
Research Article
Modelling Features-Based Birthmarks for Security of End-to-End
Communication System

Meilian Li,1 Shah Nazir,2 Habib Ullah Khan ,3 Sara Shahzad,4 and Rohul Amin5

1School of Electronic and Electrical Engineering, Anhui Sanlian Univeristy, Hefei, Anhui 230601, China
2Department of Computer Science, University of Swabi, Ambar, Khyber Pakhtunkhwa 23430, Pakistan
3Department of Accounting and Information System, College of Business and Economics, Qatar University, Doha 2713, Qatar
4Department of Computer Science, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
5Department of Mathematics, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan

Correspondence should be addressed to Habib Ullah Khan; habib.khan@qu.edu.qa

Received 12 May 2020; Revised 30 May 2020; Accepted 4 June 2020; Published 29 June 2020

Academic Editor: Iqtadar Hussain

Copyright © 2020Meilian Li et al.+is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Feature-based software birthmark is an essential property of software that can be used for the detection of software theft andmany
other purposes like to assess the security in end-to-end communication systems. Research on feature-based software birthmark
shows that using the feature-based software birthmark joint with the practice of software birthmark estimation together can
deliver a right and influential method for detecting software piracy and the amount of piracy done by a software. +is can also
guide developers in improving security of end-to-end communication system. Modern day software industry and systems are in
demand to have an unbiased method for comparing the features-based birthmark of software competently, and more concretely
for the detecting software piracy and assessing the security of end-to-end communication systems. In this paper, we proposed a
mathematical model, which is based on a differential system, to present feature-based software birthmark.+emodel presented in
this paper provides an exclusive way for the features-based birthmark of software and then can be used for comparing birthmark
and assessing security of end-to-end communication systems.+e results of this method show that the proposed model is efficient
in terms of effectiveness and correctness for the features-based software birthmark comparison and security assessment purposes.

1. Introduction

Software piracy is considered to be a foremost anxiety for the
industry of software. Software piracy is done due to the large
growth of Internet and software industry. Wide-ranging
research [1] into the way to do piracy of software detection
has encouraged the progress of techniques such as water-
marking in software, fingerprints, and recently the birth-
mark of software. Birthmark of software is inherent
characteristic or property of software to be effectively used
for theft of software and detection of software piracy.
Software watermark and fingerprint have been used for a
long time with the realization but these techniques have
some limitations. Some of the researchers and practitioners
of industry are using forward-looking versions of software
watermark [1–12], fingerprints [13, 14], software clone

[15, 16], and software birthmark [17–29]. Detection of
plagiarism is relevant area to these mentioned software
detection methods which are used for source code theft and
discovery of similarities among the original and duplicated
source codes [30–35]. Watermark of software is used to
express the proprietorship of a software. +e watermarks
add some supplementary code or detail information to the
existing software to show the ownership. Software finger-
print is used to find the intellectual property. Cloning of
software is done by copy-past of source code of copyrighted
software that may be in parts or full in another version of the
software. +e methods of clone detection of software are
used to sense the piracy in such cases. Software birthmark is
considered to be the recently used technique for the software
piracy detection. Birthmarks of software use the inherent
characteristics or software properties to identify the

Hindawi
Security and Communication Networks
Volume 2020, Article ID 8852124, 9 pages
https://doi.org/10.1155/2020/8852124

mailto:habib.khan@qu.edu.qa
https://orcid.org/0000-0001-8373-2781
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8852124

originality of software. Birthmark similarities of two soft-
ware programs show the extent of piracy done among the
software.

+e concept of birthmark of software is offered for the
similar determination of theft identification of software and
detection of piracy. Birthmark of software is till now rec-
ognized to be resilient to any obliteration or obfuscation
technique(s). Several researches have been accomplished to
recognize diverse types of birthmark of software
[20, 24–27, 29, 36–40]. Nazir et al. [36] offered the strategy of
feature-based software birthmark and a proper estimation
process for birthmark of software [37]. +ough birthmark of
software has been extensively deliberated in research from
several viewpoints of the area of software piracy and de-
tection of theft, yet there is no objective measure to compare
birthmarks of software efficiently for the detection of piracy
and to assess the security of end-to-end communication
systems. +e aim of the proposed work is to deliver a
mathematical model for the purpose of comparison of
feature-based birthmark of software and to assess the se-
curity of end-to-end communication systems. +e proposed
model is based on differential equations system and uses the
features of birthmark, presented by Nazir et al. [36] and can
be assessed for the comparison purpose of features-based
birthmark of another (duplicate) software and assessment
purpose of the security of end-to-end communication sys-
tems.+ese comparisons will ultimately endorse or reject the
piracy performed in software and security changes that
occurred in the applications.

+e organization of the paper is as follows: Section 2 of
the paper presents related work done for software birthmark
and detection of piracy. Section 3 gives the details of the
mathematical model used for the proposed research, with
logic of using mathematical model for birthmark compar-
isons.+is section further provides explanation for the use of
differential equations as system model. +e results and
discussion of the proposed research are discussed in Section
4.+is section further discusses the case study of themethod.
+e paper concludes in Section 5.

