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Abstract: Dentists could fail to notice periapical lesions (PLs) while examining panoramic radio-

graphs. Accordingly, this study aimed to develop an artificial intelligence (AI) designed to address 

this problem. Materials and methods: a total of 18618 periapical root areas (PRA) on 713 panoramic 

radiographs were annotated and classified as having or not having PLs. An AI model consisting of 

two convolutional neural networks (CNNs), a detector and a classifier, was trained on the images. 

The detector localized PRAs using a bounding-box-based object detection model, while the classifier 

classified the extracted PRAs as PL or not-PL using a fine-tuned CNN. The classifier was trained 

and validated on a balanced subset of the original dataset that included 3249 PRAs, and tested on 

707 PRAs. Results: the detector achieved an average precision of 74.95%, while the classifier accu-

racy, sensitivity and specificity were 84%, 81% and 86%, respectively. When integrating both detec-

tion and classification models, the proposed method accuracy, sensitivity, and specificity were 

84.6%, 72.2%, and 85.6%, respectively. Conclusion: a two-stage CNN model consisting of a detector 

and a classifier can successfully detect periapical lesions on panoramic radiographs. 
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1. Introduction 

Apical periodontitis is the consequence of root canal infection by bacteria that is man-

ifested as a periapical bone resorption that develops as a response of the host’s defense 

against bacterial infection [1]. Apical periodontitis affects about 33 to 62% of the adult 

population and it can have detrimental effects on both oral and systemic health [2]. Thus, 

this condition should be diagnosed and treated without delay. Failure to treat might lead 

to the spread of disease to the surrounding tissues, resulting in serious complication for 

the patient [3]. While an initial diagnosis of acute apical periodontitis may be made clini-

cally, the detection of chronic apical periodontitis is made by radiographs used to reveal 

characteristic periapical radiolucencies that are usually called apical lesions [4]. These ap-

ical lesions appear as a widened periodontal ligament space and are detected by radio-

graphic investigation of endodontically treated teeth [5,6]. 

Detection of apical lesions can be performed with several available radiological op-

tions, e.g., cone beam computerized tomography (CBCT), periapical radiographs and 

panoramic radiographs. CBCT demonstrates significantly higher discriminatory ability 

than periapical radiographs [7], however, the associated costs and high radiation are ma-
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jor limitations that restrict its use to very few indications. Periapical radiographs are usu-

ally considered as the gold standard imaging techniques for diagnosis of apical lesions 

[8]. However, there could be inconsistency across dentists in their interpretation of such 

radiographs, and due to radiation concerns, they cannot be routinely used for screening 

the entire dentition. The radiographic appearance of endodontic pathosis in a periapical 

radiographs could be subjective and they have shown limited discriminatory ability when 

compared against histopathological analysis [6,9,10]. A previous study showed that inter-

preters were only able to reach a 50% level of agreement on the assessment periapical 

lesions on periapical radiographs. In addition, re-evaluation of radiographs by the same 

clinician showed different interpretation of their own original diagnosis [10]. Thus, image 

interpretation by dentists could sometimes be inconsistent [11]. 

Other techniques such as CBCT, MRI and echography can also be useful [8,12]. How-

ever, these methods cannot be used for routine screening because CBCT requires too much 

radiation, MRI is very expensive and time consuming, and echography is ineffective in 

lesions not affecting the cortical bone. In this context, OPG are better suited for screening. 

However, even though dentists are supposed to make accurate screenings of periapical 

lesions on OPGs, human errors occur and dentists can often miss obvious periapical le-

sions. A tool to automate detection can help minimize these errors. 

Panoramic radiographs are routinely used in dental practice because despite having 

lower resolution, they are able to capture an extensive area of the oral cavity with signifi-

cantly lower doses of radiation compared to CBCT imaging [13,14]. They allow the easy 

examination of the complete dentition including the alveolar bone, temporomandibular 

joints, and adjacent structures providing a valuable screening opportunity [15,16]. Re-

garding the diagnosis of periapical lesions on panoramic radiographs, experienced clini-

cians can achieve high specificity (95.8%) but a low sensitivity (34.2%) compared to the 

use of CBCT [17]. Moreover, there is considerable variability in the dental professionals’ 

abilities to read panoramic radiographs, which is affected by their individual skills, expe-

rience, and biases [18,19]. These limitations in the assessment of panoramic radiographs 

may lead to misdiagnosis or mistreatment [18,20]. 

