for data augmentation.

IV. PROPOSED DEEP LEARNING-BASED CHEST
RADIOGRAPH CLASSIFICATION (DL-CRC) FRAMEWORK
Deep learning in smart health analytics is a prominent inter-
disciplinary field that merges computer science, biomedi-
cal engineering, health sciences, and bioinformatics. Various
medical imaging devices have a dedicated image and signal
analysis and processing module, on which deep learning-
based models can be implemented to provide accurate, real-
time inferences. Motivated by this, we conceptualize a deep
learning-based chest radiograph classification (DL-CRC)
framework, which can used for automating COVID-19 detec-
tion from radiograph images.

Our proposed DL-CRC framework consists of two compo-
nents: (i) the data augmentation of radiology images (DARI)
algorithm, and (ii) a deep learning model. Our proposed
DARI algorithm generates synthetic X-ray images by adap-
tively switching between a customized GAN architecture
and generic data augmentation techniques such as zoom and
rotation. The synthetic X-ray images are combined with the
actual radiograph data to build a robust dataset for efficiently
training the deep learning model, i.e., the second component

of our DL-CRC framework. A custom CNN architecture is
designed to construct the deep learning model to carry out
automated feature extraction and classification of the radio-
graph images.

Next, the details of the proposed DARI algorithm and
custom CNN model of our envisioned DL-CRC framework
are presented, followed by a rigorous complexity analysis of
the proposed methodology in training and inference phases.

A. PROPOSED DARI ALGORITHM
Here, we propose an adaptive data augmentation of radio-
graph images algorithm, referred to as DARI. Our proposed
DARI algorithm performs an on-demand generation of syn-
thetic X-ray images, triggered by class imbalance in the orig-
inal dataset. The generated synthetic images are combined
with actual radiograph images to construct a robust training
dataset. This is essential, in the COVID-19 context, where
enough representative samples of COVID-19 chest X-ray
images are not sufficient in the currently available datasets.
DARI leverages a custom GAN model, as depicted in Fig. 2,
along with generic data augmentation techniques such as
zoom and rotation. The GAN model is invoked if the number
of samples in a class is less than a certain pre-defined thresh-
old (δ). In the GAN model, a generator (G) and a discrimi-
nator (D) are trained simultaneously until the discriminator
is unable to separate the generated data samples from the
original ones. The generator receives random noise as input
and produces chest X-ray images, which are, in turn, received
by the discriminator. Thus, the GAN can be regarded as a
two-player minimax game between a discriminative model
(D) and a generative model (G) [26]. By exerting a noisy
sample nx with the data distribution of p(nx) as the input,
the generative network G outputs new data X ′, distribution
of which, denoted by p(X ′), is supposed to be identical to that
of the distribution of original data, p(X ). The discriminative
network,D, is employed to distinguish the true data sample X
with the distribution of p(X ) and the generated sampleX ′ with
a distribution of p(X ′). Then, this adversarial training process
can be formulated as follows,

minG maxDV (D,G) = EX∼p(X )log(D(X ))
+Enx∼p(nx )log(1− D(nx)). (1)

We customize the GAN model for chest X-ray image
augmentation as follows. The generator is constructed with
a stack of ng hidden layers. Each layer comprises a dense
layer, followed by Leaky Rectified Linear Unit (LeakyReLU)
as the activation function. In each successive layer (ith) of the
generator, the number of neuron units (i.e., nodes) is twice
the number of nodes in the preceding layer. On the other
hand, in the discriminator model, it receives collections of
original (X ) and generated (X ′) X-ray radiograph data with
COVID-19 infected lung images. Here, the inputs to the dis-
criminator are X = [x1, x2, . . . xn] and X ′ = [x ′1, x

′

2, . . . x
′
n],

where each xi represents an original image while each x ′i
denotes an augmented chest X-ray image. Similar to the
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generator, the discriminator’s structure also consists of nd
hidden layers, and each ith layer contains a sequence of a
dense layer with LeakyReLU as the activation function [27].
A dropout layer is then included. Let pi denote the dropout
rate. The number of nodes in each ith layer is denoted by Di.
Note that Di = 1

2 · Di−1. The discriminator aims to optimize
the loss function by distinguishing generated images from the
original ones. Our custom GAN model is trained for ξmax
number of iterations, where ξmax ∈ Z+. The detailed steps of
our proposed DARI algorithm are presented in Algorithm 1.
Here, we either invoke the GAN or a more generic type of
data augmentation, based upon a given condition as illustrated
in Algorithm 1. This procedure takes two inputs: (i) type
of augmentation, and (ii) data for augmentation. For one
condition, the proposed GANmodel gets executed from steps
2 to 22. When the other condition is fulfilled, the generic data
augmentation is performed as described in steps 23 to 25,
which includes enlarging the image byZ quantity and rotating
by θ amount.