2. Related Work

Software industry and productions are facing with a dreadful
problem of piracy and changes of security in software. On
the other hand, the pirates of software make vast sums of
money from the trade performed in piracy and changes in
security of software. According to the report of Business
Software Alliance (BSA) [41] of year 2013, about 43% of
software programs that are configured on personnel com-
puter systems in the globe were pirated and not appropri-
ately licensed. +e marketable value of these unlicensed
software programs was about 62.7 billion dollars. Taking this
point further, Myles and Collberg [29] outlined the three
foremost threats to industry of software. +ese threats in-
clude the illegal re-selling of the legitimate software, mali-
cious reverse engineering, and software tampering. +e
industries of software adopt diverse practices to trace the
theft of software. Among these practices, the software
birthmark is one of the techniques which are used for the

detection of pirated software and by the assistance of which
the pirated or duplicated version of the software would be
traced. +e software birthmark types and history could be
taken at length. Tamada et al. [42] designed the very first
birthmark method which is based on four types of birth-
mark; these birthmarks are constant values in field variables
(CVFV), inheritance structure (IS), sequence of method calls
(SMC), and used classes (UC). +is technique of birthmark
was effectively used by the software industry for the purpose
of detection theft of software. Myles and Collberg [29]
suggested a method of “Whole Program Path Birthmark.”
+is method is based on the whole control flow of the
program. +e properties of resilience and credibility were
used to assess the effectiveness of the method. +e method
further reveals that the WPPB is more resilient than the
existing methods of birthmark. Zeng et al. [43] proposed a
framework of semantic-based abstract interpretation for
software birthmark. Mahmood et al. [44] proposed a
method-based similarity level for software birthmark. By
help of the proposed method, the elements of code and their
properties can be found. +is method traces the modifica-
tion occurring in the program.Wang et al. [45] suggested the
operand stack dependence-based static software birthmark
for the difficulty of semantic lost when mining birthmark
with the help of k-gram algorithm.

Moreover, through offering different types of birthmark,
several researchers have provided some case studies for the
work of their analysis and evaluation they performed. Choi
et al. [23] analyzed the static API-based birthmark of
software for binary executable ofWindows and compared 49
executables. +ey described that the birthmark used by them
can easily distinguish and identify the program copies. +e
birthmark is checked with the Windows dynamic birthmark
and presented to likely suitable for the applications with
Graphical User Interfaces. Kakimoto et al. [28] did analysis
of the birthmark similarities in Argo UML and then visu-
alized them using multidimensional scale. Park et al. [24]
proposed a static API trace birthmark for detection of theft
of Java-based programs. +is technique assesses the birth-
mark for the properties of resilience and credibility. Results
obtained from their experiment of the proposed method
show that the static API birthmark can identify related
components of two packages while the other techniques of
birthmarks fail to do so. Xie et al. [46] suggested a static
birthmark for k-gram and their weights. +e weight is
computed by analysis rate of change in the k-gram frequency
of the actual andmodified version of the program.Myles and
Collberg [47] accomplished an empirical analysis of the
k-gram-based software birthmark by analysis of 111 pro-
grams in the Java programming language. Several studies
[20, 24–27, 29, 35, 36, 42, 43, 48–51] were explored for the
types of birthmark, their analysis, and assessment, but the
work of [48, 49] analyzed the birthmark in depth used for
different purposes. From most of the studies, it is derived
that in majority of the cases only the results of case study and
empirical suggestions are provided to support the given
studies.

+e current research work is endeavouring to propose a
mathematical model for the purpose of comparisons of

2 Security and Communication Networks

feature-based software birthmark and to evaluate the se-
curity of end-to-end communication systems. +e model is
based on differential equations system and uses the features
of birthmark presented in the literature.

3. Methodology

+e methodology is described in the following subsections
which present the proposed research methodology for the
features-based birthmark of software.

3.1. Need for a Mathematical Model. Diverse methods based
on mathematics are used by the researchers and practi-
tioners for modelling the real life occurrences. A number of
these techniques include exact equations, linear equations,
separable variable methods, substitution solution, and nu-
merical method. +ese techniques are used to solve the first-
order differential equations [52].

Software industry is endeavouring to have a policy and
strategic independent description for birthmarks of soft-
ware, which can then be used as proper estimating and
comparisons of birthmark of software. +is definition and
description will ease the industry of software to detect
software theft and piracy with further changes in security of
end-to-end communication systems. +e recommended
feature-based software birthmark [36] is currently mathe-
matically modelled to enable the birthmark comparison
based on the defined features. +is feature-based birthmark
comparison will identify the similarities among software
programs for the purpose of piracy detection and changes in
security of end-to-end communication systems.

