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Channel state information (CSI) feedback in massive MIMO systems is too large due to large pilot overhead. It is due to the large
channel matrix dimension which depends on the number of base station (BS) antennas and consumes the majority of scarce radio
resources. To solve this problem, we proposed a scheme for e�cient CSI acquisition and reduced pilot overhead. It is based on the
separation mechanism for the channel matrix.  e spatial correlation among multiuser channel matrices in the virtual angular
domain is utilized to split the channel matrix. en, the two parts of the matrix are estimated by deploying the compressed sensing
(CS) techniques.  is scheme is novel in the sense that the user equipment (UE) directly transmits the received symbols from the
BS to the BS, so a joint CSI recovery is performed at the BS. Simulation results show that the proposed channel estimation scheme
e�ectively estimates the channel with reduced pilot overhead and improved performance as compared with the state-of-the-
art schemes.

1. Introduction

Massive multiple-input multiple-output (MIMO) systems
are equipped with a large number of antennas at the base
station (BS), which can signi�cantly improve the spectrum
e�ciency and energy e�ciency of the system. It is regarded
as the most promising technology in the �fth-generation
(5G) wireless communication system [1–6]. In order to
obtain the performance gain of a massive MIMO system, the
BS side needs to know the channel state information (CSI).
However, due to a large number of antennas at the BS end, a
large amount of system resources is consumed for channel
estimation [7–10]. In order to avoid the problem of excessive
channel estimation pilot overhead, many researchers’ works
mainly focus on the time division duplex (TDD) mode [11]

to reduce channel overhead by using channel reciprocity.
Due to complex calibration and limited coherence time, the
CSI obtained through the uplink in the TDD system may be
inaccurate for the downlink, while the FDD system has low
latency characteristics and dominates the current wireless
communication system [12].  erefore, it is necessary to
conduct an in-depth study of the large-scale MIMO system
under FDD. Although the FDDmassive MIMO system faces
the problem of large pilot overhead, it is expected that the
FDD system will be backward compatible with the current
network. It is worth noting that the channel matrix of a
massive MIMO system has a sparse structure and com-
pressed sensing (CS) technology can be utilized to reduce the
pilot overhead [13].  e literature [14, 15] detailed the
principle of orthogonal tracking matching (OMP) and
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subspace pursuit (SP) algorithm in the CS recovery algo-
rithm to reconstruct sparse signals, which shows the ap-
plication of CS technology. It is feasible to estimate the
sparse channel. Reference [16] details the application of CS
in pilot-assisted channel estimation and further studies the
application of CS in multicarrier underwater acoustic
communication channel estimation. In [17], the channel
estimation of multiuser massive MIMO systems is studied,
and the temporal correlation and spatial correlation of the
channels are fully utilized. A low-rank matrix approxi-
mation method based on CS is proposed. In [18], the
channel estimation in the beam domain is studied, and the
amplitude and phase of the received signal are quantized,
respectively, and the channel matrix is recovered from the
quantized signal, thereby reducing the pilot overhead. )e
literature [19–21] uses the common support information
between the channel matrices to reduce the pilot overhead
and improve the estimation performance. )e literature
[18–24] uses the temporal correlation of the channel path to
use the support information of the previous frame into the
current frame, and the literature [23, 24] separates the
current frame into two parts based on the channel in-
formation of the previous frame. Different methods are
used for estimation, which further reduces the pilot
overhead, but all consider a single-user system. In the
literature [25–27], a distributed compressed sensing
channel estimation and a feedback scheme are proposed for
large-scale MIMO multiuser systems and a higher per-
formance gain is obtained.

Based on analyzing the channel estimation of existing
FDD multiuser massive MIMO systems, this paper pro-
poses a new channel estimation scheme to further reduce
the pilot overhead. )e main feature of the proposed al-
gorithm is it utilizes the common sparse structure between
multiple channel matrices, the channel matrix is split into
two parts, and the channel estimation problem is trans-
formed into the signal recovery problem in the CS model.
)e simulation results show that the channel estimation
performance is improved.