Recent years have seen an increased use of artificial intelligence in all branches of 

medicine and dentistry. These computer programs can take over human tasks imitating 

intelligent human behavior, performing complex activities such as decision-making, solv-

ing problems, and even recognizing objects and words [21,22]. Neural networks (NNs) 

are a type of artificial intelligence algorithm which, through a process of deep learning 

with extensive amounts of data, can enable a computer to present with the capacity to 

learn to think on its own and make decisions and solve problems in a similar way to hu-

mans [23,24]. 

Convolutional neural networks have been used to detect periapical lesions on differ-

ent radiographic modalities [11,25] including panoramic radiographs. This could make 

the interpretation more objective, and help the dentists save time and focus more on the 

treatment and identifying the problem at an early stage and avoid further complications. 

However, even though the performance of these algorithms is promising, there is need 

for improvement in order to meet the requirements for clinical application [5,26,27]. Thus, 

the aim of this study was to develop an AI able to detect PL on panoramic radiographs. 

This was done using CNN in a two-step approach that involved the use of a detector fol-

lowed by a classifier. We hypothesized that an AI tool trained on healthy and non-healthy 

periapical areas in panoramic radiographs could detect the periapical regions of the teeth 

and classify them into healthy apices and apices with periapical lesions. 
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2. Materials and Methods 

2.1. Dataset and Preprocessing 

This retrospective diagnostic cohort study was conducted after obtaining approval 

from the Institutional Research Board (IRB) of the University of Sao Paolo. The approved 

protocol was given the Ethics Committee number 3.239.265. We collected 713 panoramic 

radiographs (width: 2879, height: 1563 pixels) from patients treated by Dr Claudio Costa 

and Dr Arthur Cortes using a panoramic imaging system (Cranex D, Soredex, Tuusula, 

Finland) set-up with the following parameters: 85 kVp, 10 mA, exposure time 17.6 s, CCD 

sensor size 48 micrometer, and focal spot size 0.5 mm. We de-identified patients’ infor-

mation by cropping the panoramic radiographs to size 2250, 1000 pixels) to include only 

the dental radiograph and exclude patient information registered on the image. We ex-

cluded images with unacceptable quality, containing severe artifacts, and radiographs of 

mixed dentition and edentulous patients. Three examiners (A. D., E.A., and R. BH) inde-

pendently annotated the Periapical Root Areas (PRAs) as having Periapical Lesion (PL) or 

not having periapical lesion (Healthy (H)) in duplicate; a fourth examiner (S.O.) settled 

discrepancies between examiners. At the time of the conduction of the study all above-

mentioned examiners had more than 15 years of clinical experience. The examiners were 

calibrated on 10 OPGs to address discrepancies between them, and then, recalibrated us-

ing 20 OPGs and a Kappa index for inter examiner agreement in detecting PLs of 90% was 

achieved. Upon labeling, only 5% of the cases need the consultation of the fourth examiner 

to settle discrepancies. We labelled 18,618 PRAs, which contained 1732 unhealthy PRAs 

(PL), and 16,886 of healthy PRA (H). 

The exact location of the PRAs and its labeling as PL or H was done by drawing a 

bounding box at each PRA using labelImg, an open-source annotation tool that allows 

annotations in xml Pascal VOC format. We converted the annotation format from xml to 

coco format as a compatibility requirement to use the Detectron2 framework. In all exper-

iments, we shuffled our dataset once and followed 80–20 sampling split for training and 

testing datasets, respectively. We dedicated 10% of the training dataset for validation to 

prevent overfitting when tuning the network hyper-parameters. Table 1 summarizes the 

applied data preparation methods. 

Table 1. Summary of Applied Data Preprocessing Techniques. 

Model Type/Format Offline Preparation Online Preparation Resolution 

Detector 
Dental panoramas 

JPG images 
Cropping 

Normalize 

Standardize 

Random Flipping 

1333 × 800 

Classifier PRAs JPG images Cropping 

Normalize 

Random rotation 

Random zoom 

75 × 75 

2.2. Proposed Method 

The proposed method consisted of two main CNNs: a detector that we called Peri-

apical Root Area Detection Model, and a classifier that we called Periapical Lesion Classi-

fication Model. Our model accepts a panoramic radiograph as input and outputs the lo-

cation of the detected periapical lesion on the given panoramic image. The detector local-

ized PRAs using a bounding-box-based object detection model, while the classifier classi-

fied the extracted PRAs as PL or H. We developed our model on GoogleColab PRO + 

notebook using Python. 