B. PROPOSED CUSTOM CNN MODEL FOR
COVID-19 DETECTION IN X-ray IMAGES
Next, we need to train a deep learning model which can take
advantage of the robust dataset obtained from our proposed
DARI algorithm in section IV-A. Since the problem can
be regarded as a classification task of normal, COVID-19,
and other abnormal cases (e.g., pneumonia), we investigate
the contemporary deep learning architectures suited for clas-
sification. In contrast with other variants of deep learning
architectures (i.e., long-short term memory (LSTM), deep
belief networks, and so forth) and extreme learningmachines,
CNNs are regarded as the most powerful deep learning
architecture for image classification. Therefore, we explore
the robust CNN models recently employed to gain rea-
sonable classification accuracy with chest X-ray data [19].
By applying the contemporary CNN models on the latest
dataset compiled from four public repositories, we realize that
their reported performances are constrained by overfitting
and influenced by biased test data. To address this issue,
we propose a two-dimensional (2-D), custom CNN model
for classifying X-ray images to predict COVID-19 cases as
depicted in Fig. 3. The 2-D CNN structure is utilized to learn
the discriminating patterns automatically from the radiograph
images.

The proposed CNN model consists of three components.
The first component is a stack of nc convolution layers while
the second segment consists of nd fully connected layers.
The final component is responsible for generating the output
probability. At first, the convolution layers (i.e., the first com-
ponent of the model) receive radiograph images (X ) as input,
identify discriminative features from the input examples, and
pass them to the next component for the classification task.
Each ith layer among the nc convolution layers consists of a
filter size of zi. Initially, the filter size is set to xir in the 1st

layer, and it is decreased by λ in each successive layer. In the

Algorithm 1 Data Augmentation of Radiograph Images
(DARI)
Input: type (type of data augmentation,

possible values ‘generic’,
‘GAN’), D (collection of data
for augmentation)

Output: γ (augmented sample data)
1 γ ← ∅

2 if (type=‘GAN’) then
3 Initialize ξmax (maximum number of

epochs), B (mini-batch size), and
naug (number of data to augment)

4 mg ← construct generator model as
depicted in Fig. 2

5 md ← construct discriminator model
as depicted in Fig. 2

6 foreach e ∈ ξmax do
7 for (i=1 to B) do
8 nx ← generate naug samples of

random noise to initialize
the generator

9 gi ← generate image by
passing nx to the generator mg

10 ri ← select random set of
samples from D

11 X∗ ← construct collection
from generated (gi) and
original samples (ri)

12 md ← update the discriminator
model by batch training using
X∗

13 end
14 nx ← generate naug samples of

random noise
15 mg ← update the generator model

parameters
16 if e=ξmax then
17 γ ← generate collection of

augmented images by using nx
18 foreach img ∈ γ do
19 save img to corresponding

directory
20 end
21 end
22 end
23 else
24 γ ← augment data by applying

zooming rate of Z and rotation of θ

on each item from data collection D
25 end
26 return γ

forward pass, the convolution operation is performed between
the input image and the filter coefficients using Eq. 2. Here,
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FIGURE 3. Proposed DL-CRC framework consisting of our envisioned
DARI algorithm and custom CNN model. (1) The test data is obtained by
splitting the original images that are not used for training. (2) DARI
algorithm adaptively uses GAN and generic data augmentation
techniques to generate synthetic chest X-ray images which are combined
with the remaining original radiograph images to construct a robust
training dataset. (3) The training input is passed to our customized CNN
model, which performs automated feature extraction and classification.

x lij and w
l
ij denote the output and the filter weights of the l th

layer, respectively.

x lij =
∑

i∈xir ,j∈xic

�(x l−1ij × w
l
ij). (2)

Hyper-parameter tuning is conducted to select the optimal
activation function, �, as shown in in Eq. 2. The activation
function considers a constant, denoted by α > 0.

Next, we apply a dropout of rate pi as the regularization
technique that will assist the network in evading overfit-
ting and achieve better model generalization by randomly
disregarding randomly selected neurons in the hidden lay-
ers [28]. To reduce the feature size and computational power
need, we introduce the max-pooling layer with a pool size
of ki = (k ir , k

i
c) in the hidden layers where ki is set to a

fraction µ of the initial dimension of the input xi. The max-
pooling layers assist the model in capturing abstract spatial
information more robustly and enhancing the model’s gen-
eralization ability of the model [29]. The output features of
the convolution layers are converted into a one-dimensional
(1-D) vector by flattening the layer, and then forwarded to the
stack of nd fully-connected or dense layers for the automated
classification stage. The number of nodes in the first dense
layer is equal to xir , and it is decreased by a factor of λ in each
successive ith layer with respect to the number of nodes in the
previous layer. The output of the nth dense layer is propagated
through a dropout layer of rate pi.
Finally, the output layer computes the probability of the

input xi belonging to each class. The learning is set to a
constant ηc throughout the training of the model. The clas-
sification task receives radiograph samples as input X =
[x1, x2, . . . xn], and outputs a sequence of labels Y =

[y1, y2, . . . yn]. Here, each xi corresponds to the pixel values
of the input images. On the other hand, each yi denotes a
distinct class. Each xi has the dimension of (xir , xic , ϑi). In this
case, xir , xic , and ϑi denote the image height, width, and the
number of channels for the ith sample. The augmented and
real samples are passed to the training data during the training
phase, and some part of the real samples are considered as the
test dataset during the testing phase.