In this research work, the essential model is planned in
the form of homogeneous linear differential system. For the
design of this type of system, generally three methods are
used. +ese methods are repeated Eigen values, distinct real
Eigen values, and Complex Eigen values. In the situation of
the proposed research, the Eigen values are complex.

Mathematically, if λ1 � α + iβ and λ2 � α − iβ, where i ����
−1

√
are Complex Eigen values of the matrix “A,” then the

corresponding Eigen vector also contains complex values
[52]. +is study proposed a mathematical model for the
features-based software birthmark to enable the compari-
sons among the birthmark based on the predefined features.

3.2. Terminologies Used for Modelling Software Piracy
Detection. +e following subsections briefly discuss the
method and terminologies used in this research for mod-
elling features-based birthmark of software.

3.2.1. Differential Model for Software Birthmark. +e dif-
ferential equations have the derivatives of one or more
dependent variable(s), with respect to one or more inde-
pendent variable(s) [52]. Let there be an equation with
unknown variables, without any information available about
its construction. Such type of an equation (function) can be
represented as, for example, y′� ϕ(x)?

3.2.2. Eigen Values and Eigen Vector. +e characteristic
polynomial of a square matrix “A” is defined by [53]

p(λ) � det(A − λI). (1)

If p is the characteristic polynomial of matrix “A”, then
the roots of p are the Eigen values of matrix “A.” If λ is Eigen
value of “A” and x≠ 0 satisfies (A− λI)x� 0, then x is Eigen
vector corresponding to the Eigen value λ. In the context of
this research, there are three main features (categories), from
which a differential system is obtained. +is differential
system is also called linear differential system. To solve this
differential system, we need the Eigen vector for the cor-
responding Eigen values.

3.3. Model for Comparison of Birthmark for Detection of
Software Piracy and Assessment of Security in End-to-End
Communication Systems. Diverse approaches have been
used in literature in the area of development of healthcare
mobile applications. +e proposed technique for compari-
sons of suggested features-based software birthmark is
mathematically modelled to enable and facilitate the com-
parisons of birthmarks and assessment of security of end-to-
end communication systems based on the identified fea-
tures. +e features followed by the proposed study are the
features that are already identified in the previous research
work [36, 48, 49]. +is features-based comparison advises
the similarity among different modules of the software
which can further investigate the changes occurring in the
security of end-to-end communication systems. Here, in this
study, we considered the four main features that were
previously identified [36]. +ese features include pre-
conditional features, input features, nonfunctional features,
and functional features. +ese categories are further divided
into subcategories of features. +e preconditional features
have three subfeatures categories that are program avail-
ability, runnable, and identification of components. +ese
features are significant which can be patterned even for all
kinds of programs for detecting the similarities. Figure 1
shows the detail of the feature-based birthmark of software
as already defined [36].

After performing the early analysis, the rest of the
three features categories are used as the base of mathe-
matical model for the proposed study, while the category
of preconditional features is excluded, as this features
category can be examined for all types of software while
detecting the piracy and changes in security of software.
+e input feature category is further divided into 17
features that are program context, program contents,
internal data structure, program flow, configurable ter-
minologies, program responses, control flow, size of
program, interface description, number of statements in
program, naming, functions, restriction, limitation and
constraints, comprehensive documentation, global data
structure, user interface, and internal quality. +e non-
functional feature category is further divided into 12
subfeatures that are automation, ease of use, friendly,
scalability, applicability, interface connections, robust-
ness, dependency, portability, scope, standard, and

Security and Communication Networks 3

external quality. +e functional feature category is divided
into further four subfeatures that are data and control
process, functional specification, behaviour, and func-
tionality. All the categories of these features are combined
and then plotted in the form of differential system
mathematically as

x′(f) � 17x + 12y + 4z,

y′(f) � 4x + 17y + 12z,

z′(f) � 12x + 4y + 17z,

(2)

where x, y, and z are the three features. +en, from equation
(2), we have

X′(f) � AX(f). (3)

To find these three features x, y, and z, we need to find the
solution of equation (2). For this purpose of finding the exact
solution, we have to find the Eigen values and Eigen vectors
of the matrix A. +e proposed process has been carried out
in the following steps.

Step 1. To find Eigen value,

SinceA �

17 12 4

4 17 12

12 4 17

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

According to Section 3.2.2, by using equation (1), the
characteristic polynomial of the matrix “A” is given by

det (A− λI)� 0. +at is,

17 − λ 12 − 0 4 − 0

4 − 0 17 − λ 12 − 0

12 − 0 4 − 0 17 − λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0. (5)

After simplification, we have

λ3 − 51λ2 + 723λ − 4257 � 0. (6)

By using syntactic division, we have

λ1 � 33,

λ2 � 9 + 6.9282i,

λ3 � 9 − 6.9282i.

(7)

+us, the Eigen values of the matrix “A” are 33,
9 + 6.9282i, and 9 – 6.9282i, where λ1 is real, λ2 is complex,
and λ3 is complex conjugate of λ2.