2. System Model

2.1. Channel Model. )is paper considers a narrowband flat
block fading multiuser massive MIMO system. )e system
comprises a BS and K multiantenna user equipment (UE)
operating in the FDD mode, wherein the BS is equipped with
M (M≫ 1) antenna and each UE is equipped with N (N> 1)

antenna. )rough the common downlink channel, the BS
broadcasts a pilot training symbol of length T on its M

antennas, as shown in Figure 1.
Consider both the BS side and the UE side antennas are

uniform linear array (ULA) models. Usually, channel H is
sparser under the virtual angle domain [25], and the channel
matrix from BS to k (k � 1, 2, . . . , K) UEs can be expressed
as follows [19, 20]:

Hk � R 􏽥HkT
H

, (1)

where R ∈ CN×N and T ∈ CM×M, respectively represent the
unitary matrix under the angular transformation of the UE

and BS ends and 􏽥Hk ∈ CN×M represents the angular domain
matrix, whose (n, m)th term is nonzero. It indicates that
there is a spatial path from the mth transmission direction of
the BS to the nth reception direction of the UE.

It is worth noting that in massive MIMO systems, due to
the limited scattering environment at the BS, the angular
domain channel 􏽥Hk has a large sparsity; that is, a large
number of elements in 􏽥Hk are zero or approximately zero. At
the same time, considering that the distance between
multiple UEs is much smaller than the distance from each
UE to the BS, this indicates that there is a spatial correlation
between multiple channels; that is, there is partial common
support between channels [14]. Generally, the local scat-
tering environment at the UE is relatively rich, so that the
row vectors of 􏽥Hk have the same sparse support, so it can be
considered to treat each column of 􏽥Hk as a unit. Based on
this, there are the following assumptions:

Hypothesis 1. )e row vector of the angular domain channel
􏽥Hk has the same sparsity support [21, 28]; i.e.,

sp 􏽥hk1􏼐 􏼑 � sp 􏽥hk2􏼐 􏼑 � . . . � sp 􏽥hkN􏼐 􏼑≜Θk, ∀ k, (2)

where 􏽥hkn(n � 1, 2, . . . , N) denotes the nth row of 􏽥Hk,
sp(􏽥hkn) denotes the support index set of the nonzero term of
the vector 􏽥hkn and the support of the kth channel matrix 􏽥Hk,
and the index set is Θk.

Hypothesis 2 [29, 30]. )ere is partial common support
between different 􏽥Hk values; i.e.,

∩
K

k�1
Θk � Θc,

(3)

where Θc represents a common support set between the K

channel matrices.

BS

Pilot length = 45

h1 Transmit block

h2 Transmit block

h3 Transmit block

Zero element block

Figure 1: System model of joint channel sparse structure.
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Hypothesis 3 [31, 32]. )ere is a statistical sparse boundary
for channel sparsity S � sc, sk : ∀ k􏼈 􏼉􏼈 􏼉; i.e.,

Θc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ sc,

Θk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ sk,

∀ k,

(4)

where sc represents the number of identical sparse locations
between K channel matrices and sk represents the number of
sparse locations of the kth channel matrix.

Based on the above assumptions, this paper considers
decomposing the channel matrix into two parts [17, 18], as
shown in Figure 2. )e grey blocks show the nonzero sparse
channel transmit blocks while the white block represents
zero elements. After the channel is decomposed, the channel
of each part will have more sparsity and the channel esti-
mation based on CS will further reflect its recovery ad-
vantage. Based on this idea, this paper decomposes the
channel into partial common support channels 􏽥Hk, c and
their respective unique support channels 􏽥Hk, i, namely, as
follows:

􏽥Hk, c � 􏽥Hk( 􏼁Θc
IM( 􏼁

T

Θc
, ∀ k,

􏽥Hk, i � 􏽥Hk( 􏼁Θk,i
IM( 􏼁

T

Θk,i
, ∀ k,

(5)

where Θk, i denotes support set unique to the kth channel
matrix, IM ∈ CM×M denotes an identity matrix, and (∗)Θ
denotes a submatrix composed of corresponding columns in
the matrix ∗ by index Θ.