C. TRAINING AND RUNNING PHASES OF PROPOSED
DL-CRC
From hereon, we discuss the steps of the training and running
phases of our proposed DL-CRC algorithm.

The steps of the training phase of our proposed DL-CRC
framework is presented in Algorithm 2. The training stage of
DL-CRC commences from Algorithm 2, which takes C , k , B,
λ, and δ as inputs to our custom CNNmodel. The description
of each input parameter is provided in the input section of the
algorithm. Steps 1 to 3 of Algorithm 2 initialize the required
parameters. In steps 4 to 10, all data are loaded from location,
and the test data are split by the ratio of λ to be utilized in the
running phase for evaluating the model. Initially, all data are
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Algorithm 2 Training Phase (DL-CRC)
Input: C (collection for training,

testing, and validation data
location), k (number of fold
in cross-validation), ξ

(number of epoch), B
(mini-batch size), λ (test
ratio), δ (threshold value for
class imbalance ratio), N
(total number of samples
across all classes)

Output: Mt (Trained model)
1 Mt ← ∅

2 X ← []
3 Y ← []
4 X∗ ← read all data from C[train]
5 if (len(X∗)> 0) then
6 I∗ ← generate random values in

range[0, λ× len(X∗)]
7 foreach index i ∈ I∗ do
8 move C[train]+ X∗[i] to C[test]+ X∗[i]
9 end
10 end
11 foreach class ci ∈ C[train] do
12 x∗i ← read all data from ci
13 if (len(x∗i )/N < δ) then
14 x∗i += DARI(‘gan’, x∗i )
15 end
16 foreach class data ∈ x∗i do
17 X+=data
18 Y+=ci
19 end
20 end
21 for (fold no. j=1 to k) do
22 Xtrain, ytrain, Xval, yval ← set data and

labels of jth fold from X, Y
23 Xtrain += DARI(‘generic’, Xtrain)
24 Xval += DARI(‘generic’, Xval)
25 Mt ← update the CNN model depicted

in Fig. 3 by training it using Xtrain
for ξ and B

26 evaluate Mt by using Xval, yval
27 end
28 save the model parameters of Mt
29 return Mt

stored in the training directory. Hence, they are loaded from
the location of training data. Steps 11 to 20 are responsible for
checking whether any data augmentation is required or not,
and accordingly preparing all the training and validation data
from the dataset. Specifically, steps 13 to 15 check whether
the training data in any class is less than a predefined thresh-
old δ or not, based on the condition if it can exploit the

Algorithm 3 Running Phase (DL-CRC)
Input: testPath (location of test

images)
Output: ypred (prediction of testing

samples)
1 Xtest ← read all data from testPath
2 Mt ← load the saved pre-trained model
3 yprob ← predict the probabilities of
each data from Xtest

4 ypred ← argmax(yprob)
5 return ypred

proposed data augmentation of radiograph images (DARI)
algorithm described in Algorithm 1. Our customized CNN
model is trained in steps 21-27, utilizing the model structure
illustrated in Fig. 3. At the penultimate step, the trained
model (Mt ) is stored for further testing and validation. Finally,
in step 29, the algorithm returns the trained model.

Next, in the running phase, the CNNmodel of our proposed
DL-CRC framework follows Algorithm 3. It receives the
location of sample data for inference and returns the predicted
class labels (ypred) for the corresponding data. After reading
the data from step 1, the pre-trained model (Mt ) is loaded in
the following step. In step 4, the model Mt is employed to
predict the probabilities for a sample test data to be in each of
the possible classes. Finally, in the last step, the class with the
maximum probability is identified for each sample data, and
then returned as a collection of predictions for all the data.

D. COMPUTATION OVERHEAD ANALYSIS
In the remainder of the section, we rigorously analyze the
computational overhead of our proposed model in terms of
time-complexity. The analyses are divided into training and
running phases.

1) TRAINING PHASE
The training phase includes both our proposed DARI (Algo-
rithm 1) for data augmentation and training our customized
CNN model (Algorithm 2). Particularly for the analysis
of Algorithm 2, we consider that the appropriate hyper-
parameters of our CNN model are already selected after
hyperparameter tuning. We partition the analysis of the train-
ing phase into three main segments, i.e., DP (required data
preparation), DA (data augmentation), and CNN (the execu-
tion of the CNN model). Therefore, the total computational
complexity can be expressed as follows.