Step 2. To find Eigen vector of corresponding Eigen values,
If λ� 33, then the corresponding Eigen vector is given by

AX� λX.
17 12 4

4 17 12

12 4 17

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a

b

c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 33

a

b

c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

By solving this, we have

−16a + 12b + 4c � 0,

4a − 16b + 12c � 0,

12a + 4b − 16c � 0.

(9)

Excluded Included

Features model

Preconditional
features Input features Nonfunctional

features
Functional

features

Program availability (PA)
Runnable (Ru)
Identification of components
(IoC)

Data and control transfer
(DCT)
Functional specification
(FS)
Behaviour (B)
Functionality (Fnl)

Program context (PCnxt)
Program flow (PF)

Program responses (PR)

Program contents (PCnt)
Internal data structure (IDS)

Configurable terminologies (CT)
Control flow (CF)
Number of statements in program
(NoSP)
Naming (Na)
Functions (F)
Interface description (ID)
Restrictions, limitations, and
constraints (RLC)
Size of program (SoP)
Comprehensive documentation (CD)
Global data structure (GDS)
User interface (UI)
Internal quality (IQ)

Automation (A)
Ease of use (EoU)
User friendly (UF)
Scalability (Sc)
Applicability (Ap)
Interface connection
(ICn)
Robustness (R)
Dependency (D)
Portability (P)
Scope (S)
Standard (Std)
External quality (EQ)

Figure 1: Software features and their subfeatures.

4 Security and Communication Networks

By solving this, we have

a � 1,

b � 1,

c � 1.

(10)

+us, the corresponding Eigen vector for Eigen value

λ� 33 is V1�

1
1
1

⎛⎜⎝ ⎞⎟⎠.

Similarly, the corresponding Eigen vectors for
9 + 6.9282i and 9− 6.9282i are given by

V2 �

1
2

i(i +
�
3

√
)

−
1
2

i(−i +
�
3

√
)

1

⎛⎜⎜⎝

⎞⎟⎟⎠

,

V3 �

−
1
2

i(−i +
�
3

√
)

1
2

i(i +
�
3

√
)

1

⎛⎜⎜⎝

⎞⎟⎟⎠

.

(11)

Step 3. +us, the solution of equation (2) is given by

X � c1V1e
λ1f

+ c2 B1 cos βf − B2 sin βf(􏼁e
αf

+ c3 B2 cos βf + B1 sin βf(􏼁e
αf

,
(12)

where λ� α+ iβ, B1 � real part (Eigen vector) and
B2 � imaginary part (Eigen vector). Putting the values in the
above equation, we get

X � c1

1

1

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e
33f

+ c2

−
1
2

−
1
2

1

⎛⎜⎜⎝

⎞⎟⎟⎠

cos 6.9282f −

�
3

√

2

−

�
3

√

2

0

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

− sin 6.9282f

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

e
9f

+ c3

�
3

√

2

−

�
3

√

2

0

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

cos 6.9282f +

−
1
2

−
1
2

1

⎛⎜⎜⎝

⎞⎟⎟⎠

sin 6.9282f

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

e
9f

,

x(f) � c1e
33f

+ c2(cos(6.9282f))e
9f

+ c3(sin(6.9282f))e
4f

.

(13)

Similarly, we have

y(f) � c1e
33f

+ c2 −
1
2
cos(6.9282f) +

�
3

√

2
sin(6.9282f)􏼢 􏼣e

9f
+ c3 −

�
3

√

2
cos(6.9282f) −

1
2
sin(6.9282f)􏼢 􏼣e

9f
,

z(f) � c1e
33f

+ c2 −
1
2
cos(6.9282f) −

�
3

√

2
sin(6.9282f)􏼢 􏼣e

9f
+ c3

�
3

√

2
cos(6.9282f) −

1
2
sin(6.9282f)􏼢 􏼣e

9f
.

(14)

Putting the value of f� 0 in the above equations and
using the initial conditions, we have

c1 −
1
2
c2 +

�
3

√

2
c3 � 17,

c1 −
1
2
c2 −

�
3

√

2
c3 � 4,

c1 + c2 � 12.

(15)

By solving these equations, we get

c1 � 11,

c2 � 1,

c3 � −7.5056.

(16)

+us, the required solution of (2) is given by

x(f) � 11e
33f

+ cos(6.9282f)e
9f

− 7.5056 sin(6.9282f)e
4f

,

y(f) � 11e
33f

+ −
1
2
cos(6.9282f) +

�
3

√

2
sin(6.9282f)􏼢 􏼣e

9f
− 7.5056 −

�
3

√

2
cos(6.9282f) −

1
2
sin(6.9282f)􏼢 􏼣e

9f
,

z(f) � 11e
33f

+ −
1
2
cos(6.9282f) −

�
3

√

2
sin(6.9282f)􏼢 􏼣e

9f
− 7.5056

�
3

√

2
cos(6.9282f) −

1
2
sin(6.9282f)􏼢 􏼣e

9f
,

(17)

Security and Communication Networks 5

where x(f), y(f), and z(f) represent the required solution of
the differential system (2) for the available features of
software birthmark.