The overall proposed system workflow is shown in Figure 1. The entire panoramic 

radiograph is used as an input to the presented system. The PRA Detection Model with 

Faster R-RCNN processes the panoramic radiograph to detect and define the boundaries 

of each PRA by a bounding box. The proposed system then crops all predicted bounding 
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boxes, which are the PRAs extracted by the system, and then feeds them to the PL Classi-

fier with Inception v3. The PL Classifier in turn classifies each cropped PRA as Periapical 

Lesion (PL) or Healthy (H). The system finally outputs in red only the bounding boxes 

corresponding to Periapical Lesions with a confidence score. A confidence score is a per-

centage calculated by the AI, indicating how sure the AI is that the output is correct. 

 

Figure 1. Proposed System Architecture and Workflow of the AI developed in this study. Input: 

Panoramic radiograph. The system first performs ROI extraction on the input images using the 

“Faster RCNN” algorithm. Then, the system classifies the extracted PRAs into two possible catego-

ries: apices with periapical lesion (PL) or healthy apices (H); this was done using the “Inception v3” 

algorithm. The final output: the detected periapical lesions depicted by red bounding boxes with 

the system confidence score depicted on them. 

ROI Extraction
PRA Detection Model:

Faster RCNN

PRA Classification
Periapical Lesion 

Classifier: Inception v3

Input: Panoramic Radiograph

Output: Detected Periapical Lesions

Extracted PRAs
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2.2.1. Periapical Root Area (PRA) Detection Model 

We employed the Faster R-CNN object detection model using the Detectron2 detec-

tion platform for localizing the region of interest (ROI), which is the PRA on a panoramic 

radiograph. Detectron2 provides state-of-the-art detection algorithms, such as object de-

tection, semantic, instance, and panoptic segmentation. We tested Detectron2 implemen-

tation of Faster R-CNN using different backbone models and configurations. The results 

showed that Faster R-CNN ResNet X101 base model achieved the highest detection rates 

on panoramic radiographs. 

We performed training, validation and testing experiments with NVIDIA Tesla P100 

and T4 on GoogleColab notebook. We used Detectron2’s default data preprocessing set-

tings for image flipping and resizing (to 1333/800 pixels). Aspect ratios were maintained 

while resizing. We used 513 panoramic radiographs for training, 57 images for validation, 

and 143 images for testing. We selected a batch size of 4 due to the high-resolution images. 

We initialized the Faster R-CNN base model from the ResNet101 pretrained ImageNet 

classifier. We initially used a learning rate of 0.001, but we decreased the learning by half 

at epoch 1000 because learning stagnated. We trained until convergence. The model 

achieved the best performance on iteration 1500. 

During the inference time, we fed the entire panoramic radiograph, with 2250 × 1000 

resolution, as input to our detection model. The detector then localized all PRAs on a 

given panoramic radiograph by drawing a bounding box on each detected PRA. We used 

Detectron2 default Intersection over Union (IoU) and Non-Maximum Suppression (NMS) 

thresholds, which by default set to 0.5. On average, it took 0.57 s per image using NVIDIA 

Tesla T4 to detect all PRAs in a given panoramic image. We developed a custom function 

that returned the detected PRA coordinates, crops, and processes each detected PRA to 

prepare it for the lesion classification task. 

2.2.2. Periapical Lesion Classification Model 

Before feeding the cropped PRA images into the classification model for training pur-

pose, we applied the below data preprocessing augmentation techniques to increase our 

training dataset since we have limited number of unhealthy samples: 

1. Normalized pixel values of each image to range (0, 1) 

2. Resize images to 75 × 75 

3. Random image rotation between 0–20° 

4. Random zoom ranging between 0.8 to 1.2 

5. Shuffle images 

We employed a fine-tuned Inception v3 classification model for classifying detected 

PRAs as healthy (H) or lesion (PL) using Keras framework. We used a balanced subset of 

the original dataset, which included 3249 PRAs, 1593 of unhealthy PRAs (PLs) and 1656 

of healthy PRAs (H). We divided this dataset into training, and testing following the 80:20 

ratio. We initialized the model from an ImageNet pretrained inception weights excluding 

the classification layer. For feature extraction, we froze all layers, stacked and trained only 

the classification layer. We optimized the network parameters using the Adam optimizer 

with an initial learning rate of 1 × 10− 5. We decreased the learning rate by half when learn-

ing stagnated. We selected a dropout rate of 0.2 to avoid overfitting. We trained for 100 

epochs. We then unfroze and re-trained the top layers to fine-tune the network. We opti-

mized the network using Adam optimizer with learning rate of 1 × 10− 7 and trained for 

another 100 epochs. 