2.2. Pilot Transmission. )e transmitted pilot sequence is
X ∈ CM×T and stratifies tr(XXH) � PT, where P is the
signal-to-noise ratio (SNR) transmitted by each slot of the
BS. )erefore, the signal received by the kth UE can be
expressed as follows:

Yk � HkX + Nk , ∀ k, (6)

where Yk ∈ CN×T, Hk ∈ CN×M is the quasistatic channel
matrix of the BS to the kth UE, and Nk ∈ CN×T is the
complex Gaussian noise with zero mean and unit variance.

In order to utilize the CS technique for sparse channel
estimation, the following new variables are defined to match
the standard CS measurement model [10]:

Yk �

���
M

PT

􏽲

YH
k R,

Xk �

���
M

PT

􏽲

XHT,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

Hk � 􏽥HH
k ,

Nk �

���
M

PT

􏽲

NH
k R.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Substituting equations (7) and (8) into equation (6)
yields

Yk � XHk + Nk , ∀ k. (9)

)us, the channel estimation problem is transformed
into the CS recovery problem, where Yk ∈ CT×N represents
the measured value, X ∈ CT×M represents the measurement
matrix and satisfies tr(XHX) � M, and Hk ∈ CM×N repre-
sents the sparse matrix that needs to be recovered.

3. Proposed Algorithm

3.1. AlgorithmDesign. In order to overcome the problem of
excessive pilot overhead and feedback overhead in channel
estimation of massive MIMO systems and to alleviate the
resource consumption of the UE, this paper considers the
distributed joint channel estimation scheme [25]; that is,
after the UE receives the compressed measurement Yk, the
channel estimation is performed immediately, and the re-
ceived signal is directly fed back to the BS, and the
H1, H2, . . . , HK􏼈 􏼉 is jointly restored at the BS. )is paper
assumes perfect CSI measurement feedback from the UE to
the BS.

According to the spatial correlation of the channel
matrix of multiuser massive MIMO systems, unlike the
literature [25], this paper considers splitting the channel
matrix into two parts in order to reduce the pilot overhead
for channel estimation. )e proposed channel estimation
scheme is divided into two phases. )e first phase first
identifies their common support set according to the spatial
correlation between the K channel matrices; the second stage
identifies each support set unique to each channel matrix.

Specifically, in the first stage, this paper uses the or-
thogonal matching pursuit (OMP) algorithm [8] with low
computational complexity to identify the common support
set. For the kth channel matrix Hk, by calculating the
correlation between the jth (j � 1, 2, . . . , M) column of
the matrix X and the residual signal Rk, i.e., ‖X(j)HRk‖F,
the support index is selected, where X(j) represents the jth
column of X. For the identification of the common support
index, the selection of the common support index j is
determined according to the maximum number of statistics
corresponding to the support index of the K channel
matrices; i.e.,

Θc � Θc∪ argmax
j 􏽘

K

k�1
I j:j∈Θk

′{ }, (10)

where Θk
′ represents the selected supporting index of the kth

channel matrix set and I ·{ } represent the base.
)us, after iterative calculation, the common supporting

index set of the K channel matrices can be identified. It is
worth noting that the common sparse structure between
channels, in turn, ensures the accuracy of the identified
common support set. Furthermore, the least square (LS)
method can be used to obtain the channel estimate for this
part:

He

k,c � XΘc
􏼐 􏼑 + Yk, ∀k. (11)

At this point, part of the common support channel can
be expressed as
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Hk,c � IM( 􏼁Θc
HT

k􏼒 􏼓
T

Θc

, ∀k. (12)

After the common support index set between the
channels is identified, the second stage is to identify the
respective support sets of Hk : ∀k􏼈 􏼉. According to the
common support set that has been identified in the first
stage, the values of the corresponding index positions of the
channel Hk : ∀k􏼈 􏼉 are all set to zero, and the unique support
channel portion of the kth channel matrix can be expressed
as