For the process of comparisons of birthmark of software
for the detection purpose of software piracy and assessment
of security of end-to-end communication systems, birth-
mark(s) of various occurrences of (the same) software ap-
plication defined over the same features based birthmark
[36] can be modelled using the given differential system. If
the solutions of both of the resulting differential systems are
found the same or nearly the same, then the software is copy
of the original software; hence, it is proved to be pirated and
changes have occurred in the security of end-to-end com-
munication systems.

4. Results and Discussion

+e following subsections briefly discuss the results and
discussion section of the paper.

4.1. Experimentation with a Case Study and the Results.
+e proposed research work based on mathematical model
for features-based software birthmark has been validated by
performing a case study. +e case study was intended to test
an Android mobile application for features-based software
birthmark. Multiple versions of the application were gen-
erated to bear and validate the process of comparison.
Copies instances of the Android mobile applications were
modified (in parts) to enhance and eliminate a portion of
functionality.+ese modifications were made through third-
party developers. +is process was done to mimic pirated
copies of the test cases application and to assess the security
of end-to-end communication systems.

After getting modified copies of the mobile (Android)
application, the features-based birthmark of software was
individually derived from all of the copies of the application
as shown in equation (2). +is was performed by extracting
each individual copy of the features-based application. +e
features along with their details were taken into consider-
ation for checking the piracy among the applications and to
assess the security of end-to-end communication systems.
+e features of each copy were then extracted and the
birthmarks of pirated copies of the applications were then
compared with the features-based software birthmark of the
actual application to show that piracy and changes in se-
curity were done/or not to further show the similarities and
security view among the actual and pirated copies of the
application. Figure 2 shows case study performed for fea-
tures extraction from the actual and pirated version of the
software and their comparison process.

A case study of the equations below was taken as an
example to show the validity:

zu(x, y, z)

zx
� 17x + 15xy, (18)

zu(x, y, z)

zy
� 17y + 15xz, (19)

zu(x, y, z)

zz
� 17z + 15xy. (20)

And the exact equation of the above system of partial
differential equation is

u(x, y, z) �
17
2

x
2

+ y
2

+ z
2

􏼐 􏼑 + 15xyz. (21)

Equation (21) satisfies equations (18)–(20) and hence
shows that the proposed model works well. If equation (21)
is put in equations (18)–(20), then the left-hand side is equal
to the right-hand side. Equation (21) is the exact solution of
equations (18)–(20). So, it will satisfy for all values of the
variables x, y, and z. It can be any real number.+e threshold
can be any real number for the variables x, y, and z.

+e proposed features-based model accepts inputs of
software for comparison of features of original and pirated
software that is fully or partially pirated. +is comparison
can ultimately show the extent of piracy and changes done in
security of end-to-end communication systems. In the
current scenario of the case study, features of original
software were extracted as shown in the top of Figure 2.+en
features from pirated copies of software as shown in the right
side of Figure 2 were extracted. A comparison of these
features was done which is mathematically shown as
equations (18)–(20) and their solution in equation (7). From
the above description, it is clear that the proposed model

Original so�ware
application for

Android

Extracting
features

Cloning/obfuscation of
original so�ware

Pirated copies of
original so�ware

Extracting features

Comparison of
features-based

birthmark

Figure 2: Case study for feature extractions and comparisons
process of actual (original) and pirated software.

6 Security and Communication Networks

works very well; hence, piracy and changes can be found up
to optimal level.

Furthermore, some other examples were tried to show
the validity of the proposed method. +ese examples follow:

zx(x, y, z)

zx
� 34xyz + 16y

2
z + 2xz

2
, (22)

zx(x, y, z)

zy
� 17x

2
z + 32xyz + 2xz

2
, (23)

zx(x, y, z)

zz
� 17x

2
y + 16xy

2
+ 4xyz. (24)

We can find the numerical solution which always
contains some error. +e proposed mathematical model
accepts features as input(s) shown in equation (2) to check
the piracy and changes in security of features-based software
birthmark. In the context of the current case study, features
were extracted from multiple copies of the Android mobile
application to show the piracy and security changes among
multiple copies of the application.

5. Discussion

Industry of software development and end-to-end com-
munication systems is using diverse approaches and
methods to detect and identify the software piracy and
assessment of security in end-to-end communication sys-
tems. Different techniques like watermarks, fingerprints, and
digital signatures were used for showing the originality of the
software, but these techniques have some limitations such as
with the use of code obfuscation and semantic preserving
transformation the watermarks and digital signature can be
removed. Due to these limitations, the concept of software
birthmark came into existence. +e software birthmarks are
considered to be of the utmost value and resilient to
obliteration, and uniquely identify specific software. Soft-
ware features are categorised into several categories. A
program of software is a combination of several types of
features of software. +e investigation of code of a program,
based on the defined features, resultantly supports the de-
tection of similarity among more than one instance of
seemingly the identical application of software. Such de-
tection of similarity will eventually facilitate identifying and
detecting the theft and piracy of software.+e features-based
birthmark of software provides further wide-ranging
birthmark and hence representation of a software. +e
proposed differential-system-based mathematical model in
this study using the idea of Eigen values and Eigen vector
provides an exclusive solution for the features-based
birthmark of software. +is exclusive solution provides an
unbiased measure for comparisons of features-based soft-
ware birthmark that can be checked to piracy and assess-
ment of security in end-to-end communication systems.