During inference time, we fed the detected PRAs as input to the classifier; which in 

turn labeled each PRA as H or PL. On average, it took 5 milliseconds to classify a PRA 

from our test dataset. We developed a custom visualization function to visualize PRAs, 

which our classifier labeled as PL by drawing a bounding box around the detected peri-

apical lesion. 
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2.3. Evaluation Criteria 

We divided the evaluation metrics of the proposed method into two main groups: 

accuracy of PRA detection and accuracy of periapical lesion classification. 

2.3.1. Accuracy of PRA Detector 

Average Precision (AP) is commonly used to measure the accuracy of object detection 

models. We used an IoU of 0.5 to calculate AP, which is also known as AP50. Average 

precision considers both the precision and recall detection performance. A detection is 

considered successful using the IoU by checking whether a bounding box overlaps with 

the corresponding groundtruth box by a minimum of 50%. 

2.3.2. Accuracy of Periapical Lesion Classifier 

We used accuracy, sensitivity, and specificity to measure the performance of the per-

iapical lesion classifier. These classification metrics were calculated as below: 

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1) 

Sensitivity = TP/(TP + FN) (2) 

Specificity = TN/(TN + FP) (3) 

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Neg-

ative. 

3. Results 

Our proposed solution consisted of two main CNNs: PRA detector and lesion classi-

fier. First, the entire panoramic radiograph was used as an input to the presented system. 

Then the detection model (i.e., detector) was used to process the panoramic radiograph to 

localized and define the boundaries of each PRA by a bounding box. Finally, the PRAs 

extracted by the system, were fed them to the PL Classifier. The PL Classifier in turn clas-

sified each cropped PRA as Periapical Lesion (PL) or Healthy (H). To automate the process 

of periapical lesion localization and classification, our proposed solution combined the 

detection and classification models as shown in Figure 1. The system final output was an 

image showing the periapical lesion on the OPG. 

Our proposed detector identified the PRAs using a custom function based on the 

model aster R-RCNN. We tested two strategies to train our detector. In the first strategy 

(method 1) we only included unhealthy PRA (PL) for the training, while for the second 

strategy (method 2) we included both healthy (H) and unhealthy (PL). We trained for 1000 

iterations and evaluated the detection performance of both methods based on Average 

Precision (AP) calculated at intersection-over-union (IOU) =0.5 on a test set of 143 images. 

Method 1 achieved AP50 of 38.5% while method 2 achieved AP50 of 74.95% at iteration 

1000. We observed that training the detector on PRAs including H and PL classes achieved 

faster convergence and higher detection rates. We therefore adopted this approach in our 

further experiments. The proposed system then cropped and normalized all predicted 

bounding boxes that were then submitted to the classifier model. Figure 2 shows one ex-

ample of the output of the detection model. The detector was able to adapt to the size and 

extension of the periapical region automatically depending on the size and extension of 

the roots and the lesions. This was demonstrated by the high AP50 of the algorithm. Each 

periapical area was labeled independently regardless of whether it was found on single 

rooted or multi rooted teeth. 
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Figure 2. Detection of periapical areas (PRA) on panoramic radiograph by clinicians and by the AI. 

First image: OPG showing the PRA annotated by the expert clinician. Second image: OPG showing 

the proposed PRA generated by the detection model for the same image. All PRAs were detected 

by the proposed model (Faster RCNN). 