C(T ) = O(DP)+ O(DA)+ O(CNN). (3)

In the first three steps (1-3) of Algorithm 2, where initial-
ization is conducted, the time complexity can be denoted as
constant time, O(1). In the 4th step, all the data from the train
path are read. So, if there are fn number of data available to
train, the time complexity will beO(fn). Steps 5-9 split the test
data by the λ ratio. Therefore, the complexity associated with
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these steps is O(λ). Hence, the computational complexity of
the data preparation phase can be denoted as:

O(DP) = O(3)+ O(fn)+ O(λ) ≈ O(fn)+ O(λ). (4)

The data augmentation part of the complexity analy-
sis mainly consists of our proposed DARI (Algorithm 1),
invoked in steps 13-15 of Algorithm 2. This requires loading
data from each class in step 12 that results in the computa-
tional complexity of O(cl × f in). Here, cl denotes the number
of classes while f in refers to the number of data read from
ith class. Then, through steps 13-15, the DARI algorithm is
invoked and its complexity is denoted as ODARI. Suppose
that ng and nd denote the numbers of layers in the genera-
tor and discriminator, respectively. Then, the computations
required by the generator and the discriminator models can
be denoted as Gc (Eq. 5) and Dc (Eq. 6), respectively:

Gc = 2(
ng∑
i=1

x ig × w
i
g + b

i
g), (5)

Dc = 2(
nd∑
i=1

x id × w
i
d + b

i
d ). (6)

Combining the previous two expressions of Gc and Dc,
the overall overhead of DARI (Algorithm 1) is evaluated as
follows.

O(DARI) = O(cl×ξmax×B×(Gc+Dc))+O(cl × naug),

(7)

where naug, ξmax, andB denote the number of data to augment,
maximum number of epochs, and mini-batch size, respec-
tively.

In steps 16-19 of the training algorithm, assuming the
length of each x∗i as lx

∗
i , the computational overhead isO(lx∗i ).

Therefore, the overall complexity of the data augmentation
stage can be expressed as:

O(DA) = O(cl × f in)+ O(DARI)+ O(lx
∗
i ). (8)

From steps 21 to 27, the training algorithm invokes the
adopted 2-D CNN structure. The computational overhead for
this part can be derived from Eq. 9:

O(CNN) = O(CNNcl)+ O(CNNdl), (9)

where O(CNNcl) and O(CNNdl) denote the computational
overheads in the convolutional layers and dense layers,
respectively. If we consider for a layer i, the number of filters
in the ith layer zi, input image x i with the dimension of
(x ir , x

i
c) and kernel k i with the dimension of (k ir , k

i
c), then the

computational complexity of the convolutional layers can be
expressed as:

O(CNNcl) = O(zi × (
nc∑
i=1

(x ir × x
i
c × k

i
r × k

i
c))). (10)

After the convolutional layers, for n layers, assuming wi

and bi are the weight vector and the bias of ith layer, the com-
plexity of the fully connected layers is given by:

O(CNNdl) = O(
nd∑
i=1

(x ir × x
i
c × w

i
+ bi)). (11)

Hence, combining the aforementioned equations, to final-
ize the computational complexity of the proposed CNN,
we can re-write Eq. 9 as follows:

O(CNN) = O(zi × (
nc∑
i=1

(x ir × x
i
c × k

i
r × k

i
c)))

+O(
nd∑
i=1

(x ir × x
i
c × w

i
+ bi)). (12)

Finally, to determine the total time complexity of the train-
ing phase of the DL-CRC algorithm, we can substitute the
corresponding values from Eqs. 4, 8, and 12 into Eq. 3.

2) RUNNING PHASE
The running phase is conducted to infer classes of each test
data using the pre-trained model and then evaluate the model.
As shown in Algorithm 3, if we consider the number of test
data to be ntest, the computational overhead in the testing
phase can be given by:

C(R) = O(ntest). (13)

Eq. 13 demonstrates that the model is able to pro-
duce results in linear time. This implies that our proposed
DL-CRC framework comprising DARI algorithm and the
customized CNN model can be deployed on clinical-grade
X-ray machines with image processing capability, computing
resources having access to digitized radiograph images from
analog X-ray machines, and even portable X-ray machines
in movable booths and trucks with adequate shielding and
power supply. Thus, our model is viable for automating the
radiograph image classification with fast turn-around time for
COVID-19 detection.

V. PERFORMANCE EVALUATION
To evaluate the performance of our proposed DL-CRC frame-
work, in this section, we describe the collected datasets used
to train our customized CNN model, followed by extensive
experimental results and discussion.

A. DATASET PREPARATION
The dataset employed for the supervised radiograph image
classification using our proposed DL-CRC framework con-
sists of three classes: COVID-19, pneumonia, and normal
chest X-ray images. We collected the dataset using four dif-
ferent existing datasets of Posteroanterior (PA) chest X-rays,
and combined those into a single dataset to utilize it for the
classification purpose.We developed the dataset fromGitHub
for COVID-19 X-rays [30], X-ray data collected in this study
for cases of pneumonia, and normal images [31], CheXpert
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TABLE 1. Brief description of the used dataset for X-ray image
classification.

dataset collected by Stanford ML group [32], and the rest of
the normal and pneumonia chest X-ray images were collected
from the dataset in [33]. Table 1 lists the initial class distri-
bution of the collected chest X-ray dataset. The number of
samples collected for COVID-19 is significantly lower than
the other two classes because this is a novel disease, and at this
moment, data regarding COVID-19 is challenging to obtain.
In other words, the number of COVID-19 class samples in
the merged dataset is lower than the threshold value for class
imbalance ratio, δ. Therefore, to overcome the effect of the
low amount of COVID-19 data, we employed our proposed
DARI algorithm to increase the number of samples. We then
applied our proposal along with contemporary CNN models
to verify which one yields the best COVID-19 detection
performance.