5.1. <reat to Validity. Software birthmark is the inherent
characteristic of software used for the detection of theft in
the software and can also be used for other purposes like to

show the ownership of the software and detect the level of
piracy in the software. So far, the existing literature was
searched to analyze the existing efforts made in the area of
software birthmark but maybe some work is missed due to
the open access and availability of the research work. Val-
idation of the work is also mandatory which is not mostly
covered by this research and the work was validated through
experts’ opinion.

6. Conclusion

+e proposed research work has presented a mathematical
model based on differential system for comparisons of
features-based birthmark of software and assessment of
security in end-to-end communication systems. +ese
comparisons of feature-based software birthmark will
eventually find piracy and changes in security performed
among the end-to-end communication systems. +e main
objective of the proposed study is to do comparisons of the
feature-based software birthmark that was addressed by
Nazir et al. [36]. +e birthmark of software in terms of
feature-based birthmark is categorised into different types.
+ese categories include input features, functional features,
and nonfunctional features. +ese features-based software
birthmark categories are jointly known as software birth-
mark. +is paper contributes to present a mathematical
model based on differential system for the features-based
software birthmark to support the comparisons of software
birthmark to be checked for piracy and security assessment
of end-to-end communication systems. +e solutions of the
differential equation as defined by using the idea of Eigen
values designed for the feature categories of the birthmarks
provide an unbiased measure and an effective means to
compare birthmarks of software for the purpose of detecting
piracy. +erefore, this comparison of model can make the
process of software piracy and theft detection smooth and
assesses the security of end-to-end communication systems.

Data Availability

No primary data were collected.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is research was supported by Qatar National Library,
Qatar.

References

[1] R. +abit and B. E. Khoo, “Robust reversible watermarking
scheme using Slantlet transform matrix,” Journal of Systems
and Software, vol. 88, pp. 74–86, 2014.

[2] Y. Zeng, F. Liu, X. Luo, and C. Yang, “Software watermarking
through obfuscated interpretation: implementation and
analysis,” Journal of Multimedia, vol. 6, no. 4, 2011.

Security and Communication Networks 7

[3] F. Liu, B. Lu, and X. Luo, “A chaos-based robust software
watermarking,” in Information Security Practice and Experi-
ence, vol. 3903, pp. 355–366, Springer, Berlin, Germany, 2006.

[4] C. Collberg and T. R. Sahoo, “Software watermarking in the
frequency domain: implementation, analysis, and attacks,”
Journal of Computer Security, vol. 13, no. 5, pp. 721–755, 2005.

[5] G. Myles and C. Collberg, “Software watermarking through
register allocation: implementation, analysis, and attacks,” in
Information Security and Cryptology–ICISC 2003, vol. 2971,
pp. 274–293, Springer, Berlin, Germany, 2004.

[6] C. Collberg, E. Carter, S. Debray, A. Huntwork, C. Linn, and
M. Stepp, “Dynamic path-based software watermarking,” in
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 04),
pp. 1–10, Washington, DC, USA, June 2004.

[7] G. e. Arboit, “A method for watermarking java programs via
opaque predicates,” in Proceedings of the Fifth International
Conference on Electronic Commerce Research (ICECR-5),
pp. 1–8, Montreal, Canada, October 2002.

[8] R. Venkatesan, V. Vazirani, and S. Sinha, “A graph theoretic
approach to software watermarking,” in Proceedings of the 4th
International Information Hiding Workshop, pp. 157–168,
Pittsburgh, PA, USA, April 2001.

[9] J. P. Stern, G. e. Hachez, F. c. Koeune, and J.-J. Quisquater,
“Robust object watermarking: application to code,” in In-
formation Hiding, vol. 1768, pp. 368–378, Springer, Berlin,
Heidelberg, 2000.

[10] A. Monden, H. Iida, K.-i. Matsumoto, K. Inoue, and K. Torii,
“A practical method for watermarking java programs,” in
Proceedings of the 24th Computer Software and Applications
Conference compsac2000, pp. 191–197, Taipei, Taiwan, Oc-
tober 2000.

[11] C. Collberg and C. +omborson, “Software watermarking:
models and dynamic embeddings,” in Proceedings of the
Conference Record of POPL ’99: <e 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
pp. 311–324, San Antonio, Texas, USA, January 1999.