Hk,i � Hk − Hk,c, ∀k. (13)

Compared with the original channel matrix Hk, the
channel matrix Hk,i has more sparsity and is more suitable
for channel recovery using CS technology. For the identi-
fication of unique support index sets, the subspace pursuit
(SP) algorithm [15] is used here and its backtracking idea
improves the correctness of the selected elements in each
iteration. )e core idea of the SP algorithm is to update the
supporting index set after selecting multiple elements in
each iteration and then update the supporting index set
again by backtracking calculation. In this paper, the element
selection is updated again by calculating the norm of the row
vector of (XΘk,i

) + Yk,i and then adding the corresponding
index to the index set Θk,i or deleting the error from it. After
the iteration stops, the unique support channel portion can
be estimated based on the identified unique support set,
namely,

He

k,i � XΘk,i
􏼐 􏼑 + Yk,i, ∀k, (14)

where Yk,i � Yk − Yk,c, ∀k.
At this point, the recovered two parts of the channel are

added to obtain the channel estimation in the angular
domain:

􏽥He

k � IM( 􏼁Θc
He

k,c􏼐 􏼑
H

+ IM( 􏼁Θk,i
He

k,i􏼒 􏼓
H

� He

k,c + He

k,i , ∀k.

(15)

)e specific steps of the proposed algorithm are shown in
Algorithm 1.

4. Simulation Results

For a multiuser FDD massive MIMO system, this paper
considers the case of one BS and K UEs, where the BS is
equipped with M antennas and each UE is equipped with N

antennas. For the sake of simplicity, it is assumed that the

sparsity of different channels is the same, that is, sk � s, and
the common sparsity between channels is sc. In order to
show the performance of the proposed channel estimation
scheme, this paper selects the extension algorithm
MMVOMP of OMP algorithm in the literature [8], OB-
OMP [18], CS-aided [23], DCS-aided [24], J-OMP algorithm
in [25], and the Genie-aided LS algorithm as the upper
bound of performance. In this paper, the normalized mean
square error (NMSE), bit error rate (BER), and sum rate are
used to compare the performance. )e NMSE is defined as
follows:

ENMSE �
1
G

􏽘

G

k�1

Hk − He
k

����
����
2
F

Hk

����
����
2
F

, (16)

where Hk represents the kth channel matrix, He
k represents

the recovered kth channel matrix, and G represents the
number of simulation implementations. )e simulation
parameters used in the MATLAB simulator for the exper-
imental results analysis are shown in Table 1.

Figure 3 compares the NMSE performance of each al-
gorithm under different pilot length conditions. As can be
seen from Figure 3, the proposedM-JOMP algorithmNMSE
performance is much better than the algorithm for esti-
mating each channel separately. When the number of pilots
is small, the proposed algorithm reduces the NMSE by about
5 dB compared to the J-OMP algorithm in [25].)e reason is
that the channel splitting makes each part of the channel
have more sparsity. Furthermore, the proposed M-JOMP
algorithm shows better NMSE performance the other state-
of-the-art algorithms [8, 18, 23, 25] for different pilot
conditions which makes it more effective for channel esti-
mation. When using CS technology for signal recovery, the
higher the sparse the signal, the less the training overhead is
required. Since the channel matrix after splitting has more
sparsity, channel recovery using CS technology will consume
fewer pilots and backtracking selection will keep the correct
rate when the number of pilots is small. When the pilot
length increases to a certain value, the proposed M-JOMP
and J-OMP algorithms reach the performance upper bound
and the advantage of the channel joint recovery scheme can
be seen, which is due to the spatial correlation of the channel
between multiple UEs. By means of the channel structure
with common support between different channels, the
correctness of elements selection is greatly improved, that is,
the accuracy of support set identification.

Figure 4 compares the NMSE of channel recovery be-
tween different algorithms under different SNRs. It can be
seen from Figure 4 that under the conditions of low and high

=

=

=

H1

Hk

+

Figure 2: Illustration of channel matrix decomposition into two parts.
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SNR, the proposed algorithm has better performance gain
than the literature [8, 18, 23–25], because, at the high SNR,
the element recognition accuracy of the common support is

higher, that is, it is well recognized.)e common support set
will have a beneficial effect on the splitting of the latter
channel and the identification of another part of the channel
support.