The periapical lesion classifier was responsible to label the bounding box of each de-

tected PRAs as PL or H using a fine-tuned CNN. We trained and validated three classifi-

cation models (VGG16, Inception v3, and Xception) on a balanced subset of the original 

dataset consisted of 3249 PRAs. As a baseline, all models were initialized from the 

ImageNet pre-trained weights and trained for 50 epochs. We calculated the accuracy, sen-

sitivity, and specificity on a test set of 707 PRA to assess the performance of these classifi-

ers at epoch 50 as shown in Table 2. Our findings showed that Inception v3 outperformed 

both VGG16 and Xception in all metrics. Therefore, we selected Inception v3 as the classi-

fication model in the proposed architecture. We resumed training until convergence. Fig-

ure 3 shows Inception v3’s learning curves and error rates, where it shows that the model 

converged on epoch 100. The final performance results of the Inception model are shown 

in Table 3. In this test evaluating the performance of the final model, a total of 312 PRAs 
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were successfully classified as H, and 282 PRAs were successfully classified as PL. While 

48 PRAs were incorrectly classified as PL and 65 PRAs were incorrectly labelled as H. The 

classifier accuracy, sensitivity, and specificity were 84, 81, and 86, respectively. 

Table 2. Evaluation of the performance of the different classification models tested. 

Metric Inception v3 VGG16 Xception 

Accuracy% 82 79 78 

Sensitivity% 86 76 77 

Specificity% 79 82 79 

Table 3. Confusion matrix and classification metrics assessing the final performance of Inception v3 

on the test set. 

 Predicted H Predicted PL 

Actual H 312 48 

Actual PL 65 282 

Accuracy% 84 

Sensitivity% 81 

Specificity% 86 

 

Figure 3. Graph depicting the learning curves and error rates of the Inception v3 model we used to 

classify the periapical areas. The graph shows the training accuracy (Train Acc.), the training loss 

(Train Loss), the validation accuracy (Val. Acc.) and the validation loss (Val. Loss) as a function of 

epochs. Training and validation loss decreased over time and stabilized at epoch 100. Training and 

validation accuracy on the other hand increased over time and stabilized at epoch 100. This indi-

cated the convergence of the model after 100 epochs. 

The detection and classification models were combined in order to produce our over-

all solution that was able to automatically identify the periapical lesions in the OPGs with 

red bounding boxes corresponding to Periapical Lesions. These boxes included a confi-

dence score that represented a percentage calculated by the AI indicating how sure the AI 

was the output is correct. The overall solution was tested on a test set of 299 PL on 143 

panoramic radiographs. The accuracy, sensitivity, and specify of the overall solution were 

84.6%, 72.2%, and 85.6%, respectively. Figure 4 shows representative examples of the final 

output generated by the proposed method. This final tool was designed to detect periap-

ical areas and ignore anything else in the radiograph, thus it was not affected by the pres-

ence of distractors and artifacts such as implants and crowns, also, the size of the detection 

box was able to adapt to the actual PRA, and it discriminated between different apices on 

Train Acc.
Train Loss
Val. Acc.
Val. Loss

epochs

%

Epochs
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the same tooth. On average, the proposed combined AI system took 2.3 s to detect and 

classify all PRAs as H or PL on a panoramic radiograph. 

 

Figure 4. Performance of the proposed AI system for periapical lesion detection. This figure shows 

OPGs of three different cases (a–c) labeled by the clinician (left) and the AI (right). For each row, the 

OPG on the left shows the boxes annotated by the expert including PL and healthy PRAs, while on 

the right, we show the same OPG labeled by the AI with red boxes indicating the PL detected by 

the AI. The confidence score calculated by the AI system can be found on top of each red boxes. 

Case “(a)” shows a periapical lesion detected in a multirooted tooth (#36). Case “(b)” shows two 

periapical lesions in teeth with root canal treatments and crowns in a patient with dental implants. 

Case “(c)” shows a case with a single PL in a multirooted tooth (#26). 

4. Discussion 

The experimental results of this study showed the effectiveness of the proposed 

model to detect periapical lesions on panoramic radiographs. This model could be useful 

in clinical application for quick and easy detection of periapical lesions; on average, the 

proposed AI system takes 2.3 s to detect and classify all PRAs as H or PL on a panoramic 

radiograph. 

a.

b.

c.
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In the present study, we proposed a two-stage deep learning architecture for periap-

ical lesion detection on panoramic radiographs. We employed Faster-RCNN to localize 

PRAs and Inception v3 to classify PRA as PL or H. Breaking the task of PL detection into 

two steps, detection and classification, presented a faster learning convergence and higher 

detection rates (AP50 74.95%) compared to the baseline model in which we trained purely 

on PL samples (AP50 38.5%) The Inception-v3 classifier achieved the highest performance 

compared to other models (VGG16, Xception). When merging both detection and classifi-

cation models, the overall accuracy, sensitivity, and specificity were 84.6%, 72.2%, and 

85.6%, respectively. 