B. PERFORMANCE INDICATORS
To evaluate the classification results, we primarily adopted
the combination of three measurement indicators, accuracy,
weighted precision, and weighted F1 score. The accuracy of
a test is its ability to correctly differentiate the three cases.
Assume that C denotes the number of classes in the consid-
ered classification task, |yi| refers to the number of samples
in the ith class, and |Y | indicates the total number of samples
in all the classes. Then, the accuracy can be represented as
follows.

Accuracy =

∑C
i=1(TPi)
|Y |

. (14)

Next, we define the weighted precision. Our aim is to
measure how precise the model is in terms of the number of
samples actually present in the ith class out of those predicted
to be in that class. This number is multiplied by the weight of
the ith class to obtain the weight precision as follows.

Weighted precision =
C∑
i=1

(
|yi|
|Y |
×

TPi
TPi + FPi

). (15)

Next, the weighted F1 score is defined as the weighted
average of precision and recall. Although we did not use
recall directly as a performance measure, because of using
the F1 score, it is implicitly used. The weighted F1 score can
be obtained as follows,

Weighted F1 score =
C∑
i=1

(
|yi|
|Y |
× 2

Pi × Ri
Pi + Ri

). (16)

Here, Pi and Ri are the precision and recall of ith class,
respectively. Pi can be expressed as TPi/(TPi + FPi) and

Pi can be denoted as TPi/(TPi + FNi). TPi, FPi, and FNi
denotes True Positive, False Positive, and False Negative
for ith class respectively. TPi indicates the number of cases
correctly identified to be in the ith class; FPi represents the
number of cases incorrectly identified to be in the ith class,
and FNi denotes the number of cases incorrectly identified
as a class other than the ith class. In addition, for evaluating
our results more comprehensively we also employed class
specific classification accuracy (i.e., normal, COVID-19, and
pneumonia detection accuracy) for all three classes.

C. RESULTS AND DISCUSSION
We have followed a systematic approach by applying differ-
ent techniques to find the optimal model for the classification
task. All the experiments were conducted on a workstation
with Intel Core i7, 3.00GHz CPU, 16 GB RAM, powered
by Nvidia RTX 2060 Graphics Processing Unit (GPU). The
simulations were implemented employing Python’s Keras
and TensorFlow library. The visualization of the experimental
results was achieved by utilizing Python’s Matplotlib library.
During the simulations, we have resized the image samples by
setting both xir and xic to 100 to keep the images consistent in
terms of size. The number of channels of the samples (ϑi) was
set to 1 as the input images were grayscale in nature. The val-
ues of xir and xic were selected based onmanual tuning. Using
our proposedDARI algorithm, on-demand data augmentation
is performed by adaptively employing GAN, rotation (θ) of 5
degrees, and zooming (Z ) rate of 0.50. The value of δ was
set to 0.1. We systematically constructed three experimental
scenarios to conduct a comprehensive performance compari-
son of our proposed DL-CRC framework consisting of DARI
algorithm and our customized CNN models with the state-
of-the-art CNN models which have been recently reported to
provide reasonable accuracies for COVID-19 detection. The
three scenarios, constructed in an incremental fashion, are
described below.

1) In our first scenario, we designed our customized deep
CNNmodel architecture depicted in Fig. 3. The param-
eters of the model were selected based on the results of
the grid search technique.

2) In the second scenario, we implemented the proposed
DARI algorithm to analyze the effect of the generic and
GAN-based data augmentation to train the CNN-based
model in a robust fashion to significantly improve the
COVID-19 detection accuracy.

3) In the third and final scenario, we trained several state-
of-the-art CNN models using different deep learning
paradigms on our compiled dataset. The same test data
(unknown chest X-ray original images with normal,
COVID-19, and pneumonia cases) were presented to
the customized CNN model of our proposed DL-CRC
framework as well as the contemporary CNN models.
The results were used to compare the performances of
our proposal and these contemporary models in terms
of COVID-19 and pneumonia detection efficiency.
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FIGURE 4. Performance in terms of accuracy for different combinations of
activation functions and optimizers.

FIGURE 5. Performance in terms of precision for different combinations
of activation functions and optimizers.

FIGURE 6. Performance in terms of F1 score for different combinations of
activation functions and optimizers.