[12] G. Qu and M. Potkonjak, “Analysis of watermarking tech-
niques for graph coloring problem,” in Proceedings of the 1998
in Proceedings of the 1998 IEEE/ACM international conference
on Computer-aided design–ICCAD’98, pp. 190–193, New
York, NY, USA, November 1998.

[13] J. Pieprzyk, “Fingerprints for copyright software protection,”
in Information Security, vol. 1729, pp. 178–190, Springer,
Berlin, Heidelberg, 1999.

[14] C. S. Collberg, C. +omborson, and G. M. Townsend, “Dy-
namic graph-based software fingerprinting,” ACM Transac-
tions on Programming Languages and Systems, vol. 29, no. 6,
p. 35, 2007.

[15] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees,” in Proceedings of
the International Conference on Software Maintenance,
Bethesda, MD, USA, November 1998.

[16] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection:
a systematic review,” Information and Software Technology,
vol. 55, no. 7, pp. 1165–1199, 2013.

[17] H. T. e. al, “Detecting the theft programs using birthmarks,” in
Information Science Technical Report, Nara Institute of Sci-
ence and Technology, Ikoma, Japan, 2003.

[18] H.-i. Lim, “Customizing k-gram based birthmark through
partial matching in detecting software thefts,” in Proceedings
of the IEEE 37th Annual Computer Software and Applications
Conference Workshops (COMPSACW), pp. 1–4, IEEE, Japan,
July 2013.

[19] Z. Xin, H. Chen, X. Wang et al., “attacks: automatically
evading behavior-based software birthmark,” International
Journal of Information Security, vol. 11, no. 5, pp. 293–304,
2012.

[20] H. Chen, H.-i. Lim, S. Choi, and T. Han, “Detecting common
modules in Java packages based on static object trace birth-
mark,”<eComputer Journal, vol. 54, no. 1, pp. 108–124, 2011.

[21] P. P. F. Chan, L. C. K. Hui, and S. M. Yiu, “Dynamic software
birthmark for java based on heap memory analysis,” in
Communications and Multimedia Security, vol. 7025,
pp. 94–107, Springer, Berlin, Heidelberg, 2011.

[22] Y.Mahmood, S. Sarwar, Z. Pervez, andH. F. Ahmed, “Method
based static software birthmarks: a new approach to derogate
software piracy,” in Proceedings of the 2nd International
Conference on Computer, Control and Communication,
pp. 1–6, IEEE, Karachi, Pakistan, February 2009.

[23] S. Choi, H. Park, H.-i. Lim, and T. Han, “A static API
birthmark for Windows binary executables,” Journal of Sys-
tems and Software, vol. 82, no. 5, pp. 862–873, 2009.

[24] H. Park, S. Choi, H.-i. Lim, and T. Han, “Detecting java theft
based on static API trace birthmark,” in Advances in Infor-
mation and Computer Security, vol. 5312, pp. 121–135,
Springer, Berlin, Heidelberg, 2008.

[25] H. Park, S. Choi, H.-i. Lim, and T. Han, “Detecting code theft
via a static instruction trace birthmark for Java methods,” in
Proceedings of the 6th IEEE International Conference on In-
dustrial Informatics, pp. 551–556, Daejeon, South Korea, July
2008.

[26] H.-i. Lim, H. Park, S. Choi, and T. Han, “Detecting theft of
java applications via a static birthmark based on weighted
stack patterns,” IEICE Transactions on Information and Sys-
tems, vol. E91-D, no. 9, pp. 2323–2332, 2008.

[27] J. Yang, J. Wang, and D. Li, “Detecting the theft of natural
language text using birthmark,” in Proceedings of the 2006
International Conference on Intelligent Information Hiding
and Multimedia Signal Processing, pp. 1–4, Pasadena, CA,
USA, December 2006.

[28] T. Kakimoto, A. Monden, Y. Kamei, H. Tamada, M. Tsunoda,
and K.-i. Matsumoto, “Using software birthmarks to identify
similar classes andmajor functionalities,” in Proceedings of the
2006 InternationalWorkshop onMining Software Repositories,
Shanghai, China, 2006.

[29] G. Myles and C. Collberg, “Detecting software theft via whole
program path birthmarks,” in Information Security, vol. 3225,
pp. 404–415, Springer, Berlin, Heidelberg, 2004.

[30] A. Aiken, Moss: A System for Detecting Software Plagiarism,
University of California, Berkeley, CA, USA, 1994.

[31] G. Whale, “Identification of program similarity in large
populations,” <e Computer Journal, vol. 33, no. 2, pp. 140–
146, 1990.

[32] M. J. Wise, “Detection of similarities in student programs:
yap’ing may be preferable to plague’ing,” in Proceedings of the
23rd SIGCSE Technical Symposium, St. Louis, Missouri, USA,
March 1992.

[33] S. Schleimer, D. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proceedings of
2003 SIGMOD Conference, San Diego, CA, USA, June 2003.