Figure 5 compares the variation of NMSE with number
of users K of each algorithm. Here, the number of antennas
at the BS is selected to beM� 128, the number of antennas at
the users is N� 12, the channel sparsity is s� 15, the com-
mon sparsity between channels is sc � 6, the pilot length is
T� 45, and the BS transmits SNR� 28 dB. As can be seen
from Figure 5, when the number of users increases, the
NMSE can be effectively reduced. )is is because the
common support structure between the channels is utilized,
the correctness of the element selection is improved, and the
channel recovery performance is improved. Compared with
the literature [8, 18, 23–25] algorithms, the proposed
M-JOMP algorithm has a large performance improvement.
)e reason is that the SP algorithm is adopted for the second
part of the split channel, which further improves the cor-
rectness of the selected element. As the number of users
increases, the NMSE performance of the proposed algorithm
hardly changes. It is seen that this algorithm is robust. It can
be seen from the simulations results that the proposed
scheme has better channel estimation performance under
the condition of less pilot or low and high SNR (Figures 3
and 4). It is worth mentioning that theM-JOMP algorithm is
especially suitable for channel estimation in multiuser
situations.

Figure 6 compares the BER of the proposed M-JOMP
algorithm with the state-of-the-art [8, 18, 23–25] algorithms
against the SNR. )e linear precoding technique MMSE is
used at the BS, while ZF is used at the UEs at it does not
require postcoding. )e QAM modulation is used and
considers a narrowband flat block fading channel model. As
can be seen from Figure 6, when the SNR increases, the BER
can be effectively reduced. )is is because the common
support structure between the channels is utilized, the
correctness of the element selection is improved, and the

Input: Yk : ∀k􏼈 􏼉, X, S, according to Equation (7), calculate the measured value Yk : ∀k􏼈 􏼉 and the measurement matrix X, and
initialize the residual signal Rk � Yk : ∀k􏼈 􏼉. Let the common support set of the channelsΘc � ϕ, and set the number of iterations lc
to 1.

(1) From ‖X(j)HRk‖F (j � 1, 2, . . . , M), the BS selects the position corresponding to the previous (sk − |Θc|) maximum values as the
support index to join the support set Θk

′.
(2) )e BS update the common support set Θc by Equation (10).
(3) Let Rk � Yk − (XΘc

)(XΘc
) + Yk if lc < sc, then lc � lc + 1, return to Step 1, otherwise go to Step 4.

(4) BS obtains partial joint support channel estimation by Equation (13) transmitted by the UE.
(5) Let the unique support set of the channelΘk,i � ϕ, Yk,i � Yk − Yk,c, ∀k, the residual signalQk � Yk, i, set the number of iterations li

to 1.
(6) From ‖X(j)HQk‖F (j � 1, 2, . . . , M), the position corresponding to the previous (sk − sc) maximum values is selected by the BS as

a supporting index and added to the support set Θk, i.
(7) Let Xp � (XΘk,i

) + Y, according to Xp(j)F (j ∈ Θk, i), the position corresponding to the previous (sk − sc) maximum values is
added as a supporting index to the support set Θk, i at the BS.

(8) Let Qk � Yk,i − (XΘk,i
)(XΘk,i

) + Yk,i, if li < (sk − sc), let li � li + 1, return to Step 6, otherwise, go to Step 9.
(9) )e BS obtains a unique support channel estimate by Equation (14).

Output: According to Equation (15), the channel estimate (CSI) at the BS H
e

k in the angular domain can be obtained, and then,
He

k � R 􏽥H
e

kT
H, ∀k.

ALGORITHM 1: M-JOMP algorithm.

Table 1: Simulation parameters.