In the first scenario, we implemented the customized CNN
model of our proposed DL-CRC framework and carried out
a grid search to achieve the optimal model parameters (i.e.,

FIGURE 7. Performance comparison for diverse ratios of the
COVID-19 X-ray images generated by the GAN with respect to the existing
number of samples in the dataset.

the best activation functions and optimizer). It is worth not-
ing that other customized CNN models revealed a perfor-
mance bottleneck in terms of validation accuracy and we
found the model in Fig. 3 to be the most lightweight yet
efficient for automating the chest X-ray classification task.
Figs. 4, 5, and 6 demonstrate the results obtained from the
hyper-parameter tuning in terms of accuracy, precision, and
F1 score, respectively. These performances were extensively
evaluated across six optimizers (Stochastic Gradient Descent
(SGD), Adaptive Moment Estimation (Adam), Root Mean
Square Propagation (RMSProp), Adaptive Delta (AdaDelta),
Nesterov and Adam (Nadam), and Adaptive Gradient Algo-
rithm (Adagrad)) and five activation functions (tanh, sig-
moid, Scaled Exponential Linear Unit (SELU), Rectified
Linear Unit (ReLU), and Exponential Linear Unit (ELU)). As
depicted by the results in these figures, SELU demonstrated
better performances on average when compared with the
other activation functions. However, the best performance
was exhibited when ELU is adopted as the activation function
with the value of constant α = 1.0 and the optimizer set to
Adagrad with the learning rate of 0.001. For this first exper-
imental setting for selecting the optimal hyper-parameters
of the deep learning-based model, the mini-batch size (B)
was set to 8, and the number of epochs (ξ ) was set to 20.
With this configuration, the validation accuracy, precision,
and F1 score were found to be 97.25%, 97.24%, and 97.21%,
respectively. Therefore, for further analysis, we applied this
configuration in the customized CNN model of our DL-CRC
framework. Furthermore, in the max-pooling layer of our
proposed CNN architecture, we conducted manual parameter
tuning, and the pool size ki was assigned asµ, whereµ = 2%
of the initial size of the input xi.

In the second experimental scenario, as the number of
COVID-19 samples in the collected dataset was lower than
the pre-defined threshold δ, we applied our proposed DARI
algorithm to increase the number of COVID-19 samples so
that the model can be trained with a robust training data
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FIGURE 8. Confusion matrix of testing phase employing 5-fold stratified cross-validation.

and eventually predict positive COVID-19 cases with high
accuracy. In Fig. 7, we altered the proportions for our cus-
tomized GAN model in the DARI algorithm with respect to
the original sample size of the COVID-19 class. The ratios
of GAN-generated samples of the proposed approach were
varied from 50% to 200% with respect to the number of
COVID-19 examples in the original dataset. The number of
iterations for producing the augmented samples using the
GAN-based method was set to 200. Among the proportions
mentioned earlier, the COVID-19 detection performance of
our customized CNN model was found to be the highest
(with an accuracy of 93.94%) when the number of newly
generated samples was 100% of the size of the original
COVID-19 samples. Therefore, we picked this configura-
tion to be used in our conducted experiments in the next
scenario.

After producing the augmented samples for the COVID-19
class, we analyzed the effect of combining the adaptive
generic data augmentation and GAN-based DARI algorithm
with the CNN architecture to fully implement and fine-tune
the DL-CRC framework, and compared the performance with
the base CNN model only (i.e., without adopting DARI
algorithm). The experiment was conducted utilizing a five-
fold stratified cross-validation. Using the stratification tech-
nique, the samples are rearranged so that each fold has a
stable representation of the whole dataset by maintaining
the percentage of samples for each class [34]. In our third
experimental setup, the number of epochs (ξ ) was set to
100, and the mini-batch size (B) was set to 8. The num-
ber of convolutional layers, nc, was set to five. The num-
ber of fully-connected/dense layers, nd , was also fixed to
five. Note that these hyperparameter values were manually
tuned. To analyze the results more critically in terms of
COVID-19 detection efficiency, in this experimental setting,
we also investigated the normalized and non-normalized val-
ues of the confusion matrices of our customized CNN model

TABLE 2. Performance comparison of the proposed DL-CRC and CNN
with generic and GAN-based data augmentation.

without (i.e., CNN-only model) and with the proposed DARI
algorithm (i.e., the complete DL-CRC framework). Fig. 8
represents the normalized confusion matrix where the pro-
posed CNN model is implemented without applying the data
augmentation, and Fig. 8 depicts the same for the combined
CNN and DARI algorithm. Despite similar performances of
both approaches, the normalized confusion matrix demon-
strates that our proposed DL-CRC framework is much more
robust for classifying positive COVID-19 and pneumonia
cases. The proposed DL-CRC exhibited 93.94% and 88.52%
accuracies while detecting positive COVID-19 and pneu-
monia cases, respectively. The encouraging classification
performance indicates that our proposed deep learning-
based DL-CRC framework is able to classify the radio-
graph imageswith high efficiency, specifically for COVID-19
detection.