[34] Z. Tian, Q. Zheng, T. Liu, M. Fan, X. Zhang, and Z. Yang,
“Plagiarism detection for multithreaded software based on
thread-aware software birthmarks,” in Proceedings of the 22nd
International Conference on Program Comprehension,
Hyderabad, India, May 2014.

[35] Z. Tian, Q. Zheng, T. Liu, and M. Fan, “DKISB: dynamic key
instruction sequence birthmark for software plagiarism

8 Security and Communication Networks

detection,” in Proceedings of the IEEE International Confer-
ence on High Performance Computing and Communications &
IEEE International Conference on Embedded and Ubiquitous
Computing, pp. 619–627, Zhangjiajie, China, November 2013.

[36] S. Nazir, S. Shahzad, Q. U. A. Nizamani, R. Amin, M. A. Shah,
and A. Keerio, “Identifying software features as birthmark,”
Sindh University Research Journal, vol. 47, no. 3, pp. 535–540,
2015.

[37] S. Nazir, S. Shahzad, S. A. Khan, N. Binti Alias, and S. Anwar,
“A novel rules based approach for estimating software
birthmark,”<e Scientific World Journal, vol. 2015, Article ID
579390, 8 pages, 2015.

[38] D. Lee, Y. Choi, Y. Choi, J. Jung, J. Kim, and D.Won, “efficient
categorization of the instructions based on binary excutables
for dynamic software birthmark,” International Journal of
Information and Education Technology, vol. 5, no. 8,
pp. 571–576, 2015.

[39] S. Won, S. Shahzad, and S. B. S. Abid, “Selecting software
design based on birthmark,” Life Science Journal, vol. 11,
no. 12s, pp. 89–93, 2014.

[40] J. Choi, Y. Han, S.-j. Cho, HaeYoungYoo, and J. Woo, “A
static birthmark for MS Windows applications using import
address table,” in Proceedings of the Seventh International
Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing, pp. 129–134, Taichung, Taiwan, July
2013.

[41] BSA, <e Compliance Gap BSA Global Software Survey,
Business Software Alliance, Washington, DC, USA, 2014.

[42] H. Tamada, M. Nakamura, and A. Monden, “Design and
evaluation of birthmarks for detecting theft of Java programs,”
in Proceedings of IASTED International Conference on Soft-
ware Engineering, pp. 569–575, Innsbruck, Austria, February
2004.

[43] Y. Zeng, F. Liu, X. Luo, and S. Lian, “Abstract interpretation-
based semantic framework for software birthmark,” Com-
puters & Security, vol. 31, no. 4, pp. 377–390, 2012.

[44] Y. Mahmood, Z. Pervez, S. Sarwar, and H. F. Ahmed,
“Similarity level method based static software birthmarks,” in
Proceedings of the High Capacity Optical Networks and En-
abling Technologies, pp. 205–210, Penang, Malaysia, No-
vember 2008.

[45] Y. Wang, F. Liu, Z. Zhao, B. Lu, and X. Xie, “Operand stack
dependence based java static software birthmark,” in Pro-
ceedings of the 10th International Conference on Fuzzy Systems
and Knowledge Discovery (FSKD), Shenyang, China, July 2013.

[46] X. Xie, F. Liu, B. Lu, and L. Chen, “A software birthmark based
on weighted k-gram,” in Proceedings of the IEEE International
Conference on Intelligent Computing and Intelligent System
(ICIS), pp. 400–405, Xiamen, China, October 2010.

[47] G. Myles and C. Collberg, “K-gram based software birth-
marks,” in Proceedings of the 2005 ACM Symposium on
Applied Computing, Santa Fe, New Mexico, 2005.

[48] S. Nazir, S. Shahzad, R. Wirza et al., “Birthmark based
identification of software piracy using Haar wavelet,”
Mathematics and Computers in Simulation, vol. 166,
pp. 144–154, 2019.

[49] S. Shahzad, S. Shahzad, and N. Mukhtar, “Software birthmark
design and estimation- A systematic literature review,”
Arabian Journal for Science and Engineering, vol. 44, no. 4,
pp. 3905–3927, 2019.

[50] K. Fukuda and H. Tamada, “A dynamic birthmark from
analyzing operand stack runtime behavior to detect copied
software,” in Proceedings of the 2013 14th ACIS International
Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing, pp. 505–510,
Honolulu, HI, USA, July 2013.

[51] Y. Bai, X. Sun, G. Sun, X. Deng, and X. Zhou, “Dynamic
k-gram based software birthmark,” in Proceedings of the IEEE
ASWEC 2008 19th Australian Conference, Perth, WA, Aus-
tralia, March 2008.

[52] D. G. Zill and M. R. Cullen, Differential Equation S with
Boundary Value Problem, Brooks/Cole Cengage Learning,
Boston, MA, USA, 7th edition, 2009.

[53] R. L. Burden and J. D. Faires, Numerical Analysis, Brooks/
Cole, Cengage Learning, Boston, MA, USA, 9th edition, 2011.

Security and Communication Networks 9