Parameter Value
Number of BS antennas, M 128
Number of UE antennas, N 2–12
Number of UE, K 20
Channel sparsity, s 15
Interchannel common sparsity, sc 6
SNR 28 dB
Pilot length, T 45
Channel model Narrowband flat block fading

35 40 45 50 55 60 65 7030
Length of pilot T

10–4

10–3

10–2

10–1

100

N
M

SE

MMV-OMP [8]
J-OMP [25]
DCS-aided [24]
CS-aided [23]

OB-OMP [18]
Proposed M-JOMP
Genie-aided LS

Figure 3: Performance comparison of NMSE with a pilot length
under different algorithms.
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channel recovery performance is improved. It can be seen
from Figure 6 that the proposed M-JOMP algorithm
outperforms the existing algorithms under low and high
SNR regime which makes it more robust than the existing
algorithms. Moreover, the proposed algorithm shows close
performance with the Genie-aided LS algorithm.

Figure 7 compares the achievable sum rate of the pro-
posed algorithm with the state-of-the-art [8, 18, 23–25]
algorithms against the SNR variations considering the same
transceiver model parameters. As can be seen from Figure 7,
the sum rate of the proposed M-JOMP algorithm is better

than the other algorithms which make it suitable for low and
high SNR and multiuser environments.

Figure 8 evaluates the sum rate versus feedback bits of
the proposed and traditional state-of-the-art [8, 18, 23–25]
algorithms. As can be seen from Figure 8, the proposed
M-JOMP algorithm gives overall better sum rate perfor-
mance as compared with the other state-of-the-art schemes
for a different number of feedback bits. Moreover, the rate
gap between the proposed M-JOMP algorithm and the
reference benchmark Genie-aided LS algorithm is close
enough which shows its improved performance over the

MMV-OMP [8]
J-OMP [25]
DCS-aided [24]
CS-aided [23]

OB-OMP [18]
Proposed M-JOMP
Genie-aided LS

10 15 20 25 305
Number of users K

10–4

10–3

10–2

10–1

100

N
M

SE

Figure 5: Performance comparison of NMSE with a number of
users under different algorithms.
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100
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R

MMV-OMP [8]
J-OMP [25]
DCS-aided [24]
CS-aided [23]

OB-OMP [18]
Proposed M-JOMP
Genie-aided LS

Figure 6: Performance comparison of BER with SNR under
different algorithms.
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Figure 7: Performance comparison of sum rate with SNR under
different algorithms.
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Genie-aided LS

Figure 4: Performance comparison of NMSE with SNR under
different algorithms.
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other algorithms. )e rate gap between the proposed
M-JOMP and the other algorithms increases with increasing
feedback overhead which indicates that the proposed al-
gorithm gives better spectral efficiency performance for the
same number of feedback bits than the other algorithms
which makes it suitable for massive MIMO systems.

5. Conclusions

)is paper studies the channel estimation problem in 5G FDD
multiuser massive MIMO systems. In order to reduce the pilot
overhead, this paper proposes to use the spatial correlation
betweenmultiuser channels to split the channelmatrix into two
more sparse channelmatrices and then use compressed sensing
technology to estimate the two parts of the channel separately.
Different from the traditional channel estimation scheme, this
paper considers that multiple UE do not perform channel
estimation locally after receiving the pilot signal from the BS
but directly provide feedback the received signal to the BS, and
perform joint recovery of the channel at the BS end. )e
simulation results show that the proposed scheme can effec-
tively reduce pilot overhead while ensuring good channel es-
timation performance. Compared with the algorithm in [25],
the improved algorithm can obtain better channel estimation
performance under the condition of less pilot number. )e
pros of this method are that it splits the channel which has
more sparsity and then uses the subspace pursuit algorithm
which further provides correct sparse elements and it has good
estimation performance in low and high SNR regime.)e cons
of this method are that it assumes perfect CSI measurement
feedback from theUE to the BSwhich is not possible in practice
and a nonideal CSI measurement approach needs to be
considered. )is work can further be extended by in-
corporating mmWave with massive MIMO and performing
the analysis of beamspace channel estimation using the CS
paradigm.
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