Furthermore, we analyzed the impact of generic and GAN-
based data augmentation separately combined with our cus-
tomized CNN model and compared the COVID-19 detection
accuracy with the proposed DL-CRC framework. Table 2
exhibits the simulation results, which proves that both the
generic and GAN-based data augmentation had significant
influence in enhancing the COVID-19 detection efficiency.
The simulation results in the table show that our CNN-
only base model achieved 54.5%, CNN with generic data
augmentation obtained 63.4%, and CNN with the proposed
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TABLE 3. Performance comparison of our proposed DL-CRC architecture
with the existing CNN architectures for all three classes.

GAN-based data augmentation delivered 84.5% COVID-19
detection accuracy. On the other hand, the proposed DL-CRC
framework demonstrated the highest COVID-19 detection
accuracy (93.94%). This good performance is attributed to
the combination of our customized CNN model with the pro-
posed DARI algorithm where both generic and GAN-based
data augmentation are adaptively performed, Therefore, it is
evident from these results that our proposed DL-CRC frame-
work made the customized CNN model much more robust
with DARI algorithm.

In the third experimental scenario, we compared the perfor-
mance of our customized CNN model with the performances
of the state-of-the-art CNN models such as Inception-Resnet
V2, Resnet, and DenseNet. The reason behind choosing these
contemporary models is their good performances reported
in the recent literature for COVID-19 detection. It is worth
noting that Inception-ResNet v2 and DenseNet belong to the
depth-based and multi-path-based CNN paradigms, respec-
tively. On the other hand, ResNet combines both depth-
based and multi-path-based CNN architectures. Table 3
demonstrates the comparative analysis, which indicates
the efficiency of our proposed DL-CRC framework in
terms of COVID-19 and pneumonia detection using chest
X-ray images. Our proposed model, outperformed ResNet,
Inception-ResNet v2, and DenseNet. Although Densenet
achieves 98.01% prediction performance for normal test
cases, its accuracy is only 72.42% for pneumonia detection
while it exhibits the poorest performance of 60.61% for
identifying COVID-19 cases. This implies that multi-path-
based structure, although reported in recent work, is not suit-
able for COVID-19 detection. On the other hand, Inception
ResNet v2, using the depth-based CNN modeling paradigm,
achieves improved COVID-19 detection accuracy (69.70%).
The combination of these two modeling paradigms is incor-
porated in ResNet, which is able to predict test cases having
COVID-19 samples slightly elevated accuracy of 72.72%.
On the other hand, our proposed DL-CRC framework, com-
bining our envisioned DARI algorithm and customized CNN
model, is able to detect the COVID-19 cases with a sig-
nificantly high accuracy of 93.94%. Note that the pneumo-
nia (the other abnormal case) present in the test dataset is
also detected with much higher accuracy (88.52%) compared
to the contemporary models. Even though the performance
slightly drops for normal case identification, the accuracy
is still close to 96% in case of our proposal. Furthermore,

in the final column of Table 3, the AUC (area under the ROC
(receiver operating characteristic) curve) values are also listed
for the proposed DL-CRC and contemporary models. The
AUC score of our proposed DL-CRC is 0.9525which demon-
strates the reasonable accuracy of identification across all
samples in the test data. Thus, the encouraging performance
of the proposed DL-CRC algorithm over prominent CNN
models clearly demonstrates that the proposed technique can
be useful for detecting COVID-19 and pneumonia cases with
a significantly high (i.e., reliable) accuracy.

Furthermore, we compare the performance of our proposal
with a recent custom model, referred to as DarkCovidNet
[19]. For multi-class classification, the accuracy of Dark-
CovidNet was reported to be 87.02%, which is considerably
lower than that of our proposed model’s performance
(93.94%), which we believe ensures the effectiveness of our
proposed model. In addition, we have conducted two-fold
experiments to validate and compare our proposed tech-
nique (DL-CRC) with DarkCovidNet. Table 4 demonstrates
the results obtained when our proposed model is tested on
both datasets, and the DarkCovidNet model is tested on
both datasets. Both models were trained by employing the
respective dataset used by the work in [19] and our cur-
rent work. These experimental results presented in Table 4
were produced after training the models for 25 epochs for
each case, and then the trained models were tested on both
datasets. Our proposed technique outperformed DarkCovid-
Net for detection accuracies for both normal and COVID-19
cases. In addition to the classification efficiency, our pro-
posed DL-CRC framework is more lightweight than that of
used in DarkCovidNet. Our customized CNN model of DL-
CRC consists of 5 convolutional layers while the DarkCovid-
Net model comprises 17 convolutional layers, making our
model’s training phase more lightweight and computationally
less expensive than the DarkCovidNet model.

Moreover, while some researches reported overall accu-
racy, they did not mention the COVID-19 detection accuracy.
On the other hand, most researches applying deep learning
techniques did not report the AUC score, which is a robust
representative performance metric for practically evaluating
the COVID-19 detection ability of the model. In summary,
by applying various contemporary CNN models (Inception
with Resenet V2, Resnet, Densenet) and a recent customized
model (DarkCovidNet) for COVID-19 detection on the latest
dataset compiled from four public repositories, we realized
that their reported performances are constrained by overfit-
ting and influenced by biased test data. Thus, the accuracy
bottleneck of those existing models justifies why we required
to build a customized CNN model in this research and com-
bine it with the DARI algorithm to perform robust training
and avoid overfitting to ensure high COVID-19 detection
accuracy and a significantly high AUC score.