Few studies addressed the problem of periapical lesions detection on panoramic ra-

diographs using deep learning. Ekert et al. [5] proposed a classification model using a 

small dataset (85 panoramic radiographs). The model was not sensitive enough to be used 

clinically, and was limited in its ability to automate the detection of the region of interest, 

PRAs, as it was trained on manually cropped patches of the individual teeth. 

In our study, we proposed an AI architecture that can automatically detect and clas-

sify PL on an entire panoramic radiograph without the need for manual processing. Au-

tomatic evaluation of panoramic radiological images was also explored in another study 

that assessed the reliability of a CNN based automatic software “Diagnocat” [26]. Upon 

evaluation of thirty panoramic radiographs, their CNN based automatic protocol showed 

very high sensitivity with respect to dental fillings, endodontically treated teeth, residual 

roots, periodontal bone loss, missing teeth, and prosthetic restorations. However, the re-

liability obtained for caries and periapical lesions assessments was unacceptable (ICC = 

0.681 and 0.619, respectively). 

Two other studies followed a segmentation approach to localize PL on panoramic 

radiographs [27,28]. Endres et al. [27] presented a deep learning-based model trained on 

2902 de-identified panoramic radiographs. In order to validate the algorithm 24 oral and 

maxillofacial surgeons assessed the presence or appearance of periapical radiolucencies 

on a separate set of panoramic radiographs. The findings of this study showed that the 

developed model outperformed 14 out of 24 surgeons. Their model achieved a precision 

of 67% and sensitivity of 51% on a test set of 102 radiographs. Bayrakdar et al. [28] em-

ployed a UNet model trained on 470 panoramic radiographs to segment PLs. The model 

was tested on a small dataset consisting of 63 PL on 47 panoramic radiographs. The sen-

sitivity, precision, and F1-score of UNet were 0.92, 0.84, and 0.88, respectively [28]. Our 

study was validated in a much larger sample of 299 PL on 143 panoramic radiographs, 

and still we achieved high accuracy, sensitivity, and specificity (84.6%, 72.2%, and 85.6%, 

respectively). 

In addition to OPG, other radiographic modalities have also been investigated for 

automated diagnosis of PL. In one study, CBCT images of 153 periapical lesions were 

evaluated by deep CNN, which detected 142 periapical lesions, along with the location 

and volume of lesions [29]. Another study used using CNN on periapical radiographs 

showed the possibility of automatically identifying and judging periapical lesions with a 

success rate of as high as 92.75% [11]. 

Diagnosing and documenting pathologies on dental radiographs is time-consuming 

and even though general and specialist dentists are well trained to do this, they are not 

exempt of human error. In fact, most complications in dental practice stem from misdiag-

nosis, which often involves missing out on noticing periapical lesions [30]. In this sense, 

the proposed technology could help clinicians fill dental charts, and minimize diagnosis 

errors in the detection of periapical lesions. In fact, a previous study has already demon-

strated that AI could outperform dental specialists in detection of apical lesions [27]. 

This study has several limitations. It is based on panoramic radiographs from a single 

source restricted to patients from Brazil. Even though our model achieved excellent image 

recognition and detection results, data collection from multiple other sources and sites 

would be required in the future to increase the robustness of the algorithm and establish 

generalization of the applicability of the model across different sites. Another limitation 
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of this study was the use of panoramic radiographs of only permanent dentition. Even 

though our study included panoramic radiographs for patients with a wide range of ages 

(between 11 and 84 years of age), mixed dentition was excluded, thus future studies 

would be needed to address an optimized algorithm for both permanent and mixed den-

tition. Another limitation of our study was that the OPGs used for training were only 

diagnosed visually by inspection of the radiograph; more accurate diagnosis necessitates 

the inclusion of clinical data such as percussion, thermal and electric pulp tests, which 

have not been taken into account here. Thus, future studies could further improve the 

performance of the algorithms by training them on images with diagnoses confirmed by 

a wider range of diagnostic techniques. 

5. Conclusions 

In the present study, the proposed AI tool based on “Faster-RCNN” and Inception-

v3 was able to detect the periapical region of the teeth on panoramic radiographs and 

classify them into healthy and periapical lesions achieving an accuracy of 84.6%. 
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