VI. LIMITATIONS OF THE STUDY
In this section, we briefly discuss some limitations and pos-
sible future work that can be conducted to extend the study.
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TABLE 4. Comparison of the performance our proposed model with that of DarkCovidNet [19] on both datasets.

• Our study and experiments have been conducted at a
very critical stage and time-sensitive manner to com-
bat the COVID-19 pandemic with a proof-of-concept
COVID-19 using radiograph images. Despite compiling
datasets from multiple sources with X-ray images con-
taining COVID-19 samples, the used data was consid-
erably small in size. Therefore, synthetic images were
generated using our customized GAN-assisted data aug-
mentation technique that were used to train a robust
CNN model to perform binary (normal and COVID-19)
and three-way classification (normal, pneumonia, and
COVID-19) with significantly high accuracy. Due to
the lack of real datasets consisting of other diseases
(e.g., SARS, MERS, and so forth) which exhibit acute
respiratory distress syndrome (ARDS) and pneumonia-
like conditions in the lungs, more class labels were not
considered in our work.

• From a physician’s perspective, it is important to diag-
nose the severity of COVID-19. However, due to the lack
of labeled data, in this work, our model could not be
used to classify the various stages of COVID-19 such
as asymptomatic, mild, high and severe.

• The proposed technique performed efficiently when we
utilized it to analyze X-ray samples. However, the study
can be extended to evaluate the system’s performance
in COVID-19 detection while using other radiograph
techniques such as CT scan, lung ultrasound, and lung
PET (positron emission tomography) scan.

• The dataset used in this study is limited by only
one modality type, i.e., X-ray images containing
COVID-19 features. Further customization in our CNN
model will be required if we want to combine multiple
imaging modalities (e.g., lung CT scan, ultrasound, PET
along with X-ray images), other modalities (e.g., body
temperature, ECG, MCG, diabetes level, renal function,
and so forth), and patient parameters (e.g., age, gen-
der, ethnicity, travel history, and contact history) to per-
form an in-depth COVID-19 classification. Therefore,
a multi-modal input characterization and corresponding
AI model customization will be needed in the future for
interpreting and explaining the classification results.

VII. CONCLUSION
In this paper, we addressed the emerging challenges of
detecting COVID-19. Due to the shortage of efficient diag-
nosis equipment and personnel in many areas, particularly
in developing and/or rural zones, numerous people remain

non-diagnosed. This results in a substantial gap between the
number of confirmed and actual cases. Radiographs such as
chest X-ray images and CT scans have been demonstrated
to have the potential for detecting COVID-19 infection in
the lungs that can complement the time-consuming viral
and antibody testing. While CT scans have higher resolu-
tion or fine-grained details compared to X-ray images, X-ray
machines are pervasive in hospital emergency rooms, public
health facilities, and even rural health centers or clinics.
In addition, because X-ray is a much cheaper alternative
and an appealing solution for portability in mobile trucks
and COVID-19 screening booths with adequate shielding
and power supply, how to identify COVID-19 infection of
the lung by recognizing patterns such as glass opacities and
lung consolidations raised a formidable research problem,
that we addressed in this paper. Also, we discussed why
it is necessary to automate the X-ray image classification
to be well prepared for the next wave of COVID-19 pan-
demic, when radiologists and caregivers are expected to be
overwhelmed by patient influx as well as the need to self-
isolate in case they themselves become infected. This means
there is a pressing need to automate the classification of
radiographs, particularly X-ray images, to minimize the turn-
around time for COVID-19 detection. Therefore, to leverage
the availability and cost-efficiency of chest X-ray imaging,
in this paper, we proposed a framework called DL-CRC
(Deep learning-based chest radiograph classification) to auto-
mate COVID-19 detection that can complement existing viral
and antibody testing methods.

Our proposed DL-CRC framework consists of two parts:
the DARI algorithm (which adaptively employs a customized
generative adversarial network and generic data augmen-
tation techniques such as zoom and rotation) and a two-
dimensional convolutional neural network (CNN) model. We
employed a unique dataset for multiple publicly available
sources, containing radiograph images of COVID-19 and
pneumonia infected lungs, along with normal lung imaging.
The classification accuracy significantly increased to 94.61%
by adopting our proposed DL-CRC framework. Our pro-
posal was compared with existing deep learning models from
diverse categories such as depth-based CNN (e.g., Inception-
ResNet v2), multi-path-based CNN (DenseNet), and hybrid
CNN (ResNet) architectures. Extensive experimental results
demonstrated that our proposed combination of DARI and
custom CNN-based DL-CRC framework significantly out-
performed the existing architectures. Thus, incorporating our
proposed model with significantly high accuracy into the
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clinical-grade as well as portable X-ray equipment can allow
an automated and accurate detection of COVID-19 in the
scrutinized patients.
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